
The Curious Price of Distributional Robustness
in Reinforcement Learning with a Generative Model

Laixi Shi∗
Caltech

Gen Li†
CUHK

Yuting Wei‡
UPenn

Yuxin Chen‡

UPenn
Matthieu Geist§

Google
Yuejie Chi¶

CMU

Abstract

This paper investigates model robustness in reinforcement learning (RL) via the
framework of distributionally robust Markov decision processes (RMDPs). Despite
recent efforts, the sample complexity of RMDPs is much less understood regardless
of the uncertainty set in use; in particular, there exist large gaps between existing
upper and lower bounds, and it is unclear if distributional robustness bears any
statistical implications when benchmarked against standard RL. In this paper,
assuming access to a generative model, we derive the sample complexity of RMDPs
— when the uncertainty set is measured via either total variation or χ2 divergence
over the full range of uncertainty levels — using a model-based algorithm called
distributionally robust value iteration, and develop minimax lower bounds to
benchmark its tightness. Our results not only strengthen the prior art in both
directions of upper and lower bounds, but also deliver surprising messages that
learning RMDPs is not necessarily easier or more difficult than standard MDPs. In
the case of total variation, we establish the minimax-optimal sample complexity
of RMDPs which is always smaller than that of standard MDPs. In the case of
χ2 divergence, we establish the sample complexity of RMDPs that is tight up to
polynomial factors of the effective horizon, and grows linearly with respect to the
uncertainty level when it approaches infinity.

1 Introduction

Reinforcement learning (RL) deals with the problem of learning to make sequential decisions based on
trial-and-error interactions with some unknown environment. As a fast-growing subfield of artificial
intelligence, it has achieved significant success in a variety of domains such as large language model
alignment (OpenAI, 2023; Ziegler et al., 2019), healthcare (Liu et al., 2019; Fatemi et al., 2021),
robotics and control (Kober et al., 2013; Mnih et al., 2013). Due to the high dimensionality of the
state-action space, achieving sample efficiency lies at the core of modern RL practice, especially
in various sample-starved applications. As a result, a large portion of efforts in RL has been put in
designing sample-efficient algorithms and understanding the fundamental statistical difficulty for
diverse RL problems (Azar et al., 2013; Li et al., 2020).

While standard RL has been heavily invested recently, its use can be significantly hampered in
practice due to the sim-to-real gap, where an agent trained in an ideal, nominal environment might
be extremely sensitive and fail catastrophically when the deployed environment is subject to small
changes in task objectives or unexpected perturbations (Zhang et al., 2020a; Klopp et al., 2017;
Mahmood et al., 2018). Consequently, in addition to maximizing the long-term cumulative reward,
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robustness becomes another critical goal for an RL agent, especially in high-stake applications such
as robotics, autonomous driving, clinical trials, financial investments, and so on. To address this,
distributionally robust RL (Iyengar, 2005; Nilim and El Ghaoui, 2005), which leverages insights from
distributionally robust optimization and supervised learning (Rahimian and Mehrotra, 2019; Gao,
2020; Bertsimas et al., 2018; Duchi and Namkoong, 2018; Blanchet and Murthy, 2019), becomes a
natural and versatile framework with the goal of learning a policy that performs well even when the
deployed environment deviates from the nominal one in the face of environment uncertainty.

In this paper, we are particularly interested in understanding whether, and how, the choice of
distributional robustness bears statistical implications in learning the desired policy, by studying
the sample complexity in the widely-used generative model (Kearns and Singh, 1999). Suppose
that one has access to a generative model which draws samples from a Markov decision processes
(MDP) with a nominal transition kernel. Standard RL aims to learn the optimal policy tailored
for the nominal kernel based on this set of samples, where the sample complexity has been well
understood with matching upper and lower bounds developed recently (Azar et al., 2013; Li et al.,
2020). In contrast, distributionally robust RL — leveraging the same set of samples — aims to learn
the optimal robust policy whose worst-case performance is maximized when the transition kernel is
from some prescribed uncertainty set around the nominal kernel, a setting that is referred to as the
robust MDP (RMDPs).6 Clearly, this ensures that the performance of the learned policy is robust
and does not fail catastrophically as long as the sim-to-real gap is not too large. It is then natural
to wonder how the robustness consideration impacts the RL performance: should we always prefer
to learn a robust policy for a given set of samples? Is there a statistical premium when asking for
additional robustness?

Compared with standard MDPs, RMDPs is a richer class of models since one additionally needs
to prescribe the shape and size of the uncertainty set, which is usually hand-picked as a small ball
around the nominal kernel measured with respect to some distance measure ρ and uncertainty level σ.
To ensure the tractability of solving RMDPs, the uncertainty set is usually assumed to obey certain
structures, where the uncertainty set can be decomposed as a product of independent uncertainty
subsets over each state or state-action pair (Zhou et al., 2021; Wiesemann et al., 2013), denoted as
the s- and (s, a)-rectangular rectangularity respectively; in particular, our paper adopts the second
choice by assuming the uncertainty set satisfies the (s, a)-rectangularity. An additional challenge
with RMDPs arises from distribution shift, where the transition kernel drawn from the uncertainty set
can be different from the nominal kernel, leading to complicated nonlinearity and nested optimization
in the problem structure not present in standard MDPs.

1.1 Prior art and open questions
In this paper, we focus on understanding the sample complexity of learning the optimal robust policy
of RMDPs in the infinite-horizon setting assuming access to a generative model, when the uncertainty
set is measured using one of the f -divergence: total variation (TV) distance and χ2 divergence. These
two choices are motivated by their practical appeal: easy to implement, and already adopted by
empirical RL (Lee et al., 2021; Pan et al., 2023).

A popular learning approach is model-based, which first estimates the nominal transition kernel using
a plug-in estimator based on the collected samples, and then runs a planning algorithm such as a
robust variant of value iteration on top of the estimated RMDP. Despite the surge of recent activities,
however, existing statistical guarantees for the above paradigm remain highly inadequate, as we shall
elaborate momentarily (see Table 1 and Table 2 respectively for a summary). For concreteness, let
S be the size of the state space, A be the size of the action space, γ be the discount factor (and the
effective horizon 1

1−γ ), and σ be the uncertainty level. We are interested in the sample complexity
— the number of samples needed for an algorithm to output a policy whose robust value function
(the worst-case value over all the transition kernels in the uncertainty set) is at most ε away from the
optimal robust one — with respect to all salient problem parameters.

• Large gaps between existing upper and lower bounds. There remained large gaps between the
sample complexity upper and lower bounds established in prior literature, regardless of the divergence
metric in use. Specifically, considering the cases using either TV distance or χ2 divergence, the
state-of-the-art upper bounds (Panaganti and Kalathil, 2022) scales quadratically with the size S of the

6While it is straightforward to incorporate additional uncertainty of the reward in our framework, we do not
consider it here for simplicity, since the key challenge is to deal with the uncertainty of the transition kernel.
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Result type Reference
Sample complexity

0 < σ ≲ 1− γ 1− γ ≲ σ < 1

Upper bound

Yang et al. (2022) S2A(2+σ)2

σ2(1−γ)4ε2

Panaganti and Kalathil (2022) S2A
(1−γ)4ε2

Ours SA
(1−γ)3ε2

SA
(1−γ)2σε2

Lower bound
Yang et al. (2022) SA

(1−γ)3ε2
SA(1−γ)

σ4ε2

Ours SA
(1−γ)3ε2

SA
(1−γ)2σε2

Table 1: Comparisons between our results and prior arts for finding an ε-optimal robust policy in the
infinite-horizon RMDPs with an uncertainty set measured with respect to the TV distance, where
we ignore logarithmic factors in the sample complexities. Here, S, A, γ, and σ ∈ (0, 1) are the state
space size, the action space size, the discount factor, and the uncertainty level, respectively.

Upper & minimax lower bound
(this work)
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(a) TV distance (b) χ2 distance

Figure 1: Illustrations of the obtained sample complexity upper and lower bounds for learning
RMDPs with comparisons to state-of-the-art and the sample complexity of standard MDPs, where
the uncertainty set is specified using the TV distance (a) and the χ2 distance (b).

state space, while the lower bound (Yang et al., 2022) exhibits only linear scaling with S. Moreover,
in the χ2 divergence case, the state-of-the-art upper bound grows linearly with the uncertainty level σ
when σ ≳ 1,7 while the lower bound (Yang et al., 2022) is inversely proportional to σ. These lead to
unbounded gaps between the upper and lower bounds as σ grows. Can we hope to close these gaps
for RMDPs?

• Benchmarking with standard MDPs. Perhaps a more pressing issue is that, past works failed to
provide an affirmative answer regarding how to benchmark the sample complexity of RMDPs with
that of standard MDPs regardless of the chosen shape (determined by ρ) or size (determined by σ) of
the uncertainty set, given the large unresolved gaps mentioned above. Specifically, existing sample
complexity upper (resp. lower) bounds are all larger (resp. smaller) than the sample size requirement
for standard MDPs. As a consequence, it remains mostly unclear whether learning RMDPs is harder
or easier than learning standard MDPs.

1.2 Main contributions
To address these questions, we have developed new upper bounds on learning RMDPs with TV
distance and χ2 distance in the infinite-horizon setting using the model-based approach called
distributionally robust value iteration (DRVI), as well as minimax lower bounds to help gauge their

7Let X :=
(
S,A, 1

1−γ
, σ, 1

ε
, 1
δ

)
. The notation f(X ) = O(g(X )) or f(X ) ≲ g(X ) indicates that there

exists a universal constant C1 > 0 such that f ≤ C1g, the notation f(X ) ≳ g(X ) indicates that g(X ) =
O(f(X )), and the notation f(X ) ≍ g(X ) indicates that f(X ) ≲ g(X ) and f(X ) ≳ g(X ) hold simultaneously.
Additionally, the notation Õ(·) is defined in the same way as O(·) except that it hides logarithmic factors.
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Result type Reference
Sample complexity

0 < σ ≲ 1− γ 1− γ ≲ σ ≲ 1
1−γ σ ≳ 1

1−γ

Upper bound

Panaganti and Kalathil (2022) S2A(1+σ)
(1−γ)4ε2

Yang et al. (2022) S2A(1+σ)2

(
√
1+σ−1)2(1−γ)4ε2

Ours SA(1+σ)
(1−γ)4ε2

Lower bound
Yang et al. (2022) SA

(1−γ)3ε2
SA

(1−γ)2σε2

Ours SA
(1−γ)3ε2

SAσ
(1−γ)4(1+σ)4ε2

SAσ
ε2

Table 2: Comparisons between our results and prior arts for finding an ε-optimal robust policy in the
infinite-horizon RMDPs with an uncertainty set measured with respect to the χ2 distance, where we
ignore logarithmic factors in the sample complexities. Here, S, A, γ, and σ ∈ (0,∞) are the state
space size, the action space size, the discount factor, and the uncertainty level, respectively.

tightness and provide benchmarking with standard MDPs. As shall be outlined, these new analyses
lead to new insights on the interplay between the geometry of uncertainty sets and the statistical
sample complexity.

Sample complexity of RMDPs under the TV distance. We summarize the results and comparisons
to prior works in Table 1; see Figure 1(a) for an illustration.

• Minimax-optimal sample complexity. We prove that DRVI reaches ε accuracy as soon as the sample
complexity is on the order of

Õ

(
SA

(1− γ)2ε2
min

{
1

1− γ
,
1

σ

})

for all σ ∈ (0, 1), assuming that ε is small enough. In addition, a matching minimax lower bound
(modulo some logarithmic factor) is established to guarantee the tightness of the upper bound. To the
best of our knowledge, this is the first minimax-optimal sample complexity for RMDPs, which was
previously unavailable regardless of the divergence metric and uncertainty level in use and is over the
full range of the uncertainty level.

• RMDPs are easier than standard MDPs under the TV distance. Given the sample complexity
O
(

SA
(1−γ)3ε2

)
of standard MDPs, it can be seen that RMDPs under the TV distance is never harder

than standard MDPs, where it matches that of standard MDPs when σ ≲ 1− γ, and becomes simpler
by a factor of σ/(1− γ) when 1− γ ≲ σ < 1. Therefore, in this case, the robustness comes almost
for free since we do not need to collect more samples to reach the same accuracy.

Sample complexity of RMDPs under the χ2 distance. We summarize the results and comparisons
to prior works in Table 2; see Figure 1(b) for an illustration.

• Near-optimal sample complexity. It is established that DRVI reaches ε accuracy as soon as the
sample complexity is on the order of Õ

(
SA(1+σ)
(1−γ)4ε2

)
for all σ ∈ (0,∞), which is the first sample

complexity that scales linearly with respect to the size of the state space S in the infinite-horizon
setting, breaking the quadratic scaling bottleneck presented in prior works (Panaganti and Kalathil,
2022; Yang et al., 2022). We have also developed a strengthened lower bound that is optimized by
leveraging the geometry of the uncertainty set under different ranges of σ. Comparing the two bounds,
they match at Õ

(
SA

(1−γ)4ε2

)
when σ ≍ 1, and have a bounded gap no larger than a polynomial factor

of the effective horizon 1/(1− γ) over the entire range of the uncertainty level, again significantly
improving prior art that exhibits an unbounded gap.

• RMDPs can be harder than standard MDPs under the χ2 distance. Somewhat surprisingly, the
new lower bound suggests that RMDPs in this case can be much harder than standard MDPs, at least
for certain ranges of the uncertainty level. We single out two regimes of particular interest. First,
when σ ≍ 1, the sample size requirement of RMDPs is Õ

(
SA

(1−γ)4ε2

)
, which is provably harder than
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standard MDPs by a factor of the effective horizon 1
1−γ . Second, when σ ≳ 1

(1−γ)3 , the lower bound
exceeds the sample complexity of standard MDPs and keeps growing linearly with the uncertainty
level σ.

In sum, our sample complexity bounds not only strengthen the prior art in both directions of upper
and lower bounds, but also reveal new insights on how the additional consideration of distributional
robustness fundamentally changes the sample complexity of RL in a surprising manner. It turns
out that RMDPs are not necessarily harder nor easier than standard MDPs, but the answer is far
more nuanced and highly dependent on both the size and shape of the uncertainty set, which are not
elucidated in prior analyses.

2 Problem formulation
In this section, we introduce the model of distributionally robust Markov decision processes (RMDPs)
focusing on the discounted infinite-horizon setting, the sampling mechanism, as well as our goal.

Standard MDPs. To begin, we first introduce the standard Markov decision process (MDP), which
facilitates the understanding of RMDPs. A discounted infinite-horizon MDP is represented by
M =

(
S,A, P, γ, r

)
, where S = {1, · · · , S} and A = {1, · · · , A} are the finite state and action

spaces, respectively, γ ∈ [0, 1) is the discount factor, P : S × A → ∆(S) denotes the probability
transition kernel, and r : S ×A → [0, 1] is the immediate reward function which is assumed to be
deterministic. A policy is denoted as π : S → ∆(A), which specifies the action selection probability
over the action space in any state. When the policy is deterministic, we overload the notation and
refer to π(s) as the action selected by policy π in state s. To characterize the long term cumulative
reward, the value function V π,P for any policy π under the transition kernel P is defined by

∀s ∈ S : V π,P (s) := Eπ,P

[ ∞∑

t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
, (1)

where the expectation is taken over the randomness of the trajectory {st, at, rt}∞t=0 generated by
executing policy π under the transition kernel P , namely, at ∼ π(st), and st+1 ∼ P (· | st, at).
Similarly, the Q-function Qπ,P associated with any policy π under the transition kernel P is defined as

∀(s, a) ∈ S ×A : Qπ,P (s, a) := Eπ,P

[ ∞∑

t=0

γtr
(
st, at

) ∣∣∣ s0 = s, a0 = a

]
, (2)

where the expectation is again taken over the randomness of the trajectory.

Distributionally robust MDPs. In this work, we focus on the discounted infinite-horizon distri-
butionally robust MDP (RMDP), denoted as Mrob = {S,A,Uσ

ρ (P
0), γ, r}, where S,A, γ, r are

defined the same as those in the above standard MDP. A key distinction from the standard MDP,
is that rather than assuming a fixed transition kernel P , it postulates the transition kernel lies in
an uncertainty set Uσ

ρ (P
0) centered around a nominal kernel P 0 : S × A → ∆(S), where the

uncertainty set is specified using some distance metric ρ of radius σ > 0. In particular, given the
nominal transition kernel P 0 and some uncertainty level σ, the uncertainty set—with divergence
ρ : ∆(S)×∆(S) → R+—is specified as

Uσ
ρ (P

0) := ⊗ Uσ
ρ (P

0
s,a), Uσ

ρ (P
0) :=

{
Ps,a ∈ ∆(S) : ρ

(
Ps,a, P

0
s,a

)
≤ σ

}
, (3)

where we denote a vector of the transition kernel P or P 0 at state-action pair (s, a) respectively as

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S . (4)

In other words, the uncertainty is imposed in a separate manner for each state-action pair, obeying
the so-called (s, a)-rectangularity (Zhou et al., 2021; Wiesemann et al., 2013). In RMDPs, we are
interested in the worst-case performance of a policy π over all the possible transition kernels in the
uncertainty set. This is measured by the robust value function V π,σ and the robust Q-function Qπ,σ

in Mrob, defined respectively as

∀(s, a) ∈ S ×A : V π,σ(s) := inf
P∈Uσ

ρ (P 0)
V π,P (s), Qπ,σ(s, a) := inf

P∈Uσ
ρ (P 0)

Qπ,P (s, a).

Optimal robust policy and robust Bellman operator. Generalizing standard MDPs, it is well-
known that there exists at least one deterministic policy that maximizes the robust value function and
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the robust Q-function simultaneously (Iyengar, 2005; Nilim and El Ghaoui, 2005). Therefore, we
denote the optimal robust value function (resp. optimal robust Q-function) as V ⋆,σ (resp. Q⋆,σ), and
the optimal robust policy as π⋆, which satisfies

∀s ∈ S : V ⋆,σ(s) := V π⋆,σ(s) = max
π

V π,σ(s), (5a)

∀(s, a) ∈ S ×A : Q⋆,σ(s, a) := Qπ⋆,σ(s, a) = max
π

Qπ,σ(s, a). (5b)

The robust Bellman operator (Iyengar, 2005; Nilim and El Ghaoui, 2005) is denoted as T σ(·) :
RSA → RSA, which is defined as follows: for all (s, a) ∈ S ×A,

T σ(Q)(s, a) := r(s, a) + γ inf
P∈Uσ

ρ (P 0
s,a)

PV, with V (s) := max
a

Q(s, a). (6)

Given that Q⋆,σ is the unique fixed point of T σ, one can recover the optimal robust value function
and Q-function using a procedure termed distributionally robust value iteration—which generalizes
the standard value iteration—by recursively applying the robust Bellman operator from some fixed
initialization. In addition, this procedure converges rather fast due to the nice γ-contraction property
of T σ (Iyengar, 2005; Nilim and El Ghaoui, 2005) with respect to the ℓ∞ norm.

Specification of the divergence ρ. We consider two popular choices of the uncertainty set measured
in terms of the f -divergence: total variation and χ2 divergence, given respectively by

ρTV
(
Ps,a, P

0
s,a

)
:=

1

2

∥∥Ps,a − P 0
s,a

∥∥
1
=

1

2

∑

s′∈S
P 0(s′ | s, a)

∣∣∣∣1−
P (s′ | s, a)
P 0(s′ | s, a)

∣∣∣∣ , (7)

ρχ2

(
Ps,a, P

0
s,a

)
:=

∑

s′∈S
P 0(s′ | s, a)

(
1− P (s′ | s, a)

P 0(s′ | s, a)

)2

. (8)

Note that ρTV
(
Ps,a, P

0
s,a

)
∈ [0, 1] and ρχ2

(
Ps,a, P

0
s,a

)
∈ [0,∞) in general. As we shall see, the

two choices convey drastically different messages in the statistical complexity of RMDPs.

Sampling mechanism: a generative model. Following Zhou et al. (2021); Panaganti and Kalathil
(2022), we assume the access to a generative model or a simulator (Kearns and Singh, 1999), which
allows us to collect N independent samples from the nominal kernel P 0 at each state-action pair:

∀(s, a) ∈ S ×A, si,s,a
i.i.d∼ P 0(· | s, a), i = 1, 2, · · · , N. (9)

The total sample size therefore is NSA.

Goal. Given the collected samples, the task is to learn the robust optimal policy for the RMDP
with some uncertainty set Uσ

ρ (P
0) around the nominal kernel accurately using as few samples as

possible. Specifically, given some accuracy level ε > 0, the goal is to seek an ε-optimal robust policy
π̂ obeying V ⋆,σ(s)− V π̂,σ(s) ≤ ε for all s ∈ S.

3 Model-based algorithm: distributionally robust value iteration

We consider a model-based strategy, which first constructs an empirical nominal transition kernel
based on the collected samples, and then applies distributionally robust value iteration (DRVI) to
recover the optimal robust policy.

Empirical nominal kernel. The empirical nominal transition kernel P̂ 0 ∈ RSA×S can be constructed
using the empirical frequency of visits, i.e.

∀(s, a) ∈ S ×A : P̂ 0(s′ | s, a) := 1

N

N∑

i=1

1
{
si,s,a = s′

}
, (10)

which leads to an empirical RMDP M̂rob = {S,A,Uσ
ρ (P̂

0), γ, r}. Analogously, we can define
the corresponding robust value function (resp. robust Q-function) of policy π in M̂rob as V̂ π,σ

(resp. Q̂π,σ) (cf. (5)). In addition, we denote the corresponding optimal robust policy as π̂⋆ and the
optimal robust value function (resp. optimal robust Q-function) as V̂ ⋆,σ (resp. Q̂⋆,σ) (cf. (5)), which
satisfies the robust Bellman optimality equation:

∀(s, a) ∈ S ×A : Q̂⋆,σ(s, a) = r(s, a) + γ inf
P∈Uσ

ρ (P̂ 0
s,a)

PV̂ ⋆,σ. (11)
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Algorithm 1: Distributionally robust value iteration (DRVI) for infinite-horizon RMDPs.

1 input: empirical nominal transition kernel P̂ 0; reward function r; uncertainty level σ; number of
iterations T .

2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
3 for t = 1, 2, · · · , T do
4 for s ∈ S, a ∈ A do
5 Set Q̂t(s, a) according to (13);
6 for s ∈ S do
7 Set V̂t(s) = maxa Q̂t(s, a);

8 output: Q̂T , V̂T and π̂ obeying π̂(s) := argmaxa Q̂T (s, a).

Equipped with P̂ 0, define the empirical robust Bellman operator T̂ σ as

∀(s, a) ∈S ×A : T̂ σ(Q)(s, a) := r(s, a) + γ inf
P∈Uσ

ρ (P̂ 0
s,a)

PV, with V (s) := max
a

Q(s, a). (12)

DRVI: distributionally robust value iteration. To solve for the fixed point of T̂ σ, we introduce
distributionally robust value iteration (DRVI), which is summarized in Algorithm 1. Starting from
some initialization Q̂0 = 0, the update rule at the t-th (t ≥ 1) step can be formulated as:

∀(s, a) ∈S ×A : Q̂t(s, a) = T̂ σ
(
Q̂t−1

)
(s, a) = r(s, a) + γ inf

P∈Uσ
ρ (P̂ 0

s,a)
PV̂t−1, (13)

where V̂t−1(s) = maxa Q̂t−1(s, a) for all s ∈ S. However, directly solving (13) is computationally
prohibitive since it involves optimization over an S-dimensional probability simplex at each iteration,
especially when the dimension of the state space S is prohibitive. Fortunately, in view of strong
duality (Iyengar, 2005), (13) can be equivalently solved using its dual problem, which concerns
optimizing of a scalar dual variable and thus can be solved efficiently. The specific form of the dual
problem depends on the choice of the divergence ρ, which we discuss in a more detailed version.

4 Theoretical guarantees: sample complexity analyses

We now present our main results, which concern the sample complexities of learning RMDPs when
the uncertainty set is specified using the TV distance or the χ2 divergence. Surprisingly, the choice
of the uncertainty set can lead to dramatic consequence in the sample size requirement.

4.1 The case of TV distance: RMDP is easier than standard MDP

We start with the case when the uncertainty set is measured via the TV distance, where Theorem 1
presents the sample complexity upper bound above which DRVI is able to find an ε-optimal robust
policy in a small number of iterations; the key challenge of the analysis is to carefully control the
robust value function V π,σ as a function of uncertainty level σ.
Theorem 1 (Upper bound using TV distance). Fix the uncertainty set Uσ

ρ (·) = Uσ
TV(·) using the TV

distance in (7). Consider any discount factor γ ∈
[
1
4 , 1

)
, uncertainty level σ ∈ (0, 1), and δ ∈ (0, 1).

With probability at least 1− δ, the output π̂ from Algorithm 1 with at most T = C1 log
(
N(1− γ)

)

iterations yields V ⋆,σ(s)− V π̂,σ(s) ≤ ε for any ε ∈
(
0,
√
1/max{1− γ, σ}

]
, as long as the total

number of samples obeys NSA ≥ C2SA
(1−γ)2 max{1−γ,σ}ε2 log

(
SAN
(1−γ)δ

)
. Here, C1, C2 > 0 are some

large enough universal constants.

Before discussing the implications of Theorem 1, we present a matching minimax lower bound
that confirms the optimality of the upper bound, which in turn pins down the sample complexity
requirement for learning RMDPs with TV distance.
Theorem 2 (Lower bound using TV distance). Consider any tuple (S,A, γ, σ, ε) obeying σ ∈ (0, 1−
c0] with 0 < c0 ≤ 1

8 being any small enough positive constant, γ ∈
[
1
2 , 1

)
, and ε ∈

(
0, c0

256(1−γ)

]
. We
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can construct two infinite-horizon RMDPs M0,M1 defined by the uncertainty set Uσ
ρ (·) = Uσ

TV(·),
an initial state distribution φ, and a dataset with N independent samples for each state-action pair
over the nominal transition kernel (for M0 and M1 respectively), such that

inf
π̂

max
{
P0

(
V ⋆,σ(φ)− V π̂,σ(φ) > ε

)
, P1

(
V ⋆,σ(φ)− V π̂,σ(φ) > ε

)}
≥ 1

8
,

provided that NSA ≤ c0SA log 2
8192(1−γ)2 max{1−γ,σ}ε2 . The infimum is taken over all estimators π̂, and P0

(resp. P1) denotes the probability when the RMDP is M0 (resp. M1).

Below, we interpret the above theorems and highlight several key implications about the sample
complexity requirements for learning RMDPs with TV distance.

Near minimax-optimal sample complexity. Theorem 1 shows that the total number of samples
required for DRVI to yield ε-accuracy is

Õ

(
SA

(1− γ)2 max{1− γ, σ}ε2
)
. (14)

Taking together with the minimax lower bound asserted in Theorem 2, this confirms the near minimax-
optimality of the sample complexity up to some logarithmic factor almost over the full range of the
uncertainty level σ, which scales linearly with respect to the size of the state-action space.

RMDPs is easier than standard MDPs with TV distance. Recall that the sample complex-
ity requirement for standard MDP (Agarwal et al., 2020; Li et al., 2020) to yield ε accuracy is
Õ
(

SA
(1−γ)3ε2

)
. Comparing with the sample complexity requirement in (14) for RMDPs with TV

distance, this confirms that the latter is at least as easy as—if not easier—than standard MDPs. In
particular, when σ ≲ 1− γ is small, the sample complexity of RMDPs is the same as the standard
MDPs, which is expected since the RMDP reduces to the standard MDP when σ = 0. On the other
hand, when 1− γ ≲ σ < 1, the sample complexity of RMDPs becomes Õ

(
SA

(1−γ)2σε2

)
, which is

smaller than that of standard MDPs by a factor of σ/(1− γ).

Comparison with state-of-the-art bounds. For the upper bound, our results (cf. Theorem 1)
significantly improves over the prior art Õ

(
S2A

(1−γ)4ε2

)
of Panaganti and Kalathil (2022) by at least a

factor of S
1−γ and even S

(1−γ)2 when the uncertainty level 1 − γ ≲ σ < 1 is large. Turning to the
lower bound side, Yang et al. (2022) developed a lower bound for RMDPs under the TV distance,
which scales as Õ

(
SA(1−γ)

ε2 min
{

1
(1−γ)4 ,

1
σ4

})
. Clearly, this is worse than ours by a factor of

σ3

(1−γ)3 ∈
(
1, 1

(1−γ)3

)
in the regime where 1− γ ≲ σ < 1.

4.2 The case of χ2 distance: RMDP can be harder than standard MDP

We now move onto the case when the uncertainty set is measured via the χ2 distance, where Theorem 3
presents the sample complexity upper bound above which DRVI is able to find an ε-optimal robust
policy in a small number of iterations.
Theorem 3 (Upper bound using χ2 distance). Fix the uncertainty set Uσ

ρ (·) = Uσ
χ2(·) using the χ2

distance in (8). Consider any uncertainty level σ ∈ (0,∞), and δ ∈ (0, 1). With probability at
least 1 − δ, the output policy π̂ from Algorithm 1 with at most T = c1 log (N(1− γ)) iterations
yields V ⋆,σ(s)− V π̂,σ(s) ≤ ε for any ε ∈

(
0, 1

1−γ

]
, as long as the total number of samples obeying

NSA ≥ c2SA(1+σ)
(1−γ)4ε2 log

(
SAN

δ

)
. Here, c1, c2 > 0 are some large enough universal constants.

In addition, in order to gauge the tightness of Theorem 3, and understand the minimal sample
complexity requirement for learning RMDPs with χ2 divergence, we further develop a minimax
lower bound as follows.
Theorem 4 (Lower bound using χ2 divergence). Consider any (S,A, γ, σ, ε) obeying γ ∈ [ 34 , 1),
σ ∈ (0,∞), and

ε ≤ c3

{
1

1−γ if σ ∈
(
0, 1−γ

4

)
,

max
{

1
σ(1−γ) , 1

}
if σ ∈

[
1−γ
4 ,∞

)
,

(15)
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for some small universal constant c3 > 0. Then we can construct two infinite-horizon RMDPs
M0,M1 defined by the uncertainty set Uσ

ρ (·) = Uσ
χ2(·), an initial state distribution ρ, and a dataset

with N independent samples for each (s, a) pair over the nominal transition kernel (for M0 and M1

respectively), such that

inf
π̂

max
{
P0

(
V ⋆,σ(ρ)− V π̂,σ(ρ) > ε

)
, P1

(
V ⋆,σ(ρ)− V π̂,σ(ρ) > ε

)}
≥ 1

8
, (16)

provided that the total number of samples

NSA ≤ c4

{
SA

(1−γ)3ε2 if σ ∈
(
0, 1−γ

4

)
,

σSA
min{1,(1−γ)4(1+σ)4}ε2 if σ ∈

[
1−γ
4 ,∞

) (17)

for some universal constant c4 > 0.

We are now positioned to highlight some key implications of the above theorems about the sample
complexity requirements for learning RMDPs with χ2 divergence.

Nearly tight sample complexity. To achieve ε-accuracy for RMDPs with χ2 distance, Theorem 3
shows that a total number of samples on the order of Õ

(
SA(1+σ)
(1−γ)4ε2

)
is sufficient for DRVI. Taking

it together with the minimax lower bound in Theorem 4 confirms that the sample complexity is
near-optimal up to a polynomial factor of the effective horizon 1/(1 − γ) over the entire range of
the uncertainty level σ. In particular, when σ ≍ 1, our sample complexity Õ

(
SA

(1−γ)4ε2

)
is tight and

matches with the lower bound; when σ ≳ 1
(1−γ)3 , our sample complexity correctly predicts the linear

dependency with σ, suggesting that more samples are needed when one plans for larger χ2-based
uncertainty sets.

RMDPs can be much harder than standard MDPs with χ2 divergence. The minimax lower bound
developed in Theorem 4 exhibits a surprising non-monotonic behavior of the sample size requirement
over the entire range of the uncertainty level σ ∈ (0,∞) when the uncertainty set is measured via the
χ2 divergence. When σ ≲ 1− γ, the lower bound reduces to Õ

(
SA

(1−γ)3ε2

)
, which matches with

that of standard MDPs, as σ = 0 corresponds to standard MDP. However, two additional regimes are
worth calling out:

1− γ ≲ σ ≲
1

(1− γ)1/3
: Õ

(
SA

(1− γ)4ε2
min

{
σ,

1

σ3

})
, and σ ≳

1

(1− γ)3
: Õ

(
SAσ

ε2

)
,

both of which are greater than that of standard MDPs, indicating learning RMDPs with χ2 divergence
can be much harder.

Comparison with state-of-the-art bounds. Our upper bound significantly improves over the prior art
Õ
(

S2A(1+σ)
(1−γ)4ε2

)
of Panaganti and Kalathil (2022) by a factor of S, and provides the first finite-sample

complexity that scales linearly with respect to S for discounted infinite-horizon RMDPs, which
typically exhibit more complicated statistical dependencies than the finite-horizon counterpart. On
the other hand, Yang et al. (2022) established a lower bound on the order of Õ

(
SA

(1−γ)2σε2

)
when

σ ≳ 1− γ, which is always smaller than the requirement of standard MDPs, and diminishes when
σ grows. Consequently, Yang et al. (2022) does not lead to the rigorous justification that RMDPs
can be harder than standard MDPs, nor the correct linear scaling of the sample size when σ grows
towards infinity.

5 Other related works

Finite-sample guarantees for standard RL. There has been a considerable amount of research
into non-asymptotic sample analysis of standard RL for a variety of settings; partial examples include,
but are not limited to, the works via probably approximately correct (PAC) bounds for the generative
model setting (Kearns and Singh, 1999; Beck and Srikant, 2012; Li et al., 2022a; Chen et al., 2020;
Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2020; Li et al., 2023, 2020; Wainwright, 2019)
and the offline setting (Rashidinejad et al., 2021; Xie et al., 2021; Yin et al., 2021; Shi et al., 2022; Li
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et al., 2022b; Jin et al., 2021; Yan et al., 2022), as well as the online setting via both regret-based and
PAC-base analyses (Jin et al., 2018; Bai et al., 2019; Li et al., 2021; Zhang et al., 2020b; Dong et al.,
2019; Jin et al., 2020; Li et al., 2022a; Jafarnia-Jahromi et al., 2020; Yang et al., 2021; Woo et al.,
2023).

Robustness in RL. To address the challenges of deployed environment uncertainty, an emerging
line of works begin to address robustness of RL algorithms with respect to the uncertainty or
perturbation over different components of MDPs — state, action, reward, and the transition kernel;
see Moos et al. (2022) for a recent review. Besides the framework of distributionally robust MDPs
(RMDPs) (Iyengar, 2005) adopted by this work, to promote robustness in RL, there exist various
other works including but not limited to Zhang et al. (2020a, 2021); Han et al. (2022); Qiaoben et al.
(2021); Sun et al. (2021); Xiong et al. (2022) investigating the robustness w.r.t. state uncertainty.
Besides, Tessler et al. (2019); Tan et al. (2020) considered the robustness w.r.t. the uncertainty of the
action, and Ding et al. (2023) tackles robustness against spurious correlations.

Distributionally robust RL. Rooted in the literature of distributionally robust optimization, which
has primarily been investigated in the context of supervised learning (Rahimian and Mehrotra,
2019; Gao, 2020; Bertsimas et al., 2018; Duchi and Namkoong, 2018; Blanchet and Murthy, 2019),
distributionally robust dynamic programming and RMDPs have attracted considerable attention
recently (Wolff et al., 2012; Kaufman and Schaefer, 2013; Ho et al., 2018; Smirnova et al., 2019; Ho
et al., 2021; Goyal and Grand-Clement, 2022; Derman and Mannor, 2020; Tamar et al., 2014). In the
context of RMDPs, both empirical and theoretical studies have been widely conducted, although most
prior theoretical analyses focus on planning with an exact knowledge of the uncertainty set (Iyengar,
2005; Xu and Mannor, 2012; Tamar et al., 2014), or are asymptotic in nature (Roy et al., 2017).

Resorting to the tools of high-dimensional statistics, various recent works begin to shift attention
to understand the finite-sample performance of provable robust RL algorithms, under diverse data
generating mechanisms and forms of the uncertainty set over the transition kernel. Besides the
infinite-horizon setting, finite-sample complexity bounds for RMDPs with the TV distance and
the χ2 divergence are also developed for the finite-horizon setting in Xu et al. (2023); Dong et al.
(2022). In addition, many other forms of uncertainty sets have been considered associated with
different divergence function including but not limited to Wasserstein distance, R-contamination, KL
divergence, Wang and Zou (2021); Yang et al. (2022); Panaganti and Kalathil (2022); Zhou et al.
(2021); Shi and Chi (2022); Xu et al. (2023); Wang et al. (2023a); Blanchet et al. (2023); Liu et al.
(2022); Wang et al. (2023c); Liang et al. (2023); Xu et al. (2023); Badrinath and Kalathil (2021);
Ramesh et al. (2023); Panaganti et al. (2022); Ma et al. (2022). Moreover, various other related
problems or issues have been explored such as the difference of various uncertainty types (Wang
et al., 2023b), the iteration complexity of the policy-based methods (Li et al., 2022c; Kumar et al.,
2023), the cases when the uncertainty level is instance-dependent small enough (Clavier et al., 2023),
and regularization-based robust RL (Yang et al., 2023; Zhang et al., 2023).

6 Discussions

This work studies sample complexity bounds for learning RMDPs when the uncertainty set is
measured via the TV distance and the χ2 divergence under the generative model. Our sample
complexity bounds not only strengthen the prior art in both directions of upper and lower bounds, but
also reveal new insights on how the additional consideration of distributional robustness fundamentally
changes the sample complexity of RL in a surprising manner. It turns out that RMDPs are not
necessarily harder nor easier than standard MDPs, but the answer is far more nuanced and highly
dependent on both the size and shape of the uncertainty set under consideration. These findings could
help to guide the practice of RMDPs, by raising awareness that the choice of the uncertainty set
not only represents a preference in robustness, but also influences the statistical complexity of the
problem.
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