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Abstract

Recent years have witnessed the emergence001
of a variety of post-hoc interpretations that002
aim to uncover how natural language process-003
ing (NLP) models make predictions. Despite004
the surge of new interpretation methods, it005
remains an open problem how to define and006
quantitatively measure the faithfulness of inter-007
pretations, i.e., to what extent interpretations008
reflect the reasoning process by a model. We009
propose two new criteria, sensitivity and sta-010
bility, that provide complementary notions of011
faithfulness to the existed removal-based cri-012
teria. Our results show that the conclusion013
for how faithful interpretations are could vary014
substantially based on different notions. Moti-015
vated by the desiderata of sensitivity and stabil-016
ity, we introduce a new class of interpretation017
methods that adopt techniques from adversar-018
ial robustness. Empirical results show that our019
proposed methods are effective under the new020
criteria and overcome limitations of gradient-021
based methods on removal-based criteria. Be-022
sides text classification, we also apply inter-023
pretation methods and metrics to dependency024
parsing. Our results shed light on understand-025
ing the diverse set of interpretations.026

1 Introduction027

As complex NLP models are widely deployed in028

real-world applications, there is an increasing in-029

terest in understanding how these models come to030

certain decisions. As a result, the line of research031

on interpretation techniques grows rapidly, facilitat-032

ing a broad range of model analysis, from building033

user trust on models (Ribeiro et al., 2016; Hase034

and Bansal, 2020) to exposing subtle biases (Zhao035

et al., 2017; Doshi-Velez and Kim, 2017).036

In this paper, we focus on post-hoc interpreta-037

tions in NLP. Given a trained model and a specific038

input text, post-hoc interpretations assign an im-039

portance score to each token in the input to indi-040

cate its contribution to the model output. Current041

methods in this direction can be roughly divided 042

into three categories: gradient-based methods (Si- 043

monyan et al., 2014; Li et al., 2016); reference- 044

based methods (Sundararajan et al., 2017; Shriku- 045

mar et al., 2017); and perturbation-based methods 046

(Zeiler and Fergus, 2014; Ribeiro et al., 2016). 047

Despite the emergence of new techniques, one 048

critical issue is that there is little consensus on 049

how to define and evaluate the faithfulness of these 050

techniques, i.e., whether they reflect the true rea- 051

soning process by a model. A widely employed 052

criterion, especially in NLP, is the removal-based 053

criterion (DeYoung et al., 2020), which removes or 054

only preserves a set of tokens given by interpreta- 055

tions and measures how much the model prediction 056

would change. However, as pointed out in prior 057

work (Bastings and Filippova, 2020; Ancona et al., 058

2018), the corrupted version of an input produced 059

during evaluations falls out of the distribution that 060

models are trained on, and thus results in an inac- 061

curate measurement of faithfulness. This limitation 062

prevents removal-based metrics from being used as 063

the golden standard for evaluating interpretations. 064

To remedy this, we complement the removal-based 065

criterion with two other criteria, sensitivity and sta- 066

bility, which are overlooked in prior works. 067

Sensitivity is based on the notion that models 068

should be more sensitive to perturbations on tokens 069

identified by a faithful explanation. In contrast to 070

the removal-based criterion, which completely re- 071

moves important tokens, the sensitivity criterion 072

adds small but adversarial perturbations in a local 073

region of the token embedding, and thus preserves 074

the structure of input sentences as well as interac- 075

tions between context words. This criterion is re- 076

cently discussed in Hsieh et al. (2020) in computer 077

vision, while we provide comprehensive analyses 078

on NLP models. Note that while the removal-based 079

criterion asks the question: if some important to- 080

kens did not ‘exist’, what would happen, the sensi- 081

tivity criterion asks: if some important tokens were 082
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‘changed’ adversarially, what would happen.083

Stability assumes that a faithful interpretation084

should not produce substantially different explana-085

tions for two inputs that the model finds similar.086

There are several attempts to generate such a pair087

of inputs. The most relevant one is Ghorbani et al.088

(2019). However, their method is only applicable to089

differentiable interpretations. Our work proposes a090

new paradigm that employs a black-box algorithm091

to generate a semantically related neighbor of the092

original input, which is specially designed for NLP093

and applicable to all interpretations techniques.094

Experiments show that interpretations which per-095

form well on the removal-based criterion might not096

do well on the new criteria. Motivated by the limi-097

tations of existing interpretations and the desider-098

ata of the two criteria, we propose robustness-099

based methods, based on projected gradient descent100

(PGD) attacks (Madry et al., 2018) and certifying101

robustness (Jia et al., 2019; Huang et al., 2019; Shi102

et al., 2020; Xu et al., 2020). We demonstrate that103

the new methods achieve top performance under104

sensitivity and stability. Moreover, as a simple im-105

provement to gradient-based methods, our methods106

avoid the gradient saturation issues of gradient-107

based methods under the removal-based criterion.108

Existing works in model interpretations often109

conduct experiments only on text classification due110

to the limitation of removal-based criteria – when111

input tokens are removed, the tree structure is dras-112

tically changed and a model might not be able to113

produce a meaningful parse tree. In this paper, we114

propose a new paradigm to interpret dependency115

parsers leveraging prepositional phrase (PP) attach-116

ment ambiguity examples. We demonstrate that117

sensitivity does not have the above restriction when118

evaluating dependency parsing explanations and119

conduct experiments to evaluation interpretation120

methods with our proposed paradigm and metrics.121

Our contributions can be summarized as follows.122

1. We discuss two overlooked notions of faith-123

fulness in NLP interpretations. We propose124

quantitative criteria and systematically evalu-125

ate interpretations under these notions, includ-126

ing an existed removal-base one.127

2. We propose new interpretation methods,128

which draw the connection between the ad-129

versarial robustness domain and the interpre-130

tation domain. We demonstrate the effective-131

ness of these new methods.132

3. We propose a new paradigm to evaluate inter-133

pretations on the dependency parsing task. 134

2 Faithfulness Evaluation Criteria 135

A faithful post-hoc interpretation identifies the im- 136

portant parts of the input a model prediction relies 137

on. Let x = [x1;x2; . . . ;xn] be a sequence of 138

tokens. e (·) denotes the token embedding func- 139

tion. An NLP model f takes the embedding matrix 140

e (x) ∈ Rn×d as input and provides its prediction 141

f (e (x)) = y. Let sy (e (x)) denote the output 142

score of f (e (x)) on y. The exact form of sy (e (x)) 143

is defined in Appendix D. An interpretation assigns 144

an importance score to each token to indicate its 145

contribution to the model decision. 146

We first review the well-established removal- 147

based criterion and emphasize its relation to the 148

two criteria defined in this paper 1) sensitivity, and 149

2) stability, for which we propose novel paradigms 150

to adapt them to various NLP tasks. 151

Removal-based Criterion A well-established no- 152

tion of interpretation faithfulness is that the pres- 153

ence of important tokens should have more mean- 154

ingful influence on the model’s decision than ran- 155

dom tokens, quantified by the removal-based cri- 156

terion. We adopt the comprehensiveness and the 157

sufficiency score in DeYoung et al. (2020). The 158

comprehensiveness score measures how much the 159

model performance would drop after the set of 160

“relevant" tokens identified by an interpretation is 161

removed. A higher comprehensiveness score sug- 162

gests the tokens are more influential to the model 163

output, and thus a more faithful explanation. The 164

sufficiency score measures to what extent the orig- 165

inal model performance is maintained when we 166

solely preserve relevant tokens. A lower sufficiency 167

score means less change in the model prediction, 168

and thus a more faithful explanation. See DeYoung 169

et al. (2020) for detailed definitions. Note that com- 170

pletely removing input tokens produces incomplete 171

texts. Large perturbation of this kind lead to several 172

issues as pointed out by prior studies (Feng et al., 173

2018; Bastings and Filippova, 2020). 174

Ours: Sensitivity Instead of removing important 175

tokens, the sensitivity criterion adds local but adver- 176

sarial noise to embedding vectors of the important 177

tokens and measures the magnitude of the noise 178

needed to change the model prediction. This is 179

inspired by the notion that models should be more 180

sensitive to perturbations being added to relevant 181

tokens compared to random or irrelevant tokens. 182

From the adversarial robustness perspective (Hsieh 183
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et al., 2020), this notion implies that by perturbing184

the most relevant tokens, we can reach the local185

decision boundary of a model with the minimum186

perturbation magnitude.187

Given the sequence of relevant tokens rk, sensi-188

tivity adds perturbation to its embedding e (rk) but189

keeps the remaining token embeddings unchanged.190

Then, it measures the minimal perturbation norm,191

denoted as εrk , that changes the model prediction192

for this instance:193

εrk = min ‖δrk‖F s.t. f (e (x) + δrk) 6= y,194

where ‖·‖F is the Frobenius norm of a matrix, and195

δrk ∈ Rn×d denotes the perturbation matrix where196

only the columns for tokens in rk have non-zero197

elements. Since the exact computation of εrk is198

intractable, we use the PGD attack (Madry et al.,199

2018) with a binary search to approximate εrk . A200

lower εrk suggests a more faithful interpretation. In201

practice, we vary the size of rk, compute multiple202

εrk , and summarize them with the area under the203

curve (AUC) score.204

Ours: Stability Another desired property of205

faithfulness is that a faithful interpretation should206

not give substantially different importance orders207

for two input points that the model finds similar.208

To construct a pair of similar inputs, we propose to209

generate contrast examples to the original one by210

synonym substitutions. A contrast example of x, x̃,211

satisfies (1) has at most k different but synonymous212

tokens with x; (2) the prediction score at x̃ changes213

less than τ compared to the score at x. The goal of214

these two conditions is to generate (almost) natu-215

ral examples where the changes of model outputs216

are smaller than a threshold τ . Given all contrast217

examples, we search for the one that leads to the218

largest rank difference D between the importance219

order for x, m (x) and the alternated order m (x̃):220

argmaxx̃D (m (x) ,m (x̃)) ,

s.t. |sy (e (x))− sy (e (x̃))| ≤ τ, ‖x− x̃‖0 ≤ k.
221

Specifically, we first extract synonyms for each to-222

ken xi following Alzantot et al. (2018). Then, in223

the decreasing order of m (x), we greedily search224

for a substitution of each token that induces the225

largest change in m (x) and repeat this process un-226

til the model output score changes by more than227

τ or the pre-defined constraint k is reached. Fi-228

nally, we measure the difference D between two229

importance ranks using Spearman’s rank order cor-230

relation (Spearman, 1961). We call this criterion231

stability. A higher score indicates that the ranks 232

between this input pair are more similar, and thus a 233

more faithful interpretation. 234

Note that instead of using the gradient informa- 235

tion of interpretation methods to perturb impor- 236

tance ranks like Ghorbani et al. (2019), our algo- 237

rithm treats interpretations as black-boxes, which 238

makes it applicable to non-differentiable ones. 239

Also, compared to Ding and Koehn (2021), who 240

manually construct similar input pairs, our method 241

is a fully automatic one as suggested by their paper. 242

3 Interpretations via Adversarial 243

Robustness Techniques 244

Experiments indicate that existing methods do not 245

work well with the sensitivity and stability metrics 246

(Sec. 4.2). In this section, we define a new class of 247

interpretation methods by adopting techniques in 248

adversarial robustness to remedy this. We first give 249

a brief review of existing interpretation approaches 250

and then introduce our new methods. 251

3.1 Existing Interpretation Methods 252

We roughly divide the existing methods into three 253

categories: gradient-based methods, reference- 254

based methods, and perturbation-based methods, 255

and discuss the representatives of them. 256

Gradient-based methods The first class of meth- 257

ods leverage the gradient at each input token. To 258

aggregate the gradient vector at each token into 259

a single importance score, we consider two meth- 260

ods: 1) using the L2 norm,
∥∥∥∂sy(e(x))

∂e(xi)

∥∥∥
2
, referred 261

to as Vanilla Gradient (VaGrad) (Simonyan et al., 262

2014), and 2) using the dot product of gradient and 263

input,
(
∂sy(e(x))
∂e(xi)

)>
·e (xi), referred to as Gradient 264

· Input (GradInp) (Li et al., 2016). 265

Reference-based methods These methods dis- 266

tribute the difference between model outputs on 267

a reference point and on the input as the impor- 268

tance score for each token. We consider Inte- 269

grated Gradient (IngGrad) (Sundararajan et al., 270

2017) and DeepLIFT (Shrikumar et al., 2017). Ing- 271

Grad computes the linear intergral of the gradients 272

from the reference point to the input. DeepLIFT 273

decomposes the difference between each neu- 274

ron activation and its ‘reference activation’ and 275

back-propagates it to each input token. We use 276

DeepLIFT with the Rescale rule. Note DeepLIFT 277

diverges from IngGrad when multiplicative interac- 278

tions among tokens exist (Ancona et al., 2018). 279
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Perturbation-based methods Methods in this280

class query model outputs on perturbed inputs. We281

choose Occlusion (Zeiler and Fergus, 2014) and282

LIME (Ribeiro et al., 2016). Occlusion replaces283

one token at a time by a reference value and uses284

the corresponding drop on model performance to285

represent the importance of each token. LIME uses286

a linear model to fit model outputs on the neighbor-287

hood of input x and represents token importance288

by the weights in the trained linear model.289

3.2 Proposed Robustness-based Methods290

We propose two methods inspired from the PGD291

attack (Madry et al., 2018) and the certifying ro-292

bustness algorithms (Xu et al., 2020) in adversarial293

robustness.294

VaPGD and PGDInp The PGD attack in adversar-295

ial robustness considers a small vicinity of the input296

and takes several “mini-steps" within the vicinity297

to search for an adversarial example. Consider the298

token embeddings for the input x, we perform t299

iterations of the standard PGD procedure starting300

from e(0) = e (x):301

e(j)=P
(
e(j−1)−α∇sy

(
e(j−1)

))
, j=1, 2, . . . , t.302

P represents the operation that projects the new303

instance at each step back to the vicinity of e (x),304

and α is the step size.305

Intuitively, e(t) − e (x) tells us the descent direc-306

tion of model confidence. Similar to the gradient-307

based methods, the importance of each token xi can308

be either represented by
∥∥∥e(t)i − e (xi)

∥∥∥
2
, where309

e
(t)
i is the i-th column in e(t), referred to as Vanilla310

PGD (VaPGD), or by
(
e (xi)− e(t)i

)>
· e (xi), re-311

ferred to as PGD · Input (PGDInp)312

Note that different from the PGD attack we use313

for approximating the sensitivity criterion, we man-314

ually decide the magnitude of the vicinity of e (x)315

instead of using a binary search. We add perturba-316

tions to the whole sentence at the same time. Also,317

the final e(t) does not necessarily change the model318

prediction. See Appendix B for details.319

Certify Certifying robustness algorithms also con-320

sider a vicinity of the original input and aim to321

provide guaranteed lower and upper bounds of a322

model output within that region. We use the lin-323

ear relaxation based perturbation analysis (LiRPA)324

discussed in (Shi et al., 2020; Xu et al., 2020).325

LiRPA looks for two linear functions that bound the326

model. Specifically, LiRPA computes W , W , b,327

and b that satisfy
∑

iWie (x
′
i)+b ≤ sy (e (x′)) ≤ 328∑

iWie (x
′
i) + b for any point e (x′) that lies 329

within the L2 ball of e (x) with size δ. We use the 330

IBP+backward method in Xu et al. (2020). It uses 331

Interval Bound Propagation (Gowal et al., 2018; 332

Mirman et al., 2018) to compute bounds of internal 333

neurons of the model and then constructs the two 334

linear functions with a bound back-propagation 335

process (Zhang et al., 2018; Singh et al., 2019). 336

Finally, the importance score of the i-th token in 337

the input is represented byWi · e (xi), whereWi 338

is the i-th row ofW . We call this method Certify. 339

Robustness-based vs. Gradient-based Gradient- 340

based methods provide a linear approximation 341

of the model decision boundary at the single in- 342

put, which is not accurate for non-linear models. 343

Robustness-based methods instead search multiple 344

steps in neighbors and approximate the steepest 345

descent direction better. We also empirically show 346

that robustness-based methods avoid the saturation 347

issue of gradient-based methods, i.e, gradient be- 348

comes zero at some inputs. See Appendix H. Note 349

that VaPGD (PGDInp) degrades to VaGrad (Grad- 350

Inp) when the number of iterations is 1. 351

Robustness-based vs. IngGrad IngGrad lever- 352

ages the average gradient in a segment between 353

the input and a reference. It is likely to neglect 354

local properties desired by the sensitivity criterion. 355

Robustness-based methods instead search in the 356

vicinity of the input, and thus local properties are 357

better preserved. See results in Sec. 4.2. 358

4 Experiments on Text Classification 359

In this section, we present the results on text clas- 360

sification tasks under the three criteria. We find 361

that the correlation between interpretation faithful- 362

ness based on different criteria are relatively low in 363

some cases. Results verify the effectiveness of our 364

new methods. 365

4.1 Experimental Setup 366

Datasets We conduct experiments on three text 367

classification datasets: SST-2 (Socher et al., 2013), 368

Yelp (Zhang et al., 2015), and AGNews (Zhang 369

et al., 2015) following Jain and Wallace (2019)’s 370

preprocessing approach. All of them are converted 371

to binary classification tasks. SST-2 and Yelp are 372

sentiment classification tasks where models pre- 373

dict whether a review is negative (0) or positive 374

(1). AGNews is to discriminate between world 375

(0) and business (1) articles. See Appendix A for 376
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statistics of the three datasets. When evaluating377

interpretation methods, for each dataset, we select378

200 random samples (100 samples from class 0 and379

100 samples from class 1) from the test set.380

Models For text classification, we consider two381

model architectures: BERT (Devlin et al., 2019)382

and BiLSTM (Hochreiter and Schmidhuber, 1997).383

Interpretation Methods Besides our robustness-384

based interpretations PGDInp, VaPGD, and Cer-385

tify, we experiment with 6 others from three ex-386

isting categories: VaGrad, GradInp (gradient-387

based); IngGrad, DeepLIFT (reference-based);388

and Occlusion, LIME (perturbation-based). We389

also include a random baseline Random that ran-390

domly assigns importance scores. We use compre-391

hensiveness (Comp.), sufficiency (Suff.), sensitiv-392

ity (Sens.), and stability (Stab.) metrics.393

See Appendix A∼C for experimental details.394

4.2 Results and Discussion395

Overall Results Results of interpretations for396

BERT and BiLSTM are presented in Table 1 and 2.397

The interpretations’ performance are averaged over398

three runs on models trained from different ran-399

dom seeds. Results verify the effectiveness of our400

proposed robustness-based methods. Specifically,401

VaPGD achieves the best performance under the402

sensitivity and the stability criteria for both BERT403

and BiLSTM. Our methods also outperform their404

gradient-based counterparts under removal-based405

criteria. Especially, when interpreting BERT on406

SST-2 and AGNews, GradInp has near random per-407

formance. PGDInp can avoid these unreasonable408

behaviors. See Appendix H for a qualitative study409

on this, where we find PGDInp does not suffer from410

the saturation issue as GradInp.411

However, the performance of other methods tend412

to be inconsistent under different measurements.413

For example, under the removal-based criterion,414

IngGrad performs well for BiLSTM, which gives415

four out of six best numbers. But, IngGrad has very416

limited performance under the sensitivity metric,417

especially for BiLSTM on SST-2 and Yelp. Similar418

issues exist for LIME and Occlusion. Also, one419

might fail to recognize the faithfulness of VaPGD420

by solely looking at the removal-based criterion.421

Thus, when deploying interpretation methods on422

real tasks, we advocate for a careful selection of423

the method you use based on the underlying faith-424

fulness notion that aligned with your goal.425

Performance Curves We plot the curves of inter-426

IngGrad Comp.↑ = 0.159 Sens.↓ = 0.158

The film’s center will not hold .

VaPGD

(a) Model Prediction: Negative

IngGrad Comp. = 0.450 Sens. = 0.192

The film’s center will not hold .

IngGrad

Random Comp. = 0.377 Sens. = 0.252

The film’s center will not hold .

Random

VaPGD Comp.↑ = 0.184 Sens.↓ = 4.656

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

VaPGD

Occlusion Comp. = 0.552 Sens. = 5.396

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

Occlusion

(b) Model Prediction: Positive

Figure 1: Two examples demonstrating different no-
tions of faithfulness given by Comp. and Sens. A
deeper red means the token is identified as more im-
portant. Comp. and Sens. scores are also shown.

pretations’ performance under the comprehensive- 427

ness and the sensitivity metrics when increasing 428

the number of tokens being removed (perturbed). 429

We use the case of interpreting BERT on Yelp as 430

an example. Specifically, we collect two groups 431

of examples from the test set of Yelp based on 432

input lengths, where examples in each group are 433

of 30 ± 5 and 120 ± 5 tokens long. We remove 434

(perturb) the top-k most important tokens given by 435

interpretations. Results are shown in Fig 2. 436

We observe that Occlusion is able to discover 437

a smaller set of impactful tokens, under both met- 438

rics. However, when the size of the relevant set is 439

increased, the performance of IngGrad under the 440

comprehensiveness metric and the performance of 441

VaPGD under the sensitivity metric gradually sur- 442

pass Occlusion and other methods. This implies 443

that the two methods could be better at identifying 444

a relevant set containing more tokens. 445

Different Notions of Faithfulness We qualita- 446

tively study the two notions of faithfulness given by 447

comprehensiveness (comp.) and sensitivity (sens.), 448

and discuss two main differences. 449

First, comp. removes important tokens during 450

evaluations, which could possibly break the inter- 451

action between removed tokens and context tokens, 452

and underestimate the importance of context to- 453

kens. In example (a), the tokens ‘not’ and ‘hold’ 454

together determine the negative sentiment of the 455

sentence. Sens. considers both ‘not’ and ‘hold’ as 456
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SST-2 Yelp AGNews
Methods Comp.↑ Suff.↓ Sens.↓ Stab.↑ Comp. Suff. Sens. Stab. Comp. Suff. Sens. Stab.
Random 0.202 0.412 0.853 -0.343 0.166 0.383 1.641 -0.254 0.039 0.269 1.790 -0.392

VaGrad 0.371 0.286 0.546 0.850 0.273 0.254 1.034 0.798 0.251 0.113 1.041 0.843
GradInp 0.257 0.371 0.814 0.336 0.240 0.328 1.363 0.559 0.081 0.281 1.379 0.390

Occlusion 0.498 0.208 0.655 0.604 0.480 0.192 1.135 0.662 0.233 0.169 1.330 0.609
LIME 0.562 0.208 0.626 0.458 0.511 0.199 1.260 0.002 0.461 0.063 1.178 0.115

IngGrad 0.420 0.286 0.711 0.729 0.417 0.201 1.350 0.793 0.284 0.153 1.251 0.761
DeepLIFT 0.266 0.367 0.820 0.351 0.265 0.315 1.413 0.569 0.082 0.135 1.326 0.457

PGDInp 0.390 0.284 0.560 0.605 0.275 0.295 1.079 0.628 0.205 0.141 1.028 0.590
VaPGD 0.373 0.277 0.542 0.853 0.285 0.266 1.022 0.832 0.256 0.109 0.995 0.869

Table 1: Results of evaluating interpretations for BERT under three criteria on text classification datasets. ↑ means
a higher number under this metric indicates a better performance. ↓ means the opposite. The best performance
across all interpretations is bolded. Certify is missed here since current certifying robustness approaches cannot
be scaled to deep Transformer-based models like BERT.

SST-2 Yelp AGNews
Methods Comp.↑ Suff.↓ Sens.↓ Stab.↑ Comp. Suff. Sens. Stab. Comp. Suff. Sens. Stab.
Random 0.162 0.291 5.394 -0.316 0.035 0.217 14.242 -0.242 0.062 0.170 13.712 -0.378

VaGrad 0.196 0.256 3.448 0.860 0.139 0.108 9.438 0.887 0.061 0.187 10.485 0.812
GradInp 0.520 0.036 4.327 0.692 0.610 -0.057 11.719 0.810 0.345 0.006 13.286 0.773

Occlusion 0.595 -0.006 4.436 0.756 0.750 -0.062 11.725 0.816 0.513 -0.018 12.573 0.753
LIME 0.609 -0.001 4.367 0.563 0.378 0.013 12.504 0.137 0.591 -0.021 11.915 0.292

IngGrad 0.606 -0.007 4.500 0.767 0.780 -0.062 12.394 0.849 0.657 -0.021 12.608 0.815
DeepLIFT 0.538 0.024 4.404 0.669 0.637 -0.059 11.738 0.816 0.381 -0.014 12.146 0.735

PGDInp 0.548 0.008 4.228 0.713 0.663 -0.058 11.247 0.806 0.430 -0.006 11.302 0.794
VaPGD 0.229 0.214 3.420 0.875 0.166 0.094 8.943 0.901 0.113 0.113 9.740 0.815
Certify 0.524 0.038 4.317 0.692 0.612 -0.056 11.738 0.811 0.367 -0.011 12.143 0.778

Table 2: Results of evaluating different interpretation methods for BiLSTM. Same symbols as above.

important tokens as one expects. However, comp.457

regards ‘hold’ less important than ‘will’.458

Second, sens. measures token importance by459

how much model performance would change af-460

ter ‘adversarially perturbing’ that token. In this461

sense, both positive and negative pertinent tokens462

will be deemed important. In contrast, comp. only463

considers positive pertinent ones. In example (b),464

which is predicted as positive, removing the nega-465

tive verb ‘hate’ would not influence model perfor-466

mance much. However, adversarially perturbing467

‘hate’ (e.g. change ‘hate’ to a more negative verb)468

might change the model prediction from positive469

to negative. Thus, sens. prefers interpretations that470

identify ‘hate’ as an important token like VaPGD.471

The full version of example (b) is in Appendix E.472

Some contrast examples generated for the stability473

criterion are presented in Appendix F. We also474

justify that both comp. and sens. recognize the475

contribution of each individual token in a relevant476

token set instead of leveraging only parts of the477

relevant set. See Appendix I.478

5 Experiments on Structured Prediction 479

PTB-SD
Method Comp. Sens.
Random 0.051 10.928
VaGrad 0.156 3.373
GradInp 0.152 5.257
IngGrad 0.190 4.315

DeepLIFT 0.153 5.252
Occlusion 0.194 4.671

LIME 0.195 4.529
PGDInp 0.163 4.704
VaPGD 0.157 3.358
Certify 0.155 4.701

Table 3: Evaluating interpretations for DeepBiaffine un-
der the comprehensiveness and the sensitivity metric on
the dependency parsing task.

Structured prediction tasks are in the center of 480

NLP applications. However, applying interpreta- 481

tion methods and criteria to these tasks are difficult 482

because 1) the required output is a structure instead 483

of a single score. It is hard to define the contri- 484

bution of each token to a structured output, and 485

2) compared to text classification tasks, removing 486
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Figure 2: Evaluation curves of five interpretation methods. The title of each figure indicates the group of examples
based on input lengths. The X-axis is the number of tokens being perturbed or removed for each instance, which
varies in 1, 2, . . ., 10 for 30 tokens and 2, 5, 10, 20, . . ., 80 for 120 tokens. The Y-axis is the performance under the
criterion. Results imply that IngGrad and VaPGD could be better at identifying a relevant set with more tokens.

parts of the input like what removal-based criteria487

do, would cause more drastic changes to model488

predictions as well as the groundtruth. Therefore,489

existing works often only conduct experiments on490

binary or multi-class text classification tasks. To491

remedy these issues, we investigate interpretations492

for dependency parsing, especially focus on ana-493

lyzing how models resolve the PP attachment am-494

biguity to avoid interpreting the structured output495

as a whole. Then, we show that our sensitivity met-496

ric is more compatible with dependency parsing497

as it causes negligible changes to model outputs498

compared to removal-based metrics.499

5.1 Evaluation Paradigm500

Our paradigm focuses on the PP attachment ambi-501

guity, which involves both syntactic and semantics502

considerations. A dependency parser needs to de-503

termine either the preposition in PP attaches to504

the preceding noun phrase NP (NP-attachment) or505

the verb phrase VP (VP-attachment) (Hindle and506

Rooth, 1993). The basic structure of ambiguity is507

VP – NP – PP. For example, in the sentence I saw508

a cat with a telescope, a parser uses the semantics509

of the noun phrase a telescope to predict the head510

of with, which is saw. If we change a telescope to511

a tail, the head of with would become the preced-512

ing noun cat. We will later call nouns in PPs like513

telescope “disambiguating nouns", as they provide514

semantic information for a parser to disambiguate515

PP attachment ambiguity. The main advantage of516

this paradigm is that disambiguating nouns can be517

viewed as “proxy groundtruths” for faithfulness as518

parsers must rely on them to make decisions.519

Experimental Setup We use DeepBiaffine, a520

graph-based dependency parser as the target model521

(Dozat and Manning, 2017). We extract 100 exam-522

ples that contain the PP attachment ambiguity from523

PGD Occlusion IngGrad GradInp
Comp. 0.82 0.81 0.81 0.79
Sens. 0.95 0.96 0.95 0.95

Table 4: Similarity between the parser outputs before
and after applying the evaluation metric. We show that
sensitivity changes the global model output less.

the English Penn Treebank converted to Stanford 524

Dependencies 3.5.0 (PTB-SD). We consider the 525

same interpretation methods as before, and they 526

assign an importance score to each token in the sen- 527

tence to indicate how much it impacts the model 528

prediction on PP attachment arcs. We test the faith- 529

fulness of the attributions using comprehensiveness 530

and sensitivity. See Appendix A∼C for details. 531

5.2 Results and Discussion 532

Results are shown in Table 3. Similar to the 533

results on text classification tasks, we find that 534

perturbation-based methods like LIME and Oc- 535

clusion perform well on the comprehensiveness 536

metric, while VaPGD performs the best under the 537

sensitivity metric. PGDInp and Certify are slightly 538

better than GradInp under both the two metrics. 539

Qualitatively, we find that according to inter- 540

pretation methods, important tokens for a PP- 541

attachment decision are often: the preposition itself, 542

the preceding noun or verb, and the disambiguat- 543

ing noun. This is close to human expectations. An 544

example is shown in Appendix E. 545

Metric Check Removing even a small piece of in- 546

puts breaks the dependency tree. It will be hard 547

to distinguish either the decision process behind 548

the model has changed or the removal of important 549

tokens actually causes the performance drop. Thus, 550

We expect a better metric to have less influence on 551

the tree structure of a sentence. In Table 4, we show 552
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interval. Scales in {10%, 20%, . . ., 100%}. The Y-axis
is the number of examples that an interpretation ranks
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that evaluating interpretations with the sensitivity553

metric leads to smaller changes in the output de-554

pendency tree compared to the comprehensiveness,555

suggesting sensitivity a more compatible metric for556

the dependency parsing task interpretations.557

Disambiguating Noun Analysis Disambiguating558

nouns are expected to be identified as important559

signals by faithful interpretations. We summarize560

how many times they are actually recognized as561

the top-k most important words by interpretation562

methods, where k is the interval varies in 10-20%,563

. . . , 90-100% of total tokens in an example.564

Results in Figure 3 demonstrate that interpreta-565

tion methods from the same category have high566

correlations when extracting disambiguating nouns.567

For example, VaGrad and VaPGD leveraging gradi-568

ents only, tend to position disambiguating nouns on569

the top of their importance lists, which is consistent570

with human judgments. Likewise, the perturbation-571

based methods, Occlusion and LIME, also put the572

disambiguation words to very similar positions.573

6 Related Work574

Interpretation methods Various post-hoc inter-575

pretation methods are proposed to explain the be-576

haviors of black-box models. These methods can577

be roughly categorized into three classes: gradient-578

based methods (Simonyan et al., 2014; Li et al.,579

2016), which leverage local gradient information;580

reference-based methods (Shrikumar et al., 2017;581

Sundararajan et al., 2017), which consider the582

model output difference between the original point583

and a reference point; and perturbation-based meth-584

ods (Ribeiro et al., 2016; Zeiler and Fergus, 2014;585

Lundberg and Lee, 2017), which query model out- 586

puts on perturbed data. In our work, we propose 587

new interpretation methods called robustness-based 588

methods, which adopt techniques in the adversarial 589

robustness domain and bridge the gap between the 590

gradient-based and the reference-based methods. 591

Evaluating interpretation methods One line of 592

studies explores approaches to evaluate interpreta- 593

tions. Several studies propose measurements for 594

faithfulness. A large proportion of such them oc- 595

clude tokens identified as important by interpreta- 596

tions and measure the performance changes of mod- 597

els (DeYoung et al., 2020; Jain and Wallace, 2019; 598

Zaidan and Eisner, 2008; Serrano and Smith, 2019). 599

Some other works propose to evaluate the faithful- 600

ness by checking to what extent they satisfy some 601

desired axioms (Ancona et al., 2018; Sundarara- 602

jan et al., 2017; Shrikumar et al., 2017). Besides, 603

Alvarez-Melis and Jaakkola (2018); Ghorbani et al. 604

(2019); Kindermans et al. (2019) reveal limitations 605

in interpretation faithfulness through testing the 606

robustness of interpretations. Another group of 607

studies measure the plausibility of interpretations, 608

i.e., whether the explanations conform with human 609

judgments (Doshi-Velez and Kim, 2017; Ribeiro 610

et al., 2016), or assist humans or student models 611

to predict model behaviors on new data (Hase and 612

Bansal, 2020; Pruthi et al., 2020). Note that al- 613

though there exist many hybrid works that evaluate 614

both the faithfulness and the plausibility of inter- 615

pretations by combining a suite of diagnostic tests 616

(DeYoung et al., 2020; Atanasova et al., 2020; Liu 617

et al., 2020), Jacovi and Goldberg (2020) advocate 618

to explicitly distinguish between the two measure- 619

ments. In our work, we focus on interpretation 620

faithfulness but consider two new metrics. We ap- 621

ply them to the dependency parsing task. Notice 622

that the stability is an automatic input consistency 623

tests suggested by Ding and Koehn (2021). 624

7 Conclusion 625

Our study shed a light on understanding interpre- 626

tations. We studied interpretations under three cri- 627

teria of faithfulness. We found that interpretations 628

have inconsistent performance regarding different 629

criteria. We proposed a new class of interpreta- 630

tions, which achieves the best performance under 631

the sensitivity and the stability criteria. We further 632

proposed a novel paradigm to evaluate interpreta- 633

tions on the dependency parsing task, which moves 634

beyond text classification in the literature. 635
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8 Ethical Considerations636

This paper does not contain direct social influences.637

However, we believe the model analysis and in-638

terpretation techniques discussed in this paper are639

critical for deploying deep learning based mod-640

els to real-world applications. Following previous641

work in this direction such as Jacovi and Goldberg642

(2020), we advocate to carefully consider the ex-643

planations obtained from interpretation methods644

as they may not always reflect the true reasoning645

process behind model predictions.646

Besides the three notions of faithfulness dis-647

cussed in this paper, there are other important as-648

pects for measuring interpretations that could be649

applied to evaluate interpretations. Also, We are650

not claiming that the proposed paradigm are per-651

fect as faithfulness measurements. For example,652

we recognize that it requires further and detailed653

analysis on either the model itself or the interpre-654

tation methods lead to a low performance on the655

stability metric, although we do try to make sure656

models behaviors do not change substantially be-657

tween an input pair.658

Moreover, experiments in this paper are all based659

on mainstream English corpora. Although our tech-660

niques are not language specific, there could be661

different conclusions given the varying properties662

of languages. For example, the discussion for de-663

pendency parsing could be easily affected by the664

language one considers.665
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A Dataset and Model Details 915

Datasets Statistics of the datasets are presented 916

in Table 5. 917

Dataset Train/Dev/Test
Avg
Len

SST-2 67.3k/0.8k/1.8k 19.2
Yelp 447.9k/112.0k/1.2k 119.8
AGNews 51.0k/9.0k/3.8k 35.5
PTB-SD 39.8k/1.7k/2.4k 23.5

Table 5: Data Statistics

Models All models are implemented based on 918

the PyTorch 1 library. All experiments are con- 919

ducted on NVIDIA GeForce GTX 1080 Ti GPUs. 920

For BERT, we use the bert-base-uncased model. 921

We fine-tune BERT model on each dataset, using 922

a unified setup: dropout rate 0.1, Adam (Kingma 923

and Ba, 2015) with an initial learning rate of 1e- 924

4, batch size 128, and no warm-up steps. We set 925

the maximum number of fine-tuning to be 3. The 926

fine-tuned BERT achieves 90.7, 95.4, and 96.9 ac- 927

curacy on SST-2, Yelp and AGNews, respectively. 928

When explaining BERT predictions, we only con- 929

sider the contribution of word embeddings to the 930

model output. 931

For BiLSTM classifier, we use an one-layer BiL- 932

STM encoder with a linear classifier. The embed- 933

ding is initialized with the 100-dimensional pre- 934

trained GloVe word embedding. We use Adam 935

with an initial learning rate of 1e-3, batch size 512, 936

hidden size 100 and dropout rate 0.2 for training. 937

We set the maximum number of epochs to be 20 938

but perform early stopping when the performance 939

on the development set doesn’t improve for three 940

epochs. Our BiLSTM classifier receives 84.2, 93.3, 941

95.9 accuracy on SST-2, Yelp and AGNews, re- 942

spectively. 943

For DeepBiaffine, we simplify the original archi- 944

tecture by using a one-layer BiLSTM encoder and 945

a biaffine classifier. The word embedding is also 946

initialized with the pre-trained 100-dimensional 947

1https://pytorch.org/
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GloVe word embedding while the part-of-speech948

tag embeddings are initialized to all zero. The949

encoder hidden size is 100. The arc and depen-950

dency relation hidden size are both 500. We get951

an UAS of 95.1 with our model. Note that for952

DeepBiaffine, each input token is represented by953

the concatenation of its word embedding and its954

part-of-speech tag embedding. When applying the955

interpretation methods and the evaluation metrics,956

we only modify the word embeddings but keep the957

part-of-speech tag embeddings unchanged.958

B Interpretation Methods Details959

For VaGrad, GradInp, VaPGD, PGDInp, and Ing-960

Grad, we use the automatic differentiation mecha-961

nism of PyTorch. For LIME, we modify the code962

from the original implementation of Ribeiro et al.963

(2016) 1. For DeepLIFT, we use the implementa-964

tion in Captum 2. For Certify, we modify the code965

in auto_LiRPA 3.966

For the two reference-based methods IngGrad967

and DeepLIFT, we use all zero word embeddings968

as the reference point. To approximate the integral969

in IngGrad, we sum up 50 points along the linear970

path from the reference point to the current point.971

For the perturbation-based methods LIME and Oc-972

clusion, we also set the word embedding of a token973

to an all zero embedding when it is perturbed.974

Hyper-parameter tuning For all interpretations975

that require hyper-parameter tuning, including976

LIME, PGDInp, VaPGD, we randomly select 50977

examples from the development set and choose the978

best hyperparameters based on the performance979

on these 50 examples. Specifically, the number980

of perturbed examples around the original point981

for LIME to fit a linear regression model is se-982

lected from {100, 200, 500, 800}. For PGDInp983

and VaPGD, we select the best maximum pertur-984

bation norm ε as for BERT and BiLSTM classifier985

from {0.1, 0.5, 1.2, 2.2}. We set the number of986

iterations as 50, and the step size as ε/5. Note that987

we might be able to achieve better performance of988

VaPGD and PGDInp by also tuning the number of989

iterations and the step size. However, to keep the990

computational burden comparable with other inter-991

pretations, we do not tune these hyperparameters.992

1https://github.com/marcotcr/lime
2https://github.com/pytorch/captum
3https://github.com/KaidiXu/auto_LiRPA

C Evaluation Criteria Details 993

Sensitivity Details We use PGD with a binary 994

search for the minimal perturbation magnitude. In 995

practice, we set the number of iterations to be 100 996

and the step size to be 1.0. Then, we conduct a 997

binary search to estimate the smallest vicinity of 998

the original point which contains an adversarial 999

example that changes the model prediction. 1000

Stability Details The synonyms in the stability 1001

metrics come from (Alzantot et al., 2018), where 1002

they extract nearest neighbors in the GloVe embed- 1003

dings space and filter out antonyms with a counter- 1004

fitting method. We allow at most four tokens re- 1005

placed by their synonyms for each input and at 1006

most 0.1 change in the output probability of the 1007

model prediction for BERT and 0.2 for BiLSTM. 1008

Thresholds To compute the removal-based met- 1009

rics and the AUC of sensitivity for text classifi- 1010

cation tasks, we vary the number of tokens being 1011

removed (preserved) or perturbed to be 10%, 20%, 1012

. . ., 50% of the total number of tokens in the input. 1013

For the dependency parsing task, the corresponding 1014

thresholds are 10%, 20% and 30%. 1015

D Task Details 1016

We evaluate the interpretation methods under both 1017

the text classification task and the dependency pars- 1018

ing task. Below, we cover implementation details 1019

for each task, respectively, including what is the 1020

specific model score interpretation methods ex- 1021

plain, and what metrics we use for that task. 1022

Text Classification Task sy (e (x)) is the prob- 1023

ability after the Softmax function corresponding 1024

to the original model prediction. We apply all the 1025

metrics mentioned in the main paper: removal- 1026

based metrics, including comprehensiveness and 1027

sufficiency scores, sensitivity score, and stability 1028

score. For removal-based metrics, we replace the 1029

important tokens with the pad token as a proxy for 1030

removing it. 1031

Dependency Parsing Task s (e (x)) is the un- 1032

labeled arc log probability between the preposi- 1033

tion and its head, i.e., unlabeled arc score after 1034

log_softmax, in the graph-based dependency parser. 1035

We discard the sufficiency score as it is unreason- 1036

able to remove a large proportion of tokens on a 1037

structured prediction task. We also discard the sta- 1038

bility metric as there is little consensus on how to 1039

attack a structured model. 1040
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PGDInp Comp. = 0.776 Sens. = 0.349

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

PGDInp

VaPGD Comp. = 0.759 Sens. = 0.339

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

VaPGD

Occlusion Comp. = 0.962 Sens. = 0.376

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

Occlusion

IngGrad Comp. = 0.930 Sens. = 0.383

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

IngGrad

GradInp Comp. = 0.907 Sens. = 0.352

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

GradInp

Figure 4: An example of interpreting BERT with five
interpretation methods. A deeper red color means the
token is identified as more important while a deeper
blue color stands for a less important token. Perfor-
mance under Comp. and Sens. scores are shown.

E An Example of Interpreting BERT1041

and BiLSTM on the Text Classification1042

Task1043

We showcase an example for interpreting BERT1044

and BiLSTM in Figure 4 and 5. The example1045

comes from the test set of SST-2. A deeper red1046

color means the token is identified as more im-1047

portant to the model output by an interpretation1048

while a deeper blue color stands for a less impor-1049

tant token. Both the BiLSTM classifier and BERT1050

classifier assign a positive label to this instance.1051

Qualitatively, given an input, we observe that the1052

most relevant or irrelevant sets of words identified1053

by different interpretations are highly overlapped1054

for BiLSTM, although the exact order of impor-1055

tance scores might be different. Whereas for BERT,1056

different interpretations usually give different im-1057

portant tokens.1058

F An Example of Interpreting the1059

Dependency Parser1060

An example of interpreting the PP attachment deci-1061

sion of a DeepBiaffine model. A deeper red color1062

means the token is identified as more important for1063

the model to predict the PP attachment arc.1064

PGDInp Comp. = 0.550 Sens. = 5.203

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

PGDInp

VaPGD Comp. = 0.184 Sens. = 4.656

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

VaPGD

Occlusion Comp. = 0.552 Sens. = 5.396

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

Occlusion

IngGrad Comp. = 0.609 Sens. = 5.310

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

IngGrad

GradInp Comp. = 0.546 Sens. = 5.304

Steers turns in a snappy screenplay that curls at the

edges ; it ’s so clever you want to hate it.

GradInp

Figure 5: An example of interpreting BiLSTM using
five interpretation methods.

It said analysts had been expecting a small profit for the period .

detamod
dobj
PP-ATTACHMENT-ARC

detpobj

GradInp
It said analysts had been expecting a small profit for the period .

VaPGD
It said analysts had been expecting a small profit for the period .

LIME
It said analysts had been expecting a small profit for the period .

Figure 6: An example of interpreting the PP attachment
arc in the dependency parsing task. A deeper red color
means the token is identified as more important for the
model to predict the PP attachment arc.

G Examples for the Stability Criterion 1065

G.1 SST-2 Examples 1066

Table 6 shows some contrast examples constructed 1067

for the stability criterion on SST-2. 1068

G.2 AGNews Examples 1069

Table 7 shows some contrast examples constructed 1070

for the stability criterion on AGNews 1071

G.3 Yelp Examples 1072

Table 8 shows some contrast examples constructed 1073

for the stability criterion on Yelp. 1074

H Case Study on Gradient Saturation 1075

We qualitatively study some cases where PGDInp 1076

does well under the removal-based criterion while 1077
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GradInp does not. In Figure 9, we show an example1078

from explaining BERT on the SST-2 dataset, with1079

the importance scores given by PGDInp, VaPGD,1080

GradInp, VaGrad and the comprehensiveness score.1081

For PGDInp and GradInp, we show the exponential1082

of importance scores.1083

As shown in Figure 9, the importance score for1084

each token given by GradInp is close to zero. Va-1085

Grad also gives near zero importance scores. At1086

the same time, PGDInp and VaPGD have distin-1087

guishable and meaningful importance scores.1088

Based on the above observations, we suspect that1089

the reason why PGD-based methods could avoid1090

the failure of gradient-based methods is that they1091

do not suffer from the gradient saturation issue.1092

Gradient saturation refers to the cases where gradi-1093

ents are close to zero at some specific inputs and1094

provide no information about the importance of1095

different features of those inputs. Note that PGD-1096

based methods consider not only a single input,1097

but search on the vicinity of that input where the1098

neighbors have none-zero gradients.1099

However, notice that VaGrad works better than1100

GradInp. We suspect that is because although all el-1101

ements in the gradient vector are close to zero, the1102

**L-2 norm** of it is still distinguishable. How-1103

ever, GradInp takes the **dot-product** between1104

embeddings and their gradients as the importance1105

score. It is likely that negative and positive di-1106

mensions are neutralized, making the importance1107

scores undistinguishable, and thus the behavior of1108

GradInp corrupted. This hypothesis needs further1109

explorations and demonstrations.1110

I Interpolation for Comprehensiveness1111

and Sensitivity1112

We conduct interpolation between a relevant set1113

given by a reasonable interpretation and a ran-1114

dom set for the comprehensiveness and sensitivity1115

scores. The goal of this experiment is to check1116

whether these two metrics completely recognize1117

the contribution of each token in the relevant set1118

during evaluation, or partially consider some spe-1119

cific tokens. We select the best interpretation under1120

these two metrics (LIME for comprehensiveness1121

and VaPGD for sensitivity), respectively, and grad-1122

ually replace each token in the relevant set with a1123

random token outside of the set.1124

Specifically, we select 50 examples from SST-21125

and test on BERT. For each example, we extract1126

a relevant set consists of the top four important1127
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Figure 7: Interpolation between the relevant set and a
random set.

tokens given by an interpretation and gradually re- 1128

place each token (from the least to the most impor- 1129

tant one) in the set with a random token. We denote 1130

the relevant set at each step as S0, S1, ..., S4, where 1131

S0 is the original relevant set containing the top 1132

four tokens and S4 the set of four random tokens. 1133

The performance change at step i is represented by 1134

f (i) = |M(S0)−M(Si)|
|M(S0)−M(S4)| , where M is the compre- 1135

hensiveness or sensitivity score. We expect that a 1136

good metric should induce a monotonic increasing 1137

function f . Further, f should be strictly convex 1138

as that indicates the importance of each token is 1139

different. 1140

We plot the curve in Figure 7. Results show that 1141

both the comprehensiveness and sensitivity metrics 1142

give out a monotonic increasing function, which 1143

indicates that both methods are completely consid- 1144

ering each token in the relevant set and are ‘stable’ 1145

against interpolation. We also notice that based 1146

on the comprehensiveness metric, the influence of 1147

each token is more evenly distributed in the relevant 1148

set, while for the sensitivity metric, the most im- 1149

portant toke has much higher influence than other 1150

tokens. 1151
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VaPGD, BERT on SST-2

Rank correlation = 0.346 Model change = 0.00
Original This is a film well worth seeing ,

talking and singing heads and all .
Contrast This is a films well worth staring

, talking and singing heads and
entirety .

IngGrad, BERT on SST-2

Rank correlation = 0.645 Model change = 0.15
Original Ray Liotta and Jason Patric do some

of their best work in their underwrit-
ten roles , but do n’t be fooled : No-
body deserves any prizes here .

Contrast Ray Liotta and Jason Patric do
certain of their best collaborate in
their underwritten roles , but do n’t
be fooled : Nobody deserves any
awards here .

LIME, BiLSTM on SST-2

Rank correlation = 0.425 Model change = 0.05
Original Nearly surreal , dabbling in French

, this is no simple movie , and you
’ll be taking a risk if you choose to
see it .

Contrast Almost surreal , dabbling in French
, this is no simple cinematography
, and you ’ll be taking a risk if you
choose to seeing it .

Table 6: Generated contrast examples for evaluating the
stability criterion on SST-2. Modified words are under-
lined. Spearman’s rank correlation between a pair of
examples and the performance difference of a model
on the pair of examples are shown above each pair.

Erasure, BERT on AGNew

Rank correlation = 0.689 Model change = 0.08
Original Supporters and rivals warn of possi-

ble fraud ; government says chavez
’s defeat could produce turmoil in
world oil market .

Contrast Supporters and rivals warn of possi-
ble fraud ; government says chavez
’s defeat could produce disorder in
planet oil trade .

DeepLIFT, BERT on AGNews

Rank correlation = 0.317 Model change = 0.00
Original Mills corp. agreed to purchase a

qqq percent interest in nine malls
owned by general motors asset man-
agement corp. for just over qqq bil-
lion , creating a new joint venture
between the groups .

Contrast Mills corp. agree to purchase a
qqq percent interest in nine malls
owned by comprehensive motors
asset management corp. for just
over qqq trillion , creating a new
joint venture between the groups .

VaGrad, BERT on AGNews

Rank correlation = 0.970 Model change = 0.12
Original London ( reuters ) - oil prices surged

to a new high of qqq a barrel on
wednesday after a new threat by
rebel militia against iraqi oil facili-
ties and as the united states said in-
flation had stayed in check despite
rising energy costs .

Contrast london ( reuters ) - oil prices surged
to a new high of qqq a canon on
wednesday after a new menace by
rebel militia against iraqi oil facili-
ties and as the united states said in-
flation had stayed in check despite
rising energy costs .

Table 7: Generated contrast examples for evaluating the
stability criterion on AGNews.
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PGD, BiLSTM on Yelp

Rank correlation = 0.530 Model change = 0.00
Original Love this beer distributor. They

always have what I’m looking for.
The workers are extremely nice and
always willing to help. Best one
I’ve seen by far.

Contrast Love this beer distributor. They
repeatedly have what I’m seeking
for. The workers are extremely nice
and always loan to help. Best one
I’ve seen by far.

Certify, BiLSTM on Yelp

Rank correlation = 0.633 Model change = 0.01
Original Last summer I had an appointment

to get new tires and had to wait a
super long time. I also went in this
week for them to fix a minor prob-
lem with a tire they put on. They
"fixed" it for free, and the very next
morning I had the same issue. I
called to complain, and the "man-
ager" didn’t even apologize!!! So
frustrated. Never going back. They
seem overpriced, too.

Contrast Last summer I took an appoints to
get new tires and had to wait a super
long time. I also went in this week
for them to fix a minor problem with
a tire they put on. They "fixed" it
for free, and the very impending
morning I had the same issue. I
called to complain, and the "man-
ager" didn’t even apologize!!! So
frustrated. Never going back. They
seem overpriced, too.

Table 8: Generated contrast examples for evaluating the
stability criterion on Yelp.

Example: A very funny movie .

Importance Scores

Method Comp. A very funny movie .

PGDInp 0.90 0.996 1.009 1.055 0.999 0.994
GradInp 0.33 1.000 1.000 1.000 1.000 1.000
VaPGD 0.67 0.072 0.124 0.399 0.199 0.079
VaGrad 0.54 0.000 0.001 0.001 0.001 0.000

Table 9: An example showing the gradient satura-
tion issue. We show the importance score for each
word given by the four interpretations and the corre-
sponding comprehensiveness score. We find that while
gradient-based methods suffer from the saturation is-
sue, PGDInp and VaPGD could avoid the limitation.
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