
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PAPER: PERIODICITY ALIGNMENT ON PERIODIC
TIME SERIES FOR FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series forecasting is essential for predicting temporal dynamics across di-
verse domains, from meteorological patterns to urban traffic flows. Many such
time series exhibit strong periodic patterns, like weekly traffic cycles, and lever-
aging this periodicity is crucial for forecasting accuracy. However, existing ap-
proaches typically rely on autoregressive models (xt+1 = f(xt, xt−1, . . . )) to
capture these patterns implicitly or incorporate specialized modules and times-
tamp embeddings as auxiliary inputs explicitly. In this work, we propose PAPER:
Periodicity Alignment for Periodic Time Series and demonstrate that an explicit
yet simple alignment of periodic patterns without auxiliary inputs yields substan-
tial improvements. We validate PAPER through mathematical proofs, illustrative
toy examples, and extensive real-world experiments. Our results show that PA-
PER, when applied to state-of-the-art models, achieves performance gains of up to
7% on multiple benchmarks. Moreover, PAPER is model-agnostic and can reduce
model complexity by up to 99.5% while incurring only a minor 11% performance
trade-off. This work presents a foundational investigation into periodicity align-
ment, and the code is available at xxx.

1 INTRODUCTION

Time series forecasting-the task of predicting future values from past observations-is critical for
strategic decision-making across fields like transportation, logistics, and climate science. The re-
cent explosion of sensor data makes this capability more relevant than ever, yet it also exposes a
fundamental challenge: real-world temporal data is often dynamic and chaotic.

A defining characteristic of many such time series is periodicity, where patterns recur at regular in-
tervals. These cycles are not mere statistical artifacts but reflections of underlying system dynamics.
Weekly traffic patterns inform urban planning, seasonal sales cycles drive retail inventory decisions,
and daily consumption patterns are essential for power grid management. The ability to effectively
capture such periodicity is crucial for taming the chaotic, dynamic nature of time series data.

Typically, forecasting models have addressed periodicity through two primary approaches: implic-
itly or explicitly. Implicit methods capture periodic patterns by designing models under the (lin-
ear or nonlinear) autoregressive assumption xt = f(xt−1, xt−2, . . .). These models include tradi-
tional approaches such as exponential smoothing, ARIMA, tree-based models, and linear regres-
sion (Zeng et al., 2023), as well as most neural networks including LSTNet (Lai et al., 2018),
DSANet (Huang et al., 2019), TPA (Shih et al., 2019), Leddam (Yu et al., 2024), and iTrans-
former (Liu et al., 2024). The autoregressive assumption enables these models to capture periodici-
ties quite effectively without specialized modules, but is somewhat constrained by the autoregressive
formulation. Essentially, periodicity implies that the data-generating process (DGP) involves t (i.e.,
xt = f(t, xt−1, xt−2, . . .)), but t is not an input in an autoregressive process.

Explicit methods employ specialized components to directly capture periodicity and improve model
performance. For example, one can use Fourier transforms or positional embeddings to encode peri-
odicity information. However, this introduces additional input to the model, so the model now relies
on auxiliary inputs (i.e., exogenous variables) instead of depending solely on historical values (i.e.,
endogenous variables). Thus, strictly speaking, such exogenous models are not comparable to en-
dogenous ones. Our paper focuses on a model agnostic method for improving neural networks’ per-
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formance on long-term periodic time series forecasting by explicitly capturing periodicity through
alignment without auxiliary input.

There are many previous methods such as ETS (error, trend, seasonal) and Seasonal ARIMA
(SARIMA) that are developed based on traditional models and are not combinable with neural net-
works. In terms of neural networks, most previous methods, such as SparseTSF (Lin et al., 2024b),
DEPTS (Fan et al., 2022), and Leddam (Yu et al., 2024), directly infuse periodic information into
the middle of the model through variations of seasonal-trend decomposition. However, SFNN (Sun
et al., 2025) has shown that a simple feed-forward architecture can explicitly capture periodicity and
achieves the best performance. Other than directly infusing periodic information, CycleNet (Lin
et al., 2024a) is the most comparable method to ours because their approach is also combinable with
any neural network and does not rely on auxiliary input. Therefore, we compare against them in the
main experiment.

In this work, we propose PAPER: Periodicity Alignment on Periodic time series for forecasting.
This alignment mechanism is a simple yet effective approach without auxiliary input that enhances
the model’s ability to capture periodic patterns while enabling the learning of non-autoregressive
temporal dependencies.

Our key contributions are as follows.

• We introduce PAPER, a periodicity alignment framework for periodic time series that im-
proves state-of-the-art model performance by learning non-autoregressive dependencies
across temporal contexts without auxiliary input.

• We provide theoretical analysis with mathematical proofs that characterize both the advan-
tages and fundamental limitations of periodicity alignment.

• We demonstrate the properties and effectiveness of our alignment approach through con-
trolled experiments on synthetic datasets with known periodic structures.

• We conduct comprehensive experiments on real-world datasets that validate the practical
benefits of our method and clearly delineate its scope and limitations.

2 PROBLEM FORMULATION

2.1 OUR DEFINITION OF ALMOST PERIODIC TIME SERIES

Let x = {x1, . . . , xT } be a univariate time series of length T . We say x is periodic with fundamental
period P when xt+P = xt for all t. However, perfectly periodic time series are rare in the real world.
Instead, we focus on time series that are almost periodic. Our definition of an almost periodic signal
with a fixed fundamental period P is:

E(xt+P − xt)
2 ≤ ϵ2, ∀t, (1)

where ϵ is a small noise term. This is a simplified definition of the almost periodic function of Bohr
(1925), which is also similar to quasi-periodic motion (in mathematics and theoretical physics) or
quasi-periodic signals (in signal processing). Compared to the almost periodic function in Bohr
(1925), the P and ϵ in our definition are the result of the nature of the data-generating process, rather
than arbitrary choices. Compared to quasiperiodicity, our definition employs a fixed fundamental
period P , instead of a possibly slowly changing P .

2.2 TIME SERIES FORECASTING

In time series forecasting, we aim to forecast the future H horizons [xt+1, . . . , xt+H ], given the past
histories [x1, . . . , xt]. Thus, this is a sequence-to-sequence task where a single example is of the
form (target, input) = ([xt+1, . . . , xt+H ], [x1, . . . , xt]). Since more recent histories are more infor-
mative, a common approach is to select a suitable look-back length L of the most recent histories
as the input to the model. When the time series is N -multivariate, we assume the N series start
at the same time, have the same length of T , have the same sampling rate, and most importantly,
have the same fundamental period P . We use X = [X1,X2, . . . ,XT ]

⊤ ∈ RT×N to denote the
N -multivariate time series, where Xt ∈ RN is the t-th sample for all series. The (target, input)
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pair in the multivariate case is the same as the univariate case but with Xt as each sample. Ulti-
mately, we aim to find the model parameters f(·; θ) that minimize the mean squared error (MSE)
=

∑
t

∑H
h=1∥Xt+h−X̂t+h∥22 on the test set, where [X̂t+1, . . . , X̂t+H ]⊤ = f(Xt, . . . ,Xt−L+1; θ)

is the model forecast.

3 OUR METHOD

As indicated in the title of this paper, our method assumes that the time series of interest has strong
fundamental periodicity. Thus, our method consists of two steps. First, a forecasting-based method
to detect the fundamental periodicity. Second, periodicity alignment is performed to encourage the
model to make use of periodic patterns.

Figure 1: Three views to detect the best periodicity in the Traffic and Electricity datasets. The top
row shows the original time series where one can visually understand the periodicity. The middle
row shows results using Fourier transform (for Traffic) or autocorrelation function (for Electricity).
The bottom row shows results using our method of periodicity detection. On the Traffic dataset,
Fourier transform failed to detect the weekly periodicity as the best one because sinusoidal bases
are not suitable. On the Electricity dataset, the changing trends make it difficult to identify 24 as
the best periodicity. In contrast, our method successfully detects the best periodicities in both cases
while being simple and straightforward.

3.1 DETECTING THE FUNDAMENTAL PERIODICITY

Traditionally, there are two main methods to detect periodicity in time series: Fourier (or wavelet)
transform or autocorrelation function. Advanced methods are built on top of these (Puech et al.,
2019; Wen et al., 2021). For example, Wen et al. (2021) uses the wavelet transform first and then
applies the autocorrelation function to improve robustness. Instead of relying on more sophisticated
methods, we employ a simple method that best suits our use case of forecasting. Essentially, we
directly measure the error of using the previous P data points to predict the next P data points
and find the P that minimizes the error. Mathematically, the best fundamental period P ⋆ is found
according to this equation:

P ⋆ = argmin
P

1

T

∑
t∈T

∥Xt−P+1:t −Xt+1:t+P ∥2F , (2)

where Xi:j = [Xi . . . Xj ]
⊤ and T is the set of time index. To further increase robustness to trend

and scale drift, each of the N series in Xt−P+1:t and Xt+1:t+P is z-normalized individually before
the Frobenius norm is calculated. One can immediately understand why detecting periodicity using
our method is very suitable when the use case is forecasting. Qualitatively speaking, using Fourier
(or wavelet) transforms is sometimes suboptimal because the shapes can be very different from
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sinusoidal bases, and using autocorrelation functions is sensitive to trends. Our method alleviates
both problems. As an illustration, Figure 1 visualizes the advantages of our method.

3.2 PERIODICITY ALIGNMENT

After finding the best periodicity, we align the series according to its periodicity so that the model
knows exactly which input corresponds to which step in the period. For example, assuming we are
dealing with daily data points with weekly periodicity, then after alignment, the first position always
corresponds to Monday. This differs from typical time series forecasting, where the input consists
of rolling slices of the whole time series with the temporal order preserved. This means that the
starting time step of the input can be any day in the week. For a visual comparison, see Figure 2.

Figure 2: An illustration of the difference between with or without periodicity alignment. In the left
block, we are given a batch of randomly shuffled input and also the target output. Without alignment,
the input and output are unchanged but then the periodic patterns are shifting over time. In contrast,
with alignment, the input and output are wrapped so that the each position always corresponds to its
weekday. This way the periodic pattern is not shifting but the entries are not temporally ordered.

3.2.1 ADDING POSITIONAL INFORMATION

An apparent issue with such periodicity alignment is the problem of temporally unordered entries.
This is problematic because in most cases, the nearest data point xt has the most predictive power,
but now the model does not know which position corresponds to xt. Our solution is to expand
the input vector instead of wrapping the series during alignment, so now the input vector length is
L+ P − 1. Following the batch of input in Figure 2, with expansion, the input becomes

(Mon),(Tue),(Wed), (Thu) , (Fri) , (Sat) , (Sun),(Mon),(Tue),(Wed), (Thu) , (Fri) , (Sat)

f([x01, x02, x03, x04, x05, x06, x07, 0, 0, 0, 0, 0, 0]; θ)

f([ 0, 0, x31, x32, x33, x34, x35, x36, x37, 0, 0, 0, 0]; θ)

...
f([ 0, 0, 0, 0, 0, x20, x21, x22, x23, x24, x25, x26, 0]; θ).

The same expansion also applies to the output. An ablation study in Section 5.4 indeed confirms
that such expansion is beneficial to model performance.

4 ANALYSES OF PAPER ALIGNMENT

In this section, we conduct a comprehensive analysis of PAPER alignment from multiple perspec-
tives. We begin with a qualitative examination of the fundamental advantages and limitations of
PAPER alignment. We then provide theoretical foundations for these observations through rigorous
mathematical analysis and formal proofs. Subsequently, we validate our theoretical findings using
controlled experiments on two synthetic datasets designed to isolate specific properties of the align-
ment mechanism. Finally, we demonstrate the superiority of alignment as a dimensionality reduction
technique by comparing its efficiency against established methods such as the Fourier transform.
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4.1 QUALITATIVE ANALYSES

Figure 3: A simple visualization of what
happens to the input data without align-
ment versus with alignment on the Traf-
fic dataset. Qualitatively speaking, the
input data with alignment is cleaner.

By explicitly aligning periodicity, the data are in some
sense simplified from the model’s perspective. A sim-
ple illustration is shown in Figure 3, where one can im-
mediately see the difference between with and without
alignment. Without alignment, the input data are messier;
with alignment, the input data are cleaner. Mathemati-
cally speaking, this implies that the input data have lower
rank after alignment. Thus, the model converges faster
and similar performance can potentially be achieved with
a much smaller model, which is proven in the next section
under some reasonable assumptions.

Another observation is that, without alignment, the model
assumes that the data-generating process (DGP) is strictly
autoregressive. For example, this means that in traffic
forecasting, the model remains the same regardless of
whether the prediction is for Monday or Saturday. In con-
trast, with alignment, we are essentially training P differ-
ent models where the parameters are shared so that the
total parameter size remains the same. A toy example in
Section 4.4 shows the benefits of alignment when the data
are not autoregressive.

4.2 MATHEMATICAL PROPERTIES OF PERIODICITY ALIGNMENT

To simplify and derive several important mathematical properties of alignment, we make some rea-
sonable assumptions about the model and the data in Assumption 1.

Assumption 1. Following the symbols used in Section 2, the assumptions are:

• The data-generating process (DGP) is xt+P = xt + et, where P ≥ 2, et ∼ N (0, ϵ2) is
i.i.d., and the values of {x1−P , . . . , x0} are some fixed non-trivial constants. This ensures
that the time series is almost periodic as introduced in Section 2.1.

• The model of interest is a linear model.

• The length of the time series is much greater than its period (i.e., T ≫ P ).

• The look-back length and the horizon are both equal to the period (i.e., L = H = P ).

Collectively, these assumptions are referred to as Assumption 1.

Under Assumption 1, we can derive Theorem 4.1.

Theorem 4.1. Under Assumption 1, applying periodicity alignment decreases the training error.
Specifically, the residual sum of squares (RSS) without alignment is (T − P )Pϵ2, and the RSS with
alignment is at most (T − 2P + 1)Pϵ2, which is strictly less than the RSS without alignment.

Proof. Please see Section A.1 for the proof.

An interesting observation based on Theorem 4.1 is that with exactly the same model and data,
aligning the periodicity strictly improves the training error. Although this is promising, we note that
the testing error actually increases with alignment, as stated in Theorem 4.2.

Theorem 4.2. Under Assumption 1, applying periodicity alignment increases the testing error.
Specifically, the testing error without alignment is P (1 + P

T )ϵ2, and the testing error with align-
ment is at least P (1 + 2P+1

T )ϵ2, which is strictly greater than the testing error without alignment.

Proof. Please see Section A.2 for the proof.
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This is certainly a limitation of periodicity alignment. However, this is due to the fact that the DGP
in Assumption 1 is autoregressive, so there is no need for alignment since a linear autoregressive
model is already the best estimator. That said, alignment still has an advantage under reduced-rank
regression (RRR), where the rank of the model is restricted, as shown in Theorem 4.3.
Theorem 4.3. Under Assumption 1, we already know that applying periodicity alignment decreases
the training error according to Theorem 4.1. Furthermore, if the rank of the model is restricted, the
increase in training error is smaller when alignment is applied, implying that the outperformance of
alignment is magnified. Specifically, the increase in residual sum of squares (RSS) with rank r < P

is roughly (P − r)(
T ||x0||22

P + T (T+P )ϵ2

2P ) without alignment and T ||x0||22 + (P − r)T (T+P )ϵ2

2P with
alignment.

Proof. Please see Section A.3 for the proof.

Comparing the test error of RRR models with and without alignment is subtle because two opposing
forces are at play. As shown in Theorem 4.2, alignment tends to raise test error. In contrast, Theo-
rem 4.3 shows that when the model rank is reduced, alignment improves training performance. The
overall outcome depends on which influence prevails: if the rank is trimmed only slightly, alignment
may degrade performance, but when the rank is cut substantially, alignment can yield better results.

4.3 AUTOREGRESSIVE AND NON-AUTOREGRESSIVE TOY EXAMPLES

In this section, we demonstrate an experimental proof of Theorem 4.1 and Theorem 4.2. Following
Assumption 1, we construct a toy dataset of various sample sizes T = {200, 666, 2000, . . . , 200000}
with an 80%/20% train-test split and set P = H = 5, ϵ = 1. Additionally, we ran 100 runs for each
setup, and for each run, we randomly sampled the values {x−4, x−3, . . . , x0} from N (0, 102). The
results are shown in Figure 4a. When T is large, it does not matter whether alignment is applied or
not. However, when T is not sufficiently large, we can see that the training error is lower while the
testing error is higher after alignment. This follows Theorem 4.1 and Theorem 4.2. We also show
the estimated errors according to the equations in the proofs.

(a) The synthetic toy datasets are autoregressively generated according
to Assumption 1. We set an 80%/20% train-test split and P = H =
5, ϵ = 1. Each quartile box plot is calculated over 100 runs.

(b) Here, the synthetic toy datasets are
generated similarly to Figure 4a, but are
no longer autoregressive. Instead, we
have xt = atxt−P + et, where at ∈
{0.8, 0.85, 0.9, 0.95, 1} and is selected
based on (t mod P ). For example, if
(t mod P ) = 3, then at = 0.95.

Figure 4: Affect of applying alignment on synthetic toy datasets.

4.4 NON-AUTOREGRESSIVE EXAMPLES

After seeing the results in the previous section, one might question the benefits of PAPER align-
ment. However, notice that the data-generating process in Assumption 1 is exactly autoregressive
and therefore exactly matches the formulation without alignment. On the other hand, the alignment
formulation is closer to training P different models with shared parameters, which is less efficient
when the data are autoregressive. This is what we described in the last paragraph of our qualitative
analysis in Section 4.1. An example of a non-autoregressive DGP is when the parameters are de-
pendent on the phase in the period. For example, in traffic forecasting, the best model for predicting
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Monday’s traffic flow will be different from the best model for Saturday’s. This is because, first,
Monday is a weekday and Saturday is a weekend, causing different human behaviors. Additionally,
the day before Monday is a weekend, whereas the day before Saturday is a weekday, so if the model
assigns the same coefficient to the previous day, the performance is suboptimal.

Since it is difficult to prove this mathematically, we construct a non-autoregressive toy dataset
to demonstrate it in the following. The non-autoregressive toy datasets follow the process xt =
atxt−P + et, where at ∈ {0.8, 0.85, 0.9, 0.95, 1} and is selected based on (t mod P ). For example,
if (t mod P ) = 1, then at = 0.85, and if (t mod P ) = 3, then at = 0.95. Otherwise, the process is
the same as in the previous section. The results on the training set are similar to those of Figure 4a,
where the error is again much lower. The difference lies in the results of the test set, which are
shown in Figure 4b. We can clearly see that applying alignment now improves performance with
sufficient sample size. Moreover, the improvement remains even with larger sample sizes.

Additionally, we perform a proof-of-concept experiment on real-world datasets. Specifically, we
split the data into P subsets according to the phase and then train P linear models. The results show
significant improvements compared to using a single linear model. On the Electricity, Solar, and
Traffic datasets with P = 24, 144, 168, the improvements are 45%, 22%, and 13%, respectively.

4.5 DIMENSIONALITY REDUCTION ANALYSIS

Figure 5: Reconstruction error on the first se-
ries in the Traffic dataset using dimensional-
ity reduction techniques. The series is trans-
formed to a 2D matrix where each row is a
sliding window of length 168. With PAPER
alignment, the rows are aligned before pass-
ing to PCA. PCA and DFT with maximum
magnitude achieve extremely similar results
due to both being linear operations.

In this analysis, we aim to show that PAPER align-
ment helps with dimensionality reduction. This
means that after alignment, the data matrix X can
be projected to a low-dimensional space with less
distortion, and thus achieve lower reconstruction
error when projecting back to the original high-
dimensional space. The results are shown in Fig-
ure 5, where one can see that simply aligning peri-
odicity before Principal Component Analysis (PCA)
achieves the lowest reconstruction error when com-
pared to PCA only, kernel PCA, Discrete Fourier
Transform (DFT), and Wavelet Transform. Outper-
forming PCA alone is straightforward by looking at
Figure 3 visually, but the fact that PAPER also out-
performs kernel PCA, DFT, and Wavelet Transform
implies that PAPER is an extremely efficient repre-
sentation of the data.

5 REAL-WORLD EXPERIMENTS

In this section, we perform several experiments on real-world datasets that solidify the conclusions
drawn from Section 4.3, Section 4.4, and Section 4.5.

5.1 LONG-TERM FORECASTING RESULTS

Our experimental setup is similar to previous long-term forecasting papers in the deep learning
community, except for the train-validation-test split. Previous work mostly follows a chronologically
ordered train-validation-test split, so the best validation epoch is tested on the test set. However,
this deviates from real-world practice because the validation set is closest to the test set, so not
training on it is too costly. Instead, practitioners usually first find suitable hyperparameters that
do not overfit and then train the model on the full available training set. Additionally, our PAPER
alignment is prone to overfitting as proven in Theorem 4.2 and further discussed in Section 6.1, so a
validation set between the training set and test set greatly reduces performance. In summary, we set
the first 95% of the data as the training set and the remaining 5% as the test set, and choose the best
hyperparameters for each model to train for a fixed number of epochs before testing. For ease of
comparison, the models are identical, where the number of units is 336, 144, 1344 for the Electricity
dataset, Solar dataset, and Traffic dataset, respectively. Thus, the tunable hyperparameters pertain to
the optimization process, not the model itself.
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Table 1: Mean-Squared Errors (MSEs) on the test set with various model combinations for three
datasets and four horizons. Mean and standard deviation reported over 10 runs. Shaded number
indicates the best performing model and is superscribed with † if the outperformance is statistically
significant with p-value less than 5%.

Dataset Horizon SFNN SFNN + CycleNet SFNN + PAPER

168 0.1646 ± 0.0012 0.1622 ± 0.0002 0.1589† ± 0.0002

336 0.1661 ± 0.0006 0.1623 ± 0.0003 0.1591† ± 0.0002

504 0.1813 ± 0.0003 0.1766 ± 0.0004 0.1674† ± 0.0004Electricity
672 0.1985 ± 0.0003 0.1975 ± 0.0004 0.1836† ± 0.0003

144 0.1889† ± 0.0020 0.2188 ± 0.0003 0.2047 ± 0.0052

288 0.2125 ± 0.0024 0.2675 ± 0.0007 0.2020† ± 0.0028

432 0.2212 ± 0.0005 0.2742 ± 0.0003 0.2090† ± 0.0015Solar
576 0.2244 ± 0.0007 0.2620 ± 0.0007 0.2239 ± 0.0015
168 0.3314 ± 0.0002 0.3329 ± 0.0012 0.3319 ± 0.0015

336 0.3512 ± 0.0008 0.3457 ± 0.0009 0.3384† ± 0.0009

504 0.3557 ± 0.0001 0.3590 ± 0.0013 0.3430† ± 0.0001Traffic
672 0.3761 ± 0.0004 0.3910 ± 0.0021 0.3589† ± 0.0007

The results are shown in Table 1. We choose SFNN (Sun et al., 2025) as the base model because it is
the state-of-the-art model, yet it has a very simple architecture that does not interfere with our align-
ment. Compared to SFNN without alignment or SFNN with CycleNet, adding PAPER alignment
improves performance in most cases, with improvement up to 7%. Notice that the improvement
seems to decrease as the horizon shortens, which we will discuss more in Section 6.2.

5.2 AGNOSTIC TO DIFFERENT MODELS

In the previous experiment, we chose SFNN (Sun et al., 2025) as the base model. Here, we show
that PAPER alignment is model-agnostic, so it can also work with other base models, such as Led-
dam (Yu et al., 2024), NLinear (Zeng et al., 2023), and iTransformer (Liu et al., 2024). From the
results in Figure 6, we can see that adding PAPER alignment improves performance for all models
across most datasets and horizons.

Figure 6: MSEs on the test set for various base models on various datasets and horizons. The error
bars indicate 2 standard deviations over 10 runs.

5.3 REDUCING MODEL SIZES

Figure 7: MSEs on the Traffic dataset with hori-
zon 168 using various numbers of hidden units.
The results show that with PAPER, the degrada-
tion of performance under restricted model sizes
is much less severe. This follows Theorem 4.3
and matches Figure 5.

As described in Theorem 4.3 and Section 4.5, us-
ing PAPER helps when we want a smaller model.
To demonstrate this property of PAPER, we train
SFNNs with increasingly fewer hidden units. The
results on the Traffic dataset with horizon 168
are shown in Figure 7. We can see that PAPER
alignment greatly improves performance when
the number of hidden units is reduced. Specif-
ically, comparing 21 versus 1344 hidden units,
the model size is just 0.5% but the error only in-
creases by 11% (instead of around 26.5% with
CycleNet or without alignment).
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(a) The figure shows the relative improvement
of SFNN after applying PAPER or CycleNet.
The models are trained on 60% of the Electricity
dataset with horizon 168. Since our alignment
method is more prone to concept drift in the data
as proven in Theorem 4.2, the improvement de-
creases faster over time. Additionally, the im-
provement is more volatile with PAPER.

(b) MSEs on the Traffic dataset with various target horizons
from short- to long-term, while the look-back length is fixed
at 1344. When the horizon is short, applying PAPER nega-
tively impacts performance. However, when the horizon is
longer, especially when it is at least one period long (168 in
this case), PAPER greatly improves performance.

5.4 ABLATION STUDY

In Figure 2, the original PAPER alignment does not include positional information, which we call
rolling PAPER. An improvement we made is described in Section 3.2.1, where we add positional
information to PAPER alignment by expanding the input size by P − 1. An ablation study tabulated
in Table 2 in Appendix confirms the addition of positional information is beneficial to performance.

6 LIMITATIONS

Our PAPER alignment is a simple method to enhance performance for periodic time series. How-
ever, there are still two major limitations of which one should be aware.

6.1 MORE SENSITIVE TO DISTRIBUTION DRIFT

First, as proven in Theorem 4.2, PAPER alignment is more prone to overfitting. Thus, a slight change
in the pattern can have a greater effect on its performance. To demonstrate this limitation, we train
SFNN with PAPER alignment on 60% of the Electricity dataset to predict the future 168 horizons
and then observe how the model performs on the remaining 40% of the data. We also compare
against CycleNet. The results are shown in Figure 8a, where we can observe two things: (1) the
improvement of PAPER is more concentrated at the beginning of the test set but then deteriorates
quite rapidly; and (2) the improvement of PAPER is more volatile when compared to CycleNet.

6.2 DEGRADATION ON SHORT-TERM FORECASTING

The second limitation is that PAPER alignment does not work well on short-term forecasting, espe-
cially when the horizon is shorter than the period. An experiment predicting short horizons confirms
this limitation. As shown in Figure 8b, alignment actually harms performance when the prediction
horizon is less than the period. On the other hand, the benefits of PAPER alignment start to emerge
when the horizon is longer than the period and become increasingly beneficial for longer horizons.

7 CONCLUSION

In conclusion, we introduced PAPER, a novel periodicity alignment framework for long-term peri-
odic time series forecasting. Our approach further improves state-of-the-art model performance by
learning non-autoregressive dependencies without auxiliary input. We utilized theoretical proofs,
synthetic datasets, and real-world experiments to confirm the practical benefits of our method while
also clearly defining its limitations. Our work provides an initial exploration of periodicity alignment
that paves the way for further research on more sophisticated methods.
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REPRODUCIBILITY STATEMENT

The source code, configuration files, and instructions for model training will be provided for all
key experiments upon acceptance. Proofs, with their underlying assumptions and explanations, are
detailed in the paper and the appendix.
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Appendices
A MATHEMATICAL PROPERTIES OF PERIODICITY ALIGNMENT

Under Assumption 1, the fitting process is essentially a multi-target multiple linear regression:

Y = XB+E, (3)

where Y ∈ RT×P is the target matrix, X ∈ RT×P is the input matrix, E ∈ RT×P is the noise
matrix, and B ∈ RP×P is the parameter matrix to be learned. For simplicity, here the whole time
series has length of T + 2P − 1 (instead of T ).

Without alignment, we have

X =


x1 x2 . . . xP

x2 x3 . . . xP+1

...
...

. . .
...

xT xT+1 . . . xT+P

 ∈ RT×P ,Y =


xP+1 xP+2 . . . x2P

xP+2 xP+3 . . . x2P+1

...
...

. . .
...

xT+P xT+P+1 . . . xT+2P−1

 ∈ RT×P ,

(4)
whereas with alignment, we have

X =


x1 x2 . . . xP

xP+1 x2 . . . xP

xP+1 xP+2 . . . xP

...
...

. . .
...

 ∈ RT×P ,Y =


xP+1 xP+2 . . . x2P

x2P+1 xP+2 . . . x2P

x2P+1 x2P+2 . . . x2P

...
...

. . .
...

 ∈ RT×P . (5)

Keep in mind that under the assumptions, B̂ = I is the optimal solution for testing set (but not for
training set) and Y = X+E.

A.1 REDUCTION IN TRAINING ERROR

Here, we show that with alignment, the training error is always lower. Notice that this is achieved
with the same model and data. The only difference is in how the data is fed into the model.

According to the multi-target multiple linear regression, the solution of B is

B̂ = (X⊤X)−1X⊤Y (6)

= (X⊤X)−1X⊤(X+E) (7)

= I+ (X⊤X)−1X⊤E. (8)

Here, we can already see that B̂ is indeed close to an identity matrix but with some perturbations
due to the noise. The residual sum of squares (RSS) is thus

RSS = ∥Y −XB̂∥2F (9)

= ∥X+E−X(I+ (X⊤X)−1X⊤E)∥2F (10)

= ∥E−X(X⊤X)−1X⊤E∥2F (11)

:= ∥(I−P)E∥2F . (12)
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where ∥·∥2F is the Frobenius norm and P = X(X⊤X)−1X⊤ is the projection matrix. Additionally,
projection matrix has the following properties: (1) P = P⊤ = P2, and (2) P = UU⊤, where U are
the first P left singular vectors of X. Using these properties, we can further simplify Equation (12):

RSS = ∥(I−P)E∥2F (13)

= tr(E⊤(I−P)(I−P)E) (14)

= tr(EE⊤(I−P)) (15)

= tr(EE⊤)− tr(EE⊤P) (16)

= ∥E∥2F − tr(EE⊤UU⊤) (17)

= ∥E∥2F − ∥E⊤U∥2F , (18)

where ∥E∥2F ≈ TPϵ2 is the same with or without alignment.

A.1.1 RSS WITHOUT ALIGNMENT

Without alignment, we have

E =


e1 e2 . . . eP
e2 e3 . . . eP+1

...
...

. . .
...

eT eT+1 . . . eT+P

 ∈ RT×P . (19)

Following Equation (18), we want to estimate the value of ∥E⊤U∥2F by examining each elements
in the matrix:

(E⊤U)2ij = (

T∑
t=1

EtiUtj)
2 (20)

=

T∑
t=1

E2
tiU

2
tj +

T∑
t=1

T∑
s=1,s̸=t

EtiEsiUtjUsj . (21)

Then,

∥E⊤U∥2F =

P∑
i=1

P∑
j=1

(E⊤U)2ij (22)

=

P∑
i=1

P∑
j=1

[ T∑
t=1

E2
tiU

2
tj +

T∑
t=1

T∑
s=1,s̸=t

EtiEsiUtjUsj

]
(23)

=

P∑
j=1

T∑
t=1

[
U2

tj

P∑
i=1

E2
ti

]
+

P∑
i=1

P∑
j=1

T∑
t=1

T∑
s=1,s̸=t

EtiEsiUtjUsj . (24)

(25)

In the first part of the summation, we can see that ∀t,
∑P

i=1 E
2
ti are all the same distribution and

have mean of Pϵ2. Thus, the first term roughly sums up to P 2ϵ2. The second part of the sum-
mation roughly sums up to 0 because Eti and Esi are two independent Gaussian distributions (i.e.,
E[EtiEsi] = 0) and they are (almost) independent of U. Thus, the RSS without alignment is roughly

RSSw/o ≈ TPϵ2 − P 2ϵ2 = (T − P )Pϵ2. (26)

A.1.2 RSS WITH ALIGNMENT

Again, we start from Equation (18). However, this time, E is structurally different:

E =


e1 e2 . . . eP

eP+1 e2 . . . eP
eP+1 eP+2 . . . eP

...
...

. . .
...

 ∈ RT×P . (27)
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Following similar derivations, we can arrive at the same Equation (24). The first part of the summa-
tion has the same distribution with or without alignment, but the second part is different. The reason
is that Eti and Esi are no longer two independent Gaussian distributions because of the alignment.
For example, in the first column in E, eP+1 appears P times after alignment (see Equation (27)),
but only appears one time without alignment (see Equation (19)). Thus, with alignment, we have

E[EtiEsi] =

{
ϵ2, if t and s are within the same period
0, otherwise.

(28)

Next, we want to calculate E[UtjUsj ], where U are the left singular vectors of X:

X = UΣV⊤. (29)

Recall that after alignment, X has rank P but is close to a rank-1 matrix. Mathematically, we can
rewrite X = 1x⊤

0 +C, where

x0 =

x1−P

x2−P

. . .
x0

 (30)

and

C =


e1−P e2−P . . . e0

e1−P + e1 e2−P . . . e0
e1−P + e1 e2−P + e2 . . . e0

...
...

. . .
...∑

i=1 e1+(i−2)P . . .
∑

i=1 e2+(i−2)P . . .
∑

i=1 e(i−1)P .

 (31)

x0 is the initial values that are constants. C is the error matrix where each column is a Gaussian
random walk with P duplicates. Thus,

E[X⊤X] = E[(1x⊤
0 )

⊤(1x⊤
0 ) +C⊤C] (because E[Cx0] = 0) (32)

= Tx0x
⊤
0 + E[C⊤C] (33)

= Tx0x
⊤
0 +

T (T + P )ϵ2

2P
I, (34)

where the last equality stands because

E[C⊤C]ij = E[
∑
k=1

CkiCkj ] =

{
0, if j ̸= k because Cki and Ckjare independent∑T

i=1 E[C2
ij ] ≈ P

∑T/P
i=1 iϵ2 = T (T+P )ϵ2

2P .
(35)

The first eigenvectors of E[X⊤X] is x0/||x0||2 because

E[X⊤X]
x0

||x0||2
= (T ||x0||22 +

T (T + P )ϵ2

2P
)

x0

||x0||2
. (36)

The corresponding eigenvalue is (T ||x0||22 +
T (T+P )ϵ2

2P ). The rest of the eigenvectors are vectors w
where w is orthogonal to x0 because

E[X⊤X]w =
T (T + P )ϵ2

2P
w (37)

with eigenvalues T (T+P )ϵ2

2P . In summary, we know the right singular vectors V are

V =

 | | . . . |
x0

||x0||2 w2 . . . wP

| | . . . |

 , (38)

where wi are orthogonal to x0.
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Next, based on the results of V, we can understand U by using the formula Xvi = siui, where si
is the i-th singular value and vi,ui are the i-th columns in V,U, respectively. For the first column
(i = 1), we know v1 = x0

||x0||2 from Equation (36). Thus,

u1 =
1

s1
X

x0

||x0||2
(39)

=
1

s1||x0||2
(1x⊤

0 +C)x0 (40)

=
||x0||2
s1

1+
1

s1||x0||2
Cx0. (41)

For the remaining columns in U, we have

ui =
1

si
Xwi (42)

=
1

si
(1x⊤

0 +C)wi (43)

= Cwi. (44)

In both of the results, we can see that ui is a vector of constant ( ||x0||2
si

1 if i = 1 and 0 if i ≥ 2) plus
a linear combination of Gaussian random walk (i.e. C). We know that in a Gaussian random walk,
such as the j-th column in C, E[CtjCsj ] > 0. Thus, E[UtjUsj ] > 0 as well. Combining this with
Equation (28), we can see that the second part in Equation (24) is positive. Thus, RSSw/ < RSSw/o.
To get a lower-bound estimate, we can just count the effect of u1 and assume that u1 = 1√

T
1, then

the second part in Equation (24) is roughly

P︸︷︷︸
iteration of i

·
just count u1︷︸︸︷

1 · T (P − 1)ϵ2︸ ︷︷ ︸
Equation 28 and

∑T
t=1

∑T
s=1,s̸=t EtiEsi

UtjUsj︷︸︸︷
1

T
= P (P − 1)ϵ2. (45)

Thus, the upper-bound of RSSw/ is

RSSw/ ≲ TPϵ2 − P 2ϵ2 − P (P − 1)ϵ2 = (T − 2P + 1)Pϵ2 < RSSw/o. (46)

A.2 INCREASE IN TESTING ERROR

While the training error is lower after alignment, the testing error is higher. Intuitively, this is because
with alignment, the noise in the data is also easier to learn and therefore resulted in “overfitting.”
Mathematically, to estimate the testing error, we start with

testing error = E[∥z⊤B̂− (z+ e)⊤∥2F ] (47)

= E[∥z⊤(I+ (X⊤X)−1X⊤E)− (z+ e)⊤∥2F ] (from Equation (8)) (48)

= E[∥z⊤(X⊤X)−1X⊤E− e⊤∥2F ] (49)

= E
[

tr
(
(E⊤X(X⊤X)−1z− e)(z⊤(X⊤X)−1X⊤E− e⊤)

)]
(50)

= E
[
∥e∥2F

]
+ tr

(
E⊤X(X⊤X)−1E[zz⊤](X⊤X)−1X⊤E

)
(51)

= E
[
∥e∥2F

]
+ tr

(
E⊤X(X⊤X)−1 1

T
X⊤X(X⊤X)−1X⊤E

)
(52)

= E
[
∥e∥2F

]
+

1

T
tr(EE⊤P) (53)

= E
[
∥e∥2F

]
+

1

T
tr(EE⊤UU⊤) (54)

= E
[
∥e∥2F

]
+

1

T
∥E⊤U∥2F , (55)
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where z is a sample vector from the testing distribution (which is assumed to the same as the training
distribution) and e is the corresponding noise vector. Notice that this equation is similar to Equa-
tion (18) where the first part of the expression is the same with or without alignment. However, here
the two parts are summed together, whereas in Equation (18), the second part is subtracted from the
first part. Since the second part is essentially the same (except a factor of 1

T ), we can see that the
testing error with alignment is higher by the following the same derivation in the previous section.
To be precise, the testing errors are

RSSw/o ≈ P (1 +
P

T
)ϵ2 and RSSw/ ≳ P (1 +

2P + 1

T
)ϵ2. (56)

A.3 LESS INCREASE IN TRAINING ERROR WITH REDUCED-RANK REGRESSION (RRR)

Under this setting, we can see that the fitted solution B̂ = I + (X⊤X)−1X⊤E ∈ RP (in Equa-
tion (8)) is of full rank. However, a quadratic matrix is quite parameter heavy, so sometimes we want
to use a lower-rank approximation to reduce model size and overfitting. This is called reduced-rank
regression (RRR), where the parameter matrix B is also subject to a rank constraint:

B̂RRR = minB∥Y −XB∥2F , where rank(B) ≤ r. (57)

In this section, we show that alignment helps mitigate the increase of training loss in RRR.

First, we know that Equation (57) is equivalent to

B̂RRR = minB∥Y −XB̂∥2F + ∥XB̂−XB∥2F , (58)

because linear regression is essentially an orthogonal projection of Y onto the column space of X.
The first term in the minimization does not depend on B, so we only need to minimize the second
term. Based on the Eckart–Young–Mirsky theorem (E. Schmidt, 1907), the solution is

B̂RRR = B̂VrV
⊤
r , (59)

where Vr are the first r right-singular vectors of XB̂. In other words, XB̂RRR is the best rank-
r approximation of XB̂ under Frobenius norm. Thus, based on the Eckart–Young–Mirsky theo-
rem (E. Schmidt, 1907),

∥XB̂−XB∥2F =

P∑
i=r+1

s2i , (60)

where si is the i-th singular value of XB̂. To find si, we calculate the eigenvalues of XB̂ following
the derivation below:

E[(XB̂)⊤XB̂] = E[(I+ (X⊤X)−1X⊤E)⊤X⊤X(I+ (X⊤X)−1X⊤E)] (61)

= E[X⊤X+E⊤X+X⊤E+E⊤X(X⊤X)−1X⊤E] (62)

= E[X⊤X+E⊤X(X⊤X)−1X⊤E] (63)

≈ X⊤X, (64)

where the last approximation stands because the noise terms E should have much smaller magnitude
than the values X. Thus, combining Equation (60) and (64), we want to compare the eigenvalues of
X⊤X with or without alignment in order to understand which one is better under RRR.

Intuitively, with alignment, X⊤X is close to a rank-1 matrix, so there is only one non-zero eigen-
value. In contrast, without alignment, the eigenvalues are all non-zeros. Note that the sum of all
squared singular values of X are the same with or without alignment because they have the same
Frobenius norm. This implies that the single non-zero eigenvalue under alignment equals to the sum
of all eigenvalues under no alignment and thus according to Equation (60), with alignment results in
better RRR performance. However, this is just a rough estimate. Then next two sections will give a
much precise estimation of the eigenvalues.
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A.3.1 RRR WITHOUT ALIGNMENT

Similar to Equation (30) and(31), we can also split X into two parts X = H+C, where

H =



x1−P x2−P . . . x−1 x0

x2−P x3−P . . . x0 x1−P

x3−P x4−P . . . x1−P x2−P

...
...

. . .
...

...
x0 x1−P . . . x−2 x−1

x1−P x2−P . . . x−1 x0

...
...

...
...

...


(65)

and

C =


e1−P e2−P . . . e−1 e0
e2−P e3−P . . . e0 e1−P + e1
e3−P e4−P . . . e1−P + e1 e2−P + e2

...
...

...
...

...

 . (66)

Notice that H is a non-square circulant Hankel (or anti-circulant) matrix starting from x0 where all
elements on any anti-diagonals are the same.

To roughly estimate the singular values of X, we can first assume that E[xi, xj ] = 0, ∀i ̸= j, where
xi, xj ∈ x0. Then,

E[X⊤X] = E[H⊤H+C⊤C] (67)

=
T ||x0||22

P
I+

T (T + P )ϵ2

2P
I (68)

= (
T ||x0||22

P
+

T (T + P )ϵ2

2P
)I, (69)

where E[C⊤C] is calculated using Equation (35). Thus, we can see that the eigenvalues are all
T ||x0||22

P + T (T+P )ϵ2

2P .

However, this is an very rough estimate since the assumption of E[xi, xj ] = 0 is usually not the
case. To be exact, first let

H′ =



x1−P x2−P . . . x−1 x0

x2−P x3−P . . . x0 x1−P

x3−P x4−P . . . x1−P x2−P

...
...

. . .
...

...
x−1 x0 . . . x−3 x−2

x0 x1−P . . . x−2 x−1

 ∈ RP×P , (70)

which is a square circulant Hankel matrix. Then,

H =

H
′

...
H′


 repeat

T

P
times. (71)

Thus, H⊤H = T
P (H′)2. The eigenvalues λ′

k of H′ can be calculated using Lemma (A.1). Then the
eigenvalues λi of H⊤H is λi =

T
P (λ′

i)
2. We can see that the eigenvalues are thus non-zeros. For

example,

λ0 =
T

P

( P−1∑
j=0

xj−P+1

)2

. (72)

Combine this with the rough estimation in Equation (69) and assuming that xj are random, we can

say that the eigenvalues are scattered around T ||x0||22
P + T (T+P )ϵ2

2P , which can be used to estimate the
RRR residual following Equation (60).
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Lemma A.1. If matrix A ∈ Rn×n is a square circulant Hankel matrix with full rank and the first
row is a⊤ = [a0, . . . , an−1]

⊤, then its eigenvalues are

λk =


Fa,0, if k = 0,

Fa,n/2 or − Fa,n/2, if n is even and k = n/2

±
√
Fa,kFa,n−k, otherwise.

(73)

where

Fa,k =

n−1∑
j=0

aj exp(
−kj

n
2πi). (74)

Proof. We have a circulant Hankel matrix

A =


a00 a01 . . . a0(n−1)

a10 a11 . . . a1(n−1)

...
...

. . .
...

a(n−1)0 a(n−1)1 . . . a(n−1)(n−1)

 =


a0 a1 . . . an−1

a1 a2 . . . a0
...

...
. . .

...
an−1 a0 . . . an−2

 , (75)

where any anti-diagonals have the same values and aij = a(i+j)(mod n).

Next, we define the following discrete Fourier Transform (DFT) on a vector v = [v0, . . . , vn−1]
⊤:

F(v)k =

n−1∑
j=0

vj exp(
−kj

n
2πi) = Fv, (76)

where F is the unnormalized DFT matrix with properties F⊤ = F and F−1 = 1
nF

∗.

Then,

F(Av)k =

n−1∑
j=0

(Av)j exp(
−kj

n
2πi) (77)

=

n−1∑
j=0

( n−1∑
l=0

a(l+j)(mod n)vl

)
exp(

−k(j + l)

n
2πi) exp(

kl

n
2πi) (78)

=

n−1∑
l=0

vl exp(
kl

n
2πi)

( n−1∑
j=0

a(l+j)(mod n) exp(
−k(j + l)

n
2πi)

)
(79)

=

n−1∑
l=0

vl exp(
kl

n
2πi)

( n−l−1∑
j=−l

al+j exp(
−k(j + l)

n
2πi)

)
(80)

=

n−1∑
l=0

vl exp(
kl

n
2πi)

n−1∑
j′=0

aj′ exp(
−kj′

n
2πi) (81)

= F∗(v)kF(a)k, (82)

where a = [a0, . . . , an−1]
⊤. For v to be an eigenvector of A, we need Av = λv, which implies

F(a)kF∗(v)k = λF(v)k. (83)

Collecting all k, the equation is equivalently

FaF
∗v = λFv, (84)

where Fa = diag(Fa). Thus, the eigenvalue λ satisfies

det(FaF
∗ − λF) ⇔ det(Fa − λ

1

n
FF⊤), (85)
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where

1

n
FF⊤ =



1 0 0 . . . 0 0
0 0 0 . . . 0 1
0 0 0 . . . 1 0
...

...
...

. . .
...

...
0 0 1 . . . 0 0
0 1 0 . . . 0 0

 . (86)

By decomposing into block matrices, from Equation (85), eigenvalues satisfy
|(λ− Fa,0)|det(F′

a − λJ) = 0 ⇔ |(λ− Fa,0)|det(JF′
a − λI) = 0, (87)

where

J =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 ∈ R(n−1)×(n−1). (88)

is the exchange matrix and F′
a = diag([Fa,1, . . . ,Fa,n−1]). In addition to λ0 = Fa,0, we also need

to find the eigenvalues of JF′
a. We can see that

JF′
a =


0 0 . . . 0 Fa,n−1

0 0 . . . Fa,n−2 0
...

...
. . .

...
...

0 Fa,2 . . . 0 0
Fa,1 0 . . . 0 0

 (89)

is an anti-diagonal matrix, so we have

(JF′
a)

2 =


Fa,1Fa,n−1 0 . . . 0 0

0 Fa,2Fa,n−2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Fa,n−2Fa,2 0
0 0 . . . 0 Fa,n−1Fa,1

 . (90)

Combining this with Equation (87), we have the eigenvalues as

λk =


Fa,0, if k = 0,

Fa,n/2 or − Fa,n/2, if n is even and k = n/2

±
√

Fa,kFa,n−k, otherwise.
(91)

A.3.2 RRR WITH ALIGNMENT

We have already calculated the eigenvalues of X⊤X in Section A.1.2. In which, we showed that

λk =

{
(T ||x0||22 +

T (T+P )ϵ2

2P , if k = 0,
T (T+P )ϵ2

2P , otherwise.
(92)

Note that the sum of all eigenvalues are the same with or without alignment. However, with align-
ment, T ||x0||22 concentrates its contribution only to λ0, whereas without alignment, its contribution
are spread out across all eigenvalues.

B RESULTS FOR ABLATION STUDY

See Table 2.

C USE OF LARGE LANGUAGE MODELS

This paper was edited for grammar, style, and readability with the assistance of a large language
models.
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Table 2: Mean-Squared Errors (MSEs) on the test set of two variations of PAPER for three datasets
and four horizons. Mean and standard deviation reported over 10 runs. Shaded number indicates the
best performing model and is superscribed with † if the outperformance is statistically significant
with p-value less than 5%.

Dataset Horizon SFNN + rolling PAPER SFNN + PAPER

168 0.1620 ± 0.0005 0.1589† ± 0.0002

336 0.1640 ± 0.0002 0.1591† ± 0.0002

504 0.1707 ± 0.0003 0.1674† ± 0.0004Electricity
672 0.1843 ± 0.0010 0.1836 ± 0.0003

144 0.2193 ± 0.0070 0.2047† ± 0.0052

288 0.2092 ± 0.0027 0.2020† ± 0.0028

432 0.2163 ± 0.0024 0.2090† ± 0.0015Solar
576 0.2296 ± 0.0032 0.2239 ± 0.0015

168 0.3387 ± 0.0016 0.3319† ± 0.0015

336 0.3409 ± 0.0009 0.3384† ± 0.0009
504 0.3455 ± 0.0009 0.3430 ± 0.0001Traffic
672 0.3570 ± 0.0005 0.3589 ± 0.0007
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