

000 PAPER: PERIODICITY ALIGNMENT ON PERIODIC 001 TIME SERIES FOR FORECASTING 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 Time series forecasting is essential for predicting temporal dynamics across di-
012 verse domains, from meteorological patterns to urban traffic flows. Many such
013 time series exhibit strong periodic patterns, like weekly traffic cycles, and lever-
014 aging this periodicity is crucial for forecasting accuracy. However, existing ap-
015 proaches typically rely on autoregressive models ($x_{t+1} = f(x_t, x_{t-1}, \dots)$) to
016 capture these patterns implicitly or incorporate specialized modules and times-
017 tamp embeddings as auxiliary inputs explicitly. In this work, we propose PAPER:
018 Periodicity Alignment for Periodic Time Series and demonstrate that an explicit
019 yet simple alignment of periodic patterns without auxiliary inputs yields substan-
020 tial improvements. We validate PAPER through mathematical proofs, illustrative
021 toy examples, and extensive real-world experiments. Our results show that PA-
022 PER, when applied to state-of-the-art models, achieves performance gains of up to
023 7% on multiple benchmarks. Moreover, PAPER is model-agnostic and can reduce
024 model complexity by up to 99.5% while incurring only a minor 11% performance
025 trade-off. This work presents a foundational investigation into periodicity align-
026 ment, and the code is available at [xxx](#).
027

028 1 INTRODUCTION 029

030 Time series forecasting—the task of predicting future values from past observations—is critical for
031 strategic decision-making across fields like transportation, logistics, and climate science. The re-
032 cent explosion of sensor data makes this capability more relevant than ever, yet it also exposes a
033 fundamental challenge: real-world temporal data is often dynamic and chaotic.

034 A defining characteristic of many such time series is periodicity, where patterns recur at regular in-
035 tervals. These cycles are not mere statistical artifacts but reflections of underlying system dynamics.
036 Weekly traffic patterns inform urban planning, seasonal sales cycles drive retail inventory decisions,
037 and daily consumption patterns are essential for power grid management. The ability to effectively
038 capture such periodicity is crucial for taming the chaotic, dynamic nature of time series data.

039 Typically, forecasting models have addressed periodicity through two primary approaches: implicit-
040 ly or explicitly. Implicit methods capture periodic patterns by designing models under the (lin-
041 ear or nonlinear) autoregressive assumption $x_t = f(x_{t-1}, x_{t-2}, \dots)$. These models include tradi-
042 tional approaches such as exponential smoothing, ARIMA, tree-based models, and linear regres-
043 sion (Zeng et al., 2023), as well as most neural networks including LSTNet (Lai et al., 2018),
044 DSANet (Huang et al., 2019), TPA (Shih et al., 2019), Leddam (Yu et al., 2024), and iTrans-
045 former (Liu et al., 2024). The autoregressive assumption enables these models to capture periodici-
046 ties quite effectively without specialized modules, but is somewhat constrained by the autoregressive
047 formulation. Essentially, periodicity implies that the data-generating process (DGP) involves t (i.e.,
048 $x_t = f(t, x_{t-1}, x_{t-2}, \dots)$), but t is not an input in an autoregressive process.

049 Explicit methods employ specialized components to directly capture periodicity and improve model
050 performance. For example, one can use Fourier transforms or positional embeddings to encode peri-
051 odicity information. However, this introduces additional input to the model, so the model now relies
052 on auxiliary inputs (i.e., exogenous variables) instead of depending solely on historical values (i.e.,
053 endogenous variables). Thus, strictly speaking, such exogenous models are not comparable to en-
054 dogenous ones. Our paper focuses on a model agnostic method for improving neural networks’ per-

054 formance on long-term periodic time series forecasting by explicitly capturing periodicity through
 055 alignment without auxiliary input.
 056

057 There are many previous methods such as ETS (error, trend, seasonal) and Seasonal ARIMA
 058 (SARIMA) that are developed based on traditional models and are not combinable with neural net-
 059 works. In terms of neural networks, most previous methods, such as SparseTSF (Lin et al., 2024b),
 060 DEPTS (Fan et al., 2022), and Leddam (Yu et al., 2024), directly infuse periodic information into
 061 the middle of the model through variations of seasonal-trend decomposition. However, SFNN (Sun
 062 et al., 2025) has shown that a simple feed-forward architecture can explicitly capture periodicity and
 063 achieves the best performance. Other than directly infusing periodic information, CycleNet (Lin
 064 et al., 2024a) is the most comparable method to ours because their approach is also combinable with
 065 any neural network and does not rely on auxiliary input. Therefore, we compare against them in the
 066 main experiment.

067 In this work, we propose **PAPER: Periodicity Alignment on Periodic time series for forecasting**.
 068 This alignment mechanism is a simple yet effective approach without auxiliary input that enhances
 069 the model’s ability to capture periodic patterns while enabling the learning of non-autoregressive
 070 temporal dependencies.

071 Our key contributions are as follows.

- 072 • We introduce PAPER, a periodicity alignment framework for periodic time series that im-
 073 proves state-of-the-art model performance by learning non-autoregressive dependencies
 074 across temporal contexts without auxiliary input.
- 075 • We provide theoretical analysis with mathematical proofs that characterize both the advan-
 076 tages and fundamental limitations of periodicity alignment.
- 077 • We demonstrate the properties and effectiveness of our alignment approach through con-
 078 trolled experiments on synthetic datasets with known periodic structures.
- 079 • We conduct comprehensive experiments on real-world datasets that validate the practical
 080 benefits of our method and clearly delineate its scope and limitations.

083 2 PROBLEM FORMULATION

085 2.1 OUR DEFINITION OF ALMOST PERIODIC TIME SERIES

087 Let $\mathbf{x} = \{x_1, \dots, x_T\}$ be a univariate time series of length T . We say \mathbf{x} is periodic with fundamental
 088 period P when $x_{t+P} = x_t$ for all t . However, perfectly periodic time series are rare in the real world.
 089 Instead, we focus on time series that are almost periodic. Our definition of an almost periodic signal
 090 with a *fixed* fundamental period P is:

$$091 \mathbb{E}(x_{t+P} - x_t)^2 \leq \epsilon^2, \forall t, \quad (1)$$

093 where ϵ is a small noise term. This is a simplified definition of the almost periodic function of Bohr
 094 (1925), which is also similar to quasi-periodic motion (in mathematics and theoretical physics) or
 095 quasi-periodic signals (in signal processing). Compared to the almost periodic function in Bohr
 096 (1925), the P and ϵ in our definition are the result of the nature of the data-generating process, rather
 097 than arbitrary choices. Compared to quasiperiodicity, our definition employs a fixed fundamental
 098 period P , instead of a possibly slowly changing P .

100 2.2 TIME SERIES FORECASTING

101 In time series forecasting, we aim to forecast the future H horizons $[x_{t+1}, \dots, x_{t+H}]$, given the past
 102 histories $[x_1, \dots, x_t]$. Thus, this is a sequence-to-sequence task where a single example is of the
 103 form $(\text{target, input}) = ([x_{t+1}, \dots, x_{t+H}], [x_1, \dots, x_t])$. Since more recent histories are more infor-
 104 mative, a common approach is to select a suitable look-back length L of the most recent histories
 105 as the input to the model. When the time series is N -multivariate, we assume the N series start
 106 at the same time, have the same length of T , have the same sampling rate, and most importantly,
 107 have the same fundamental period P . We use $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_T]^\top \in \mathbb{R}^{T \times N}$ to denote the
 108 N -multivariate time series, where $\mathbf{X}_t \in \mathbb{R}^N$ is the t -th sample for all series. The (target, input)

pair in the multivariate case is the same as the univariate case but with \mathbf{X}_t as each sample. Ultimately, we aim to find the model parameters $f(\cdot; \theta)$ that minimize the mean squared error (MSE) $= \sum_t \sum_{h=1}^H \|\mathbf{X}_{t+h} - \hat{\mathbf{X}}_{t+h}\|_2^2$ on the test set, where $[\hat{\mathbf{X}}_{t+1}, \dots, \hat{\mathbf{X}}_{t+H}]^\top = f(\mathbf{X}_t, \dots, \mathbf{X}_{t-L+1}; \theta)$ is the model forecast.

3 OUR METHOD

As indicated in the title of this paper, our method assumes that the time series of interest has strong fundamental periodicity. Thus, our method consists of two steps. First, a forecasting-based method to detect the fundamental periodicity. Second, periodicity alignment is performed to encourage the model to make use of periodic patterns.

Figure 1: Three views to detect the best periodicity in the Traffic and Electricity datasets. The top row shows the original time series where one can visually understand the periodicity. The middle row shows results using Fourier transform (for Traffic) or autocorrelation function (for Electricity). The bottom row shows results using our method of periodicity detection. On the Traffic dataset, Fourier transform failed to detect the weekly periodicity as the best one because sinusoidal bases are not suitable. On the Electricity dataset, the changing trends make it difficult to identify 24 as the best periodicity. In contrast, our method successfully detects the best periodicities in both cases while being simple and straightforward.

3.1 DETECTING THE FUNDAMENTAL PERIODICITY

Traditionally, there are two main methods to detect periodicity in time series: Fourier (or wavelet) transform or autocorrelation function. Advanced methods are built on top of these (Puech et al., 2019; Wen et al., 2021). For example, Wen et al. (2021) uses the wavelet transform first and then applies the autocorrelation function to improve robustness. Instead of relying on more sophisticated methods, we employ a simple method that best suits our use case of forecasting. Essentially, we directly measure the error of using the previous P data points to predict the next P data points and find the P that minimizes the error. Mathematically, the best fundamental period P^* is found according to this equation:

$$P^* = \arg \min_P \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \|\mathbf{X}_{t-P+1:t} - \mathbf{X}_{t+1:t+P}\|_F^2, \quad (2)$$

where $\mathbf{X}_{i:j} = [\mathbf{X}_i \dots \mathbf{X}_j]^\top$ and \mathcal{T} is the set of time index. To further increase robustness to trend and scale drift, each of the N series in $\mathbf{X}_{t-P+1:t}$ and $\mathbf{X}_{t+1:t+P}$ is z -normalized individually before the Frobenius norm is calculated. One can immediately understand why detecting periodicity using our method is very suitable when the use case is forecasting. Qualitatively speaking, using Fourier

(or wavelet) transforms is sometimes suboptimal because the shapes can be very different from sinusoidal bases, and using autocorrelation functions is sensitive to trends. Our method alleviates both problems. As an illustration, Figure 1 visualizes the advantages of our method.

3.2 PERIODICITY ALIGNMENT

After finding the best periodicity, we align the series according to its periodicity so that the model knows exactly which input corresponds to which step in the period. For example, assuming we are dealing with daily data points with weekly periodicity, then after alignment, the first position always corresponds to Monday. This differs from typical time series forecasting, where the input consists of rolling slices of the whole time series with the temporal order preserved. This means that the starting time step of the input can be any day in the week. For a visual comparison, see Figure 2.

Figure 2: An illustration of the difference between with or without periodicity alignment. In the left block, we are given a batch of randomly shuffled input and also the target output. Without alignment, the input and output are unchanged but then the periodic patterns are shifting over time. In contrast, with alignment, the input and output are wrapped so that the each position always corresponds to its weekday. This way the periodic pattern is not shifting but the entries are not temporally ordered.

3.2.1 ADDING POSITIONAL INFORMATION

An apparent issue with such periodicity alignment is the problem of temporally unordered entries. This is problematic because in most cases, the nearest data point x_t has the most predictive power, but now the model does not know which position corresponds to x_t . Our solution is to expand the input vector instead of wrapping the series during alignment, so now the input vector length is $L + P - 1$. Following the batch of input in Figure 2, with expansion, the input becomes

$$\begin{aligned}
 & \text{(Mon), (Tue), (Wed), (Thu), (Fri), (Sat), (Sun), (Mon), (Tue), (Wed), (Thu), (Fri), (Sat)} \\
 & f([x01, x02, x03, x04, x05, x06, x07, 0, 0, 0, 0, 0, 0]; \theta) \\
 & f([0, 0, x31, x32, x33, x34, x35, x36, x37, 0, 0, 0, 0]; \theta) \\
 & \vdots \\
 & f([0, 0, 0, 0, 0, x20, x21, x22, x23, x24, x25, x26, 0]; \theta).
 \end{aligned}$$

The same expansion also applies to the output. An ablation study in Section 5.4 indeed confirms that such expansion is beneficial to model performance.

4 ANALYSES OF PAPER ALIGNMENT

In this section, we conduct a comprehensive analysis of PAPER alignment from multiple perspectives. We begin with a qualitative examination of the fundamental advantages and limitations of PAPER alignment. We then provide theoretical foundations for these observations through rigorous mathematical analysis and formal proofs. Subsequently, we validate our theoretical findings using controlled experiments on two synthetic datasets designed to isolate specific properties of the alignment mechanism. Finally, we demonstrate the superiority of alignment as a dimensionality reduction technique by comparing its efficiency against established methods such as the Fourier transform.

216 4.1 QUALITATIVE ANALYSES
217

218 By explicitly aligning periodicity, the data are in some
219 sense simplified from the model’s perspective. A sim-
220 ple illustration is shown in Figure 3, where one can im-
221 mediately see the difference between with and without
222 alignment. Without alignment, the input data are messier;
223 with alignment, the input data are cleaner. Mathemati-
224 cally speaking, this implies that the input data have lower
225 rank after alignment. Thus, the model converges faster
226 and similar performance can potentially be achieved with
227 a much smaller model, which is proven in the next section
228 under some reasonable assumptions.

229 Another observation is that, without alignment, the model
230 assumes that the data-generating process (DGP) is strictly
231 autoregressive. For example, this means that in traffic
232 forecasting, the model remains the same regardless of
233 whether the prediction is for Monday or Saturday. In con-
234 trast, with alignment, we are essentially training P different
235 models where the parameters are shared so that the
236 total parameter size remains the same. A toy example in
237 Section 4.4 shows the benefits of alignment when the data
238 are not autoregressive.

239 4.2 MATHEMATICAL PROPERTIES OF PERIODICITY ALIGNMENT
240

241 To simplify and derive several important mathematical properties of alignment, we make some rea-
242 sonable assumptions about the model and the data in Assumption 1.

243 **Assumption 1.** *Following the symbols used in Section 2, the assumptions are:*

- 244 • *The data-generating process (DGP) is $x_{t+P} = x_t + e_t$, where $P \geq 2$, $e_t \sim \mathcal{N}(0, \epsilon^2)$ is
245 i.i.d., and the values of $\{x_{1-P}, \dots, x_0\}$ are some fixed non-trivial constants. This ensures
246 that the time series is almost periodic as introduced in Section 2.1.*
- 247 • *The model of interest is a linear model.*
- 248 • *The length of the time series is much greater than its period (i.e., $T \gg P$).*
- 249 • *The look-back length and the horizon are both equal to the period (i.e., $L = H = P$).*

253 *Collectively, these assumptions are referred to as Assumption 1.*

255 Under Assumption 1, we can derive Theorem 4.1.

256 **Theorem 4.1.** *Under Assumption 1, applying periodicity alignment decreases the training error.
257 Specifically, the residual sum of squares (RSS) without alignment is $(T - P)P\epsilon^2$, and the RSS with
258 alignment is at most $(T - 2P + 1)P\epsilon^2$, which is strictly less than the RSS without alignment.*

260 *Proof.* Please see Section A.1 for the proof. □

262 An interesting observation based on Theorem 4.1 is that with exactly the same model and data,
263 aligning the periodicity strictly improves the training error. Although this is promising, we note that
264 the testing error actually increases with alignment, as stated in Theorem 4.2.

265 **Theorem 4.2.** *Under Assumption 1, applying periodicity alignment increases the testing error.
266 Specifically, the testing error without alignment is $P(1 + \frac{P}{T})\epsilon^2$, and the testing error with align-
267 ment is at least $P(1 + \frac{2P+1}{T})\epsilon^2$, which is strictly greater than the testing error without alignment.*

269 *Proof.* Please see Section A.2 for the proof. □

259 Figure 3: A simple visualization of what
260 happens to the input data without align-
261 ment versus with alignment on the Traf-
262 fic dataset. Qualitatively speaking, the
263 input data with alignment is cleaner.

This is certainly a limitation of periodicity alignment. However, this is due to the fact that the DGP in Assumption 1 is autoregressive, so there is no need for alignment since a linear autoregressive model is already the best estimator. That said, alignment still has an advantage under reduced-rank regression (RRR), where the rank of the model is restricted, as shown in Theorem 4.3.

Theorem 4.3. Under Assumption 1, we already know that applying periodicity alignment decreases the training error according to Theorem 4.1. Furthermore, if the rank of the model is restricted, the increase in training error is smaller when alignment is applied, implying that the outperformance of alignment is magnified. Specifically, the increase in residual sum of squares (RSS) with rank $r < P$ is roughly $(P - r) \left(\frac{T \|\mathbf{x}_0\|_2^2}{P} + \frac{T(T+P)\epsilon^2}{2P} \right)$ without alignment and $T \|\mathbf{x}_0\|_2^2 + (P - r) \frac{T(T+P)\epsilon^2}{2P}$ with alignment.

Proof. Please see Section A.3 for the proof.

Comparing the test error of RRR models with and without alignment is subtle because two opposing forces are at play. As shown in Theorem 4.2, alignment tends to raise test error. In contrast, Theorem 4.3 shows that when the model rank is reduced, alignment improves training performance. The overall outcome depends on which influence prevails: if the rank is trimmed only slightly, alignment may degrade performance, but when the rank is cut substantially, alignment can yield better results.

4.3 AUTOREGRESSIVE AND NON-AUTOREGRESSIVE TOY EXAMPLES

In this section, we demonstrate an experimental proof of Theorem 4.1 and Theorem 4.2. Following Assumption 1, we construct a toy dataset of various sample sizes $T = \{200, 666, 2000, \dots, 200000\}$ with an 80%/20% train-test split and set $P = H = 5, \epsilon = 1$. Additionally, we ran 100 runs for each setup, and for each run, we randomly sampled the values $\{x_{-4}, x_{-3}, \dots, x_0\}$ from $\mathcal{N}(0, 10^2)$. The results are shown in Figure 4a. When T is large, it does not matter whether alignment is applied or not. However, when T is not sufficiently large, we can see that the training error is lower while the testing error is higher after alignment. This follows Theorem 4.1 and Theorem 4.2. We also show the estimated errors according to the equations in the proofs.

(a) The synthetic toy datasets are autoregressively generated according to Assumption 1. We set an 80%/20% train-test split and $P = H$ based on $(t \bmod P)$. For example, if $5, \epsilon = 1$. Each quartile box plot is calculated over 100 runs. $(t \bmod P) = 3$, then $a_t = 0.95$.

Figure 4: Affect of applying alignment on synthetic toy datasets.

4.4 NON-AUTOREGRESSIVE EXAMPLES

After seeing the results in the previous section, one might question the benefits of PAPER alignment. However, notice that the data-generating process in Assumption 1 is exactly autoregressive and therefore exactly matches the formulation without alignment. On the other hand, the alignment formulation is closer to training P different models with shared parameters, which is less efficient when the data are autoregressive. This is what we described in the last paragraph of our qualitative analysis in Section 4.1. An example of a non-autoregressive DGP is when the parameters are dependent on the phase in the period. For example, in traffic forecasting, the best model for predicting

324 Monday’s traffic flow will be different from the best model for Saturday’s. This is because, first,
 325 Monday is a weekday and Saturday is a weekend, causing different human behaviors. Additionally,
 326 the day before Monday is a weekend, whereas the day before Saturday is a weekday, so if the model
 327 assigns the same coefficient to the previous day, the performance is suboptimal.

328 Since it is difficult to prove this mathematically, we construct a non-autoregressive toy dataset
 329 to demonstrate it in the following. The non-autoregressive toy datasets follow the process $x_t =$
 330 $a_t x_{t-P} + e_t$, where $a_t \in \{0.8, 0.85, 0.9, 0.95, 1\}$ and is selected based on $(t \bmod P)$. For example,
 331 if $(t \bmod P) = 1$, then $a_t = 0.85$, and if $(t \bmod P) = 3$, then $a_t = 0.95$. Otherwise, the process is
 332 the same as in the previous section. The results on the training set are similar to those of Figure 4a,
 333 where the error is again much lower. The difference lies in the results of the test set, which are
 334 shown in Figure 4b. We can clearly see that applying alignment now improves performance with
 335 sufficient sample size. Moreover, the improvement remains even with larger sample sizes.

336 Additionally, we perform a proof-of-concept experiment on real-world datasets. Specifically, we
 337 split the data into P subsets according to the phase and then train P linear models. The results show
 338 significant improvements compared to using a single linear model. On the Electricity, Solar, and
 339 Traffic datasets with $P = 24, 144, 168$, the improvements are 45%, 22%, and 13%, respectively.

341 4.5 DIMENSIONALITY REDUCTION ANALYSIS

343 In this analysis, we aim to show that PAPER alignment
 344 helps with dimensionality reduction. This means that after alignment, the data matrix \mathbf{X} can
 345 be projected to a low-dimensional space with less
 346 distortion, and thus achieve lower reconstruction
 347 error when projecting back to the original high-
 348 dimensional space. The results are shown in Figure
 349 5, where one can see that simply aligning peri-
 350 odicity before Principal Component Analysis (PCA)
 351 achieves the lowest reconstruction error when com-
 352 pared to PCA only, kernel PCA, Discrete Fourier
 353 Transform (DFT), and Wavelet Transform. Outper-
 354 forming PCA alone is straightforward by looking at
 355 Figure 3 visually, but the fact that PAPER also out-
 356 performs kernel PCA, DFT, and Wavelet Transform
 357 implies that PAPER is an extremely efficient repre-
 358 sentation of the data.

360 5 REAL-WORLD EXPERIMENTS

362 In this section, we perform several experiments on real-world datasets that solidify the conclusions
 363 drawn from Section 4.3, Section 4.4, and Section 4.5.

365 5.1 LONG-TERM FORECASTING RESULTS

367 Our experimental setup is similar to previous long-term forecasting papers in the deep learning
 368 community, except for the train-validation-test split. Previous work mostly follows a chronologically
 369 ordered train-validation-test split, so the best validation epoch is tested on the test set. However,
 370 this deviates from real-world practice because the validation set is closest to the test set, so not
 371 training on it is too costly. Instead, practitioners usually first find suitable hyperparameters that
 372 do not overfit and then train the model on the full available training set. Additionally, our PAPER
 373 alignment is prone to overfitting as proven in Theorem 4.2 and further discussed in Section 6.2, so a
 374 validation set between the training set and test set greatly reduces performance. In summary, we set
 375 the first 95% of the data as the training set and the remaining 5% as the test set, and choose the best
 376 hyperparameters for each model to train for a fixed number of epochs before testing. For ease of
 377 comparison, the models are identical, where the number of units is 336, 144, 1344 for the Electricity
 378 dataset, Solar dataset, and Traffic dataset, respectively. Thus, the tunable hyperparameters pertain to
 379 the optimization process, not the model itself.

390 Figure 5: Reconstruction error on the first series in the Traffic dataset using dimensionality reduction techniques. The series is transformed to a 2D matrix where each row is a sliding window of length 168. With PAPER alignment, the rows are aligned before passing to PCA. PCA and DFT with maximum magnitude achieve extremely similar results due to both being linear operations.

378
 379
 380
 381
 Table 1: Mean-Squared Errors (MSEs) on the test set with various model combinations for three
 datasets and four horizons. Mean and standard deviation reported over 10 runs. Shaded number
 indicates the best performing model and is superscribed with \dagger if the outperformance is statistically
 significant with p -value less than 5%.

382	Dataset	Horizon	SFNN	SFNN + CycleNet	SFNN + PAPER
383 Electricity	168	0.1646 \pm 0.0012	0.1622 \pm 0.0002	0.1589 \dagger \pm 0.0002	
	336	0.1661 \pm 0.0006	0.1623 \pm 0.0003	0.1591 \dagger \pm 0.0002	
	504	0.1813 \pm 0.0003	0.1766 \pm 0.0004	0.1674 \dagger \pm 0.0004	
	672	0.1985 \pm 0.0003	0.1975 \pm 0.0004	0.1836 \dagger \pm 0.0003	
386 Solar	144	0.1889 \dagger \pm 0.0020	0.2188 \pm 0.0003	0.2047 \pm 0.0052	
	288	0.2125 \pm 0.0024	0.2675 \pm 0.0007	0.2020 \dagger \pm 0.0028	
	432	0.2212 \pm 0.0005	0.2742 \pm 0.0003	0.2090 \dagger \pm 0.0015	
	576	0.2244 \pm 0.0007	0.2620 \pm 0.0007	0.2239 \pm 0.0015	
388 Traffic	168	0.3314 \pm 0.0002	0.3329 \pm 0.0012	0.3319 \pm 0.0015	
	336	0.3512 \pm 0.0008	0.3457 \pm 0.0009	0.3384 \dagger \pm 0.0009	
	504	0.3557 \pm 0.0001	0.3590 \pm 0.0013	0.3430 \dagger \pm 0.0001	
389	672	0.3761 \pm 0.0004	0.3910 \pm 0.0021	0.3589 \dagger \pm 0.0007	

390
 391
 The results are shown in Table 1. We choose SFNN (Sun et al., 2025) as the base model because it is
 392 the state-of-the-art model, yet it has a very simple architecture that does not interfere with our align-
 393 ment. Compared to SFNN without alignment or SFNN with CycleNet, adding PAPER alignment
 394 improves performance in most cases, with improvement up to 7%. Notice that the improvement
 395 seems to decrease as the horizon shortens, which we will discuss more in Section 6.3.
 396

397 398 5.2 AGNOSTIC TO DIFFERENT MODELS

399
 400 In the previous experiment, we chose SFNN (Sun et al., 2025) as the base model. Here, we show
 401 that PAPER alignment is model-agnostic, so it can also work with other base models, such as Led-
 402 dam (Yu et al., 2024), NLinear (Zeng et al., 2023), and iTransformer (Liu et al., 2024). From the
 403 results in Figure 6, we can see that adding PAPER alignment improves performance for all models
 404 across most datasets and horizons.

415
 416 Figure 6: MSEs on the test set for various base models on various datasets and horizons. The error
 417 bars indicate 2 standard deviations over 10 runs.

418 419 5.3 REDUCING MODEL SIZES

420
 421 As described in Theorem 4.3 and Section 4.5, us-
 422 ing PAPER helps when we want a smaller model.
 423 To demonstrate this property of PAPER, we train
 424 SFNNs with increasingly fewer hidden units. The
 425 results on the Traffic dataset with horizon 168
 426 are shown in Figure 7. We can see that PAPER
 427 alignment greatly improves performance when
 428 the number of hidden units is reduced. Specif-
 429 ically, comparing 21 versus 1344 hidden units,
 430 the model size is just 0.5% but the error only in-
 431 creases by 11% (instead of around 26.5% with
 CycleNet or without alignment).

432
 433 Figure 7: MSEs on the Traffic dataset with hori-
 434 zon 168 using various numbers of hidden units.
 435 The results show that with PAPER, the degra-
 436 dation of performance under restricted model sizes
 437 is much less severe. This follows Theorem 4.3
 438 and matches Figure 5.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
(a) The figure shows the relative improvement of SFNN after applying PAPER or CycleNet.

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
The models are trained on 60% of the Electricity dataset with horizon 168. Since our alignment from short- to long-term, while the look-back length is fixed method is more prone to concept drift in the data at 1344. When the horizon is short, applying PAPER negatively impacts performance. However, when the horizon is longer, especially when it is at least one period long (168 in this case), PAPER greatly improves performance.

5.4 ABLATION STUDY

In Figure 2, the original PAPER alignment does not include positional information, which we call rolling PAPER. An improvement we made is described in Section 3.2.1, where we add positional information to PAPER alignment by expanding the input size by $P - 1$. An ablation study tabulated in Table 2 in Appendix confirms the addition of positional information is beneficial to performance.

6 LIMITATIONS

Our PAPER alignment is a simple method to enhance performance for periodic time series. However, there are still three major limitations of which one should be aware.

6.1 LESS IMPROVEMENT UNDER MULTIPLE PERIODICITY

Our method’s core functionality relies on the existence of a single, strong fundamental periodicity within the time series data. Consequently, its efficacy is significantly diminished or eliminated when applied to non-periodic time series. Furthermore, even in cases where multiple fundamental periodicities are present, the overall improvement provided by our approach is reduced. For instance, the experimental results detailed in Table 1 (referencing ETM1 and ETTh1 datasets) demonstrate that the improvement becomes significant only when the prediction horizon is long.

6.2 MORE SENSITIVE TO DISTRIBUTION DRIFT

First, as proven in Theorem 4.2, PAPER alignment is more prone to overfitting. Thus, a slight change in the pattern can have a greater effect on its performance. To demonstrate this limitation, we train SFNN with PAPER alignment on 60% of the Electricity dataset to predict the future 168 horizons and then observe how the model performs on the remaining 40% of the data. We also compare against CycleNet. The results are shown in Figure 8a, where we can observe two things: (1) the improvement of PAPER is more concentrated at the beginning of the test set but then deteriorates quite rapidly; and (2) the improvement of PAPER is more volatile when compared to CycleNet. To mitigate distribution drift, we use stronger L2 regularization and dropout.

6.3 DEGRADATION ON SHORT-TERM FORECASTING

The second limitation is that PAPER alignment does not work well on short-term forecasting, especially when the horizon is shorter than the period. An experiment predicting short horizons confirms this limitation. As shown in Figure 8b, alignment actually harms performance when the prediction horizon is less than the period. On the other hand, the benefits of PAPER alignment start to emerge when the horizon is longer than the period and become increasingly beneficial for longer horizons.

486 7 CONCLUSION
487488 In conclusion, we introduced PAPER, a novel periodicity alignment framework for long-term peri-
489 odic time series forecasting. Our approach further improves state-of-the-art model performance by
490 learning non-autoregressive dependencies without auxiliary input. We utilized theoretical proofs,
491 synthetic datasets, and real-world experiments to confirm the practical benefits of our method while
492 also clearly defining its limitations. Our work provides an initial exploration of periodicity alignment
493 that paves the way for further research on more sophisticated methods.
494495 REPRODUCIBILITY STATEMENT
496497 The source code, configuration files, and instructions for model training will be provided for all
498 key experiments upon acceptance. Proofs, with their underlying assumptions and explanations, are
499 detailed in the paper and the appendix.
500501 REFERENCES
502

503 H. Bohr. Zur theorie der fastperiodischen funktionen i. *Acta Math.*, 45:22–127, 1925.
504

505 Zur Theorie E. Schmidt. der linearen und nichtlinearen integralgleichungen. *Math. Annalen* 63, pp.
506 433–476, 1907.

507 Wei Fan, Shun Zheng, Xiaohan Yi, Wei Cao, Yanjie Fu, Jiang Bian, and Tie-Yan Liu. DEPTS: Deep
508 expansion learning for periodic time series forecasting. In *International Conference on Learning
509 Representations*, 2022. URL https://openreview.net/forum?id=AJAR-JgNw__.

510 Siteng Huang, Donglin Wang, Xuehan Wu, and Ao Tang. Dsanet: Dual self-attention network
511 for multivariate time series forecasting. In *ACM International Conference on Information and
512 Knowledge Management*, 2019.

513 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
514 temporal patterns with deep neural networks. In *The International ACM SIGIR Conference*, pp.
515 95–104, 2018.

516 Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
517 Enhancing time series forecasting through modeling periodic patterns. In *Thirty-eighth Confer-
518 ence on Neural Information Processing Systems*, 2024a.

519 Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsesf: Modeling
520 long-term time series forecasting with 1k parameters. In *Forty-first International Conference on
521 Machine Learning*, 2024b.

522 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
523 itrformer: Inverted transformers are effective for time series forecasting. In *The Twelfth In-
524 ternational Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=JePfAI8fah>.

525 Tom Puech, Matthieu Boussard, Anthony D’Amato, and Gaëtan Millerand. A fully auto-
526 mated periodicity detection in time series. In *Advanced Analytics and Learning on Tempo-
527 ral Data: 4th ECML PKDD Workshop, AALTD 2019, Würzburg, Germany, September 20,
528 2019, Revised Selected Papers*, pp. 43–54, 2019. URL https://doi.org/10.1007/978-3-030-39098-3_4.

529 Shun-Yao Shih, Fan-Keng Sun, and Hung-Yi Lee. Temporal pattern attention for multivariate time
530 series forecasting. *Machine Learning*, 108:1421–1441, 2019.

531 Fan-Keng Sun, Yu-Cheng Wu, and Duane S. Boning. Simple feedforward neural networks are almost
532 all you need for time series forecasting, 2025. URL <https://arxiv.org/abs/2503.23621>.

540 Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan Xu. Robustperiod: Robust
 541 time-frequency mining for multiple periodicity detection. In *Proceedings of the 2021 Interna-*
 542 *tional Conference on Management of Data*, pp. 2328–2337. Association for Computing Machin-
 543 *ery*, 2021. URL <https://doi.org/10.1145/3448016.3452779>.

544 Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitaliz-
 545 ing multivariate time series forecasting: Learnable decomposition with inter-series dependencies
 546 and intra-series variations modeling. In *Forty-first International Conference on Machine Learn-*
 547 *ing*, 2024. URL <https://openreview.net/forum?id=87CYNyCG0o>.

548 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 549 forecasting? In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence*
 550 and *Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth*
 551 *Symposium on Educational Advances in Artificial Intelligence*, AAAI’23/IAAI’23/EAAI’23.
 552 AAAI Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i9.26317. URL <https://doi.org/10.1609/aaai.v37i9.26317>.

557 Appendices

560 A MATHEMATICAL PROPERTIES OF PERIODICITY ALIGNMENT

561 Under Assumption 1, the fitting process is essentially a multi-target multiple linear regression:

$$564 \quad \mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E}, \quad (3)$$

565 where $\mathbf{Y} \in \mathbb{R}^{T \times P}$ is the target matrix, $\mathbf{X} \in \mathbb{R}^{T \times P}$ is the input matrix, $\mathbf{E} \in \mathbb{R}^{T \times P}$ is the noise
 566 matrix, and $\mathbf{B} \in \mathbb{R}^{P \times P}$ is the parameter matrix to be learned. For simplicity, here the whole time
 567 series has length of $T + 2P - 1$ (instead of T).
 568

569 Without alignment, we have

$$570 \quad \mathbf{X} = \begin{bmatrix} x_1 & x_2 & \dots & x_P \\ x_2 & x_3 & \dots & x_{P+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T+1} & \dots & x_{T+P} \end{bmatrix} \in \mathbb{R}^{T \times P}, \quad \mathbf{Y} = \begin{bmatrix} x_{P+1} & x_{P+2} & \dots & x_{2P} \\ x_{P+2} & x_{P+3} & \dots & x_{2P+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T+P} & x_{T+P+1} & \dots & x_{T+2P-1} \end{bmatrix} \in \mathbb{R}^{T \times P}, \quad (4)$$

575 whereas with alignment, we have

$$577 \quad \mathbf{X} = \begin{bmatrix} x_1 & x_2 & \dots & x_P \\ x_{P+1} & x_2 & \dots & x_P \\ x_{P+1} & x_{P+2} & \dots & x_P \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \in \mathbb{R}^{T \times P}, \quad \mathbf{Y} = \begin{bmatrix} x_{P+1} & x_{P+2} & \dots & x_{2P} \\ x_{2P+1} & x_{P+2} & \dots & x_{2P} \\ x_{2P+1} & x_{2P+2} & \dots & x_{2P} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \in \mathbb{R}^{T \times P}. \quad (5)$$

582 Keep in mind that under the assumptions, $\hat{\mathbf{B}} = \mathbf{I}$ is the optimal solution for testing set (but not for
 583 training set) and $\mathbf{Y} = \mathbf{X} + \mathbf{E}$.

585 A.1 REDUCTION IN TRAINING ERROR

586 Here, we show that with alignment, the training error is always lower. Notice that this is achieved
 587 with the same model and data. The only difference is in how the data is fed into the model.

588 According to the multi-target multiple linear regression, the solution of \mathbf{B} is

$$589 \quad \hat{\mathbf{B}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y} \quad (6)$$

$$590 \quad = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top (\mathbf{X} + \mathbf{E}) \quad (7)$$

$$591 \quad = \mathbf{I} + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E}. \quad (8)$$

594 Here, we can already see that $\hat{\mathbf{B}}$ is indeed close to an identity matrix but with some perturbations
 595 due to the noise. The residual sum of squares (RSS) is thus
 596

$$\text{RSS} = \|\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}\|_F^2 \quad (9)$$

$$= \|\mathbf{X} + \mathbf{E} - \mathbf{X}(\mathbf{I} + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E})\|_F^2 \quad (10)$$

$$= \|\mathbf{E} - \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E}\|_F^2 \quad (11)$$

$$:= \|(\mathbf{I} - \mathbf{P})\mathbf{E}\|_F^2. \quad (12)$$

602 where $\|\cdot\|_F^2$ is the Frobenius norm and $\mathbf{P} = \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top$ is the projection matrix. Additionally,
 603 projection matrix has the following properties: (1) $\mathbf{P} = \mathbf{P}^\top = \mathbf{P}^2$, and (2) $\mathbf{P} = \mathbf{U}\mathbf{U}^\top$, where \mathbf{U} are
 604 the first P left singular vectors of \mathbf{X} . Using these properties, we can further simplify Equation (12):
 605

$$\text{RSS} = \|(\mathbf{I} - \mathbf{P})\mathbf{E}\|_F^2 \quad (13)$$

$$= \text{tr}(\mathbf{E}^\top (\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P})\mathbf{E}) \quad (14)$$

$$= \text{tr}(\mathbf{E}\mathbf{E}^\top (\mathbf{I} - \mathbf{P})) \quad (15)$$

$$= \text{tr}(\mathbf{E}\mathbf{E}^\top) - \text{tr}(\mathbf{E}\mathbf{E}^\top \mathbf{P}) \quad (16)$$

$$= \|\mathbf{E}\|_F^2 - \text{tr}(\mathbf{E}\mathbf{E}^\top \mathbf{U}\mathbf{U}^\top) \quad (17)$$

$$= \|\mathbf{E}\|_F^2 - \|\mathbf{E}^\top \mathbf{U}\|_F^2, \quad (18)$$

614 where $\|\mathbf{E}\|_F^2 \approx TP\epsilon^2$ is the same with or without alignment.

615 A.1.1 RSS WITHOUT ALIGNMENT

617 Without alignment, we have

$$\mathbf{E} = \begin{bmatrix} e_1 & e_2 & \dots & e_P \\ e_2 & e_3 & \dots & e_{P+1} \\ \vdots & \vdots & \ddots & \vdots \\ e_T & e_{T+1} & \dots & e_{T+P} \end{bmatrix} \in \mathbb{R}^{T \times P}. \quad (19)$$

623 Following Equation (18), we want to estimate the value of $\|\mathbf{E}^\top \mathbf{U}\|_F^2$ by examining each elements
 624 in the matrix:

$$(626) \quad (\mathbf{E}^\top \mathbf{U})_{ij}^2 = \left(\sum_{t=1}^T \mathbf{E}_{ti} \mathbf{U}_{tj} \right)^2 \quad (20)$$

$$= \sum_{t=1}^T \mathbf{E}_{ti}^2 \mathbf{U}_{tj}^2 + \sum_{t=1}^T \sum_{s=1, s \neq t}^T \mathbf{E}_{ti} \mathbf{E}_{si} \mathbf{U}_{tj} \mathbf{U}_{sj}. \quad (21)$$

631 Then,

$$\|\mathbf{E}^\top \mathbf{U}\|_F^2 = \sum_{i=1}^P \sum_{j=1}^P (\mathbf{E}^\top \mathbf{U})_{ij}^2 \quad (22)$$

$$= \sum_{i=1}^P \sum_{j=1}^P \left[\sum_{t=1}^T \mathbf{E}_{ti}^2 \mathbf{U}_{tj}^2 + \sum_{t=1}^T \sum_{s=1, s \neq t}^T \mathbf{E}_{ti} \mathbf{E}_{si} \mathbf{U}_{tj} \mathbf{U}_{sj} \right] \quad (23)$$

$$= \sum_{j=1}^P \sum_{t=1}^T \left[\mathbf{U}_{tj}^2 \sum_{i=1}^P \mathbf{E}_{ti}^2 \right] + \sum_{i=1}^P \sum_{j=1}^P \sum_{t=1}^T \sum_{s=1, s \neq t}^T \mathbf{E}_{ti} \mathbf{E}_{si} \mathbf{U}_{tj} \mathbf{U}_{sj}. \quad (24)$$

$$(25)$$

643 In the first part of the summation, we can see that $\forall t, \sum_{i=1}^P \mathbf{E}_{ti}^2$ are all the same distribution and
 644 have mean of $P\epsilon^2$. Thus, the first term roughly sums up to $P^2\epsilon^2$. The second part of the sum-
 645 mation roughly sums up to 0 because \mathbf{E}_{ti} and \mathbf{E}_{si} are two independent Gaussian distributions (i.e.,
 646 $\mathbb{E}[\mathbf{E}_{ti} \mathbf{E}_{si}] = 0$) and they are (almost) independent of \mathbf{U} . Thus, the RSS without alignment is roughly
 647

$$\text{RSS}_{w/o} \approx TP\epsilon^2 - P^2\epsilon^2 = (T - P)P\epsilon^2. \quad (26)$$

648 A.1.2 RSS WITH ALIGNMENT
649650 Again, we start from Equation (18). However, this time, \mathbf{E} is structurally different:
651

652
$$\mathbf{E} = \begin{bmatrix} e_1 & e_2 & \dots & e_P \\ e_{P+1} & e_2 & \dots & e_P \\ e_{P+1} & e_{P+2} & \dots & e_P \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \in \mathbb{R}^{T \times P}. \quad (27)$$

653
654
655

656 Following similar derivations, we can arrive at the same Equation (24). The first part of the summa-
657 tion has the same distribution with or without alignment, but the second part is different. The reason
658 is that \mathbf{E}_{ti} and \mathbf{E}_{si} are no longer two independent Gaussian distributions because of the alignment.
659 For example, in the first column in \mathbf{E} , e_{P+1} appears P times after alignment (see Equation (27)),
660 but only appears one time without alignment (see Equation (19)). Thus, with alignment, we have
661

662
$$\mathbb{E}[\mathbf{E}_{ti}\mathbf{E}_{si}] = \begin{cases} \epsilon^2, & \text{if } t \text{ and } s \text{ are within the same period} \\ 0, & \text{otherwise.} \end{cases} \quad (28)$$

663

664 Next, we want to calculate $\mathbb{E}[\mathbf{U}_{tj}\mathbf{U}_{sj}]$, where \mathbf{U} are the left singular vectors of \mathbf{X} :
665

666
$$\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^\top. \quad (29)$$

667

668 Recall that after alignment, \mathbf{X} has rank P but is close to a rank-1 matrix. Mathematically, we can
669 rewrite $\mathbf{X} = \mathbf{1}\mathbf{x}_0^\top + \mathbf{C}$, where

670
$$\mathbf{x}_0 = \begin{bmatrix} x_{1-P} \\ x_{2-P} \\ \vdots \\ x_0 \end{bmatrix} \quad (30)$$

671
672
673

674 and

675
$$\mathbf{C} = \begin{bmatrix} e_{1-P} & e_{2-P} & \dots & e_0 \\ e_{1-P} + e_1 & e_{2-P} & \dots & e_0 \\ e_{1-P} + e_1 & e_{2-P} + e_2 & \dots & e_0 \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^T e_{1+(i-2)P} & \sum_{i=1}^T e_{2+(i-2)P} & \dots & \sum_{i=1}^T e_{(i-1)P} \end{bmatrix} \quad (31)$$

676
677
678
679
680

681 \mathbf{x}_0 is the initial values that are constants. \mathbf{C} is the error matrix where each column is a Gaussian
682 random walk with P duplicates. Thus,
683

684
$$\mathbb{E}[\mathbf{X}^\top\mathbf{X}] = \mathbb{E}[(\mathbf{1}\mathbf{x}_0^\top)^\top(\mathbf{1}\mathbf{x}_0^\top) + \mathbf{C}^\top\mathbf{C}] \quad (\text{because } \mathbb{E}[\mathbf{C}\mathbf{x}_0] = 0) \quad (32)$$

685

686
$$= T\mathbf{x}_0\mathbf{x}_0^\top + \mathbb{E}[\mathbf{C}^\top\mathbf{C}] \quad (33)$$

687

688
$$= T\mathbf{x}_0\mathbf{x}_0^\top + \frac{T(T+P)\epsilon^2}{2P}\mathbf{I}, \quad (34)$$

689

690 where the last equality stands because
691

692
$$\mathbb{E}[\mathbf{C}^\top\mathbf{C}]_{ij} = \mathbb{E}\left[\sum_{k=1}^T \mathbf{C}_{ki}\mathbf{C}_{kj}\right] = \begin{cases} 0, & \text{if } j \neq k \text{ because } \mathbf{C}_{ki} \text{ and } \mathbf{C}_{kj} \text{ are independent} \\ \sum_{i=1}^T \mathbb{E}[\mathbf{C}_{ij}^2] \approx P \sum_{i=1}^{T/P} i\epsilon^2 = \frac{T(T+P)\epsilon^2}{2P}. \end{cases} \quad (35)$$

693

694 The first eigenvectors of $\mathbb{E}[\mathbf{X}^\top\mathbf{X}]$ is $\mathbf{x}_0/\|\mathbf{x}_0\|_2$ because
695

696
$$\mathbb{E}[\mathbf{X}^\top\mathbf{X}] \frac{\mathbf{x}_0}{\|\mathbf{x}_0\|_2} = \left(T\|\mathbf{x}_0\|_2^2 + \frac{T(T+P)\epsilon^2}{2P}\right) \frac{\mathbf{x}_0}{\|\mathbf{x}_0\|_2}. \quad (36)$$

697

698 The corresponding eigenvalue is $(T\|\mathbf{x}_0\|_2^2 + \frac{T(T+P)\epsilon^2}{2P})$. The rest of the eigenvectors are vectors \mathbf{w}
699 where \mathbf{w} is orthogonal to \mathbf{x}_0 because
700

701
$$\mathbb{E}[\mathbf{X}^\top\mathbf{X}]\mathbf{w} = \frac{T(T+P)\epsilon^2}{2P}\mathbf{w} \quad (37)$$

702 with eigenvalues $\frac{T(T+P)\epsilon^2}{2P}$. In summary, we know the right singular vectors \mathbf{V} are
 703

$$704 \quad 705 \quad 706 \quad 707 \quad 708 \quad 709 \quad 710 \quad \mathbf{V} = \begin{bmatrix} \frac{\mathbf{x}_0}{\|\mathbf{x}_0\|_2} & \mathbf{w}_2 & \cdots & \mathbf{w}_P \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}, \quad 711 \quad 712 \quad 713 \quad 714 \quad 715 \quad 716 \quad 717 \quad 718 \quad 719 \quad 720 \quad 721 \quad 722 \quad 723 \quad 724 \quad 725 \quad 726 \quad 727 \quad 728 \quad 729 \quad 730 \quad 731 \quad 732 \quad 733 \quad 734 \quad 735 \quad 736 \quad 737 \quad 738 \quad 739 \quad 740 \quad 741 \quad 742 \quad 743 \quad 744 \quad 745 \quad 746 \quad 747 \quad 748 \quad 749 \quad 750 \quad 751 \quad 752 \quad 753 \quad 754 \quad 755$$

$$(38)$$

where \mathbf{w}_i are orthogonal to \mathbf{x}_0 .

Next, based on the results of \mathbf{V} , we can understand \mathbf{U} by using the formula $\mathbf{Xv}_i = s_i \mathbf{u}_i$, where s_i is the i -th singular value and $\mathbf{v}_i, \mathbf{u}_i$ are the i -th columns in \mathbf{V}, \mathbf{U} , respectively. For the first column ($i = 1$), we know $\mathbf{v}_1 = \frac{\mathbf{x}_0}{\|\mathbf{x}_0\|_2}$ from Equation (36). Thus,

$$716 \quad \mathbf{u}_1 = \frac{1}{s_1} \mathbf{X} \frac{\mathbf{x}_0}{\|\mathbf{x}_0\|_2} \quad 717 \quad 718 \quad 719 \quad 720 \quad 721 \quad 722 \quad 723 \quad 724 \quad 725 \quad 726 \quad 727 \quad 728 \quad 729 \quad 730 \quad 731 \quad 732 \quad 733 \quad 734 \quad 735 \quad 736 \quad 737 \quad 738 \quad 739 \quad 740 \quad 741 \quad 742 \quad 743 \quad 744 \quad 745 \quad 746 \quad 747 \quad 748 \quad 749 \quad 750 \quad 751 \quad 752 \quad 753 \quad 754 \quad 755$$

$$(39)$$

$$= \frac{1}{s_1 \|\mathbf{x}_0\|_2} (\mathbf{1} \mathbf{x}_0^\top + \mathbf{C}) \mathbf{x}_0 \quad (40)$$

$$= \frac{\|\mathbf{x}_0\|_2}{s_1} \mathbf{1} + \frac{1}{s_1 \|\mathbf{x}_0\|_2} \mathbf{C} \mathbf{x}_0. \quad (41)$$

For the remaining columns in \mathbf{U} , we have

$$726 \quad \mathbf{u}_i = \frac{1}{s_i} \mathbf{X} \mathbf{w}_i \quad 727 \quad 728 \quad 729 \quad 730 \quad 731 \quad 732 \quad 733 \quad 734 \quad 735 \quad 736 \quad 737 \quad 738 \quad 739 \quad 740 \quad 741 \quad 742 \quad 743 \quad 744 \quad 745 \quad 746 \quad 747 \quad 748 \quad 749 \quad 750 \quad 751 \quad 752 \quad 753 \quad 754 \quad 755$$

$$(42)$$

$$= \frac{1}{s_i} (\mathbf{1} \mathbf{x}_0^\top + \mathbf{C}) \mathbf{w}_i \quad (43)$$

$$= \mathbf{C} \mathbf{w}_i. \quad (44)$$

In both of the results, we can see that \mathbf{u}_i is a vector of constant ($\frac{\|\mathbf{x}_0\|_2}{s_i} \mathbf{1}$ if $i = 1$ and $\mathbf{0}$ if $i \geq 2$) plus a linear combination of Gaussian random walk (i.e. \mathbf{C}). We know that in a Gaussian random walk, such as the j -th column in \mathbf{C} , $\mathbb{E}[\mathbf{C}_{tj} \mathbf{C}_{sj}] > 0$. Thus, $\mathbb{E}[\mathbf{U}_{tj} \mathbf{U}_{sj}] > 0$ as well. Combining this with Equation (28), we can see that the second part in Equation (24) is positive. Thus, $\text{RSS}_{w/} < \text{RSS}_{w/o}$. To get a lower-bound estimate, we can just count the effect of \mathbf{u}_1 and assume that $\mathbf{u}_1 = \frac{1}{\sqrt{T}} \mathbf{1}$, then the second part in Equation (24) is roughly

$$740 \quad 741 \quad 742 \quad 743 \quad 744 \quad 745 \quad 746 \quad 747 \quad 748 \quad 749 \quad 750 \quad 751 \quad 752 \quad 753 \quad 754 \quad 755$$

$$\underbrace{\mathbf{P}}_{\text{iteration of } i} \cdot \underbrace{\mathbf{1}}_{\text{just count } u_1} \cdot \underbrace{\frac{T(P-1)\epsilon^2}{\sum_{t=1}^T \sum_{s=1, s \neq t}^T \mathbf{E}_{ti} \mathbf{E}_{si}}}_{\text{Equation 28 and}} \underbrace{\frac{1}{T} \mathbf{U}_{tj} \mathbf{U}_{sj}}_{\mathbf{U}_{tj} \mathbf{U}_{sj}} = P(P-1)\epsilon^2. \quad (45)$$

Thus, the upper-bound of $\text{RSS}_{w/}$ is

$$749 \quad \text{RSS}_{w/} \lesssim TP\epsilon^2 - P^2\epsilon^2 - P(P-1)\epsilon^2 = (T-2P+1)P\epsilon^2 < \text{RSS}_{w/o}. \quad (46)$$

A.2 INCREASE IN TESTING ERROR

While the training error is lower after alignment, the testing error is higher. Intuitively, this is because with alignment, the noise in the data is also easier to learn and therefore resulted in “overfitting.”

756 Mathematically, to estimate the testing error, we start with
 757

$$758 \text{ testing error} = \mathbb{E}[\|\mathbf{z}^\top \hat{\mathbf{B}} - (\mathbf{z} + \mathbf{e})^\top\|_F^2] \quad (47)$$

$$759 = \mathbb{E}[\|\mathbf{z}^\top (\mathbf{I} + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E}) - (\mathbf{z} + \mathbf{e})^\top\|_F^2] \quad (\text{from Equation (8)}) \quad (48)$$

$$760 = \mathbb{E}[\|\mathbf{z}^\top (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E} - \mathbf{e}^\top\|_F^2] \quad (49)$$

$$762 = \mathbb{E}\left[\text{tr}\left((\mathbf{E}^\top \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{z} - \mathbf{e})(\mathbf{z}^\top (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E} - \mathbf{e}^\top)\right)\right] \quad (50)$$

$$765 = \mathbb{E}\left[\|\mathbf{e}\|_F^2\right] + \text{tr}\left(\mathbf{E}^\top \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbb{E}[\mathbf{z}\mathbf{z}^\top](\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E}\right) \quad (51)$$

$$767 = \mathbb{E}\left[\|\mathbf{e}\|_F^2\right] + \text{tr}\left(\mathbf{E}^\top \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \frac{1}{T} \mathbf{X}^\top \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E}\right) \quad (52)$$

$$769 = \mathbb{E}\left[\|\mathbf{e}\|_F^2\right] + \frac{1}{T} \text{tr}(\mathbf{E}\mathbf{E}^\top \mathbf{P}) \quad (53)$$

$$772 = \mathbb{E}\left[\|\mathbf{e}\|_F^2\right] + \frac{1}{T} \text{tr}(\mathbf{E}\mathbf{E}^\top \mathbf{U}\mathbf{U}^\top) \quad (54)$$

$$774 = \mathbb{E}\left[\|\mathbf{e}\|_F^2\right] + \frac{1}{T} \|\mathbf{E}^\top \mathbf{U}\|_F^2, \quad (55)$$

776 where \mathbf{z} is a sample vector from the testing distribution (which is assumed to be the same as the training
 777 distribution) and \mathbf{e} is the corresponding noise vector. Notice that this equation is similar to Equation
 778 (18) where the first part of the expression is the same with or without alignment. However, here
 779 the two parts are summed together, whereas in Equation (18), the second part is subtracted from the
 780 first part. Since the second part is essentially the same (except a factor of $\frac{1}{T}$), we can see that the
 781 testing error with alignment is higher by the following the same derivation in the previous section.
 782 To be precise, the testing errors are

$$784 \text{ RSS}_{\text{w/o}} \approx P(1 + \frac{P}{T})\epsilon^2 \text{ and } \text{RSS}_{\text{w}} \gtrsim P(1 + \frac{2P+1}{T})\epsilon^2. \quad (56)$$

786 A.3 LESS INCREASE IN TRAINING ERROR WITH REDUCED-RANK REGRESSION (RRR)

788 Under this setting, we can see that the fitted solution $\hat{\mathbf{B}} = \mathbf{I} + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E} \in \mathbb{R}^P$ (in Equation
 789 (8)) is of full rank. However, a quadratic matrix is quite parameter heavy, so sometimes we want
 790 to use a lower-rank approximation to reduce model size and overfitting. This is called reduced-rank
 791 regression (RRR), where the parameter matrix \mathbf{B} is also subject to a rank constraint:
 792

$$793 \hat{\mathbf{B}}_{\text{RRR}} = \min_{\mathbf{B}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|_F^2, \text{ where } \text{rank}(\mathbf{B}) \leq r. \quad (57)$$

795 In this section, we show that alignment helps mitigate the increase of training loss in RRR.

796 First, we know that Equation (57) is equivalent to

$$798 \hat{\mathbf{B}}_{\text{RRR}} = \min_{\mathbf{B}} \|\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}\|_F^2 + \|\mathbf{X}\hat{\mathbf{B}} - \mathbf{X}\mathbf{B}\|_F^2, \quad (58)$$

800 because linear regression is essentially an orthogonal projection of \mathbf{Y} onto the column space of \mathbf{X} .
 801 The first term in the minimization does not depend on \mathbf{B} , so we only need to minimize the second
 802 term. Based on the Eckart–Young–Mirsky theorem (E. Schmidt, 1907), the solution is
 803

$$803 \hat{\mathbf{B}}_{\text{RRR}} = \hat{\mathbf{B}}\mathbf{V}_r \mathbf{V}_r^\top, \quad (59)$$

805 where \mathbf{V}_r are the first r right-singular vectors of $\mathbf{X}\hat{\mathbf{B}}$. In other words, $\mathbf{X}\hat{\mathbf{B}}_{\text{RRR}}$ is the best rank-
 806 r approximation of $\mathbf{X}\hat{\mathbf{B}}$ under Frobenius norm. Thus, based on the Eckart–Young–Mirsky theo-
 807 rem (E. Schmidt, 1907),

$$808 809 \|\mathbf{X}\hat{\mathbf{B}} - \mathbf{X}\mathbf{B}\|_F^2 = \sum_{i=r+1}^P s_i^2, \quad (60)$$

810 where s_i is the i -th singular value of $\mathbf{X}\hat{\mathbf{B}}$. To find s_i , we calculate the eigenvalues of $\mathbf{X}\hat{\mathbf{B}}$ following
 811 the derivation below:

$$\mathbb{E}[(\mathbf{X}\hat{\mathbf{B}})^\top \mathbf{X}\hat{\mathbf{B}}] = \mathbb{E}[(\mathbf{I} + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E})^\top \mathbf{X}^\top \mathbf{X} (\mathbf{I} + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E})] \quad (61)$$

$$= \mathbb{E}[\mathbf{X}^\top \mathbf{X} + \mathbf{E}^\top \mathbf{X} + \mathbf{X}^\top \mathbf{E} + \mathbf{E}^\top \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E}] \quad (62)$$

$$= \mathbb{E}[\mathbf{X}^\top \mathbf{X} + \mathbf{E}^\top \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{E}] \quad (63)$$

$$\approx \mathbf{X}^\top \mathbf{X}, \quad (64)$$

818 where the last approximation stands because the noise terms \mathbf{E} should have much smaller magnitude
 819 than the values \mathbf{X} . Thus, combining Equation (60) and (64), we want to compare the eigenvalues of
 820 $\mathbf{X}^\top \mathbf{X}$ with or without alignment in order to understand which one is better under RRR.

821 Intuitively, with alignment, $\mathbf{X}^\top \mathbf{X}$ is close to a rank-1 matrix, so there is only one non-zero eigen-
 822 value. In contrast, without alignment, the eigenvalues are all non-zeros. Note that the sum of all
 823 squared singular values of \mathbf{X} are the same with or without alignment because they have the same
 824 Frobenius norm. This implies that the single non-zero eigenvalue under alignment equals to the sum
 825 of all eigenvalues under no alignment and thus according to Equation (60), with alignment results in
 826 better RRR performance. However, this is just a rough estimate. Then next two sections will give a
 827 much precise estimation of the eigenvalues.

A.3.1 RRR WITHOUT ALIGNMENT

830 Similar to Equation (30) and (31), we can also split \mathbf{X} into two parts $\mathbf{X} = \mathbf{H} + \mathbf{C}$, where

$$\mathbf{H} = \begin{bmatrix} x_{1-P} & x_{2-P} & \dots & x_{-1} & x_0 \\ x_{2-P} & x_{3-P} & \dots & x_0 & x_{1-P} \\ x_{3-P} & x_{4-P} & \dots & x_{1-P} & x_{2-P} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_0 & x_{1-P} & \dots & x_{-2} & x_{-1} \\ x_{1-P} & x_{2-P} & \dots & x_{-1} & x_0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \quad (65)$$

831 and

$$\mathbf{C} = \begin{bmatrix} e_{1-P} & e_{2-P} & \dots & e_{-1} & e_0 \\ e_{2-P} & e_{3-P} & \dots & e_0 & e_{1-P} + e_1 \\ e_{3-P} & e_{4-P} & \dots & e_{1-P} + e_1 & e_{2-P} + e_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}. \quad (66)$$

832 Notice that \mathbf{H} is a non-square circulant Hankel (or anti-circulant) matrix starting from \mathbf{x}_0 where all
 833 elements on any anti-diagonals are the same.

834 To roughly estimate the singular values of \mathbf{X} , we can first assume that $\mathbb{E}[x_i, x_j] = 0, \forall i \neq j$, where
 835 $x_i, x_j \in \mathbf{x}_0$. Then,

$$\mathbb{E}[\mathbf{X}^\top \mathbf{X}] = \mathbb{E}[\mathbf{H}^\top \mathbf{H} + \mathbf{C}^\top \mathbf{C}] \quad (67)$$

$$= \frac{T\|\mathbf{x}_0\|_2^2}{P} \mathbf{I} + \frac{T(T+P)\epsilon^2}{2P} \mathbf{I} \quad (68)$$

$$= \left(\frac{T\|\mathbf{x}_0\|_2^2}{P} + \frac{T(T+P)\epsilon^2}{2P} \right) \mathbf{I}, \quad (69)$$

836 where $\mathbb{E}[\mathbf{C}^\top \mathbf{C}]$ is calculated using Equation (35). Thus, we can see that the eigenvalues are all
 837 $\frac{T\|\mathbf{x}_0\|_2^2}{P} + \frac{T(T+P)\epsilon^2}{2P}$.

838 However, this is an very rough estimate since the assumption of $\mathbb{E}[x_i, x_j] = 0$ is usually not the
 839 case. To be exact, first let

$$\mathbf{H}' = \begin{bmatrix} x_{1-P} & x_{2-P} & \dots & x_{-1} & x_0 \\ x_{2-P} & x_{3-P} & \dots & x_0 & x_{1-P} \\ x_{3-P} & x_{4-P} & \dots & x_{1-P} & x_{2-P} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{-1} & x_0 & \dots & x_{-3} & x_{-2} \\ x_0 & x_{1-P} & \dots & x_{-2} & x_{-1} \end{bmatrix} \in \mathbb{R}^{P \times P}, \quad (70)$$

864 which is a square circulant Hankel matrix. Then,
 865

$$866 \quad 867 \quad 868 \quad 869 \quad 870 \quad \mathbf{H} = \begin{bmatrix} \mathbf{H}' \\ \vdots \\ \mathbf{H}' \end{bmatrix} \left. \right\} \text{repeat } \frac{T}{P} \text{ times.} \quad (71)$$

871 Thus, $\mathbf{H}^\top \mathbf{H} = \frac{T}{P}(\mathbf{H}')^2$. The eigenvalues λ'_k of \mathbf{H}' can be calculated using Lemma (A.1). Then the
 872 eigenvalues λ_i of $\mathbf{H}^\top \mathbf{H}$ is $\lambda_i = \frac{T}{P}(\lambda'_k)^2$. We can see that the eigenvalues are thus non-zeros. For
 873 example,
 874

$$875 \quad 876 \quad 877 \quad 878 \quad \lambda_0 = \frac{T}{P} \left(\sum_{j=0}^{P-1} x_{j-P+1} \right)^2. \quad (72)$$

879
 880 Combine this with the rough estimation in Equation (69) and assuming that x_j are random, we can
 881 say that the eigenvalues are scattered around $\frac{T\|\mathbf{x}_0\|_2^2}{P} + \frac{T(T+P)\epsilon^2}{2P}$, which can be used to estimate the
 882 RRR residual following Equation (60).
 883

884 **Lemma A.1.** *If matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a square circulant Hankel matrix with full rank and the first
 885 row is $\mathbf{a}^\top = [a_0, \dots, a_{n-1}]^\top$, then its eigenvalues are*

$$886 \quad 887 \quad 888 \quad 889 \quad 890 \quad \lambda_k = \begin{cases} \mathbf{F}_{\mathbf{a},0}, & \text{if } k = 0, \\ \mathbf{F}_{\mathbf{a},n/2} \text{ or } -\mathbf{F}_{\mathbf{a},n/2}, & \text{if } n \text{ is even and } k = n/2 \\ \pm \sqrt{\mathbf{F}_{\mathbf{a},k} \mathbf{F}_{\mathbf{a},n-k}}, & \text{otherwise.} \end{cases} \quad (73)$$

891 where
 892

$$893 \quad 894 \quad 895 \quad 896 \quad \mathbf{F}_{\mathbf{a},k} = \sum_{j=0}^{n-1} a_j \exp\left(\frac{-kj}{n} 2\pi i\right). \quad (74)$$

901 *Proof.* We have a circulant Hankel matrix
 902

$$903 \quad 904 \quad 905 \quad 906 \quad 907 \quad 908 \quad \mathbf{A} = \begin{bmatrix} a_{00} & a_{01} & \dots & a_{0(n-1)} \\ a_{10} & a_{11} & \dots & a_{1(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(n-1)0} & a_{(n-1)1} & \dots & a_{(n-1)(n-1)} \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_1 & a_2 & \dots & a_0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_0 & \dots & a_{n-2} \end{bmatrix}, \quad (75)$$

909 where any anti-diagonals have the same values and $a_{ij} = a_{(i+j)(\text{mod } n)}$.
 910

911 Next, we define the following discrete Fourier Transform (DFT) on a vector $\mathbf{v} = [v_0, \dots, v_{n-1}]^\top$:
 912

$$913 \quad 914 \quad 915 \quad 916 \quad 917 \quad \mathcal{F}(\mathbf{v})_k = \sum_{j=0}^{n-1} v_j \exp\left(\frac{-kj}{n} 2\pi i\right) = \mathbf{F}\mathbf{v}, \quad (76)$$

where \mathbf{F} is the unnormalized DFT matrix with properties $\mathbf{F}^\top = \mathbf{F}$ and $\mathbf{F}^{-1} = \frac{1}{n}\mathbf{F}^*$.

918 Then,

919

$$920 \quad \mathcal{F}(\mathbf{Av})_k = \sum_{j=0}^{n-1} (\mathbf{Av})_j \exp\left(\frac{-kj}{n} 2\pi i\right) \quad (77)$$

921

922

$$923 \quad = \sum_{j=0}^{n-1} \left(\sum_{l=0}^{n-1} a_{(l+j)(\bmod n)} v_l \right) \exp\left(\frac{-k(j+l)}{n} 2\pi i\right) \exp\left(\frac{kl}{n} 2\pi i\right) \quad (78)$$

924

925

$$926 \quad = \sum_{l=0}^{n-1} v_l \exp\left(\frac{kl}{n} 2\pi i\right) \left(\sum_{j=0}^{n-1} a_{(l+j)(\bmod n)} \exp\left(\frac{-k(j+l)}{n} 2\pi i\right) \right) \quad (79)$$

927

928

$$929 \quad = \sum_{l=0}^{n-1} v_l \exp\left(\frac{kl}{n} 2\pi i\right) \left(\sum_{j=-l}^{n-l-1} a_{l+j} \exp\left(\frac{-k(j+l)}{n} 2\pi i\right) \right) \quad (80)$$

930

931

$$932 \quad = \sum_{l=0}^{n-1} v_l \exp\left(\frac{kl}{n} 2\pi i\right) \sum_{j'=0}^{n-1} a_{j'} \exp\left(\frac{-kj'}{n} 2\pi i\right) \quad (81)$$

933

934

$$935 \quad = \mathcal{F}^*(\mathbf{v})_k \mathcal{F}(\mathbf{a})_k, \quad (82)$$

936

937 where $\mathbf{a} = [a_0, \dots, a_{n-1}]^\top$. For \mathbf{v} to be an eigenvector of \mathbf{A} , we need $\mathbf{Av} = \lambda \mathbf{v}$, which implies

938

$$939 \quad \mathcal{F}(\mathbf{a})_k \mathcal{F}^*(\mathbf{v})_k = \lambda \mathcal{F}(\mathbf{v})_k. \quad (83)$$

940

Collecting all k , the equation is equivalently

941

$$942 \quad \mathbf{F}_\mathbf{a} \mathbf{F}^* \mathbf{v} = \lambda \mathbf{F} \mathbf{v}, \quad (84)$$

943

where $\mathbf{F}_\mathbf{a} = \text{diag}(\mathbf{F}_\mathbf{a})$. Thus, the eigenvalue λ satisfies

944

$$945 \quad \det(\mathbf{F}_\mathbf{a} \mathbf{F}^* - \lambda \mathbf{F}) \Leftrightarrow \det(\mathbf{F}_\mathbf{a} - \lambda \frac{1}{n} \mathbf{F} \mathbf{F}^\top), \quad (85)$$

946

947 where

948

$$949 \quad \frac{1}{n} \mathbf{F} \mathbf{F}^\top = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}. \quad (86)$$

950

951

952

953

954

955 By decomposing into block matrices, from Equation (85), eigenvalues satisfy

956

$$957 \quad |(\lambda - \mathbf{F}_{\mathbf{a},0})| \det(\mathbf{F}'_{\mathbf{a}} - \lambda \mathbf{J}) = 0 \Leftrightarrow |(\lambda - \mathbf{F}_{\mathbf{a},0})| \det(\mathbf{J} \mathbf{F}'_{\mathbf{a}} - \lambda \mathbf{I}) = 0, \quad (87)$$

958

where

959

$$960 \quad \mathbf{J} = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{bmatrix} \in \mathbb{R}^{(n-1) \times (n-1)}. \quad (88)$$

961

962

963

964

965 is the exchange matrix and $\mathbf{F}'_{\mathbf{a}} = \text{diag}([\mathbf{F}_{\mathbf{a},1}, \dots, \mathbf{F}_{\mathbf{a},n-1}])$. In addition to $\lambda_0 = \mathbf{F}_{\mathbf{a},0}$, we also need

966 to find the eigenvalues of $\mathbf{J} \mathbf{F}'_{\mathbf{a}}$. We can see that

967

$$968 \quad \mathbf{J} \mathbf{F}'_{\mathbf{a}} = \begin{bmatrix} 0 & 0 & \dots & 0 & \mathbf{F}_{\mathbf{a},n-1} \\ 0 & 0 & \dots & \mathbf{F}_{\mathbf{a},n-2} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \mathbf{F}_{\mathbf{a},2} & \dots & 0 & 0 \\ \mathbf{F}_{\mathbf{a},1} & 0 & \dots & 0 & 0 \end{bmatrix} \quad (89)$$

969

970

971

972 Table 2: Mean-Squared Errors (MSEs) on the test set of two variations of PAPER for three datasets
 973 and four horizons. Mean and standard deviation reported over 10 runs. Shaded number indicates the
 974 best performing model and is superscribed with \dagger if the outperformance is statistically significant
 975 with p -value less than 5%.

977 Dataset	978 Horizon	979 SFNN + rolling PAPER	980 SFNN + PAPER
979 Electricity	168	0.1620 ± 0.0005	$0.1589^\dagger \pm 0.0002$
	336	0.1640 ± 0.0002	$0.1591^\dagger \pm 0.0002$
	504	0.1707 ± 0.0003	$0.1674^\dagger \pm 0.0004$
	672	0.1843 ± 0.0010	0.1836 ± 0.0003
982 Solar	144	0.2193 ± 0.0070	$0.2047^\dagger \pm 0.0052$
	288	0.2092 ± 0.0027	$0.2020^\dagger \pm 0.0028$
	432	0.2163 ± 0.0024	$0.2090^\dagger \pm 0.0015$
	576	0.2296 ± 0.0032	0.2239 ± 0.0015
986 Traffic	168	0.3387 ± 0.0016	$0.3319^\dagger \pm 0.0015$
	336	0.3409 ± 0.0009	$0.3384^\dagger \pm 0.0009$
	504	0.3455 ± 0.0009	0.3430 ± 0.0001
	672	0.3570 ± 0.0005	0.3589 ± 0.0007

991 is an anti-diagonal matrix, so we have

$$992 \quad (\mathbf{J}\mathbf{F}'_{\mathbf{a}})^2 = \begin{bmatrix} \mathbf{F}_{\mathbf{a},1}\mathbf{F}_{\mathbf{a},n-1} & 0 & \dots & 0 & 0 \\ 993 \quad 0 & \mathbf{F}_{\mathbf{a},2}\mathbf{F}_{\mathbf{a},n-2} & \dots & 0 & 0 \\ 994 \quad \vdots & \vdots & \ddots & \vdots & \vdots \\ 995 \quad 0 & 0 & \dots & \mathbf{F}_{\mathbf{a},n-2}\mathbf{F}_{\mathbf{a},2} & 0 \\ 996 \quad 0 & 0 & \dots & 0 & \mathbf{F}_{\mathbf{a},n-1}\mathbf{F}_{\mathbf{a},1} \end{bmatrix}. \quad (90)$$

997 Combining this with Equation (87), we have the eigenvalues as

$$999 \quad \lambda_k = \begin{cases} \mathbf{F}_{\mathbf{a},0}, & \text{if } k = 0, \\ 1000 \quad \mathbf{F}_{\mathbf{a},n/2} \text{ or } -\mathbf{F}_{\mathbf{a},n/2}, & \text{if } n \text{ is even and } k = n/2 \\ 1001 \quad \pm \sqrt{\mathbf{F}_{\mathbf{a},k}\mathbf{F}_{\mathbf{a},n-k}}, & \text{otherwise.} \end{cases} \quad (91)$$

□

1004 A.3.2 RRR WITH ALIGNMENT

1006 We have already calculated the eigenvalues of $\mathbf{X}^\top \mathbf{X}$ in Section A.1.2. In which, we showed that

$$1008 \quad \lambda_k = \begin{cases} (T\|\mathbf{x}_0\|_2^2 + \frac{T(T+P)\epsilon^2}{2P}), & \text{if } k = 0, \\ 1009 \quad \frac{T(T+P)\epsilon^2}{2P}, & \text{otherwise.} \end{cases} \quad (92)$$

1010 Note that the sum of all eigenvalues are the same with or without alignment. However, with alignment,
 1011 $T\|\mathbf{x}_0\|_2^2$ concentrates its contribution only to λ_0 , whereas without alignment, its contribution
 1012 are spread out across all eigenvalues.

1014 B RESULTS FOR ABLATION STUDY

1016 See Table 2.

1018 C RESULTS FOR MULTIPLE PERIODICTIES

1021 See Table 3.

1023 D USE OF LARGE LANGUAGE MODELS

1025 This paper was edited for grammar, style, and readability with the assistance of a large language
 1026 models.

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045

1046 Table 3: Mean-Squared Errors (MSEs) on the test set with and without PAPER for four horizons
 1047 on two datasets with multiple fundamental periodicities. Mean and standard deviation reported over
 1048 10 runs. Shaded number indicates the best performing model and is superscribed with \dagger if the
 1049 outperformance is statistically significant with p -value less than 5%.

1050

Dataset	Horizon	SFNN	SFNN + PAPER
ETTm1	96	$0.3082^\dagger \pm 0.0004$	0.3280 ± 0.0006
	192	$0.3412^\dagger \pm 0.0003$	0.3455 ± 0.0005
	288	0.3641 ± 0.0003	0.3638 ± 0.0002
	384	0.3738 ± 0.0002	$0.3720^\dagger \pm 0.0005$
ETTh1	168	$0.3186^\dagger \pm 0.0012$	0.3226 ± 0.0009
	336	$0.3510^\dagger \pm 0.0025$	0.3562 ± 0.0025
	504	0.4047 ± 0.0026	0.4072 ± 0.0017
	672	0.4578 ± 0.0036	$0.4444^\dagger \pm 0.0023$

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079