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ABSTRACT

Saliency-based representation visualization (SRV) (e.g., Grad-CAM) is one of
the most classical and widely adopted explainable artificial intelligence (XAI)
methods for its simplicity and efficiency. It can be used to interpret deep neu-
ral networks by locating saliency areas contributing the most to their predictions.
However, it is difficult to automatically measure and evaluate the performance of
SRV methods due to the lack of ground-truth salience areas of samples. In this
paper, we revisit the backdoor-based SRV evaluation, which is currently the only
feasible method to alleviate the previous problem. We first reveal its implementa-
tion limitations and unreliable nature due to the trigger generalization of existing
backdoor watermarks. Given these findings, we propose a generalization-limited
backdoor watermark (GLBW), based on which we design a more faithful XAI
evaluation. Specifically, we formulate the training of watermarked DNNs as a
min-max problem, where we find the ‘worst’ potential trigger (with the highest
attack effectiveness and differences from the ground-truth trigger) via inner max-
imization and minimize its effects and the loss over benign and poisoned samples
via outer minimization in each iteration. In particular, we design an adaptive op-
timization method to find desired potential triggers in each inner maximization.
Extensive experiments on benchmark datasets are conducted, verifying the ef-
fectiveness of our generalization-limited watermark. Our codes are available at
https://github.com/yamengxi/GLBW.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely and successfully adopted in many areas, such as
facial recognition (Tang & Li, 2004; Qiu et al., 2021; Xia et al., 2023). Despite their promising
performance, DNNs are also criticized for acting as a ‘black box’ whose predictions are not inter-
pretable. The lack of interpretability of DNNs is mostly due to their nonlinear components (e.g.,
activation functions) and multi-layer structure, hindering DNNs to be deployed in mission-critical
applications (e.g., medical diagnosis) at scale.

Currently, there are tremendous efforts to explain their prediction behaviors and mechanisms. These
methods are called explainable artificial intelligence (XAI). Current, existing XAI methods can be
roughly divided into three main categories, including (1) visualizing DNN representations (Zeiler
& Fergus, 2014; Wang et al., 2020; Rao et al., 2022), (2) distilling DNNs to explainable models (Li
et al., 2020b;a; Ha et al., 2021), and (3) building explainable DNNs (Zhang et al., 2018; Xiang et al.,
2020; Li et al., 2022a). Among all these methods, saliency-based representation visualization (SRV)
(Springenberg et al., 2015; Selvaraju et al., 2017), as a sub-category of the first one, is probably the
most classical and widely adopted one for its simplicity and efficiency. In general, these methods try
to measure the significance of each input region to the final prediction. Accordingly, they can locate
and highlight saliency input areas that contribute the most to a model prediction.

∗The first two authors contributed equally to this work. Correspondence to: Yiming Li (li-ym@zju.edu.cn).

1

mailto:liyiming.tech@gmail.com
https://github.com/yamengxi/GLBW
mailto:liyiming.tech@gmail.com


Published as a conference paper at ICLR 2024

Original Trigger

Potential Trigger 
Distribution

Target
Label

Potential Trigger

Backdoored 
DNN
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However, it is difficult to measure and evaluate the performance of SRV methods due to the lack
of the ground-truth salience map of the sample. Currently, the most common evaluation method
is to have human experts score or rank saliency maps of different SRV methods for each sample.
This method is time-consuming, expensive, and may be subject to significant deviations due to the
bias of different people. To alleviate this problem, (Lin et al., 2021) proposed to exploit (patch-
based) backdoor attacks (Li et al., 2022c) (e.g., BadNets (Gu et al., 2019)) to design an automatic
and efficient XAI evaluation. Specifically, they modified a few training samples by stamping a
pre-defined trigger patch on their images and changing their labels to a specific target label. DNNs
trained on the modified dataset will learn a latent connection between the trigger patch and the target
label (i.e., the backdoor). Accordingly, all samples containing the trigger patch will be predicted to
be the target label, no matter what their ground-truth label is. Given this backdoor property, they
can calculate the average intersection over union (IOU) between the saliency areas generated by
the SRV method of the backdoored model over different backdoored samples and the trigger area
as an indicator to evaluate the SRV method. This method is developed based on the understanding
that trigger regions can be regarded as areas that contribute the most to the model’s predictions and
therefore can serve as the ground-truth salience areas for evaluation.

In this paper, we revisit the backdoor-based SRV evaluation. We first reveal that it has three im-
plementation limitations, including (1) failing to take absolute values of gradients in the calculation
of some SRV methods, (2) selecting saliency areas based on the threshold instead of the saliency
size, and (3) using the minimum bounding box covering all edges of significant regions instead of
the regions themselves for calculating IOU of SRV methods, leading to potentially false results.
More importantly, this method relies on a latent assumption that existing backdoor attacks have no
trigger generalization, i.e., only the trigger used for training (dubbed ‘original trigger’) can activate
backdoors, since they treat trigger regions as the ground-truth salience areas. We show that this
assumption does not hold for existing backdoor attacks and therefore may lead to unreliable results.
For example, given a SRV method, assume that its generated saliency areas of most poisoned sam-
ples are only a small part of that of the original trigger. According to the existing backdoor-based
evaluation, this SRV method will be treated as having poor performance since it has a small IOU.
However, due to the generalization of backdoor watermarks, the model may only learn this local re-
gion rather than the whole trigger. In this case, the evaluated SRV method is in fact highly effective,
contradicting to the results of the backdoor-based SRV evaluation. Besides, existing backdoor-based
evaluation has different results with potential trigger patterns that can activate the backdoor while
significantly different from the original trigger (as shown in Figure 1-2). This phenomenon further
verifying that its results are unreliable. Accordingly, an intriguing and important question arises: Is
it possible to design a faithful automatic XAI evaluation method?

In this paper, we explore how to reduce the position generalization of backdoor triggers, based
on which to design a faithful backdoor-based XAI evaluation. Arguably, the most straightforward
method is to synthesize the potential trigger pattern and penalize its effects based on its distance to
the original trigger in each iteration during the training process. However, as we will show in our
main experiments, this method suffers from relatively poor performance (i.e., still with high trig-
ger generalization) in many cases. This failure is mostly because the synthesized triggers are ‘weak’
with either a large loss value or are similar to the original trigger. Based on these understandings, we
formulate the training of watermarked DNNs as a min-max problem, where we find the ‘worst’ po-
tential trigger with the highest attack effectiveness and differences from the original trigger via inner
maximization and minimize its effects and the loss over benign and poisoned samples through outer
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minimization. In particular, we design an adaptive optimization method to find desired (‘worst’)
potential triggers in each inner maximization.

In conclusion, the main contributions of this paper are four-folds: (1) We reveal and address the
implementation limitations of the existing backdoor-based XAI evaluation; (2) We analyze the gen-
eralization pattern of backdoor triggers, based on which we further reveal the unreliable nature of
the existing backdoor-based XAI evaluation; (3) We propose a generalization-limited backdoor wa-
termark (GLBW), based on which we design a more faithful XAI evaluation. To the best of our
knowledge, we are the first trying to measure and even manipulate trigger generalization; (4) We
conduct extensive experiments on benchmark datasets to verify the effectiveness of our GLBW.

2 BACKGROUND AND RELATED WORK

2.1 BACKDOOR ATTACKS AND THEIR POSITIVE APPLICATIONS

Backdoor attack is an emerging threat to deep neural networks (Li et al., 2022c). Currently, existing
backdoor attacks can be roughly divided into two main categories, including patch-based attacks
and non-patch-based attacks, based on the trigger properties.

Specifically, patch-based attacks (Gu et al., 2019; Li et al., 2022e; Gao et al., 2023b) adopted some
local image patches as the trigger patterns. For example, BadNets randomly modified a few samples
from the original benign dataset by stamping the black-and-white trigger square to their images and
changing their labels to the target label. These attacks are highly effective since their trigger patterns
are significantly different from the surrounding of the replaced image areas in the poisoned samples;
In contrast, non-patch-based attacks exploited some transformations over the whole image, such as
additive noises (Li et al., 2021b), image-warping (Nguyen & Tran, 2021), and color shifting (Gong
et al., 2023), to generate poisoned images. In particular, a few works (Qiao et al., 2019; Li et al.,
2021a; Qi et al., 2023) initially discovered trigger generalization phenomenon, i.e., some potential
trigger patterns are (significantly) different from the one used for training but can still activate hidden
backdoors in the attacked models, in a few cases of neural cleanse (Wang et al., 2019). However,
none of them tried to provided its statistical patterns and measure or control this generalization. How
to better understand and control trigger generalization is still an important open-question.

Except for using for malicious purposes, there are also a few research studied how to exploit back-
door attacks for positive purposes based on their properties, such as adversarial defense (Shan et al.,
2020) and copyright protection (Li et al., 2022b; 2023b; Guo et al., 2023; Gan et al., 2023). In
particular, Lin et al. (Lin et al., 2021) used backdoor attacks to watermark DNNs, based on which
to design an evaluation method of saliency-based representation visualization. However, almost all
these applications relied on a latent assumption that backdoor triggers have mild generalization,
which does not holds for existing backdoor attacks.

2.2 SALIENCY-BASED REPRESENTATION VISUALIZATION (SRV) AND ITS EVALUATIONS

How to explain the predictions or mechanisms of DNNs is always an important research direction.
Currently, existing XAI methods of DNNs can be divided into three main categories, including (1)
visualizing DNN representations (Zeiler & Fergus, 2014; Rao et al., 2022; Chen et al., 2024), (2)
distilling DNNs to explainable models (Li et al., 2020a; Ha et al., 2021), and (3) building explainable
DNNs (Zhang et al., 2018; Xiang et al., 2020; Li et al., 2022a). In this paper, we focus on the
saliency-based representation visualization (SRV), which a sub-type of the first category.

Saliency-based Representation Visualization (SRV). In general, SRV methods explore visual pat-
terns within a DNN unit (e.g., the logit). Specifically, they generate a saliency map for each sample
whose value indicates the contribution of its corresponding part (e.g., pixel) to the unit’s result. In
general, we can divide existing SRV methods into two main categories, including white-box SRV
and black-box SRV. Their difference lies in whether the SRV method can access the source files
of the model. Currently, gradient-based methods are the mainstay of white-box SRV. For example,
back-propagation (BP) adopted the gradient of samples concerning their predicted results to render
their saliency maps; Guided back-propagation (GBP) (Springenberg et al., 2015) only considered
the positive gradients and set the negative parts as zero in ReLU layers; Gradient-weighted class
activation mapping (GCAM) (Selvaraju et al., 2017) generated saliency maps via features in the
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last convolutional layer; GGCAM (Selvaraju et al., 2017) combined GBP and GCAM via element-
wise multiplication. Black-box SRV usually obtained the saliency map by perturbing the input
and observing prediction changes. For example, occlusion sensitivity (OCC) (Zeiler & Fergus,
2014) occluded different image portions and monitored output differences; LIME (Ribeiro et al.,
2016) learned an interpretable model locally varound the prediction; Recently, feature ablation (FA)
(Meyes et al., 2019) perturbed a group of features instead of a single one to render saliency maps.

The Evaluation Methods of SRV Methods. In general, it is difficult to measure and evaluate the
performance of SRV methods due to the lack of the ground-truth salience map of a sample. Cur-
rently, the most reliable evaluation of SRV methods is still based on the human inspection with
ranking or scoring (Ribeiro et al., 2016; Kim et al., 2018; Dwivedi et al., 2023). However, this
evaluation is time-consuming and costly or even leads to biased and inaccurate results (Buçinca
et al., 2020). There are also a few automatic SRV evaluations, mostly by measuring the performance
fluctuations when perturbing critical regions (Samek et al., 2016; Yeh et al., 2019; van der Waa
et al., 2021). However, these methods usually require heavy computations and are even inaccurate
due to distribution shift (Hooker et al., 2019); Recently, Lin et al. (Lin et al., 2021) proposed to
exploit backdoor-based model watermarks to design SRV evaluation, based on the principle that
trigger locations can be regarded as the most critical regions contributing the most to model’s pre-
dictions. Specifically, it first generated the saliency maps of some poisoned samples containing
trigger patterns and turned them into 0-1 masks based on pre-defined thresholds. After that, it found
a minimum bounding box covering all edges of the trigger mask detected by the Canny algorithm
(Canny, 1986). The final score was calculated by the distance, such as average intersection over
union (IOU), between generated bounding box and the trigger mask over all samples. However, as
we will show in the following sections, this evaluation method is also unreliable.

3 REVISITING BACKDOOR-BASED XAI EVALUATION

3.1 STANDARDIZE BACKDOOR-BASED XAI EVALUATION

Currently, the backdoor-based SRV evaluation (Lin et al., 2021) still has some implementation lim-
itations that may lead to inaccurate results. In this section, we will standardize it.

Figure 3: The trigger patterns used for
standardized evaluation.

Implementation Limitations and Their Standardiza-
tion. Firstly, (Lin et al., 2021) took absolute values of
gradients in only parts of (instead of all) evaluated SRV
methods before generating their saliency map. Since both
positive or negative influnces are all important, to ensure a
fair comparison, we propose to conduct it on the gradients
of all SRV methods; Secondly, (Lin et al., 2021) adopted
a pre-defined threshold to filter out the most critical re-
gions (i.e., the 0-1 mask) from the saliency map for SRV
methods. However, the same threshold value has different
influences across samples even for the same SRV method.
To ensure a fair comparison, we propose to select M pixel
locations with the maximum saliency value as significant regions, where M is the size of trigger used
for model watermarking; Thirdly, (Lin et al., 2021) adopted the minimum bounding box covering
all edges of significant regions instead of themselves for calculating IOU. It may lead to inaccurate
results, especially when the original trigger has complex shapes. Accordingly, we calculate the IOU
based on the significant regions directly. In general, the second limitation has largest effects.

We conduct the following experiments to verify that the vanilla backdoor-based SRV evaluation may
lead to inaccurate results and therefore we need to standardize it. Please refer to Appendix C for
more details about why Lin et al. (2021) and we only consider patch-based triggers.

Settings. We adopt ResNet-18 (He et al., 2016) on CIFAR-10 (Krizhevsky, 2009) and GTSRB
(Stallkamp et al., 2012) datasets for our discussions. Following the settings in (Lin et al., 2021), we
adopt BadNets (Gu et al., 2019) for model watermarking. Specifically, the target label is set to ‘0’
and the watermarking rate is set to 5%. We adopt four triggers with two patterns (as shown in Figure
3) located in the lower-right corner or a random position of the image. We randomly sample 100
testing images for evaluation. We calculate the average rank by averaging the rank of SRV methods
(based on the IOU) in each scenario. Please find more details in Appendix A.
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Table 1: The evaluation (IOU) of SRV methods with vanilla backdoor-based method and its stan-
dardized version on the CIFAR-10 dataset and the GTSRB dataset. (a)&(c): triggers with the
square-like pattern; (b)&(d): triggers with the compass-like pattern; (a)&(b): triggers located in
the lower-right corner; (c)&(d): triggers with random locations.

Method↓ Dataset↓ SRV→
Trigger↓ BP GBP GCAM GGCAM OCC FA LIME

Vanilla

CIFAR-10

(a) 0.306 0.434 0.011 0.329 0.437 0.543 0.002
(b) 0.075 0.131 0.034 0.174 0.314 0.137 0.018
(c) 0.248 0.344 0.014 0.308 0.386 0.394 0.006
(d) 0.065 0.271 0.058 0.221 0.416 0.164 0.184

GTSRB

(a) 0.519 0.428 0.000 0.373 0.466 0.640 0.006
(b) 0.190 0.154 0.043 0.175 0.505 0.263 0.063
(c) 0.328 0.341 0.061 0.340 0.306 0.657 0.010
(d) 0.233 0.207 0.102 0.210 0.549 0.198 0.087

Standardized

CIFAR-10

(a) 0.212 0.212 0.000 0.207 0.885 0.494 0.979
(b) 0.266 0.266 0.001 0.268 0.537 0.385 0.991
(c) 0.346 0.346 0.000 0.348 0.928 0.579 0.964
(d) 0.243 0.243 0.005 0.247 0.703 0.566 0.988

GTSRB

(a) 0.344 0.344 0.000 0.315 0.739 0.423 1.000
(b) 0.174 0.174 0.000 0.141 0.635 0.708 0.957
(c) 0.240 0.240 0.000 0.254 1.000 0.723 0.909
(d) 0.087 0.087 0.012 0.090 0.721 0.608 0.879

Table 2: The average rank (based on the IOU) of SRV methods that is evaluated with the vanilla
backdoor-based method and its standardized version on CIFAR-10 and GTSRB datasets.

Method↓ Dataset↓, SRV→ BP GBP GCAM GGCAM OCC FA LIME

Vanilla CIFAR-10 5.25 3.00 6.25 3.25 1.50 2.50 6.25
GTSRB 2.75 3.75 6.50 3.75 2.50 2.25 6.50

Standardized CIFAR-10 4.75 4.75 7.00 4.50 2.00 3.00 1.00
GTSRB 4.50 4.50 7.00 5.00 2.00 2.75 1.25

(a) CIFAR-10 (Corner) (b) CIFAR-10 (Random) (c) GTSRB (Corner) (d) GTSRB (Random)

Figure 4: The distance between potential triggers and the original one used for training w.r.t. the
loss value on CIFAR-10 and GTSRB. The original trigger is a white square located at the lower-right
corner (dubbed ‘Corner’) or a random position (dubbed ‘Random’), denoted by the ‘red star’.

Results. As shown in Table 1-2, the vanilla backdoor-based method and our standardized version
have significantly different results. The vanilla method has various evaluations of the performance
of the same SRV method on different datasets (especially for BP). In contrast, our standardized
evaluation method has consistent rankings. These results verify that our evaluation is more faithful.

3.2 TRIGGER GENERALIZATION AND ITS INFLUENCES TO XAI EVALUATION

A Closer Look to Location Generalization of Trigger Patterns. In this section, we generate 1,000
targeted universal adversarial perturbations (with random initializations) regarding the target label
of models watermarked with the square-type trigger as potential trigger patterns. The watermarked
DNNs are the same as those obtained in Section 3.1. To analyze the generalization properties of
backdoor triggers, we visualize the distance between the potential trigger and the ground-truth one
w.r.t. its loss value. Specifically, we exploit Chamfer distance (Borgefors, 1988) to cover the lo-
cations of all trigger pixels. As shown in Figure 4, many potential trigger patterns are having a
large distance to the original one but with significantly lower loss values. In other words, the trigger
pattern of existing watermarks has a high-level position generalization, although only the original
trigger pattern is adopted. It is most probably due to the high non-convexity and excessive learning
capacities of DNNs. We will further explore its intrinsic mechanism in our future works.

Backdoor-based XAI Evaluation with Potential Trigger Patterns. In this part, we evaluate
whether the existing backdoor-based evaluation method has consistent rankings with potential trig-
gers different from the original one but can still activate model backdoors. Specifically, we adopted
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Table 3: The IOU evaluated by the standardized backdoor-based method with synthesized triggers.
Dataset↓ Trigger↓, SRV→ BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10
Pattern (a) 0.144 0.144 0.000 0.079 0.545 0.554 0.198
Pattern (b) 0.128 0.128 0.000 0.014 0.346 0.285 0.310
Pattern (c) 0.007 0.007 0.037 0.008 0.064 0.065 0.070

GTSRB
Pattern (d) 0.195 0.195 0.000 0.130 0.691 0.702 0.315
Pattern (e) 0.224 0.224 0.000 0.107 0.562 0.573 0.342
Pattern (f) 0.198 0.198 0.000 0.126 0.601 0.447 0.310

Table 4: The average rank (based on the IOU) of SRV methods that is evaluated by the standardized
backdoor-based method with different triggers on the CIFAR-10 and the GTSRB datasets.

Dataset↓ Trigger↓, SRV→ BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10 Original 4.75 4.75 7.00 4.50 2.00 3.00 1.00
Synthesized 4.67 4.67 6.00 5.67 2.00 2.00 2.00

GTSRB Original 4.50 4.50 7.00 5.00 2.00 2.75 1.25
Synthesized 4.00 4.00 7.00 6.00 1.67 1.33 3.00

(a) (b) (c) (d) (e) (f)
Figure 5: The trigger patterns used for generalization discussions.

three synthesized triggers generated in the previous part on each dataset (as shown in Figure 5) and
calculate the IOU of SRV methods with them. As shown in Table 3-4, the backdoor-based method
has significantly different results across different triggers even on the same dataset (especially for
GGCAM, FA and LIME). This phenomenon also indicates that its results are not reliable.

4 THE PROPOSED METHOD

As demonstrated in Section 3.2, existing backdoor-based SRV evaluation may have unreliable results
due to the trigger generalization of existing backdoor attacks. In this section, we discuss how to
obtain the generalization-limited backdoor watermark to design a more faithful SRV evaluation.

4.1 PRELIMINARIES

Threat Model. In this paper, we assume that users (i.e., SRV appraisers) can fully control the
training process of DNNs. They will try to implant backdoor triggers into the model, based on
which to evaluate the performance of SRV methods via poisoned samples.

The Main Pipeline of Backdoor-based Model Watermark. LetD = {(xi, yi)}Ni=1 denotes the be-
nign training set, where xi ∈ X = {0, 1, . . . , 255}C×H×W is the image, yi ∈ Y = {0, . . . ,K − 1}
is its label, and K is the number of classes. How to generate the watermarked dataset Dw is
the cornerstone of the backdoor-based model watermark. Specifically, Dw consists of two dis-
joint parts, including the modified version of a selected subset (i.e., Ds) of D and remaining
benign samples, i.e., Dw = Dm ∪ Db, where yt is a pre-defined target label, Db = D\Ds,
Dm = {(x′, yt)|x′ = G(x;w), (x, y) ∈ Ds}, γ ≜ |Ds|

|D| is the watermarking rate, and G : X → X
is the poisoned image generator with parameter w. For example, G(x) = (1 −m) ⊗ x +m ⊗ t,
where the mask m ∈ [0, 1]C×H×W , t ∈ X is the trigger pattern, and ⊗ is the element-wise product
used in the backdoor-based SRV evaluation (Lin et al., 2021). Once the watermarked dataset Dw is
generated, users will train the watermarked DNN f via minθ

∑
(x,y)∈Dw

L(f(x;θ), y).

4.2 AN INEFFECTIVE BASELINE: BACKDOOR WATERMARK WITH TRIGGER PENALTY

Arguably, the most straightforward method is to synthesize the potential trigger pattern and penalize
its effects based on its distance to the original one in each iteration during the training process. In
general, if the potential trigger pattern is close to the ground-truth one, the predictions of water-
marked DNNs to samples containing this pattern should be similar to the target label; Otherwise,
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Figure 6: The main pipeline of our generalization-limited backdoor watermark (GLBW). In each
iteration, we first generate promising synthesized patterns with the highest attack effectiveness and
differences from the original trigger via adaptively adjusting the trade-off parameter µ; After that, we
update the DNN through the weighted combination of benign loss, backdoor loss, and generalization
loss. We repeat these two steps until the generalization-limited backdoor watermark is implanted.
their predictions should be similar to their ground-truth label. To achieve this goal, we design a
penalty loss and call this method backdoor watermark with trigger penalty ( BWTP), as follows.

min
θ

∑
(x,y)∈D

L (fθ (x) , y)︸ ︷︷ ︸ + λ1 · L (fθ ((1−m)⊗ x+m⊗ t) , yt)︸ ︷︷ ︸ +

Benign Loss Backdoor Loss

λ2 · max
m′,t′,|m′|≤T

L′ (fθ ((1−m′)⊗ x+m′ ⊗ t′
)
, ŷt + ŷ

)
︸ ︷︷ ︸,

P enalty Loss

(1)

where D is the benign dataset, L and L′ are the loss functions (e.g., cross-entropy and mutual
information), t is the original trigger pattern with mask m, and T is the threshold of the size of
potential trigger mask m′. ŷt = (1 − p(d(m,m′))) · yt and ŷ = p(d(m,m′)) · y, where y
is the one-hot representation of y, d(·, ·) is a distance metric (e.g., chamfer distance), p(·) is a
probability activation function to map the distance to a probability (the larger the distance, the higher
the probability). λ1 and λ2 are two trade-off hyper-parameters for backdoor loss and penalty loss.

Similar to the optimization strategies used in adversarial training (Madry et al., 2018; Zhang et al.,
2019; Li et al., 2022d), we alternately optimize the inner maximization and the outer minimization
in each iteration. Please find more optimization details in Appendix D.

4.3 GENERALIZATION-LIMITED BACKDOOR WATERMARK (GLBW)

As we will show in the experiments and appendix, the previous BWTP suffers from relatively poor
performance whose watermarked DNNs still have high trigger generalization in many cases. Ac-
cording to the intermediate results, this failure is mostly because the synthesized triggers are ‘weak’
with either a large loss value or are similar to the original trigger. Besides, the training of water-
marked DNNs is unstable even when the synthesized triggers are promising. We argue that these
limitations are due to the complexity of its penalty loss. As such, we propose to directly identify
the potential trigger patterns that are more different from the ground-truth one and force them to
be predicted as the ground-truth label to further simplify the loss term, inspired by neural cleanse
(Wang et al., 2019). Its optimization process is as follows.

min
θ

∑
(x,y)∈D

L (fθ (x) , y)︸ ︷︷ ︸ + λ3 · L (fθ ((1−m)⊗ x+m⊗ t) , yt)︸ ︷︷ ︸ +

Benign Loss Backdoor Loss

λ4 · max
m′,t′,|m′∩m|≤τ ·|m|

−
{
L
(
fθ

(
(1−m′)⊗ x+m′ ⊗ t′

)
, yt

)
+ µ · |m′|

}
︸ ︷︷ ︸

Generalization Loss

(2)

where µ is a hyper-parameter trading off its size and effectiveness for synthesized trigger, λ3 & λ4

are two hyper-parameters for losses, τ is the overlap threshold between synthesized and original
triggers, and |m′| is the size of potential trigger mask. Notice that the y and yt contained in GLBW
are different from ŷ and ŷt used in the previous BWTP since they are fundamentally different.
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Table 5: The effectiveness and generalization of model watermarks on CIFAR-10 and GTSRB. ‘–’
denotes that the trigger synthesis method can not find any potential trigger in this case.

Dataset↓ Trigger Synthesis Method→ Neural Cleanse TABOR Pixel Backdoor
Metric→

Watermark↓ BA WSR Chamfer PLG Chamfer PLG Chamfer PLG

CIFAR-10
Vanilla 91.73 97.39 3979.33 42.20 4030.52 18.80 1974.68 10.30
BWTP 85.51 89.16 8070.46 0 8615.59 0.00 – –
GLBW 78.33 93.68 23.04 100 27.92 83.33 30.16 100

GTSRB
Vanilla 97.57 94.52 217.71 87.20 299.05 83.39 257.15 89.50
BWTP 88.36 91.61 21.83 100 20.16 100 25.71 100
GLBW 93.89 90.17 23.73 100 34.08 85.00 33.13 100

(a) CIFAR-10 (BWTP) (b) CIFAR-10 (GLBW) (c) GTSRB (BWTP) (d) GTSRB (GLBW)
Figure 7: The distance between potential trigger patterns and the original one used for training w.r.t.
the loss value on CIFAR-10 and GTSRB. The original trigger pattern is denoted by a ‘red star’.

In particular, we design an adaptive optimization method to find promising synthesized patterns with
the highest attack effectiveness and differences from the original trigger. Specifically, we repeat the
trigger generation and adaptively adjust the µ based on the current trigger candidate untill we find
the promising synthesized trigger in each inner maximization. The main pipeline of our method is
shown in Figure 6. Please find more optimization details and its pseudocodes in Appendix E.

5 EXPERIMENTS

5.1 MAIN SETTINGS

Baseline Selection. In this paper, we compare our generalization-limited backdoor watermark
(GLBW) with vanilla backdoor watermark (dubbed ‘Vanilla’) (Lin et al., 2021) and backdoor wa-
termark with trigger penalty (BWTP) with standardized evaluation process.

Settings for Model Watermarks. Following settings in (Lin et al., 2021), we adopt the 3× 3 white
square located in the lower-right bottom as the original trigger on both CIFAR-10 and GTSRB.
Specifically, we simply set λ1 = λ2 = 1 for BWTP and λ3 = λ4 = 1 for our GLBW. We use the
ℓ1-norm as the distance measurement d and exploit a modified version of the Sigmoid function as
the probability activation function p(·) used in BWTP. Please refer to Appendix F for more details.

Settings for the Generation of Potential Triggers. In Section 3.2, we adopt neural cleanse (Wang
et al., 2019) to generate potential triggers. In our GLBW, we also exploit a similar approach during
the generation of synthesized triggers. To evaluate whether our method can truly decrease trigger
generalization, we hereby adopt two other trigger synthesis methods, including TABOR (Guo et al.,
2020) and pixel backdoor (Tao et al., 2022) to generate potential triggers for all watermarked DNNs.
We generate 1,000 trigger candidates (with random initializations) in all cases. We only select those
whose loss values are less than 1.5 times of that of the original trigger (as shown in the red line in
Figure 7) as our potential trigger patterns. Please refer to Appendix F for more details.

Evaluation Metrics. We adopt benign accuracy (BA) and watermark success rate (WSR) to evaluate
the effectiveness of model watermarks. To evaluate their trigger generalization, we exploit chamfer
distance (dubbed ‘Chamfer’) and the percentage of effective potential triggers with low generaliza-
tion (dubbed ‘PLG’). The effective triggers whose IOU values are greater than the threshold (0.3 for
CIFAR-10 and 0.18 for GTSRB) are regarded as with low generalization. In general, the smaller the
chamfer distance and the larger the PLG, the lower the trigger generalization.

5.2 MAIN RESULTS

As shown in Table 5, both our BWTP and GLBW can obtain a sufficiently high WSR (> 85%) on
both datasets. In particular, our GLBW can significantly reduce trigger generalization in all cases
(as shown in both Table 5 and Figure 7). For example, the chamfer distance (measured via neural
cleanse and TABOR) of GLBW is more than 170 times smaller than that of the vanilla backdoor
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Table 6: The average rank (based on the IOU) of SRV methods that is evaluated with our
generalization-limited backdoor watermark on CIFAR-10 and GTSRB datasets.

Dataset↓, SRV→ BP GBP GCAM GGCAM OCC FA LIME
CIFAR-10 4.50 4.50 7.00 5.00 2.00 3.00 1.00
GTSRB 4.00 4.00 6.00 6.00 2.00 3.00 1.00

Table 7: Effects of the trigger size.
Size BA (%) WSR (%) Chamfer PLG (%)
3× 3 78.33 93.68 23.04 100
4× 4 83.20 91.58 67.74 100
5× 5 87.81 91.79 90.44 100

Table 8: Effects of the target label.
Label BA (%) WSR (%) Chamfer PLG (%)

0 78.33 93.68 23.04 100
1 84.27 83.82 25.31 100
2 77.08 93.23 25.09 100
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Figure 8: Effects of the watermarking rate.
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Figure 9: Effects of the Model Structure.

watermark on CIFAR-10. However, the BWTP may even increase the generalization on CIFAR-10,
although it can reach remarkable performance on the GTSRB dataset. As we will show in Appendix
G.3, it is mostly because its synthesized triggers are ‘weak’ with either a large loss value or are
similar to the original trigger. These results demonstrate the effectiveness of our GLBW method.

We notice that both BWTP and GLBW may decrease the benign accuracy to some extent, compared
to the vanilla backdoor watermark. However, this mild potential limitation will not hinder the use-
fulness (i.e., more faithful evaluation) of our methods, since the watermarked DNNs are only used
for evaluating SRV methods instead of for deployment (more details are in Appendix J). The average
rank of SRV methods via our GLBW is shown in Table 6. As shown in this table, the results are
consistent across datasets and therefore are more faithful and reliable. Please find the IOU of SRV
methods via three discussed model watermarks under different settings in Appendix G.

5.3 THE EFFECTS OF KEY HYPER-PARAMETERS

We hereby verify whether our GLBW is still effective under different settings on CIFAR-10. The
chamfer distance and PLG are measured via neural cleanse. More results are in Appendix H

Effects of the Watermarking Rate γ. As shown in Figure 8, the watermarking rate has minor
effects on trigger generalization. In particular, our GLBW can reach high effectiveness (as shown in
our appendix) and low generalization under different γ. It verifies the our effectiveness again.

Effects of the Trigger Size. As shown in Table 7, increasing the trigger size has minor effects to
watermark effectiveness, although there are some fluctuations for BA and WSR. We notice that the
chamfer distance raises with the increase in trigger size. However, it is due to the properties of this
distance metric and does not mean an increase in trigger generalization. The PLG remains 100%.

Effects of the Target Label yt. As shown in Table 8, our GLBW has promising performance under
different yt. The trigger generalization remains low with a small chamfer distance and 100% PLG.

Effects of the Model Structure. As shown in Figure 9, our GLBW reaches similar generalization
ability, especially with similar model architectures.

6 CONCLUSION

In this paper, we revisited the evaluation methods of saliency-based representation visualization
(SRV). We revealed the unreliable nature (due to the trigger generalization of backdoor watermarks)
and implementation limitations of existing backdoor-based SRV evaluation methods. Based on these
findings, we proposed a generalization-limited backdoor watermark, based on which we designed
a more faithful XAI evaluation. We hope our work can provide a deeper understanding of XAI
evaluation, to facilitate the design of more interpretable deep learning methods.
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attacks when they can control the training process of DNNs. However, these attacks are less harmful
compared to existing backdoor attacks because they will significantly reduce the benign accuracy
of attacked models and therefore can be noticed by victim model users. Besides, victim users can
also exploit existing backdoor defenses, especially saliency-based methods, to detect or remove
these backdoor attacks. Moreover, although we do not design a specified defense against BWTP or
GLBW, people can still mitigate or even avoid the threats by only using trusted training resources.
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(a) (b)

Figure 10: The watermark patterns used for standardized backdoor-based XAI evaluation.

APPENDIX

A SETTINGS FOR STANDARDIZE BACKDOOR-BASED XAI EVALUATION

Datasets and Models. We conduct experiments on two classical datasets, including CIFAR-10
(Krizhevsky, 2009) and GTSRB (Stallkamp et al., 2012), with ResNet-18 (He et al., 2016).

Watermark Setup. We adopt two watermark patterns: the square-like pattern (as shown in Figure
10(a)) and the compass-like pattern (as shown in Figure 10(b)). Based on these patterns, we generate
four kinds of triggers: (a), (b), (c), and (d). Specifically, (a) and (c) are the triggers with the square-
like pattern; (b) and (d) are triggers with the compass-like pattern; (a) and (b) are the triggers located
in the lower-right corner; (c) and (d) are the triggers with random locations.

Training Setup. We adopt BadNets (Gu et al., 2019) to train our backdoored models based on the
open-sourced Python toolbox—BackdoorBox (Li et al., 2023a). We train 8 backdoored models
using four triggers (i.e., (a), (b), (c), and (d)) on CIFAR-10 and GTSRB. We set the watermarking
rate as 5% and the target label yt is set to 0 for all backdoor training. To train our backdoored models,
the mini-batch is set to 128 for each iteration. We use the SGD optimizer by setting momentum=0.9
and weight decay=5e-4. For CIFAR-10, the number of the training epochs is 200 and the learning
rate is initialized as 0.1 and multiplied by 0.1 at the 150 and 180 epoch, respectively. For GTSRB,
the number of the training epochs is 30 and the learning rate is initialized as 0.01 and multiplied by
0.1 at the 20th epoch. In particular, we add watermarks after performing the data augmentation.

Computational Facilities. We train each model with one NVIDIA RTX3090 GPU. For CIFAR-10,
it costs about 40 minutes for training. For GTSRB, it costs about 15 minutes for training.

B SETTINGS FOR TRIGGER GENERALIZATION AND ITS INFLUENCES TO XAI
EVALUATION

We select the four models watermarked with the triggers (a) and (c) on CIFAR-10 and GTSRB used
in Section A for discussing trigger generalization. We generate 1,000 targeted universal adversarial
perturbations (Wang et al., 2019) (with random initializations) regarding the target label. In partic-
ular, we used the neural cleanse (Wang et al., 2019) to generate all synthesized triggers, where the
weight of the regularization term is set to 8 × 10−5. The training dataset is used as the set of clean
images for neural cleanse. We generate each synthesized trigger with 10 epochs.

C WHY DO WE (ONLY) NEED TO CONSIDER PATCH-BASED TRIGGERS?

People may worry about whether our method can truly lead more faithful evaluation since we only
focus on patch-based attacks (e.g., BadNets) and there are still many other backdoor attacks with
different trigger patterns (Li et al., 2021b; Doan et al., 2021; Zeng et al., 2023), while people may
also use complicated features in recognizing real images in practice.

Firstly, patch-based poisoned-label backdoor watermark is the most suitable and probably the only
suitable method for backdoor-based SRV evaluation. Specifically, clean-label attacks where the
adversaries only poison samples for the target class (Turner et al., 2019; Gao et al., 2023b;a; Zeng
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Table 9: The effectiveness and generalization of backdoor watermarks on CIFAR-10 with different
trigger types. The best results are marked in boldface.

Type↓ Method↓, Metric→ BA WSR Chamfer PLG

Blended Vanilla 97.55 91.79 61.59 94.60
GLBW 90.10 88.03 9.81 100

Additive Vanilla 97.60 95.01 66.47 95.00
GLBW 94.93 91.92 26.42 100

et al., 2023) are not suitable since attacked DNNs may use both ‘ground-truth’ features and trigger
features instead of just trigger features for predictions. Besides, the triggers of almost all existing
non-patch-based attacks are with full image-size. We certainly don’t want saliency ares are the
whole image. Accordingly, these attacks are also not suitable for SRV evaluation.

Secondly, people categorize a given image usually based on its local regions instead of the whole
image. For example, we only need to see the image areas of its ‘head’ to know it is a bird. These
local regions are similar to the trigger patch used in our evaluation. Accordingly, results made by
our method can be a good reference in real images for practice. This is probably the main reason
why our baseline research (Lin et al., 2021) evaluated their method only with trigger patches.

Thirdly, it is impossible to faithfully evaluate the performance of SRV methods for complicated
features (instead of simple trigger patches) since there are no ground-truth salience maps. Even a
human expert cannot accurately mark the salience map for complicated features in most cases.

Fourthly, simple trigger patches are also features used by DNNs for their predictions. Accordingly,
the evaluation of SRV methods on trigger features is the first and the most important step toward
evaluating their general performance and is therefore of great significance.

In particular, one may argue that there are still two other patch-based triggers, including ‘Blended’
(i.e., BadNets with trigger transparency) and patch-size additive trigger (dubbed ‘Additive’), that we
did not evaluated in our main experiments. Accordingly, we hereby conduct additional experiments
on the CIFAR-10 dataset with them. As shown in Table 9, our GLBW is still highly effective.

D THE OPTIMIZATION PROCESS OF BWTP

Arguably, the most straightforward method is to synthesize the potential trigger pattern and penalize
its effects based on its distance to the original one in each iteration during the training process. In
general, if the potential trigger pattern is close to the ground-truth one, the predictions of water-
marked DNNs to samples containing this pattern should be similar to the target label; Otherwise,
their predictions should be similar to their ground-truth label. In this paper, we call this method as
backdoor watermark with trigger penalty (BWTP), whose optimization process is as follows:

min
θ

∑
(x,y)∈D

L (fθ (x) , y)︸ ︷︷ ︸ + λ1 · L (fθ ((1−m)⊗ x+m⊗ t) , yt)︸ ︷︷ ︸ +

Benign Loss Backdoor Loss

λ2 · max
m′,t′,|m′|≤T

L′ (fθ ((1−m′)⊗ x+m′ ⊗ t′) , ŷt + ŷ)︸ ︷︷ ︸,
P enalty Loss

(1)

where D is the benign dataset, L and L′ are the loss functions (e.g., cross-entropy and mutual
information), t is the original trigger pattern with mask m, and T is the threshold of the size of
potential trigger mask m′. ŷt = (1 − p(d(m,m′))) · yt and ŷ = p(d(m,m′)) · y, where y
is the one-hot representation of y, d(·, ·) is a distance metric (e.g., chamfer distance), p(·) is a
probability activation function to map the distance to a probability (the larger the distance, the higher
the probability). λ1 and λ2 are two trade-off hyper-parameters for backdoor loss and penalty loss.
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Similar to adversarial training (Madry et al., 2018), we alternately optimize the inner maximization
and the outer minimization in each iteration. For the inner maximization, we solve the following
formula to get a penalized trigger (with mask m′ and pattern t′):

max
m′,t′,|m′|≤T

L′ (fθ ((1−m′)⊗ x+m′ ⊗ t′) , ŷt + ŷ) . (2)

For convenience, this formula can be written in an equivalent form:

min
m′,t′,|m′|≤T

− L′ (fθ ((1−m′)⊗ x+m′ ⊗ t′) , ŷt + ŷ) . (3)

After that, this conditional minimization problem can be approximated as a non-conditional surro-
gate problem, as follow:

min
m′,t′

[−L′ (fθ ((1−m′)⊗ x+m′ ⊗ t′) , ŷt + ŷ) + γ ·max(0, |m′| − T )] , (4)

where γ is the weight of the regularization term used for limiting the size of m′.

We proposed an algorithm (as shown in Algorithm 1) to solve the aforementioned problem (4):
Firstly, we randomly initialize m′

o and t′o by sampling from the standard normal distribution. Sec-
ondly, we iteratively optimize the problem (4) on a benign dataset D. In particular, we map the
values of m′

o and t′o to [0, 1] by a modification of tanh function in each iteration. After optimizing
for several epochs, the final penalized trigger mask m′ and pattern t′ are obtained.

For the outer minimization, we adopt the penalized trigger mask and pattern generated from Algo-
rithm 1 as m′ and t′. After that, we solve the following trying to reduce the trigger generalization
of the watermarked DNN during its training process:

min
θ

∑
(x,y)∈D

L (fθ (x) , y)︸ ︷︷ ︸ + λ1 · L (fθ ((1−m)⊗ x+m⊗ t) , yt)︸ ︷︷ ︸ +

Benign Loss Backdoor Loss

λ2 · L′ (fθ ((1−m′)⊗ x+m′ ⊗ t′) , ŷt + ŷ)︸ ︷︷ ︸ .
P enalty Loss

(5)

We solve the aforementioned problem (5) with the standard SGD (Bottou, 2010), as shown in Algo-
rithm 2. After several epochs, the final watermarked model fθ with BWTP is obtained.

E THE OPTIMIZATION PROCESS OF GLBW

As we show in the experiments, the previous BWTP suffers from relatively poor performance whose
watermarked DNNs still have high trigger generalization in some cases. According to the intermedi-
ate results, this failure is mostly because the synthesized triggers are ‘weak’ with either a large loss
value or are similar to the original trigger. Besides, the training of watermarked DNNs is unstable
even when the synthesized triggers are promising. We argue that these limitations are due to the
complexity of its penalty loss. As such, we propose to directly target the generation of synthesized
triggers to make this process more controllable, inspired by neural cleanse which is a backdoor
defense based on trigger synthesis (Wang et al., 2019). Its optimization is as follows:

min
θ

∑
(x,y)∈D

L (fθ (x) , y)︸ ︷︷ ︸ + λ3 · L (fθ ((1−m)⊗ x+m⊗ t) , yt)︸ ︷︷ ︸ +

Benign Loss Backdoor Loss

λ4 · max
m′,t′,|m′∩m|≤τ ·|m|

− {L (fθ ((1−m′)⊗ x+m′ ⊗ t′) , yt) + µ · |m′|}︸ ︷︷ ︸
Generalization Loss

(6)

where µ is a hyper-parameter trading off its size and effectiveness for synthesized trigger, λ3 & λ4

are two hyper-parameters for losses, τ is the overlap threshold between synthesized and original
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Algorithm 1 Generating the penalized trigger.
Input: The benign dataset D; The current model fθ; Target label yt; The mask m and pattern t of
the original trigger; Hyper-parameters T and γ; The number of epochs for generating the penalized
trigger Ngen;
Output: The mask m′ and pattern t′ of the penalized trigger;

1: function GET PENALIZED TRIGGER(D, fθ, yt, m, t, T , γ, Ngen)
2: m′

o ∼ N (0, 1)
3: t′o ∼ N (0, 1)
4: for n = 1 to Ngen do
5: for each mini-batch (x, y) ∈ D do
6: m′ ← tanh(m′

o)+1
2 ▷ Map the values of m′

o to [0, 1]

7: t′ ← tanh(t′o)+1
2 ▷ Map the values of t′o to [0, 1]

8: gm′
o
← ∇m′

o
[−L′(fθ((1−m′)⊗ x+m′ ⊗ t′), ŷt + ŷ) + γ ·max(0, |m′| − T )]

9: gt′o ← ∇t′o
[−L′(fθ((1−m′)⊗ x+m′ ⊗ t′), ŷt + ŷ) + γ ·max(0, |m′| − T )]

10: Use Adam optimizer to update m′
o and t′o with gradients gm′

o
and gt′o

11: end for
12: end for
13: return m′, t′

14: end function

Algorithm 2 Watermarking DNNs with BWTP.
Input: The benign dataset D; Model fθ; Target label yt; The mask m and pattern t of the original
trigger; Hyper-parameters λ1, λ2, T , γ; The number of the training epochs Ntrain and the number
of epochs for generating the penalized trigger Ngen;
Output: BWTP-watermarked DNN fθ;

1: function BWTP(D, fθ, yt, m, t, λ1, λ2, T , γ, Ntrain, Ngen)
2: for n← 1 to Ntrain do
3: m′, t′ ← GET PENALTY TRIGGER(D, fθ, yt,m, t, T, γ,Ngen)
4: for each mini-batch (x, y) ∈ D do
5: Lbenign ← L(fθ(x), y)
6: Lbackdoor ← L(fθ((1−m)⊗ x+m⊗ t), yt)
7: Lpenalty ← L′(fθ((1−m′)⊗ x+m′ ⊗ t′), ŷt + ŷ)
8: gθ ← ∇θ (Lbenign + λ1 · Lbackdoor + λ2 · Lpenalty)
9: Use SGD optimizer to update θ with gradient gθ

10: end for
11: end for
12: return fθ
13: end function

triggers. Notice that the y and yt contained in GLBW are different from ŷ and ŷt used in the
previous BWTP since these two methods are fundamentally different.

To solve the aforementioned problem (6), we alternately optimize the inner maximization and the
outer minimization in each iteration. For the inner maximization, we solve the following maximiza-
tion to get a promising synthesized trigger:

max
m′,t′,|m′∩m|≤τ ·|m|

− [L (fθ ((1−m′)⊗ x+m′ ⊗ t′) , yt) + µ · |m′|] . (7)

For convenience, this problem can be written in an equivalent form:

min
m′,t′,|m′∩m|≤τ ·|m|

[L (fθ ((1−m′)⊗ x+m′ ⊗ t′) , yt) + µ · |m′|] . (8)

In particular, we design an adaptive optimization algorithm (as shown in Algorithm 3) to solve
the aforementioned problem (8): At the beginning, we initialize init flag to False and µ to µ0.
init flag is flag used to identify whether to force m′ to be different from m by the special initial-
ization of m′

o. µ is an adaptive parameter to limit the size of the synthesized trigger mask m′. After
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Algorithm 3 Generating the desired synthesized trigger.
Input: The benign dataset D; The current model fθ; Target label yt; The mask m and trigger
pattern t of the original trigger; Hyper-parameters µ0 and τ ; The number of epochs for generating
the potential trigger Ngen;
Output: The mask m′ and its pattern t′ of the promising synthesized trigger;

1: function GET PROMISING TRIGGER(D, fθ, yt, m, t, µ0, τ , Ngen)
2: init flag ← False
3: µ← µ0

4: loop
5: m′

o ∼ N (0, 1)
6: t′o ∼ N (0, 1)
7: if init flag = True then
8: m′

oi,j ← −∞ where mi,j = 1
9: end if

10: for n = 1 to Ngen do
11: for each mini-batch x ∈ D do
12: m′ ← tanh(m′

o)+1
2 ▷ Map the values of m′

o to [0, 1]

13: t′ ← tanh(t′o)+1
2 ▷ Map the values of t′o to [0, 1]

14: gm′
o
← ∇m′

o
[L(fθ((1−m′)⊗ x+m′ ⊗ t′), yt) + µ · |m′|]

15: gt′o ← ∇t′o
[L(fθ((1−m′)⊗ x+m′ ⊗ t′), yt) + µ · |m′|]

16: Use Adam optimizer to update m′
o and t′o with gradients gm′

o
and gt′o

17: end for
18: end for
19: lossm ← 1

|D|
∑

x∈D L(fθ((1−m)⊗ x+m⊗ t), yt)

20: lossm′ ← 1
|D|

∑
x∈D L(fθ((1−m′)⊗ x+m′ ⊗ t′), yt)

21: if |m′| > |m| · 2 then
22: µ← µ · |m

′|
|m| ▷ Adjust µ adaptively

23: continue
24: else if |m′| < |m| · 0.6 and lossm′ > lossm then
25: µ← µ · 0.618 ▷ Adjust µ adaptively
26: continue
27: else if lossm′ > 1.8 · lossm or lossm′ + µ · |m′| > 1.5 · (lossm + µ · |m|) then
28: continue ▷ We get a bad trigger candidate and run the algorithm again to find a

better one.
29: else if |m′ ∩m| > τ · |m| then
30: init flag ← True
31: continue ▷ We get a trigger candidate that is too similar to the original trigger m

and run the algorithm again to find a different one.
32: end if
33: return m′, t′

34: end loop
35: end function

initializing init flag and µ0, the program enters a loop to generate potential synthesized triggers
adaptively. In the loop, the first step is randomly initializing m′

o and t′o by sampling from the stan-
dard normal distribution. If init flag is True, we set m′

oi,j to −∞ where mi,j = 1. This is to
force m′ to be different from m (that is m′ ∩m = 0). After that, we iteratively optimize the the
problem (8) on the benign dataset D. After optimizing for several epochs, we get a trigger candi-
date mask m′ and its corresponding pattern t′. Then, we calculate the loss of the original trigger
mask m with target label yt (dubbed as lossm) and the loss of the candidate trigger mask m′ with
target label yt (dubbed as lossm′ ). After that, we will check the quality of the trigger candidate.
The first check is whether the size of candidate trigger mask m′ is too big. If |m′| > 2 · |m|,
we increase µ by multiplying |m′|

|m| to limit the size of m′ and then continue the loop to generate
another trigger candidate; The second check is whether the size of candidate trigger mask m′ is too
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Algorithm 4 Watermarking DNNs with GLBW.
Input: The benign dataset D; The model fθ; Target label yt; The mask m and pattern t of the
original trigger; Hyper-parameters λ3, λ4, µ0, τ ; The number of the training epochs Ntrain and the
number of epochs for generating the penalized trigger Ngen;
Output: A model with generalization-limited backdoor watermark fθ;

1: function GLBW(D, fθ, yt, m, t, λ3, λ4, µ0, τ , Ntrain, Ngen)
2: for n← 1 to Ntrain do
3: m′, t′ ← GET PROMISING TRIGGER(D, fθ, yt,m, t, µ0, τ,Ngen)
4: for each mini-batch (x, y) ∈ D do
5: Lbenign ← L(fθ(x), y)
6: Lbackdoor ← L(fθ((1−m)⊗ x+m⊗ t), yt)
7: Lgeneralization ← L(fθ((1−m′)⊗ x+m′ ⊗ t′), y)
8: gθ ← ∇θ (Lbenign + λ3 · Lbackdoor + λ4 · Lgeneralization)
9: Use SGD optimizer to update θ with gradient gθ

10: end for
11: end for
12: return fθ
13: end function

small. If |m′| < 0.6 · |m| and lossm′ > lossm, that is the trigger mask is too small and with a
large loss, we decrease µ by multiplying 0.618 to relax the size of m′ and then continue the loop to
generate another trigger candidate; The third check is whether the candidate trigger is effective. If
lossm′ > 1.8 · lossm or lossm′ +µ · |m′| > 1.5 · (lossm+µ · |m|), we think the trigger candidate
is too bad and cannot effectively activate the backdoor, then continue the loop to generate another
better trigger candidate; The fourth check is whether the candidate trigger is similar to the original
trigger. If |m′∩m| > τ · |m|, we get a trigger candidate that is too similar to the original trigger m,
we set init flag to True and run the algorithm again to find a different one. If the trigger candidate
passes all four checks, it is a promising synthesized trigger and we mark its mask m′ and pattern t′.

For the outer minimization, we use the promising synthesized trigger mask and pattern generated
from Algorithm 3 as m′ and t′. After that, we solve the following problem to train a generalization-
limited watermarked model:

min
θ

∑
(x,y)∈D

L (fθ (x) , y)︸ ︷︷ ︸ + λ3 · L (fθ ((1−m)⊗ x+m⊗ t) , yt)︸ ︷︷ ︸ +

Benign Loss Backdoor Loss

λ4 · L (fθ ((1−m′)⊗ x+m′ ⊗ t′) , yt)︸ ︷︷ ︸,
Generalization Loss

(9)

We solve the aforementioned problem (9) with the standard SGD (Bottou, 2010), as shown in Algo-
rithm 4. After several epochs, the final GLBW-watermarked model fθ is obtained.

F DETAILED SETTINGS FOR MAIN EXPERIMENTS

General Settings for Backdoor Watermarks. We adopt the trigger (a) used in Section A as the
original trigger pattern for all model watermarks on both CIFAR-10 and GTSRB. The watermarking
rate and the target label are also the same as those used in Section A.

Settings for Vanilla Backdoor Watermark. The settings are the same as those used in Section A.

Settings for BWTP. We set the the threshold of the size of potential trigger mask T as 18, the number
of epochs for generating each potential trigger Ngen as 10, λ1 = λ2 = γ = 1, and the distance
measurement d(m,m′) = |m −m′|. In particular, we use a modified version of the Sigmoid
function as the probability activation function p(·) (as shown in Figure 11). When d(m,m′) is very
large, the probability p(d(m,m′)) ≈ 1 and the penalty label ŷt + ŷ ≈ y; When d(m,m′) is very
small, the probability activation p(d(m,m′)) ≈ 0 and the penalty label ŷt + ŷ ≈ yt.
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Figure 11: The graph of the probability activation function p(·) .

Settings for GLBW. We set the hyper-parameters λ3 = λ4 = 1, µ0 = 0.001, τ = 0.05 and the
number of epochs for generating each potential trigger Ngen as 15.

General Settings for Trigger Synthesis. We adopt three trigger synthesis methods, including neu-
ral cleanse (Wang et al., 2019), TABOR (Guo et al., 2020), and pixel backdoor (Tao et al., 2022)
to generate potential triggers of watermarked DNNs. We generate 1,000 trigger candidates (with
random initializations) in all cases. We only select those whose loss values are less than 1.5 times
of that of the original trigger as our potential triggers.

Evaluation Metrics. Following the most classical settings, we adopt benign accuracy (BA) and
watermark success rate (WSR) to evaluate the effectiveness of model watermarks. To evaluate
their trigger generalization, we exploit chamfer distance (dubbed ‘Chamfer’) and the percentage
of effective potential triggers with low generalization (dubbed ‘PLG’). The effective triggers whose
IOU values are greater than the threshold (0.3 for CIFAR-10 and 0.18 for GTSRB) are regarded as
with low generalization. In general, the smaller the chamfer distance and the larger the PLG, the
lower the position generalization of a watermark.

The Visualization of Different Types of Trigger Candidates and The Definition of PLG. We
visualize different trigger candidates for better understanding (as shown in Figure 12). Triggers in
the first line are effective candidates with a high IOU value (i.e., effective triggers with low gener-
alization). These triggers have high watermark success rate (WSR) and low backdoor loss that can
activate the backdoor of watermarked DNNs successfully; Triggers in the second line are effective
candidates with a low IOU value (i.e., effective triggers with high generalization). These potential
triggers have high WSR and low backdoor loss that can activate the backdoor of watermarked DNNs
successfully, whereas they are different from the original trigger pattern; Triggers in the third line
are ineffective trigger candidates with low WSR and high backdoor loss that can not activate model
backdoors. Accordingly, they should not be regarded as potential triggers but targeted universal ad-
versarial perturbations. We do not include them in the evaluation of trigger generalization. As such,
the caculation of PLG can be written as follows:

PLG =
the number of the effective triggers with high IOU

the number of all effective triggers
.

Settings for Neurl Cleanse. We set the number of training epochs as 10 for the vanilla watermark
and 3 for others. On the CIFAR-10 dataset, we set the weight of the regularization term λ = 8×10−5

for the vanilla watermark, λ = 6 × 10−2 for BWTP, and λ = 9.315 × 10−2 for GLBW. On the
GTSRB dataset, we set λ = 8 × 10−5 for the vanilla watermark, λ = 9 × 10−2 for BWTP, and
λ = 9× 10−2 for GLBW. We adopt different settings to achieve the best synthesis performance.

Settings for TABOR. We set the number of training epochs as 2. On the CIFAR-10 dataset, we
set the weights of the TABOR regularization terms λ1 = 8 × 10−4, λ2 = 10−4, λ = 10−5 for the
vanilla watermark, λ1 = 5×10−2, λ2 = 5×10−3, λ = 10−5 for BWTP, and λ1 = 7.5×10−2, λ2 =
7.5× 10−3, λ = 10−5 for GLBW. On the GTSRB dataset, we set λ1 = 8× 10−4, λ2 = 10−4, λ =
10−5 for the vanilla watermark, λ1 = 8 × 10−2, λ2 = 8 × 10−3, λ = 10−5 for BWTP, and
λ1 = 7.2 × 10−2, λ2 = 7.2 × 10−3, λ = 10−5 for GLBW. We adopt different settings in different
cases to achieve the best synthesis performance.

20



Published as a conference paper at ICLR 2024

IOU = 1.000
WSR = 90.17
Loss=0.318

  
  

Effective Triggers
with High IOU

IOU = 0.455
WSR = 92.47
Loss=0.256

IOU = 0.353
WSR = 93.57
Loss=0.161

IOU = 0.354
WSR = 93.79
Loss=0.157

IOU = 0.110
WSR = 84.84
Loss=0.445

IOU = 0.130
WSR = 91.30
Loss=0.321

IOU = 0.131
WSR = 90.74
Loss=0.332

IOU = 0.135
WSR = 90.85
Loss=0.325

IOU = 0.0
WSR = 58.08
Loss=1.115

IOU = 0.0
WSR = 57.30
Loss=1.106

IOU = 0.0
WSR = 58.55
Loss=1.093

IOU = 0.0
WSR = 60.29
Loss=1.088

 Ineffective Triggers

  
  

Effective Triggers
with Low IOU

Figure 12: The example of synthesized trigger candidates generated by TABOR towards models
watermarked by our GLBW on the GTSRB dataset.

Table 10: The effectiveness and generalization of model watermarks on CIFAR-10 and GTSRB
datasets. ‘# All’ indicates the number of all triggers while ‘# P’ denotes that of potential triggers.
‘–’ denotes that the trigger synthesis method can not find any potential trigger in this case.

Dataset↓ Trigger Synthesis Method→ Neural Cleanse TABOR Pixel Backdoor
Metric→

Watermark↓ BA WSR # All # P ℓ1-norm # P ℓ1-norm # P ℓ1-norm

CIFAR-10
Vanilla 91.73 97.39 1000 1000 20.61 1000 21.17 1000 14.912
BWTP 85.51 89.16 1000 424 25.08 314 26.83 0 -
GLBW 78.33 93.68 1000 63 6.20 12 6.71 6 6.434

GTSRB
Vanilla 97.57 94.52 1000 1000 9.48 638 9.80 1000 10.113
BWTP 88.36 91.61 1000 38 5.79 6 5.47 11 6.673
GLBW 93.89 90.17 1000 428 7.43 100 9.39 86 8.451

Settings for Pixel Backdoor. We set the number of training epochs as 10. On the CIFAR-10 dataset,
we set the weight of the regularization term α = 5 × 10−4 for the vanilla watermark, α = 0.5 for
BWTP, and α = 2 for GLBW. On the GTSRB dataset, we set α = 5 × 10−4 for the vanilla
watermark, α = 0.7 for BWTP, and α = 1 for GLBW. We adopt different settings in different cases
to achieve the best synthesis performance towards all watermarked models.

G ADDITIONAL RESULTS OF MAIN EXPERIMENTS

In this section, we provide additional results that are omitted in the main manuscript.

G.1 THE GENERALIZATION OF MODEL WATERMARKS

In the main manuscript, we adopt chamfer distance and PLG to measure the trigger generalization. In
this section, we provide the results under ℓ1-norm. Besides, we provide the number of all synthesized
triggers (dubbed ‘# All’) and potential triggers (dubbed ‘# P’).

As shown in Table 10, our GLBW can significantly reduce the trigger generalization compared to
the vanilla backdoor watermark in all cases whereas BWTP may even increase it in some cases.
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Table 11: The evaluation (IOU) of SRV methods based on our generalization-limited backdoor wa-
termark with the standardized process on the CIFAR-10 dataset and the GTSRB dataset. (a)&(c):
triggers with the square-like pattern; (b)&(d): triggers with the compass-like pattern; (a)&(b): trig-
gers located in the lower-right corner; (c)&(d): triggers with random locations.

Dataset↓ SRV→
Trigger↓ BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10

(a) 0.143 0.143 0.000 0.003 0.603 0.543 0.990
(b) 0.148 0.148 0.045 0.215 0.621 0.583 0.997
(c) 0.116 0.116 0.000 0.138 0.927 0.652 0.964
(d) 0.260 0.260 0.000 0.134 0.679 0.589 0.994

GTSRB

(a) 0.169 0.169 0.009 0.009 0.938 0.901 0.998
(b) 0.247 0.247 0.040 0.040 0.693 0.685 0.985
(c) 0.082 0.082 0.009 0.009 0.964 0.495 0.985
(d) 0.096 0.096 0.040 0.040 0.666 0.520 0.952

Figure 13: The backdoor loss of the synthesized trigger w.r.t. training epoch of BWTP on CIFAR-
10. The red dash line denotes the loss of the original trigger.

(a) (b) (c)

Figure 14: The effective synthesized triggers generated by BWTP on the CIFAR-10 dataset.

G.2 THE IOU OF SRV METHODS WITH OUR GLBW

The IOU of SRV methods calculated based on our GLBW is shown in Table 11. The results show
that our GLBW can lead to more consistent and stable evaluation and therefore is more faithful.

G.3 A CLOSER LOOK TO THE FAILURE OF BWTP

In this section, we explore why our BWTP method may lead to poor performance on CIFAR-10
by visualizing the training process of BWTP. Specifically, we present the backdoor loss of each
synthesized trigger with respect to the training epoch on the CIFAR-10 dataset.

As shown in Figure 13, the loss values of synthesized triggers are significantly larger than that of
the original trigger. In other words, most of them are ineffective and cannot activate the backdoor
in the watermarked model. Even among the few valid synthesized triggers, there is still a trigger
pattern that is similar to the original trigger (as shown in Figure 14). Accordingly, penalizing these
synthesized triggers has a minor benefit to reduce trigger generalization.
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Table 12: Effects of the hyper-parameter λ3.
λ3 BA (%) WSR (%) Chamfer PLG (%)
0.6 78.35 93.15 23.13 100
0.8 81.49 92.45 17.38 100
1.0 78.33 93.68 23.04 100
1.2 82.63 93.65 24.28 100
1.4 79.85 89.88 32.99 100

Table 13: Effects of the hyper-parameter λ4.
λ4 BA (%) WSR (%) Chamfer PLG (%)
0.6 74.57 92.56 24.68 100
0.8 81.16 87.71 26.37 100
1.0 78.33 93.68 23.04 100
1.2 75.90 88.05 24.03 100
1.4 80.74 87.30 24.02 100

Table 14: Effects of the hyper-parameter µ0.
µ0 BA (%) WSR (%) Chamfer PLG (%)

0.0006 84.17 87.53 21.50 100
0.0008 81.18 89.70 23.47 100
0.0010 78.33 93.68 23.04 100
0.0012 82.78 90.55 17.46 100
0.0014 81.76 84.80 29.49 100

H ADDITIONAL RESULTS OF THE EFFECTS OF KEY HYPER-PARAMETERS

In this section, similar to the main manuscript, we adopt the CIFAR-10 dataset as an example to
discuss the effects of other key hyper-parameters involved in our GLBW.

H.1 EFFECTS OF THE HYPER-PARAMETER λ3

As shown in Table 12, the hyper-parameter λ3 has a mild influence on our GLBW, especially on its
trigger generalization. Specifically, our method can reach a 100% PLG under all settings. In other
words, users can achieve faithful SRV evaluation based on our GLBW without fine-tuning λ3.

H.2 EFFECTS OF THE HYPER-PARAMETER λ4

As shown in Table 13, the hyper-parameter λ4 also has a mild influence on our GLBW, although
it has higher impacts on WSR. This is mostly because λ4 relates to the ‘suppression’ of potential
triggers that may have adverse effects on the WSR. Nevertheless, our method can reach a 100%
PLG under all settings. Accordingly, users can achieve faithful SRV evaluation based on our GLBW
without fine-tuning this hyper-parameter.

H.3 EFFECTS OF THE HYPER-PARAMETER µ0

As shown in Table 14, µ0 also has mild effects to trigger the generalization of our GLBW. It is
mostly because of the adaptive optimization process of generating synthesized triggers. Users can
still achieve faithful SRV evaluation based on our GLBW without fine-tuning this hyper-parameter.

I A CLOSER LOOK TO THE EFFECTIVENESS OF OUR GLBW

In this section, we further explore why our GLBW can reduce trigger generalization by visualizing
all synthesized triggers via principal component analysis (PCA).

Settings. We use the vanilla, BWTP and GLBW models trained in Section 5.2 for experiments.
Similar to (Qiao et al., 2019), for each model, we sample 1,000 triggers produced by neural cleanse
and embed these triggers into a 2-D space via PCA to visualize trigger distribution. In particular,
we train PCA on the triggers generated from the vanilla model, and then apply it to the triggers
generated from all the models. That is to say, all the dimension reduction processes are under the
same linear transformation.

Results. As shown in Figure 15, the effective triggers generated from the model watermarked by
our GLBW are clustered together in all cases. In other words, they are from a similar distribu-
tion.Accordingly, our GLBW has a low trigger generalization. In contrast, the effective triggers
generated from the model watermarked by vanilla backdoor attack scatter in the whole space, in-
dicating that they are from different latent distributions. As such, the vanilla backdoor watermark
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(a) Vanilla (CIFAR-10) (b) BWTP (CIFAR-10) (c) GLBW (CIFAR-10)

(d) Vanilla (GTSRB) (e) BWTP (GTSRB) (f) GLBW (GTSRB)

Figure 15: The visualization of the trigger distribution.

has a high trigger generalization. The effective triggers of BWTP have similar behavior to that of
GLBW on GTSRB while having a similar behavior to the vanilla backdoor watermark on CIFAR-
10. These phenomena are consistent with the trigger generalization of BWTP (low generalization
on the GTSRB dataset and high generalization on the CIFAR-10 dataset).

J WHY WOULD OUR METHODS DECREASE BENIGN ACCURACY?

In our methods, we treat the universal adversarial perturbations (UAPs) and potential triggers the
same, whereas we have to admit that they may be different. Accordingly, our methods (especially
GLBW) are similar to adversarial training against UAPs in terms of effectiveness. As such, our
GLBW has a similar effect as conducting adversarial training on UAPs that will (significantly) de-
creases benign accuracy especially when the task is relatively complicated.

However, it does not necessarily means that our method is not practical even we treat them the same.

Firstly, having a relatively low benign accuracy will not reduce the reliability and practicality of our
method. Firstly, our evaluation is based on poisoned samples instead of clean samples. As such,
we only need to ensure that our methods lead to a high watermark success rate (instead of a high
benign accuracy) for faithful results. The watermark success rates are higher than 90% in all cases,
which is sufficiently high; Secondly, as we mentioned in our experiments, the watermarked DNNs
are only used for evaluating SRV methods instead of for deployment. Accordingly, the decrease in
clean accuracy led by our method will not hinder its usefulness.

Secondly, our method can still reduce trigger generalization since it minimizes both trigger general-
ization and the risk of UAPs simultaneously, even though we treat them the same.

Thirdly, minimizing the risk of UAPs may have potential benefits in reducing trigger generalization.
(Ilyas et al., 2019) revealed that adversarially robust models focus more on ‘robust features’ instead
of non-robust ones (e.g., textures). Accordingly, our method may makes DNNs rely more on the
original trigger pattern for poisoned samples and therefore could reduce trigger generalization.
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Table 15: The average rank of SRV methods that is evaluated with our GLBW method and human
inspection on the GTSRB dataset.

Dataset↓ SRV→
Method↓ BP GBP GCAM GGCAM OCC FA LIME

GTSRB Ours 4.00 4.00 6.00 6.00 2.00 3.00 1.00
Human 4.00 4.00 6.00 6.00 2.00 3.00 1.00

(a) 4× 4 square (b) 5× 5 square (c) Pencil (d) Triangle

Figure 16: Four additional trigger patterns used in our evaluation.

Table 16: The IOU of SRV methods with the standardized XAI evaluation on the CIFAR-10 dataset
and the GTSRB dataset. Square: the trigger with the square-like pattern; Pencil: the trigger with
the pencil-like pattern; Triangle: the trigger with the triangle-like pattern. All trigger patterns have
the same size (i.e., 9 white pixels).

Dataset↓ SRV→
Trigger↓ BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10
Square 0.2123 0.2123 0.0000 0.2068 0.8849 0.4935 0.9792
Pencil 0.1675 0.1675 0.0000 0.1653 0.6776 0.7228 0.9956

Triangle 0.2534 0.2534 0.0000 0.2489 0.6777 0.8463 0.9771

GTSRB
Square 0.3438 0.3438 0.0000 0.3151 0.7388 0.4233 1.0000
Pencil 0.2604 0.2604 0.0000 0.2225 0.8978 0.7570 0.9979

Triangle 0.3003 0.3003 0.0000 0.2762 0.5627 0.4371 0.9890

Lastly, UAPs can be regarded as the trigger of the ‘natural backdoor’ of models learned from samples
(Wenger et al., 2022). They have very similar properties to backdoor triggers and therefore it is very
difficult (or probably even impossible) to distinguish them from potential triggers.

K ADDITIONAL EXPERIMENTS OF HUMAN INSPECTION

To further verify that our GLBW-based XAI evaluation is faithful, we generate 10 groups of saliency
maps based on 10 randomly selected images on the GTSRB dataset. We conduct human inspection
experiments by inviting 10 people and asking them to grade all groups of saliency maps indepen-
dently. As shown in Table 15, the rankings generated by our GLBW method are similar to those
made by people. These results verify that an SRV method with a higher order in the ranking list
generated by our method is truly better than those with lower orders.

L ADDITIONAL EXPERIMENTS OF STANDARDIZED XAI EVALUATION WITH
DIFFERENT TRIGGERS

L.1 RESULTS WITH DIFFERENT TRIGGER SHAPES

To explore whether the trigger shape has significant effects to our standardized XAI evaluation, we
evaluate the SRV methods with different trigger shapes, including square, pencil, and triangle (as
shown in Figure 16), on CIFAR-10 and GTSRB datasets. In this experiment, all evaluated trigger
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Table 17: The rank of SRV methods with the standardized XAI evaluation on the CIFAR-10 dataset
and the GTSRB dataset. Square: the trigger with the square-like pattern; Pencil: the trigger with
the pencil-like pattern; Triangle: the trigger with the triangle-like pattern. All trigger patterns have
the same size (i.e., 9 white pixels).

Dataset↓ SRV→
Trigger↓ BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10
Square 4 4 7 6 2 3 1
Pencil 4 4 7 6 3 2 1

Triangle 4 4 7 6 3 2 1

GTSRB
Square 4 4 7 6 2 3 1
Pencil 4 4 7 6 2 3 1

Triangle 4 4 7 6 2 3 1

Table 18: The IOU of SRV methods with the standardized XAI evaluation on the CIFAR-10 dataset
and the GTSRB dataset. 3 × 3: the trigger with the 3 × 3 square-like pattern; 4 × 4: the trigger
with the 4× 4 square-like pattern; 5× 5: the trigger with the 5× 5 square-like pattern.

Dataset↓ SRV→
Size↓ BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10
3× 3 0.2123 0.2123 0.0000 0.2068 0.8849 0.4935 0.9792
4× 4 0.2867 0.2867 0.0000 0.2814 0.8796 0.9821 0.9841
5× 5 0.3811 0.3811 0.0000 0.3798 0.7255 0.6672 0.9923

GTSRB
3× 3 0.3438 0.3438 0.0000 0.3151 0.7388 0.4233 1.0000
4× 4 0.3360 0.3360 0.0000 0.2857 0.7803 1.0000 0.9914
5× 5 0.3436 0.3436 0.0000 0.2861 0.8364 0.5205 0.9838

Table 19: The rank of SRV methods with the standardized XAI evaluation on the CIFAR-10 dataset
and the GTSRB dataset. 3 × 3: the trigger with the 3 × 3 square-like pattern; 4 × 4: the trigger
with the 4× 4 square-like pattern; 5× 5: the trigger with the 5× 5 square-like pattern.

Dataset↓ SRV→
Size↓ BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10
3× 3 4 4 7 6 2 3 1
4× 4 4 4 7 6 3 2 1
5× 5 4 4 7 6 2 3 1

GTSRB
3× 3 4 4 7 6 2 3 1
4× 4 4 4 7 6 3 1 2
5× 5 4 4 7 6 2 3 1

patterns have 9 pixels. As shown in Table 16-17, the trigger shape has mild effects to the final
ranking, although it may have some influences to IOU values.

L.2 RESULTS WITH DIFFERENT TRIGGER SIZES

To explore whether the trigger size has significant effects to our standardized XAI evaluation, we
evaluate SRV methods based on square-type triggers with different sizes (i.e., 3×3, 4×4 and 5×5,
as shown in Figure 16), on CIFAR-10 and GTSRB datasets. As shown in Table 18-19, the trigger
shape has minor effects to the final ranking, although it may have some influences to IOU values.

M CONNECTIONS AND DIFFERENCES WITH RELATED WORKS

In this section, we discuss the connections and differences between our methods (i.e., BWTP and
GLBW) and backdoor attacks, model watermarks, adversarial learning, and neural cleanse.
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M.1 CONNECTIONS AND DIFFERENCES WITH BACKDOOR ATTACKS

In general, both our methods and backdoor attacks intend to implant special model behaviors (i.e.,
backdoor) to DNNs. However, they still have many intrinsic differences.

Firstly, backdoor attacks aim at maliciously manipulating attacked models during the inference pro-
cess. In contrast, our watermarks are designed for the evaluation of saliency-based representation
visualization (SRV), which is a positive application.

Secondly, there are different parties (i.e., adversaries, and victim model users) involved in back-
door attacks while only the adjudicator is included in our SRV evaluation methods. Accordingly,
backdoor attacks need to ensure that the attacked model has high benign accuracy or its poisoned
samples are similar to their benign version to circumvent the detection of victim model users. How-
ever, in our methods, we only need to ensure a high watermark/attack success rate (instead of the
high benign accuracy) of watermarked DNNs since we don’t need to fulfill watermark stealthiness.

Lastly, backdoor attacks only need to ensure that the original trigger pattern used for training can
activate hidden backdoors in attacked DNNs. In other words, the backdoor adversaries don’t need
to measure or control the degree of trigger generalization. However, as we mentioned in the main
manuscript, our methods need to minimize the generalization to design faithful SRV evaluation.

M.2 CONNECTIONS AND DIFFERENCES WITH MODEL WATERMARKS

Currently, there are different types of model watermarks. Among all watermarking techniques,
backdoor-based methods are probably the most classical and widespread ones. In general, our meth-
ods share some similarities to backdoor-based model watermarks. For example, both of them assume
that the defenders can fully control the training process of models and intend to implant backdoors
to watermarked DNNs. However, they still have some essential differences.

Firstly, similar to backdoor attacks, there are different parties (i.e., the model owner and
users/adversaries) involved in model watermarks. Accordingly, the model owner still requires to
preserve the benign accuracy of watermarked DNNs otherwise users will not exploit them. In con-
trast, it is not necessary to have a high benign accuracy in our methods.

Secondly, model watermarks need to ensure robustness under different watermark-removal attacks
(e.g., fine-tuning, and model pruning) since adversaries have the incentive to remove them. How-
ever, in our methods, we only require to have a low trigger generalization of backdoor watermarks.

M.3 CONNECTIONS AND DIFFERENCES WITH ADVERSARIAL LEARNING

Both (targeted universal) adversarial attacks and our methods (during the training process) intend
to find a pattern that can mislead model predictions to a specific class. Instead of simply having a
high attack effectiveness as required by adversarial attacks, our methods also need to ensure that the
generated perturbation is (significantly) different from the original trigger pattern. This requirement
is necessary for minimizing trigger generalization of backdoor watermarks.

Both our methods and adversarial training formulate model training as a min-max problem. How-
ever, adversarial training aims to make models robust to all potential perturbations. In contrast,
our watermarks intend to preserve the backdoor regarding the original trigger while reducing other
backdoors instead of eliminating all backdoors.

M.4 CONNECTIONS AND DIFFERENCES WITH NEURAL CLEANSE

In general, both our methods and neural cleanse (Wang et al., 2019) intend to generate targeted
universal adversarial perturbations as potential trigger patterns. However, our methods have different
constraints (e.g., |m′ ∩m| ≤ τ · |m|) since we have fundamentally different purposes.

Firstly, neural cleanse has no information (e.g., trigger size and target label) about the ground-truth
trigger pattern. Accordingly, it needs to generate potential trigger towards each class and adopt
trigger sparsity to decide the final one. However, its assumption that all trigger patterns should be
sparse is not hold for advanced backdoor attacks. As such, this method is not effective (Li et al.,
2021b). In contrast, we know the ground-truth trigger patch, its target label, and its sparsity. Our
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Table 20: The rank (based on average IOU among all poisoned sample) across four trigger patterns
of SRV methods that is evaluated with different methods.

Dataset Method, SRV BP GBP GCAM GGCAM OCC FA LIME

CIFAR-10 Ours 4.75 4.75 7 4.5 2 3 1
Adaptive 4.4 4.5 7 5 2.5 2.5 1

GTSRB Ours 4.5 4.5 7 5 2 2.5 1.25
Adaptive 4.75 4.75 6.5 5 2.25 2.75 1

purpose is to find potential triggers with the highest attack effectiveness and differences from the
ground-truth one instead of finding the ground-truth trigger.

Secondly, neural cleanse exploited the standard SGD to solve the optimization problem. In contrast,
in our GLBW, we design an adaptive optimization method to find desired potential trigger patterns
since our task is significantly more difficult than that of the neural cleanse. Please refer to Appendix
E for more details about our optimization process.

N ADDITIONAL EXPERIMENTS OF STANDARDIZED EVALUATION METHOD
WITH ADAPTIVE BINARIZATION

Regarding the selection of M pixels proposed in our standardized backdoor-based XAI evaluation,
people may argue that it is not significantly better than the previous method. In this section, we
discuss whether it would be better if we use adaptive binarization methods to obtain regions with
high influences to calculate the rank of each SRV method.

Settings. We hereby exploit a classical adaptive binarization method, i.e., OTSU (Otsu, 1979), to
obtain regions with high influences to calculate the rank of each SRV method and compare the results
of our standardized method (dubbed ’Ours’) and those of the standardized method with adaptive
binarization (dubbed ’Adaptive’). All other settings are the same as those used in Section 3.1.

Results. As shown in Table 20, using adaptive binarization method has a mild influence to the final
average ranking. These results verify the effectiveness of our method.

O REPRODUCIBILITY STATEMENT

In the appendix, we provide detailed descriptions of the datasets, models, training and evaluation
settings, and computational facilities. The codes and model checkpoints for reproducing the main
experiments of our evaluation are also provided in the supplementary material. Our codes are avail-
able at https://github.com/yamengxi/GLBW.

P DISCUSSIONS ABOUT ADOPTED DATA

In this paper, all adopted samples are from the open-sourced datasets (i.e., CIFAR-10 and GTSRB).
These datasets contain no human object. We admit that we modified a few samples for watermark-
ing. However, our research treats all samples the same and all triggers contain no offensive content.
Accordingly, our work fulfills the requirements of these datasets and has no privacy violation.
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