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Figure 1: IntrinsiX. We present a text-guided intrinsic image generator. Given a text prompt, our
method produces high-quality albedo, roughness, metallic, and normal maps which can be rerendered
under any lighting conditions. Our model enables downstream applications, such as relightable object
or scene generation, and material or lighting editing.

Abstract

We introduce IntrinsiX, a novel method that generates high-quality intrinsic images
from text description. In contrast to existing text-to-image models whose outputs
contain baked-in scene lighting, our approach predicts physically-based rendering
(PBR) maps. This enables the generated outputs to be used for content creation
scenarios in core graphics applications that facilitate re-lighting, editing, and texture
generation tasks. In order to train our generator, we exploit strong image priors, and
pre-train separate models for each PBR material component (albedo, roughness,
metallic, normals). We then align these models with a new cross-intrinsic attention
formulation that concatenates key and value features in a consistent fashion. This
allows us to exchange information between each output modality and to obtain
semantically coherent PBR predictions. To ground each intrinsic component,
we propose a rendering loss which provides image-space signals to constrain the
model, thus facilitating sharp details also in the output BRDF properties. Our results
demonstrate detailed intrinsic generation with strong generalization capabilities that
outperforms existing intrinsic image decomposition methods used with generated
images by a significant margin. Finally, we show a series of applications, including
re-lighting, editing, and for the first time text-conditioned room-scale PBR texture
generation. We will release the code and the pre-trained model weights.
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1 Introduction

Text-to-image (T2I) models have revolutionized 2D content creation, by generating high-quality RGB
images from just a text description [50} 54, |48]. They are used in widespread applications, including
extensions for controllable generation beyond text [[74} 71} 144]], personalization and stylization of
generated images [52, [25]], and 3D asset or scene generation [46 7, 22]]. However, in all cases the
content is typically generated in shaded RGB space, that contains baked-in lighting effects (e.g.,
reflections, shadows, specular highlights). This limits the usability of T2I models for many content
creation scenarios such as gaming or VR applications, that requires PBR maps (albedo, roughness,
metallic, normal) to render or relight scenes realistically.

Existing methods perform intrinsic image decomposition on RGB images [76, 31} 72, 5]]. However,
finding the correct decomposition to a given input image is a constrained task, usually causing
over-smoothed or simplified predictions on out-of-domain samples. These methods are trained with
synthetic conditioning input [76} 35], leading to low-quality decompositions for out-of-distribution
inputs, limiting their effectiveness on diverse real-world images. Similarly, methods that generate 3D
PBR content from T2I models [58 161} 47} 126] are trained on object-scale datasets [10} 9], making
them unsuitable for large-scale 3D scenes.

We take a different approach for PBR map generation. For the first time, we directly generate PBR
maps from text as input in a probabilistic diffusion process. Since our method does not rely on
an input image, it is more self-contained, enabling better generalization capabilities. We can use
the generated PBR maps for downstream tasks, such as physically-based rendering, relighting, or
material editing (Figure[T). We also showcase that our method can generate PBR textures for entire
3D scenes, for the first time to the best of our knowledge, making it directly usable for gaming/VR
applications (Figure [5). Our method leverages the strong image prior of pretrained T2I models
and converts it into a PBR map generator. This way, our model can generate PBR content from
diverse, out-of-distribution text prompts, similar to existing T2I models that operate in RGB space.
Concretely, we first train intrinsic priors for each material property and for normal map generation
separately (Section[3.1). We leverage small, curated datasets and the established LoRA [25]] extension
for T2I models. Then, we fine-tune all priors jointly by employing cross-intrinsic attention in the
diffusion transformer network (Section[3.2). This allows intrinsic properties to interact, enabling
their joint and coherent generation. We also introduce a rendering objective with importance-based
lighting sampling to ground the intrinsic components. This image-space signal encourages sharp and
semantically meaningful decompositions. In summary, our contributions:

* We introduce the first method, that directly generates PBR images from text as input in a proba-
bilistic diffusion process. In comparison to baselines, our PBR maps are of higher quality and can
be used for various downstream tasks, including physically-based rendering, editing/relighting, and
room-scale 3D scene PBR texturing.

* We decompose the strong image prior of pretrained T2I models into intrinsic components in a
two-stage training process. This allows us to generate PBR maps from diverse text prompts, that
are not limited to the distribution of existing, synthetic datasets.

* We combine cross-intrinsic attention with a novel rendering objective using importance-based light
sampling to jointly generate semantically coherent PBR maps.

2 Related Work

Text-to-Image Models Text-to-image (T2I) models have emerged as powerful tools for 2D content
creation; they create high-quality, diverse images from only text as input [50, |54 48]]. Since their
inception, several models further increased the visual quality of generated images [45} 32} 167, [73]].
These models are trained on datasets consisting of billions of images, like [55]. This makes them
a strong 2D prior for arbitrary content generation. They typically model the diffusion process
following Ho et al. [21] or Lipman et al. [37] with U-Net [51] or diffusion transformer (DiT)
[41}162] architectures. Many downstream applications leverage T2I models, including controllable
content generation [[74} (71} 144,130, 56| as well as personalization and stylization of generated images
(52,125,163, 159]. We leverage pretrained T2I models as prior for our task, the generation of PBR maps
from text.



Task-specific Finetuning of Text-to-Image Models In order to use T2I models for downstream
tasks, different modifications to the model architecture exist and can be applied [[74} 44, [71} 138 30].
In particular, LoRA layers [25]] can be used to teach T2I models about specific “styles” (e.g., artistic
paintings). Additional low-rank linear layers are trained in every attention block, which keeps the
generalized prior of the T2I model, while finetuning on smaller-scale datasets.

We similarly finetune multiple LoRAs to teach a T2I model about the distribution of intrinsic images.

Other tasks generate multi-view image outputs, such as video generation 65, [7/0] multi-view image
generation [23}139,160] or multi-modal generation [68]]. They augment the attention operation in the
transformer architecture to jointly process multiple images in a batch with the same model. Related to
these tasks, we perform cross-intrinsic attention to generate aligned PBR maps in a single denoising
forward pass with our finetuned model.

T2I models are also applied to 3D tasks, like object generation [6] or scene generation [22, [7]]. Some
methods finetune T2I models on synthetic 3D objects datasets, like [[10, 9], to generate object-scale
3D assets [3, 158, [13]]. In contrast, we utilize score distillation [46, [18] to generate PBR textures of
entire 3D scenes following Chen et al. [7]].

Material Reconstruction Completely decoupling lighting from material properties requires multi-
ple surface observations under different lighting conditions. Pret-trained models can enable material
acquisition from sparse observations. [11] uses a feed-forward model to predict the texture of a single
material and similarly use lighting sampling with the reflected view direction. Orthogonal to this,
we aim to generate the PBR properties of complex scenes in image space to enable downstream
applications. We introduce a rendering loss to the diffusion framework using a roughness-weighted
importance sampling for the lighting direction.

The field of intrinsic image decomposition focuses on obtaining PBR maps from a single RGB
image. Early approaches focus on separating the reflectance from shading [33} 124, 164] using various
heuristics, such as sparsity in reflectance properties [[14, 57, [17,75]], or smoothness [2]. Later, deep-
learning methods [34} 112} 31}, 72,161} 136 train decomposition networks on synthetic datasets, such as
[76]. However, the decomposition of an RGB image into its intrinsic properties is a constrained task,
making it hard to generalize to out-of-distribution input images. In contrast, we directly generate
all PBR components from text as input. This drastically improves the performance on in-the-wild
settings.

Material Generation Recent works use diffusion models for single material generation, condi-
tioned on text or image inputs [40, 42]. The work of [69] concurrently addresses text-conditional
complex PBR generation. They train a shared ControlNet [[74] and use a diffusion renderer for
editability. In contrast, our method first learns a prior over the PBR properties independently, then
aligns them with cross-intrinsic attention using a fixed renderer to ensure compatibility with standard
rendering engines.

3 Method

Our method generates the intrinsic properties of an image given a text prompt as input (Figure [T]
top). Specifically, we leverage the strong prior of a pretrained text-to-image model and turn it into
a PBR map generator. First, we learn the distribution of intrinsic properties (albedo, roughness,
metallic, normal) by finetuning LoRA layers on each modality separately (Section[3.1)). Then, we
learn the joint distribution by leveraging cross-intrinsic attention and by minimizing a novel rendering
objective (Section[3.2). Our method generates multiple images corresponding to the different PBR
maps, allowing for various downstream applications (Figure [} Figure [5). We summarize our method
in Figure 2]

3.1 PBR Prior Training

In order to generate PBR maps of an image, we model the distribution of the individual intrinsic
image properties. Specifically, we model the probability distribution pg(Xg) over data Xo~q(Xy),
where Xo={x,€R>*F x,eRF x,,€R? x,eR3*P}, P:=H x W is shorthand for the image size,
and the suffixes a, r, m, n refer to the albedo, roughness, metallic, and normal intrinsic properties,
respectively. In other words, we learn the joint probability distribution of all intrinsic properties
through the parameters 6 of a neural network.
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Figure 2: Method Overview. We generate the intrinsic properties of an image given text as input.
Left: we train 3 different LoRAs for a pretrained, latent text-to-image model, corresponding to
the intrinsic properties (albedo, normal, and roughness + metallic) on curated synthetic datasets
(Section [3.1)). We facilitate communication between all 4 modalities through cross-intrinsic attention
to predict PBR maps corresponding to the same image (Section [3.2.I). A novel rendering loss
using importance-based light sampling ensures that we can render high-quality RGB images from
physically realistic PBR maps (Section[3.2.2)). Right: after training, we jointly denoise and decode
all 4 PBR maps and can prompt our model with diverse, out-of-distribution descriptions.

Unfortunately, existing datasets, such as Openrooms [35], InteriorVerse [76] or Hypersim [49],
contain either only synthetic examples of intrinsic decompositions or are limited in size. Thus, models
trained on such datasets exhibit limited generalization to arbitrary, real-world examples. On the other
side, recent text-to-image diffusion models [50, 45| 67]] are able to generate high-quality and diverse
image samples. These models learn the probability distribution py(xo|c)= [ pe(xo.7|c)dx1.7 Where
c is a text condition, xo€R3*F ~ Grgb(X0) is sampled from billions of RGB images [55]], and the
latent variables x;.7=x1, . .., X gradually add more Gaussian noise to the data, following [21]. We
leverage this strong image prior by turning pretrained diffusion models into PBR map generators.

In the first stage, we model the intrinsic image properties separately. That is, we learn py g, (%) and
Dg.0,, (Xn) corresponding to the albedo and normal maps, respectively. Since roughness and metallic
are both 1-channel properties, we concatenate them together with an additional O-channel and learn
D,0rm (X1, X, ). This concatenation makes our samples compatible with the VAE, similarly as in

[31]. Here, ¢ are the pretrained weights of the Flux. 1—devE|model [32] and 6 are the parameters of
LoRA layers [25] injected into the MLP layers before and after the attention (to_g, to_k, to_v, to_out)
module of all DiT blocks of the diffusion transformer model architecture [41]. This is an established
way to teach large text-to-image models about new concepts (e.g., our PBR map distribution), while
retaining the ability to generate diverse samples [19]. To this end, we curate a paired dataset of
prompts and intrinsic properties and train the LoRA layers, while keeping the rest of the pretrained
model frozen. Precisely, we minimize the conditional flow matching loss [37]:

Lerm(0a) = Evari0,1),e~n01) [[100(2¢31) — wi(x45€)][3] (D

where x,~q(X,), z:=(1—t)x,+te the noisy data at timestep ¢, u;=e—x, the ground-truth vector
field, and Gi;=€é—X,, its network prediction.

Dataset for albedo and normals Thanks to utilizing a pre-trained image prior, our method does
not require extensive PBR datasets, which are generally not available. We collect as little as 20
synthetic examples of albedo and normal maps from the InteriorVerse dataset [76]. Then, we generate
captions for each image with the Florence-2 model [66] using the respective rgb renderings. We
train the LoRAs 6, and 6,, on these text-image pairs and obtain high-quality results for diverse,
out-of-distribution prompts. This follows previous works, in which text-to-image models learn a
new “‘style” of generated images given only a few example images [63} 59, 153]]. We refer to the
supplementary material for more details.

'https://huggingface.co/black-forest-labs/FLUX.1-dev
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Dataset for roughness and metallic Similarly, we collect and caption samples for roughness
and metallic properties. However, we observe that training on a small dataset does not teach the
model intricate details about the distribution of these PBR maps. We hypothesize that this is because
the data distribution of roughness/metallic is drastically different from RGB images and therefore
requires more observations to learn. To this end, we curate a large dataset of 20K roughness/metallic
samples using the InteriorVerse dataset [76]. The resulting LoRA 6, ,,, exhibits worse generalization
capabilities than 6, and 6,,, i.e., it overfits to the indoor scene setup. However, in Section @ we
show how we can still turn 6,. ,,, into a generalized PBR generator by combining it with 6, and 6,,.

3.2 PBR Prior Alignment

After training the LoRAs separately in the first stage, we finetune all LoRA parameters together to
learn the joint distribution pg g, 9,9, .6, (Xo). At inference time, this allows us to sample aligned
PBR maps across all modalities. First, we replace self-attention with cross-intrinsic attention in
every DiT block to facilitate communication between the different PBR maps. Second, we propose a
novel rendering objective that uses all generated PBR maps to create an RGB output image. In the
following, we detail both components.

3.2.1 Cross-Intrinsic Attention

Inspired by multi-view diffusion methods [T6]], we leverage cross-attention in the DiT
blocks to facilitate communication between batch elements. We employ a batch-size of 3 and use one
of the intrinsic LoRAs from the first stage training for each of the images, while sharing weights for
all the other parts of the model. We denote q’, k?,vi as the query, key, and value features of the
1-th DiT block for the batch element corresponding to the albedo image and similarly for the other
intrinsic properties. Then, we calculate cross-intrinsic attention as:

o k;. . k5 k)T

T,m?

Vd

where [-, -] denotes concatenation along the sequence dimension and we omit the text feature for
clarity. We similarly calculate h;. ,, and h;,. Finetuning all LoRA layers jointly with cross-intrinsic
attention allows us to generate aligned PBR maps of the same image.

h! = softmax( )[Vi',m7 Vi Vel )

Additionally, we employ dropout regularization to preserve the learned prior of the intrinsic LoRAs.
That is, with probability p; = 0.25 we calculate regular self-attention instead of cross-intrinsic
attention in the -th DiT block during training. We show in Figure[§] that this yields PBR maps of
higher quality with sharper details.

3.2.2 RGB Rendering Loss

Cross-intrinsic attention allows us to generate
aligned PBR maps of the same image. However,
individual intrinsics can still be of low quality
(see Figure [8). This is because all LoRAs are
finetuned jointly, which encourages similar fea-
ture distributions during attention, i.e., the dif-
ferences between the PBR maps are “averaged
out”. To this end, we incorporate a novel ren-
dering loss in the finetuning stage. Its goal is
to provide semantic guidance to the intrinsic
properties, that is, it teaches how the PBR maps
are combined, encouraging their distinct feature
distributions.

Figure 3: Importance-based Light Sampling. We
render RGB images (bottom) from our generated
PBR maps and a sampled light source as input
(top). We employ multinomial importance sam-
pling based using the inverse roughness to select
Concrete]y’ we render an RGB image from the less rough piXClS more often (red Squares). The
predicted PBR maps. First, we obtain the clean light direction is then the viewing direction to the
data samples as zo=2z;—t10(z; t), where z de- pixel reflected by its normal. The rendered images
notes the batched data of all PBR maps. Then, thus contain more specular effects, which provides
we decode them from the latent space with the better gradients during training.
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Figure 4. Editable Image Generation. Our generated PBR maps can be edited and utilized in
standard physically-based rendering frameworks to produce RGB renderings. Here, we place a light
source on top of the scene at constant elevation and rotate it around the vertical axis. From top to
bottom we show, (1): RGB renderings with different light source positions; (2): manual edit of the
albedo (desaturate the moon color); (4): lower roughness and higher metallic value (more glossy,
mirror-like reflections).

VAE to obtain X,. We use the simplified Disney BRDF model [4] and interpret X as the screen-
space buffers of albedo, roughness, metallic, and normal properties. Assuming a single directional
light source, we can use deferred shading to obtain an RGB image as:

I=f(wo;wi; Xo) - Li - (#Fw;) 3)
where f is the BRDF evaluation value, w, the viewing direction, and {L;, w;} the intensity and
direction of a single light source. We determine the viewing direction wy using the camera intrinsics
of the dataset (we find this still yields good results during inference). Similarly, we obtain the

ground-truth RGB image I by using the same light, but the PBR maps of the dataset. Then, we
calculate the rendering loss:

Lign(L,T) = |[T -T2 +0.1- LPIPS(I, T) 4)
where LPIPS denotes the perceptual loss [28].

We require light samples {L;,w; } to render RGB images, following Equation . In practice, we
sample a single directional light source per image and always use constant intensity L;=e2. We
employ importance sampling to obtain the direction of the light w; (see Figure[3). That is, we invert
the generated roughness X, €[0, 1] and use it as the weights for multinomial sampling of a pixel in the
image. Thus, pixels with lower roughness are selected more often. Then, we obtain the light direction
as the reflected view direction w;=2%,,( X,,, w,)—w,, Where w, is the viewing direction and %X,, the
normal vector corresponding to the sampled pixel. This way, we produce RGB images that contain
specular highlights and therefore we obtain better gradients for the roughness and metallic LoRAs.
This helps to increase the quality of those PBR maps (Figure [g).

During the second finetuning stage, we sample 5 directional light sources in every iteration and render

a separate RGB image with each of them. The final loss then becomes L=Lcpv+ Zle Ergb(ii, IL).
We do not backpropagate L.y, to the parameters ¢,, of the normal LoRA, as we find it stabilizes the
rendering quality by avoiding ambiguities between material and geometry.

4 Applications

Since we directly generate PBR maps, we can utilize standard computer graphics pipelines for
physically-based rendering to produce RGB renderings. This allows for various downstream tasks.
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Figure 5: Scene Texturing. We can use our method for scene texturing using score distillation [7]).
Given a scene geometry, first, we condition our method on the rendered normal maps to produce
the remaining PBR maps. Through iterative optimization, we obtain realistic PBR textures for the
whole scene. Then, we similarly optimize for normal map textures to obtain fine geometric details,
conditioned on rendered material maps. This showcases the potential of direct PBR map generation
to democratize scene texturing from only text as input.

Editable Image Generation We select a directional light source during rendering of an RGB
image from our PBR maps (see Equation (3)). Since our model produces PBR maps, we can vary
the direction of the light source arbitrarily and render them under numerous lighting conditions.
Similarly, we can manually edit the individual PBR maps, e.g., by changing the albedo color of
individual objects or by making them more specular. We show two examples in Figure @ and Figure[T]
Note that our PBR maps are not restricted to a single lighting direction. This can enable artists to
precisely tune the appearance of our generated images to their individual needs and therefore make
the generations more useful for practical applications.

PBR Scene Texturing We can use our method to perform 3D scene PBR texturing (Figure [3).
Recently, pretrained text-to-image models have been used as prior to distill information in 3D
[46, 58, [7]. We apply the SceneTex approach [7], but use our fine-tuned PBR model instead of
an RGB model. This enables us to distill uv-textures for a given geometry corresponding to the
individual intrinsic components. We can then render, relight, and edit an entire 3D scene according to
physically-based rendering frameworks (see Figure[5). This shows the potential of direct PBR map
generation using Al-generated environments for games or VR applications.

SceneTex [[7]] requires a conditional generator. To this end, we finetune our model for 4K iterations
after the first stage as described in Section[3.2] Additionally, we randomly (with probability p=0.25)
set one of the PBR maps to the ground truth and the corresponding timestep to t=0. This enables our
model to be conditioned on any PBR input, similar to [23]. We render normal maps of the geometry
from different viewpoints to condition our PBR generation. In the first stage, we optimize for the
material properties, conditioned on the rendered normal. Since our model is based on Flow Matching
[32], we also modify the distillation in SceneTex [7]. Concretely, we use the VFDS loss [18] in
image space. To avoid over-smoothed results, we use CFG=10 and normalize the flow direction.
We backpropagate to separate uv-textures for each property and follow the weighting scheme of
[27). We weight the loss with the observation frequency and represent the textures with a regularized
multi-resolution Laplacian-pyramid to stabilize the updates for sparsely observed regions. In the
second stage, we similarly optimize normal textures for fine geometric details, conditioned on the
already obtained material properties. We represent the normal map in tangent space and regularize
with the original geometry. For more samples and details, see the supplement.

5 Experiments

Training and Testing Details In the first stage, we train the LoRAs separately for 2K iterations
with a batch size of 10, which takes 5h on a single NVIDIA A100 (80GB) GPU. In the second stage,
we finetune for another 2.5K iterations with a batch size of 30 (10 aligned PBR maps), which takes
21h. We employ the Prodigy optimizer in both stages. The LoRA layers use a rank of 64, which
gives a total of 224M additional parameters. For inference, we use a single NVIDIA A6000 (48GB)
GPU. Sampling a single image takes around 12 seconds.
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Figure 6: Rendering comparisons. We show sample PBR maps of our method and baselines as
well as rendered RGB images under two different lighting conditions. We use a diverse set of text
prompts to produce our PBR maps, as well as the input RGB images for the baseline methods. This
highlights our models’ capability to retain the generalized prior of the pretrained text-to-image model.
Our method better captures the semantic meaning of the individual intrinsic properties. For example,
there are no baked-in lighting effects in the albedo, and the metallic/roughness maps are sharper with
more intricate details. This leads to more realistic renderings and lighting effects.

Table 1: Baseline comparisons. We compare the albedo quality for in-distribution (A-ID-FID) and
out-of-distribution (A-OOD-FID) settings as well as perceptually with a user study (A-PQ). We
evaluate the material quality with a user study focusing on the rendering quality (R-PQ), specularity
quality (S-PQ), and prompt coherence (PC). Our method produces the best quality and it is preferred
by most of the participants.

A-ID-FID| A-OOD-FID] A-PQ} R-PQt S-PQf PCt

11D 78.77 98.77 14.24% 2.95+1.03 2.82+1.13 4.47 10389
RGBX 61.36 90.12 15.63% 2.96+098 2.57+107 4.33+093
ColorfulShading [5] 91.10 86.48 277%  N/A N/A N/A

IID[31]] w/ FLUX-LoRA  103.36 79.29 N/A N/A N/A N/A

w/o Rendering 78.77 72.23 N/A  3.42+092 2.73+093 4.52+078
w/o CIA-Dropout 71.47 75.54 N/A  3.68+087 3.21+1.18 4.52+076
Ours 72.09 71.39 67.36% 3.93+038 3.62+096 4.62+0.67

Rendering Images During inference, we render RGB images following Equation (3)) to obtain I.
We use a slightly higher lighting intensity (L;=e?) than during training. Then we add an ambient
color term: Iy = (1—a)I 4 ax, with «=0.2. Afterwards, we apply the tone mapping from [29]:
Tione=10g(1 + pIamp ) /log(1 + 1) with u=64. We empirically find this creates visually more pleasing
RGB images. This also demonstrates the advantages of generating intrinsic image properties, i.e., we
can arbitrarily render them post-generation. We list the used text prompts in the supplemental.

Baselines To the best of our knowledge, we are the first method to perform direct PBR map
generation (from only text as input). Therefore, we compare our method against recent methods that
perform intrinsic image decomposition, namely /ID [31], RGBX [[72]], and ColorfulShading [3]]. In
contrast to our method, these works require an RGB image as input from which the PBR maps are
generated. Unless noted otherwise, we generate the RGB image for the baselines by prompting our
pretrained text-to-image model [32]. We only compare albedo quality against ColorfulShading [3l],
since they are decomposing an image into albedo and shading components, which does not allow for
complete relighting (including specular effects) or editing effects.



Metrics We measure the quality of generated PBR maps through various metrics. First, we calculate
the FID score [20] on in-distribution and out-of-distribution albedo images. For in-distribution (A-
ID-FID), we use all 2595 albedo images from the InteriorVerse [76] test set and caption them based
on the corresponding renderings with Florence-2 [66]. For each caption, we generate an albedo
image, creating a total of 2595 generated albedo images. For out-of-distribution (A-OOD-FID), we
evaluate on the pre-processed G-Buffer renderings [47] of ObjaVerse (GObjaVerse). We take
1000 samples from the diverse “Daily-Used" category. As before, we generate an albedo map for
each of the prompts, creating a total of 1000 generated albedo images. In both cases, we calculate
FID against the respective ground-truth albedos.

Evaluating generated PBR maps remains a hard problem. To this end, we also conduct a user study
and ask to rate the quality of albedo (A-PQ), specularity (S-PQ), rendered images (R-PQ), and the
prompt coherence (PC). In total, we collect 2,274 data points from 36 participants and report averaged
results (we refer to the supplementary material for more details).

5.1 Intrinsic Image Generation

We show qualitative comparisons against 11D
[31], RGBX [72] and [3]] in Figure[6]using text
prompts from [16], LLM-generated ones, and
our own prompts. The baselines receive an
RGB image as input, which was created with
our pretrained text-to-image model, whereas
we directly generate the PBR maps from only
text as input. For a fair comparison, we also
train another variant of IID on the same small
dataset and same architecture as ours, i.e. we use
LoRA fine-tuning of FLUX [32]. All methods
showcase similar diversity, i.e., the generated
images align well with the out-of-distribution Figure 7: Albedo comparisons. We show albedo
text prompts. This showcases that our finetuned images of our method and baselines correspond-
model still retains the generalized prior, which ing to the same text prompt in each column. Our
is also confirmed in the user study (Tablem PC). albedo images have less baked-in shadows and re-
Furthermore, our generated PBR maps are of flections, which is desirable for downstream tasks,
higher quality, semantically more meaningful, such as physically-based rendering. We provide
and they closer resemble the expected distribu- more samples in the supplemental.

tion for physically-based rendering. This is be-

cause the baseline methods are trained on synthetic, indoor scenes [[76] and are not designed to
generalize their decomposition to out-of-distribution setups. Furthermore, intrinsic image decomposi-
tion is constrained to match the appearance of the input image, making it difficult to rather focus on
the PBR distribution for out-of-domain samples. Additional albedo comparisons in Figure[7]as well
as the quantitative comparisons in Table[T| confirm this observation. Our generated albedos are not
oversmoothed, showing sharp details with flat colors. We provide more samples in the supplemental.

RGBX [72] TID [31]

Colorful
Shading [5]

Ours

5.2 Ablations

The main technical contributions of our method are the cross-intrinsic attention (Section[3.2.1)) and
the rendering loss (Section[3.2.2). In the following, we highlight the importance of each component.
We provide additional ablations in our supplementary material.

How important is the rendering loss? The rendering loss improves the quality of all PBR maps
(see Figure[8|and Table[T)). The additional supervision of Equation (@) provides more diverse gradients
to the LoRA weights than the L2 loss of Equation (I)). This way, the influence of the loss on the
individual PBR maps is different and becomes grounded in image space through the rendering
function, Equation (3). This leads to a better separation of the intrinsic properties, giving meaningful
normal maps, detailed albedos without baked-in lighting effects, and sharper roughness/metallic maps
without undesired texture or lighting patterns. Our importance-based light sampling strategy further
improves the sharpness of roughness and metallic maps. In comparison, sampling light directions
uniformly renders specular effects less often. This results in less pronounced PBR maps in Figure 8]



How important is the dropout in Cross-
Intrinsic Attention? Without cross-intrinsic
attention, we cannot create aligned PBR maps,
because then there is no communication be-
tween batch elements during inference (see sup-
plementary material). Additionally, we utilize
dropout regularization on our cross-intrinsic at-
tention. This technique motivates the model to
preserve the prior of each intrinsic component
during the 2nd stage alignment training. As can
be seen in Figure 8] and Table[I] this increases
the quality of both the rendered images and the
PBR maps. The generated samples are sharper
and do not suffer from noisy artifacts.

Can a generalized PBR prior help intrinsic
image decomposition? We believe that in-
trinsic image decomposition methods are con-
strained to match the appearance of the input
image. Thus, the model can learn to rely more
on the input, instead of focusing on staying in
the PBR distribution; therefore, facing an out-
of-distribution input image poses a challenge
to these models to produce faithful PBR maps,
corresponding to the respective distributions.
On the contrary, our model is trained with the
key constraint to produce faithful PBR maps
enabling better generalization. To verify this
hypothesis, we fine-tune our model to make
it image-conditional. We extend the set of in-
put modalities with the rgb rendering and apply
dropout similarly how we achieve a normal con-
ditional variant for the room-scale scene textur-
ing section[d The resulting model can be condi-
tioned on an input image during inference, sim-
ilar to the baselines. This variant achieves 70.51
FID on the out-of-domain GObjaverse evalu-
ation set (A-OOD-FID), outperforming direct
intrinsic image decomposition training (IID w/
FLUX-LoRA), and even our base model. This
shows that a pre-trained prior that directly mod-
els the underlying distribution is beneficial for
generalization.

6 Conclusion

Normal  Albedo R/M Lighting 1 Lighting 2

w/o Light Sampling w/0 Rendering

w/o CIA-Dropout

Ours

Figure 8: Ablations. We compare our full method
against ablations that do not use the rendering
loss (w/o Rendering), use uniform light sampling
instead of importance-based light sampling (w/o
Light Sampling), and do not use dropout in the
cross-intrinsic attention (w/o CIA-Dropout). With-
out the rendering loss (Section [3.2.2)), the PBR
maps lose their semantic meaning, e.g., there are
baked-in shadows in the albedo and the generated
images appear “averaged out”. Importance-based
light sampling (Section and CIA dropout
(Section [3:2.T) both increase the sharpness of in-
dividual PBR maps, e.g., the roughness/metallic
images have realistic details without baked-in tex-
tures. Overall, all components improve the quality
of rendered images under varied lighting condi-
tions. We provide more samples in the supplement.

We have presented IntrinsiX, the first method for direct generation of intrinsic image properties from
text as input. We leverage the strong image prior of pretrained text-to-image models and convert
it into a PBR map generator. We have introduced cross-intrinsic attention to produce semantically
aligned PBR maps. Furthermore, we have shown that using our novel rendering loss with tailored
light sampling provides important signal for the model to better ground each intrinsic component. Our
approach allows us to generate high-quality, diverse results that go beyond the distribution of existing,
synthetic datasets. Our method enables several downstream applications, such as physically-based
rendering, material editing, relighting, and for the first time 3D scene PBR texture generation. We
believe this showcases the potential that text-to-image models like ours can have on gaming and VR
applications. Instead of generating content in shaded RGB space, we produce the PBR maps that can
be directly used in standard computer graphics pipelines.

10



Acknowledgments and Disclosure of Funding

This work was supported by the ERC Consolidator Grant Gen3D (101171131) of Matthias Niefner,
the German Research Foundation (DFG) Grant “Making Machine Learning on Static and Dynamic
3D Data Practical”, and the German Research Foundation (DFG) Research Unit “Learning and
Simulation in Visual Computing”. We thank Angela Dai for the video voice-over.

References

[1] Maria Teresa Baldassarre, Danilo Caivano, Berenice Fernandez Nieto, Domenico Gigante,
and Azzurra Ragone. The social impact of generative Al: an analysis on chatgpt. CoRR,
abs/2403.04667, 2024.

[2] Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic images in the wild. ACM Trans. Graph., 33
(4):159:1-159:12, 2014.

[3] Raphael Bensadoun, Tom Monnier, Yanir Kleiman, Filippos Kokkinos, Yawar Siddiqui, Mahen-
dra Kariya, Omri Harosh, Roman Shapovalov, Benjamin Graham, Emilien Garreau, Animesh
Karnewar, Ang Cao, Idan Azuri, Iurii Makarov, Eric-Tuan Le, Antoine Toisoul, David Novotny,
Oran Gafni, Natalia Neverova, and Andrea Vedaldi. Meta 3d gen. CoRR, abs/2407.02599, 2024.

[4] Brent Burley and Walt Disney Animation Studios. Physically-based shading at disney. In Acm
Siggraph, pages 1-7. vol. 2012, 2012.

[5] Chris Careaga and Yagiz Aksoy. Colorful diffuse intrinsic image decomposition in the wild.
ACM Trans. Graph., 43(6):178:1-178:12, 2024.

[6] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Niefner.
Text2tex: Text-driven texture synthesis via diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 18558—18568, 2023.

[7] Dave Zhenyu Chen, Haoxuan Li, Hsin-Ying Lee, Sergey Tulyakov, and Matthias NieB3ner.
Scenetex: High-quality texture synthesis for indoor scenes via diffusion priors. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June
16-22, 2024, pages 21081-21091. IEEE, 2024.

[8] Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[9] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha
Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-x1: A universe of 10m+ 3d objects. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[10] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pages 13142—13153. 1IEEE, 2023.

[11] Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien Bousseau.
Single-image SVBRDF capture with a rendering-aware deep network. ACM Trans. Graph., 37
(4):128, 2018.

[12] Xiaodan Du, Nicholas I. Kolkin, Greg Shakhnarovich, and Anand Bhattad. Generative models:
What do they know? do they know things? let’s find out! CoRR, abs/2311.17137, 2023.

[13] Xiang Feng, Chang Yu, Zoubin Bi, Yintong Shang, Feng Gao, Hongzhi Wu, Kun Zhou,

Chenfanfu Jiang, and Yin Yang. ARM: appearance reconstruction model for relightable 3d
generation. CoRR, abs/2411.10825, 2024.

11



[14] Graham D. Finlayson, Mark S. Drew, and Cheng Lu. Intrinsic images by entropy minimization.
In Computer Vision - ECCV 2004, 8th European Conference on Computer Vision, Prague,
Czech Republic, May 11-14, 2004. Proceedings, Part 111, pages 582-595. Springer, 2004.

[15] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng
Tao. 3d-future: 3d furniture shape with texture. International Journal of Computer Vision,
pages 1-25, 2021.

[16] Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla,
Pratul P. Srinivasan, Jonathan T. Barron, and Ben Poole. CAT3D: create anything in 3d with
multi-view diffusion models. In Advances in Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024.

[17] Roger B. Grosse, Micah K. Johnson, Edward H. Adelson, and William T. Freeman. Ground
truth dataset and baseline evaluations for intrinsic image algorithms. In IEEE [2th International
Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009,
pages 2335-2342. IEEE Computer Society, 2009.

[18] Jun Guo, Xiaojian Ma, Yikai Wang, Min Yang, Huaping Liu, and Qing Li. Flowdreamer: A
RGB-D world model with flow-based motion representations for robot manipulation. CoRR,
abs/2505.10075, 2025.

[19] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient
fine-tuning for large models: A comprehensive survey. Trans. Mach. Learn. Res., 2024, 2024.

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6626—-6637, 2017.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

[22] Lukas Hollein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias NieB3ner. Text2room:
Extracting textured 3d meshes from 2d text-to-image models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 7909-7920, 2023.

[23] Lukas Hollein, AljaZz BoZzi¢, Norman Miiller, David Novotny, Hung-Yu Tseng, Christian
Richardt, Michael Zollhofer, and Matthias Niefner. Viewdiff: 3d-consistent image generation
with text-to-image models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5043-5052, 2024.

[24] Berthold KP Horn. Determining lightness from an image. Computer graphics and image
processing, 3(4):277-299, 1974.

[25] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth

International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

[26] Xin Huang, Tengfei Wang, Ziwei Liu, and Qing Wang. Material anything: Generating materials
for any 3d object via diffusion. CoRR, abs/2411.15138, 2024.

[27] Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-Jun Zha, and Lei Zhang. Dream-
time: An improved optimization strategy for text-to-3d content creation. CoRR, abs/2306.12422,
2023.

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part Il 14, pages 694-711. Springer, 2016.

[29] Nima Khademi Kalantari and Ravi Ramamoorthi. Deep high dynamic range imaging of dynamic
scenes. ACM Trans. Graph., 36(4):144:1-144:12, 2017.

12



[30] Peter Kocsis, Julien Philip, Kalyan Sunkavalli, Matthias Niefiner, and Yannick Hold-Geoffroy.
Lightit: Illumination modeling and control for diffusion models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024,
pages 9359-9369. IEEE, 2024.

[31] Peter Kocsis, Vincent Sitzmann, and Matthias NieBner. Intrinsic image diffusion for indoor
single-view material estimation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pages 5198-5208. IEEE, 2024.

[32] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2023.
[33] Edwin H Land and John J McCann. Lightness and retinex theory. Josa, 61(1):1-11, 1971.

[34] Zhengqgin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and
SVBRDF from a single image. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 2472-2481. Computer
Vision Foundation / IEEE, 2020.

[35] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying Yeh, Rui
Zhu, Nitesh B. Gundavarapu, Jia Shi, Sai Bi, Hong-Xing Yu, Zexiang Xu, Kalyan Sunkavalli,
Milos Hasan, Ravi Ramamoorthi, and Manmohan Chandraker. Openrooms: An open framework
for photorealistic indoor scene datasets. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 7190-7199. Computer Vision
Foundation / IEEE, 2021.

[36] Ruofan Liang, Zan Gojcic, Huan Ling, Jacob Munkberg, Jon Hasselgren, Zhi-Hao Lin, Jun Gao,
Alexander Keller, Nandita Vijaykumar, Sanja Fidler, and Zian Wang. Diffusionrenderer: Neural
inverse and forward rendering with video diffusion models. arXiv preprint arXiv: 2501.18590,
2025.

[37] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[38] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Von-
drick. Zero-1-to-3: Zero-shot one image to 3d object. In IEEE/CVF International Conference
on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pages 9264-9275. 1EEE,
2023.

[39] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping
Wang. Syncdreamer: Generating multiview-consistent images from a single-view image. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024.

[40] Ivan Lopes, Fabio Pizzati, and Raoul de Charette. Material palette: Extraction of materials from
a single image. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2024, Seattle, WA, USA, June 16-22, 2024, pages 4379-4388. IEEE, 2024.

[41] Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden,
and Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable
interpolant transformers. In Computer Vision - ECCV 2024 - 18th European Conference, Milan,
Italy, September 29-October 4, 2024, Proceedings, Part LXXVII, pages 23-40. Springer, 2024.

[42] Xiaohe Ma, Valentin Deschaintre, Milos Hasan, Fujun Luan, Kun Zhou, Hongzhi Wu, and
Yiwei Hu. Materialpicker: Multi-modal dit-based material generation. ACM Trans. Graph., 44
(4):133:1-133:12, 2025.

[43] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free

learner. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

13


https://github.com/black-forest-labs/flux

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 42964304,
2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller,
Joe Penna, and Robin Rombach. SDXL: improving latent diffusion models for high-resolution
image synthesis. CoRR, abs/2307.01952, 2023.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi Zuo, Mutian Xu, Yushuang Wu, Weihao Yuan,
Zilong Dong, Liefeng Bo, and Xiaoguang Han. Richdreamer: A generalizable normal-depth
diffusion model for detail richness in text-to-3d. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pages 9914-9925.
IEEE, 2024.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with CLIP latents. CoRR, abs/2204.06125, 2022.

Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan
Paczan, Russ Webb, and Joshua M Susskind. Hypersim: A photorealistic synthetic dataset for
holistic indoor scene understanding. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 10912-10922, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684—-10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention—-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234-241. Springer, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver,
BC, Canada, June 17-24, 2023, pages 22500-22510. IEEE, 2023.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver,
BC, Canada, June 17-24, 2023, pages 22500-22510. IEEE, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurlPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk,
and Jenia Jitsev. LAION-5B: an open large-scale dataset for training next generation image-text
models. In Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022.

14



[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Prafull Sharma, Varun Jampani, Yuanzhen Li, Xuhui Jia, Dmitry Lagun, Frédo Durand, Bill
Freeman, and Mark J. Matthews. Alchemist: Parametric control of material properties with
diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pages 24130-24141. IEEE, 2024.

Li Shen, Ping Tan, and Stephen Lin. Intrinsic image decomposition with non-local texture
cues. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA. IEEE Computer Society, 2008.

Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir Kleiman, Emilien
Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, and David
Novotny. Meta 3d assetgen: Text-to-mesh generation with high-quality geometry, texture, and
PBR materials. In Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024.

Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, Yuan Hao, Irfan Essa, Michael Rubinstein, and
Dilip Krishnan. Styledrop: Text-to-image generation in any style. CoRR, abs/2306.00983,
2023.

Shitao Tang, Fuyang Zhang, Jiacheng Chen, Peng Wang, and Yasutaka Furukawa. Mvdif-
fusion: Enabling holistic multi-view image generation with correspondence-aware diffusion.
In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023.

Shimon Vainer, Mark Boss, Mathias Parger, Konstantin Kutsy, Dante De Nigris, Ciara Rowles,
Nicolas Perony, and Simon Donné. Collaborative control for geometry-conditioned PBR
image generation. In Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy,
September 29-October 4, 2024, Proceedings, Part XIII, pages 127-145. Springer, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998-6008, 2017.

Zhouxia Wang, Xintao Wang, Liangbin Xie, Zhongang Qi, Ying Shan, Wenping Wang, and
Ping Luo. Styleadapter: A single-pass lora-free model for stylized image generation. CoRR,
abs/2309.01770, 2023.

Jiaye Wu, Sanjoy Chowdhury, Hariharmano Shanmugaraja, David Jacobs, and Soumyadip
Sengupta. Measured albedo in the wild: Filling the gap in intrinsics evaluation. In IEEE
International Conference on Computational Photography, ICCP 2023, Madison, WI, USA, July
28-30, 2023, pages 1-12. IEEE, 2023.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne
Hsu, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image
diffusion models for text-to-video generation. In IEEE/CVF International Conference on
Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pages 7589-7599. IEEE, 2023.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce
Liu, and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle,
WA, USA, June 16-22, 2024, pages 4818-4829. IEEE, 2024.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang,
Muyang Li, Ligeng Zhu, Yao Lu, and Song Han. SANA: efficient high-resolution text-to-image
synthesis with linear diffusion transformers. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.

15



[68] Xiaogang Xu, Hengshuang Zhao, Vibhav Vineet, Ser-Nam Lim, and Antonio Torralba. Mt-
former: Multi-task learning via transformer and cross-task reasoning. In Computer Vision -
ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings,
Part XXVII, pages 304-321. Springer, 2022.

[69] Bowen Xue, Giuseppe Claudio Guarnera, Shuang Zhao, and Zahra Montazeri. Diffusion-based
g-buffer generation and rendering. CoRR, abs/2503.15147, 2025.

[70] Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Rerender A video: Zero-shot
text-guided video-to-video translation. In SIGGRAPH Asia 2023 Conference Papers, SA 2023,
Sydney, NSW, Australia, December 12-15, 2023, pages 95:1-95:11. ACM, 2023.

[71] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image
prompt adapter for text-to-image diffusion models. CoRR, abs/2308.06721, 2023.

[72] Zheng Zeng, Valentin Deschaintre, Iliyan Georgiev, Yannick Hold-Geoffroy, Yiwei Hu, Fujun
Luan, Ling-Qi Yan, and Milos Hasan. Rgb<»x: Image decomposition and synthesis using
material- and lighting-aware diffusion models. In ACM SIGGRAPH 2024 Conference Papers,
SIGGRAPH 2024, Denver, CO, USA, 27 July 2024- 1 August 2024, page 75. ACM, 2024.

[73] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image
diffusion models in generative Al: A survey. CoRR, abs/2303.07909, 2023.

[74] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In IEEE/CVF International Conference on Computer Vision, ICCV 2023,
Paris, France, October 1-6, 2023, pages 3813-3824. IEEE, 2023.

[75] Qing Zhang, Jin Zhou, Lei Zhu, Wei Sun, Chunxia Xiao, and Wei-Shi Zheng. Unsupervised
intrinsic image decomposition using internal self-similarity cues. IEEE Trans. Pattern Anal.
Mach. Intell., 44(12):9669-9686, 2022.

[76] Jingsen Zhu, Fujun Luan, Yuchi Huo, Zihao Lin, Zhihua Zhong, Dianbing Xi, Rui Wang, Hujun
Bao, Jiaxiang Zheng, and Rui Tang. Learning-based inverse rendering of complex indoor scenes
with differentiable monte carlo raytracing. In SIGGRAPH Asia 2022 Conference Papers, SA
2022, Daegu, Republic of Korea, December 6-9, 2022, pages 6:1-6:8. ACM, 2022.

16



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The key contributions are summarized in the abstract as well as in the last
paragraph of the introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix |C|describes the limitations of our method.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will release the training and testing codes along with our trained model
weights upon acceptance. It should also be possible to reproduce the model based on our
description in the paper and the supplementary.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the training and testing codes along with our trained model
weights upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sections[3]and [5]and Appendices [F|and[G]describe the the necessary training
and testing details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation for our user study results (table [T). The
FID metrics are evaluating a statistical similarity between two distributions (between a
large amount of generated samples), thus already providing information about the statistical
significance of the experiments. Additionally, we show multiple generated samples with
different seeds in Figure[TT]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The first section of Section [5]describes the required resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our work is in accordance with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide a discussion about the societal impact in Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will add a section about ethical and out-of-scope usage in our code release
similarly to [32]] to ensure responsible usage.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We describe the licenses of all the assets in Appendix [E]
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the code and the trained model weights with training and
testing scripts. We provide details about the training in Section[5] We describe the licenses
of all the assets in Appendix [E]

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We conduct a user-study with human participants. We describe the details in
Appendix [F]and provide one example of the provided instructions in Figure[I8]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We conduct a user-study with human participants. We describe the details in
Appendix [F} Our user-study is anonymous and does not raise any risks for the participants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Ablations

How important is the dataset size and diversity? In the first stage of training, we train 3 separate
LoRAs, corresponding to the different intrinsic properties. We curate synthetic indoor scene examples
from the InteriorVerse dataset [76]. We empirically find that we need a large dataset size for the
roughness/metallic PBR maps to achieve reasonable understanding of the corresponding intrinsic
distribution. In contrast, the albedo/normal maps can be learned from a much smaller dataset of
only 20 samples. This is important to retain the generalizable prior of the pretrained text-to-image
model (see Appendix [A). We confirm this with additional experiments in Table 2] that compare
the quality and diversity of generated albedo images for different dataset sizes. The in-distribution
FID (A-ID-FID) measures the quality of the albedo (calculated on a subset of 100 test images of
InteriorVerse [[76]], similar as in the main paper). The diversity metric (A-Diversity) compares the
FID between the generated set of all images and the mean of the generated set. This measures if the
distribution is collapsed and therefore signals how diverse the generated samples are. We can see that
a dataset consisting of 20 samples does the best in terms of diversity, while still having reasonable
albedo quality. Importantly, albedos trained on larger datasets also start to include baked-in lighting
effects (see Figure[TI0). This motivates our choice to not increase the dataset size further. The final
dataset consists of sampled images from the InteriorVerse dataset [76]]. We sample images from the
following room-types to curate 20 samples: 5 bedrooms, 5 kitchens, 5 livingrooms, 1 kidroom, 2
offices, 1 cabinet, 1 bathroom.

LoRA Rank We ablate the rank of the LoRA [25] modules in fig. El The rank determines the total
number of trainable parameters. Therefore, with a too low rank, the number of trainable parameters
are too low in order to achieve the domain shift. On the other hand, with a too high rank, we
are introducing too many parameters, which will lead to forgetting; thus, negatively effecting the
generalization. As a middle-ground, we chose rank 64.

Rank 32 64 (Ours) 128 256
A-OOD-FID 68.52 70.07 67.25 68.48 71.13

Figure 9: Qualitative and quantitative comparison of albedo quality for different LoRA [25]
ranks. Too low rank fails to change the domain from rgb to the target albedo modality. On the other
hand, a too high rank negatively impacts the generalization, resulting in unrealistic composition.
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Table 2: Quantitative comparison of albedo quality for different dataset sizes. We observe that
training with larger dataset might lead to slightly better albedo quality (A-ID-FID); however, the
diversity (A-Diversity) and thus the generalization capabilities degrade. This motivates our choice for
a small, curated dataset of 20 samples for the first stage finetuning of the albedo/normal LoRAs.

Dataset size  A-ID-FID |  A-Diversity 1

10 220.28 284.93
20 (Ours) 187.83 398.36
100 161.51 369.43
1k 154.58 366.35
20k 155.64 352.04

10 20 (Ours)

100 1k 20k

Figure 10: Qualitative comparison of albedo quality for different dataset sizes. Dataset sizes of
100 or more images tend to generate albedos with baked-in lighting effects, which is undesirable for
physically-based rendering. A dataset that only consists of 10 images shows less details in generated
albedos. This motivates our usage of 20 curated samples in the albedo/normal LoRA training, which
balances both extrema. We show multiple samples per column, corresponding to different generations
from the same text prompts. This highlights, that our model creates diverse images.

Can we maintain sample diversity? We
show multiple samples using the same text
prompt in Figure [[I] Our method manages
to maintain the generalization capabilities of
the T2I model and generates diverse samples
even for out-of-distribution prompts (see also
Figure[6)and the supplementary material).

More samples We show additional qualitative
comparisons in Figure[12]

Individual PBR Priors In the first stage of
training, we train 3 separate LoRAs, correspond-
ing to the different intrinsic properties. We
curate synthetic indoor scene examples from
the InteriorVerse dataset [76]]. We show in Fig-
ure[I3](top) that this leads to high-quality and di-
verse albedo and normal map generations. This
confirms our choice of training these PBR maps
on small-scale datasets, i.e., we retain the gener-

R
A
I

Normal Albedo Roughness  Metallic

Figure 11: Sample diversity. We show 3 gen-
erated samples using the same text prompt. Our
model predicts different samples and maintains the
diversity of the T2I backbone (numerous chairs
were not seen during training).

alized prior of the pretrained text-to-image model during the first stage finetuning.
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Figure 12: Additonal ablations. We compare our full method against ablations that do not use
the rendering loss (w/o Rendering), use uniform light sampling instead of importance-based light
sampling (w/o Light Sampling), and do not use dropout in the cross-intrinsic attention (w/o CIA-
Dropout). Without the rendering loss (Section [3.2.2), the PBR maps lose their semantic meaning,
e.g., there are baked-in shadows in the albedo and the generated images appear “averaged out”.
Importance-based light sampling (Section [3:2.2)) and CIA dropout (Section [3.2.T) both increase the
sharpness of individual PBR maps, e.g., the roughness/metallic images have realistic details without
baked-in textures. Overall, all components improve the quality of rendered images under varied
lighting conditions.

In contrast, the roughness/metallic LoRAs fail to generalize to out-of-distribution scenarios. This
is because we use a larger dataset for training this LoRA. However, Figure[I3](bottom) shows that
the second stage alignment training turns this LoRA to an equally-well generalizable PBR map
generator. In other words, the generalizability of the albedo/normal LoRAs can be combined with the
understanding of the intrinsic distribution of the roughness/metallic LoRA. Together, we can still
produce high-quality, diverse PBR maps.

B Additional Results

Lighting Direction Sampling We sample light directions that maximize specular highlights to
provide strong gradients about reflectance. As an alternative, we train a BRDF-sampled variant
(Disney model) for more diverse lighting directions. This yields slightly worse results on the in-
domain dataset (75.26 A-ID-FID), but further improves generalization (68.87 A-OOD-FID), showing
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Figure 13: Comparison between stage 1 and stage 2 samples. In the first stage we train 3
LoRAs separately corresponding to the different PBR maps (albedo, normal, roughness+metallic)
on synthetic indoor-scene examples. In the second stage, we align these PBR priors through cross-
intrinsic attention and the rendering loss. Top: generated images in the first stage (independently for
each modality) show good quality for the albedo and normal maps. However, the roughness/metallic
predictions are only reasonable for in-distribution scenarios (e.g. the 4th column) and become less
detailed for out-of-distribution prompts. Bottom: after alignment training, all PBR maps have
meaningful structure and exhibit sharp, high-quality content.

that lighting direction sampling is crucial for our task. Exploring other sampling strategies is a great
avenue for future research.

Baseline comparisons We show additional comparisons to the baselines in Figure [T4]
Albedo comparisons We show additional albedo comparisons to the baselines in Figure[T3]

Scene Texturing Results We show more scene texturing results in Figure [T6] We used Blender [8]
to render the scene with uniform white environment map lighting and a single spherical light source.
To enhance geometric details, we used an approximation of the displacement map by thresholding
the normal textures.

To achieve room-scale scene texturing, we apply the SceneTex method [7]] in a two-stage manner
with the conditional variant of our model. First, we render normal maps from multiple views and
generate material (albedo, roughness and metallic) textures, conditioned on the rendered normals.
Then, we render the material properties for the given views and generate fine-grained normal details,
conditioned on the rendered material maps. We use VFDS [18]] [18] loss in image space. To balance
the updates between over- and under-sampled texels, we weight the lostt with the inverse obervations
frequency. As a pre-processing step, we create a texture, which stores the texel observation frequency.
During the optimization, we render this texture together with the other components apply the
weighting pixel-wise. We found that too low CFG value causes over-smoothed results, while too high
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Figure 14: Additional rendering comparisons. We show sample PBR maps of our method and
baselines as well as rendered RGB images under two different lighting conditions. We use a diverse set
of text prompts to produce our PBR maps, as well as the input RGB images for the baseline methods.
This highlights our models’ capability to retain the generalized prior of the pretrained text-to-image
model. Our method better captures the semantic meaning of the individual intrinsic properties. For
example, there are no baked-in lighting effects in the albedo, and the metallic/roughness maps are
sharper with more intricate details. This leads to more realistic renderings and lighting effects.

values can break the generated images in case of Flux [32]. To solve this issue, we normalize the
flow direction to keep the norm of the text-conditional prediction, but use the direction towards the
extrapolated flow direction.

C Limitations

We use a screen-space renderer similar to [31, o
[76]. For better 2D results, a neural/diffusion ——— -
renderer can optionally be trained on top of Albedo Normal FLUX [32]

our method. Our method maintains generaliza- Figure 17: Limitations. Since FLUX [32] does

?OIE far bf y;)nd glle imrll(lr(rlla ! trtzllm%ngPs];:;ithanks not inherently know about the intrinsic properties
0 formufafing the fask directly in SPACC- 4nd we cannot train on a similarly large dataset

.Sltn?e F LUX does tnot 1nher§gtly know about as the model was originally trained, we sacrifice
u.lt.r 1n511c dcpmpgnt;n 5 “{)el sacrt tceksome Cﬁmlgz' details during the fine-tuning. Therefore, our PBR
stional Giversity to enapie our fask using Lo maps do not contain as much details as an image

mgﬁulf; (see 1;1.%1.“6 Ml I{)l]gg illtetl Y, ttralnu}cgl generate by FLUX and sometimes the generated
with a civerse brilion-scaie ataset wou properties can be incorrect (e.g. normals).

further improve generalization, but it does not
exist.
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Figure 15: Additional albedo comparisons. We show albedo images of our method and baselines
corresponding to the same text prompt in each column. Our albedo images have less baked-in
shadows and reflections, which is desirable for downstream tasks, such as physically-based rendering.

D Societal Impact

Generative models impact the society in general. Next to accelerating and democratizing creative
content creation, they can also raise ethical concerns. Potential misuse for generating misinformation
or deepfakes can become a major threat for naive users. These risks needs to be discussed and made
public as soon as possible with open-sourcing and publishing results in the field to show the limits of
current state-of-the-art. These challenges have been widely discussed in the recent years, such as in
[1]. Our method enables decomposed generation, which coupled with a photo-realistic rendering can
produce realistic-looking results.

E Licenses

Table 3] shows a summary about the licenses of the used components.

Table 3: Licenses. We provide a summary about the licenses of the used resources.

Type Source License

Code Flux 1.0 Dev Apache v2.0
Code SceneTex CCBY-NC-SA 3.0
Data |InteriorVerse MIT License
Data 3D-FRONT Custom, research-only
Data GObjaVerse Apache v2.0



https://github.com/black-forest-labs/flux
https://github.com/daveredrum/SceneTex
https://github.com/jingsenzhu/IndoorInverseRendering
https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset
https://github.com/modelscope/richdreamer/tree/main/dataset/gobjaverse
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Select the method with the best albedo quality. Hint for albedo evaluation: Albedo is the color of the scene without any lighting effects. It shouldn't contain any baked-in lighting, shadows, or specularity. *

On ascale of 1to 5, how do you rate the quality of the video? *

ond to the following prompt? *

Rendering/Lighting Quality, Prompt Coherence Albedo Preference

Figure 18: Sample questions in the user study. Users are presented with two types of questions.
Top: users select the best albedo among all methods. Bottom: users rate the specular and rendered
quality as well as the prompt coherence on a scale of 1-5 for a rendered video example.

F User Study

To better evaluate the quality of our generated PBR maps, we conduct a user study. The participation
is anonymous and no personal data is collected. We summarize in Figure [I8]the questions we asked
by the participants. In the following, we explain how each metric is calculated.

* A-PP: we calculate the perceptual preference of albedo images (see Figure[I8]top). Users choose
one of the images and we calculate in percentage how often each method was preferred.

* S-PQ: we calculate the quality of specularity of the rendered video under varying lighting conditions
(see Figure[I§bottom). Users rate on a scale of 1-5 how good the specular quality is.

* R-PQ: we calculate the general quality of the rendered video under varying lighting conditions (see
Figurel-l;glbottom). Users rate on a scale of 1-5 how good the general quality is.

» PC: we calculate the prompt coherence, i.e, how well the text prompt matches the rendered video
(see Figure[I§bottom). Users rate on a scale of 1-5 how good the coherence is.

G Prompts

We used the following prompts in our main results. We used our own, LLM-generated prompts, and
prompts from Gao et al. [16]:

* Figure[l} “An astronaut riding a unicorn on the moon”

* Figure|2} “An astronaut riding a unicorn on the moon”

* Figure[4} “Astronaut in front of landscape space alien planet”

* Figure[5} “An industrial-style room with exposed brick walls, and reclaimed wood furniture, The
room features a leather sofa, a coffee table made from a metal frame, and modern decor that
complements its raw, edgy vibe”
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Figure [6] from left to right and top to bottom: “A wooden treasure chest reinforced with golden
bands, its lid slightly ajar to reveal glittering jewels and coins, with faint beams of light spilling out
from inside”, “3d cartoon folk singers character music guitar animation”,

Figure[7]from left to right: “3d cartoon boy character animation”, “Adventurer standing in forest
exploration nature trees hiking woodland outdoor”, “Adventurous teddy bear explorer travel
outdoor”, “Alpaca wearing a suit animal clothing formal wool”, “Anime character in lab coat
scientist cartoon drawing japanese style”,

Figure[8} “A vintage pocket watch with its cover open, revealing a complex arrangement of gears
and springs, some of which are glowing faintly, surrounded by engraved floral patterns.”
Figure[0} “An astronaut riding a unicorn on the moon”

Figure[I0} “An astronaut riding a unicorn on the moon”

Figure[I 1} “A wooden chair”

Figure |12} “A sportcar”

Figure 13| from left to right: “An astronaut riding a unicorn on the moon”, “3d cartoon folk singers
character music guitar animation”, “Alien merchant extraterrestrial market fantasy science fiction”,
“Alley city urban narrow passage architecture outdoor”, “Astronaut in front of landscape space
alien planet”, “A majestic castle made entirely of ice, perched atop a snowy hill with shimmering
pink and golden light reflecting off its towers. Below, a frozen lake mirrors the grandeur of the
scene”, “A sprawling library with towering bookshelves reaching to the ceiling, glowing orbs
floating mid-air to provide light, books that seem to fly on their own, and a spiral staircase made of
golden wood.”, “A house in a forest”, “New York”, “A wooden chair”

Figure[I4]from left to right and top to bottom: “A rusted sword with a glowing blue rune etched into
the blade, its hilt wrapped in weathered leather, and a faint aura of light surrounding it as if imbued
with ancient magic”, “An astronaut riding a unicorn on the moon”, “A large, ornate key made of
silver, with intricate vine-like patterns etched along the shaft and a glowing emerald embedded in
the handle”, “Taj Mahal”

Figure[I5]from left to right: “Arches national park nature rock formations desert travel outdoor”,
“Astronaut in colorful cave exploration adventure discovery geology outdoor”, “An epic battlefield
where knights in shining armor clash with dragon-riding warriors under a stormy sky. A massive
fire-breathing dragon is mid-flight, casting shadows over the chaos below”, “A massive sea turtle
with a forest on its back swims through crystal-clear waters, accompanied by schools of colorful
fish. A small sailing ship navigates beside it, dwarfed by the turtle’s size”, “A sleek, metallic helmet
with a reflective visor that glows neon blue, featuring angular designs and small vents that emit a
soft, white mist”

Figure[I7} “A very strange burger food unusual creative”

Figure 16 from top to bottom: “An opulent Baroque-style room with intricate details, Walls are
decorated with elaborate molding, in shades of cream, gold, and soft pastels, A plush velvet sofa,
A richly patterned Persian rug covers the marble floor”, “An industrial-style room with exposed
brick walls, and reclaimed wood furniture, The room features a leather sofa, a coffee table made
from a metal frame, and modern decor that complements its raw, edgy vibe”, “A Tuscan-style room
with warm earthy tones, terracotta tiles, and wrought iron details, The furniture features rich wood
frames and soft cushions, complemented by Mediterranean-inspired decor”, “A breathtaking Greek-
style room with intricate details, featuring a serene blue-and-white color scheme, Majestic marble
columns with ornate Corinthian capitals support a high, coffered ceiling adorned with classical
frescoes, The walls showcase elegant friezes and gold-accented moldings, reflecting the grandeur
of ancient Greece, Large arched windows allow soft, natural light to flood the space, enhancing the
contrast between crisp white walls and rich blue decorative elements, A luxurious chaise lounge
with blue upholstery sits, accompanied by a marble-topped table with delicate carvings, The floor
is adorned with intricate mosaic patterns”
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