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Abstract

Sliced-Wasserstein Flow (SWF) is a promising
approach to nonparametric generative modeling
but has not been widely adopted due to its subop-
timal generative quality and lack of conditional
modeling capabilities. In this work, we make two
major contributions to bridging this gap. First,
based on a pleasant observation that (under cer-
tain conditions) the SWF of joint distributions
coincides with those of conditional distributions,
we propose Conditional Sliced-Wasserstein Flow
(CSWF), a simple yet effective extension of SWF
that enables nonparametric conditional modeling.
Second, we introduce appropriate inductive biases
of images into SWF with two techniques inspired
by local connectivity and multiscale representa-
tion in vision research, which greatly improve the
efficiency and quality of modeling images. With
all the improvements, we achieve generative per-
formance comparable with many deep parametric
generative models on both conditional and uncon-
ditional tasks in a purely nonparametric fashion,
demonstrating its great potential.

1. Introduction
Deep generative models have made several breakthroughs in
recent years (Brock et al., 2018; Durkan et al., 2019; Child,
2020; Song et al., 2020), thanks to the powerful function
approximation capability of deep neural networks and the
various families of models tailored for probabilistic mod-
eling. One recurring pattern in deep generative models for
continuous variables is to map a simple prior distribution
to the data distribution (or vice versa). Examples include
those performing single-step mappings via a neural network,
such as GANs (Goodfellow et al., 2014), VAEs (Kingma
& Welling, 2013), and normalizing flows (Rezende & Mo-
hamed, 2015), and those taking iterative steps to transform
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the distributions characterized by ODEs (Grathwohl et al.,
2018) and diffusion SDEs (Song et al., 2020). The latter
have achieved great success recently due to the decomposi-
tion of complex mappings into multi-step easier ones.

While most existing models train parametric neural net-
works as the mapping functions, a less popular but promis-
ing alternative is to perform nonparametric mappings, for
which preliminary attempts (Liutkus et al., 2019; Dai &
Seljak, 2021) have been made recently. These works fur-
ther decompose the mapping between multidimensional
distributions into mappings between one-dimensional dis-
tributions, which have closed-form solutions based on the
optimal transport theory (Villani, 2008). The closed-form
solutions enable a nonparametric way to construct the map-
pings, which makes no (or weak) assumptions about the
underlying distributions and is therefore more flexible. A
promising work is the Sliced-Wasserstein Flows (SWF) (Li-
utkus et al., 2019), which achieves generative modeling by
building nonparametric mappings to solve the gradient flows
in the space of probability distribution.

Despite the potential advantages, nonparametric methods
like SWF are still in the early stage of development. First, it
is underexplored how they can be applied to various tasks
besides unconditional generation, such as conditional gener-
ation and image inpainting (Meng et al., 2021). In contrast,
parametric probability models have mature techniques for
constructing conditional distributions and end-to-end gra-
dient descent training, making tasks such as text-to-image
generation and image inpainting more straightforward to
implement (Mirza & Osindero, 2014; Van den Oord et al.,
2016; Perez et al., 2018). Similar mechanisms have yet to
be developed for SWF, obstructing its applications in con-
ditional modeling. Second, the quality and efficiency are
still quite limited when applied to high-dimensional data
such as images. While parametric models can leverage the
sophisticated inductive biases of neural networks (e.g., the
U-Net (Ronneberger et al., 2015) in diffusion models) and
are able to process full-resolution images directly, the non-
parametric counterpart either operates on low-dimensional
features processed from a pre-trained auto-encoder (Kolouri
et al., 2018; Liutkus et al., 2019) or relies on a carefully
designed patch-based approach (Dai & Seljak, 2021). Al-
though several variants have been proposed to incorporate
convolutional architectures (Nguyen & Ho, 2022b; Laparra
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et al., 2022), to our knowledge, none has demonstrated em-
pirical success in image generation.

In this work, we propose two improvements for SWF to ad-
dress the above limitations. First, we extend the framework
of SWF for conditional probabilistic modeling based on
an empirical observation that the collection of SWFs w.r.t.
conditional distributions (approximately) coincide with the
SWF w.r.t. the joint distribution, subject to a few conditions
that can be easily met. Based on this finding, we propose a
simple yet effective algorithm, named Conditional Sliced-
Wasserstein Flows (CSWF), where we obtain conditional
samples by simulating the SWF w.r.t. the joint distribution.
CSWF enjoys the same nonparametric advantages as SWF
while being able to perform various types of conditional
inference, such as class-conditional generation and image
inpainting. Second, we introduce the locally-connected pro-
jections and pyramidal schedules techniques to enhance the
quality of image generation, motivated by the common no-
tions of local connectivity and pyramidal representation in
computer vision. By solving optimal transport problems in
domain-specific rather than isotropic directions, we success-
fully incorporate visual inductive biases into SWF (and our
CSWF) for image tasks.

Our method and techniques have made several remarkable
achievements. First, to the best of our knowledge, the pro-
posed CSWF is the first nonparametric generative approach
that is able to handle general conditional distribution model-
ing tasks. Second, our proposed techniques greatly improve
the generation quality of images and also reveals a general
way to introduce inductive biases into SWF and CSWF. Last
but not least, we achieve comparable performance to many
parametric models on both unconditional and conditional
image generation tasks, showing great promise.

2. Related Work
Parametric Generative Models Generative models are one
of the core research areas in machine learning. Several
classes of parametric generative models are widely studied,
including GANs (Goodfellow et al., 2014), VAEs (Kingma
& Welling, 2013), flow-based models (Durkan et al., 2019),
autoregressive models (Van den Oord et al., 2016), energy-
based models (Du & Mordatch, 2019) and diffusion/score-
based models (Ho et al., 2020; Song et al., 2020). In this
work, we instead study a completely different approach to
generative modeling using nonparametric methods.

Generative Models based on Optimal Transport Opti-
mal transport (OT) have been widely adopted in generative
modeling (Arjovsky et al., 2017; Gulrajani et al., 2017; Tol-
stikhin et al., 2017; Kolouri et al., 2018; Deshpande et al.,
2018; 2019; Meng et al., 2019; Wu et al., 2019; Knop et al.,
2020; Nguyen et al., 2020a;b; Nguyen & Ho, 2022b; Bonet

et al., 2021; Nguyen & Ho, 2022a). Meng et al. (2019)
build iterative normalizing flows where they identify the
most informative directions to construct OT maps in each
layer. Arjovsky et al. (2017); Wu et al. (2019) propose to
train GANs using different distances based on OT. Nguyen
et al. (2020a; 2022) propose difference variants of the sliced-
Wasserstein distance and apply them on generative models.
These works adopt OT in different dimensions, while they
are all parametric and based on end-to-end training.

Nonparametric Generative Models A less popular area of
research is nonparametric generative models, which holds a
lot of potential. These methods utilize tools from nonpara-
metric statistics such as kernel methods (Shi et al., 2018; Li
& Turner, 2017; Zhou et al., 2020), Gaussianization (Chen &
Gopinath, 2000), and independent component analysis (La-
parra et al., 2011). Meng et al. (2020) propose a trainable
Gaussianization layer via kernel density estimation and ran-
dom rotations. SINF (Dai & Seljak, 2021) iteratively trans-
form between Gaussian and data distribution using sliced
OT. Note, however, that none of these nonparametric gener-
ative models can perform conditional inference.

Conditional Generative Models Generating samples condi-
tioned on additional input information is crucial for achiev-
ing controllable generation. Prior research has successfully
demonstrated class-conditional image generation (Mirza &
Osindero, 2014; Sohn et al., 2015). Recent advancements
in this area have yielded notable success in synthesizing
high-quality images from textual input (Ramesh et al., 2022;
Saharia et al., 2022; Rombach et al., 2022; Hertz et al.,
2022; Feng et al., 2022; Yu et al., 2022). The conditional
generative capabilities in these models are facilitated by
well-established pipelines that construct parametric condi-
tional probability distributions using deep neural networks.
In contrast, our work achieves conditional generation within
a nonparametric framework, which is significantly different.

3. Preliminaries
We briefly review some prior knowledge, including optimal
transport, the Wasserstein space, and gradient flows. Most
results presented here hold under certain mild assumptions
that can be easily met in practical problems and we have
omitted them for simplicity. For more details, we refer the
readers to Ambrosio et al. (2005); Villani (2008).

Notations We denote by P(X ) the set of probability dis-
tributions supported on X ⊆ Rd. Given p ∈ P(X1)
and a measurable function T : X1 → X2, we denote by
q = T♯p ∈ P(X2) the pushforward distribution, defined as
q(E) = p(T−1(E)) for all Borel set E of X2. We slightly
abuse the notation and denote both the probability distribu-
tion and its probability density function (if exists) by p.
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3.1. Optimal Transport

Given two probability distributions p, q ∈ P(Rd) and a
cost function c : Rd × Rd → [0,∞], the optimal trans-
port (OT) theory (Monge, 1781; Kantorovich, 2006) studies
the problem of finding a distribution γ ∈ Γ(p, q) such that∫
c(x, x′)dγ(x, x′) is minimal, where Γ(p, q) is the set of

all transport plans between p and q, i.e., the set of all proba-
bility distributions on Rd × Rd with marginals p and q.

Under mild conditions, the solution to the OT problem ex-
ists and is strongly connected with its dual formulation:
minγ∈Γ(p,q)

∫
cdγ = maxψ∈L1(p)

{∫
ψdp+

∫
ψcdq

}
,1

where a solution ψ to the RHS is called a Kantorovich
potential between p and q. In particular, for the quadratic
cost c(x, x′) = ∥x − x′∥22, the above equation is realized
(under certain conditions) by a unique optimal transport plan
γ∗ and a unique (up to an additive constant) Kantorovich
potential ψ, and they are related through γ∗ = (id, T )♯p,
where T (x) = x − ∇ψ(x) (Benamou & Brenier, 2000).
The function T : Rd → Rd is called the optimal transport
map as it depicts how to transport p onto q, i.e., q = T♯p.
While the optimal transport map T is generally intractable,
in one-dimensional cases, i.e., p, q ∈ P(R), it has a closed-
form of T = F−1

q ◦Fp, where Fp and Fq are the cumulative
distribution functions (CDF) of p and q, respectively.

3.2. Wasserstein Distance and Wasserstein Space

For the cost c(x, x′) = ∥x−x′∥22, the OT problem naturally
defines a distance, called the 2-Wasserstein distance:

W2(p, q) ≜

(
min

γ∈Γ(p,q)

∫
∥x− x′∥22dγ(x, x′)

)1/2

. (1)

For W2(p, q) to be finite, it is convenient to consider
P2(Rd) ≜

{
p ∈ P(Rd) :

∫
∥x∥22dp(x) <∞

}
, which is

the subset of all probability distributions on Rd with fi-
nite second moments. The set P2(Rd) equipped with the
2-Wasserstein distance W2 forms an important metric space
for probability distributions, called the Wasserstein space.

3.3. Gradient Flows in the Wasserstein Space

Gradient flows in metric spaces are analogous to the steepest
descent curves in the classical Euclidean space. Given a
functional F : P2(Rd) → R, a gradient flow of F in the
Wasserstein space is an absolutely continuous curve (pt)t≥0

that minimizes F as fast as possible (Santambrogio, 2017).

The Wasserstein gradient flows are shown to be strongly
connected with partial differential equations (PDE) (Jordan
et al., 1998). In particular, it is shown that (under proper con-
ditions) the Wasserstein gradient flows (pt)t coincide with

1L1(p) is the set of absolutely integrable functions under p and
ψc(x′) ≜ infx c(x, x

′)− ψ(x) is called the c-transform of ψ.

the solutions of the continuity equation ∂
∂tpt+∇·(ptvt) = 0,

where vt : Rd → Rd is a time-dependent velocity field (Am-
brosio et al., 2005). Moreover, the solution of the continu-
ity equation can be represented by pt = (Xt)♯p0,∀t ≥ 0,
whereXt(x) is defined by the characteristic system of ODEs
d
dtXt(x) = vt(Xt(x)), X0(x) = x,∀x ∈ Rd (Bers et al.,
1964). The PDE formulation and the characteristic system
of ODEs provide us with an important perspective to analyze
and simulate the Wasserstein gradient flows.

3.4. Sliced-Wasserstein Flows

The tractability of the one-dimensional OT and Wasserstein
distance motivates the definition of the sliced-Wasserstein
distance (Rabin et al., 2011). For any θ ∈ Sd−1 (the unit
sphere in Rd), we denote by θ∗ : Rd → R the orthogonal
projection, defined as θ∗(x) ≜ θ⊤x. Then, counting all
the Wasserstein distance between the projected distributions
θ∗♯ p, θ

∗
♯ q ∈ P(R) leads to the sliced-Wasserstein distance:

SW2(p, q) ≜

(∫
Sd−1

W 2
2 (θ

∗
♯ p, θ

∗
♯ q)dλ(θ)

)1/2

, (2)

where λ(θ) is the uniform distribution on the sphere Sd−1.
The SW2 has many similar properties as the W2 (Bonnotte,
2013) and can be estimated with Monte Carlo methods. It is
therefore often used as an alternative to the W2 in practical
problems (Kolouri et al., 2018; Deshpande et al., 2018).

In this paper, we will focus on the Wasserstein gradient
flows of functionals F(·) = 1

2SW
2
2 (·, q), where q is a target

distribution. Bonnotte (2013) proves that (under regularity
conditions on p0 and q) such Wasserstein gradient flows
(pt)t≥0 satisfy the continuity equation (in a weak sense):

∂pt(x)

∂t
+∇ · (pt(x)vt(x)) = 0,

vt(x) ≜ −
∫
Sd−1

ψ′
t,θ(θ

⊤x) · θ dλ(θ),
(3)

where ψt,θ denotes the Kantorovich potential between the
(one-dimensional) projected distributions θ∗♯ pt and θ∗♯ q.
Moreover, according to Sec. 3.1 the optimal transport map
from θ∗♯ pt to θ∗♯ q is given by Tt,θ = F−1

θ∗♯ q
◦ Fθ∗♯ pt , which

gives ψ′
t,θ(z) = z − Tt,θ(z) = z − F−1

θ∗♯ q
◦ Fθ∗♯ pt(z).

Liutkus et al. (2019) refers to it as the sliced-Wasserstein
flow (SWF) and adapts it into a practical algorithm for build-
ing generative models of an unknown target distribution q
(assuming access to i.i.d. samples). By simulating a similar
PDE to Eq. (3),2 it transforms a bunch of particles sampled
from p0 (e.g., a Gaussian distribution) to match the target
distribution q. We recap more details in Appendix B.

2The authors originally consider the entropy-regularized SWFs,
leading to a similar PDE, with an extra Laplacian term that is often
ignored when modeling real data. See more details in Appendix B.
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4. Conditional Sliced-Wasserstein Flows
In this section, we present an extended framework of SWFs
for conditional probability distributions and accordingly
propose a practical nonparametric method for conditional
generative modeling.

Formally, given a dataset D ≜ {(xi, yi)}Ni=1 representing
N i.i.d. samples from the target distribution q ∈ P2(X ×Y),
where X ⊆ Rd and Y ⊆ Rl are two related domains (e.g.,
X the image space and Y the set of labels), we aim to model
the conditional distributions qy ≜ q(·|y) ∈ P2(X ) for all
y ∈ Y . We assume the marginal distribution q(y) is known.

4.1. Conditional Sliced-Wasserstein Flows

A straightforward idea is to consider a SWF in P2(X ) with
the target distribution qy for each y ∈ Y separately, which
we denote by (py,t)t≥0 and refer to as the conditional SWF
given y. Then with a suitable initial py,0∈P2(X ), it satisfies:

∂py,t(x)

∂t
+∇ · (py,t(x)vy,t(x)) = 0,

vy,t(x) ≜ −
∫
Sd−1

ψ′
y,t,θ

(
θ⊤x

)
· θ dλ(θ),

(4)

where ψy,t,θ denotes the Kantorovich potential between the
projected conditional distributions θ∗♯ py,t and θ∗♯ qy. Sam-
ples from qy can be drawn if we can simulate the PDE (4).

However, modeling the conditional SWFs for all y ∈ Y
separately with Liutkus et al.’s (2019) algorithm can be
impractical for at least two reasons. First, it is only feasible
for the cases where Y is a finite set, and every y appears in
D often enough since a different split of the dataset Dy ≜
D ∩ (X × {y}) is required for each y. Second, even for a
finite Y , the knowledge in different Dy cannot be shared,
making it inefficient and unscalable when |Y| is large or the
distribution over Y is highly imbalanced.

To overcome these difficulties, it is crucial to enable knowl-
edge sharing and generalization abilities among Y by ex-
ploiting the global information from the joint distribution q,
rather than solely the conditional information from qy .

4.2. Conditional SWFs via the Joint SWF

We instead consider the SWF (pt)t≥0 in P2(X × Y) with
the target being the joint distribution q. We refer to it as the
joint SWF, and write its corresponding PDE below:

∂pt(x, y)

∂t
+∇ · (pt(x, y)vt(x, y)) = 0,

vt(x, y) = −
∫
Sd+l−1

ψ′
t,θ

(
θ⊤x x+ θ⊤y y

)
·
[
θx
θy

]
dλ(θ),

(5)

where θ = [θ⊤x , θ
⊤
y ]

⊤ ∈ Sd+l−1 is (d + l)-dimensional,
θx ∈ Rd, θy ∈ Rl, and ψt,θ is the Kantorovich potential

between θ∗♯ pt and θ∗♯ q. Note that here vt : Rd+l → Rd+l is a
vector field on X ×Y . We denote the X - and Y-components
of vt(x, y) by vXt (x, y) and vYt (x, y), respectively.

At first glance, the joint SWF (pt)t≥0 may only provide us
with a possibility to sample from q, but is not obviously
helpful for modeling conditional distributions. Interestingly,
our empirical observation shows that under the assumption
that (i) p0(y) = q(y) and (ii) the target conditional distribu-
tion qy changes slowly enough w.r.t. y, then for all t ≥ 0, we
have vXt (x, y) ≈ vy,t(x) and vYt (x, y) ≈ 0. We are unable
to provide a rigorous theoretical justification for the time
being. We instead include an illustration in Appendix A.

Intuitively, this means that if the assumptions are met, the
evolution of distributions (pt)t≥0 characterized by the joint
SWF can be factorized into two levels. First, the marginal
distributions pt(y) remain unchanged for all t ≥ 0 since
the velocity has zero Y-component. Second, for each y,
the evolution of the conditional distributions (pt(x|y))t≥0

coincides with the evolution of (py,t)t≥0 in the conditional
SWF given y described in Sec. 4.1.

Moreover, if we simulate the continuity equation (5) of
the joint SWF with particle-based methods (e.g., using the
characteristic system), then vYt (x, y) ≈ 0 implies that the
Y-component of each particle will almost stand still, and
vXt (x, y) ≈ vy,t(x) implies that the X -component of each
particle will move just as if we are simulating the conditional
SWF given y. This provides us with an elegant way to
practically model conditional distributions through the joint
SWF, as described in the next section.

4.3. Practical Algorithm

Based on our observation, we propose a practical algorithm
for conditional probabilistic modeling, dubbed the condi-
tional sliced-Wasserstein flows (CSWF). The basic idea is to
first adjust the target distribution q and initialize p0 properly
so that the assumptions are (approximately) met, and then
to simulate the joint SWF with a particle-based method.

Initialization To satisfy the assumption made in Sec. 4.2,
we can always define a new target distribution q′ ≜ L♯q

with L(x, y) ≜ (x, ξy), that is, q′ is obtained using a sim-
ple change of variable that scales the Y-component with a
number ξ > 1, which we call the amplifier. Intuitively, scal-
ing the Y-component by ξ will make the change of q(x|y)
(w.r.t. y) ξ times slower. The conditions required can thus
be approximately satisfied with a large enough ξ. In prac-
tice, given a dataset D = {(xi, yi)}Ni=1, this simply means
that all we need is to use {(xi, ξyi)}Ni=1 for subsequent
processing. We thus assume below w.l.o.g. that q has met
the condition, to keep the notations consistent. Then, we
set the initial distribution as p0(x, y) = q(y)p0(x), where
p0(x) = N (x; 0, Id) is Gaussian. This ensures the initial
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marginal distribution over Y is aligned with the target q.

Particle System The solution (pt)t≥0 to the continuity equ-
ation (5) can be represented by (Zt)♯p0,∀t ≥ 0, where Zt :
Rd+l → Rd+l denotes the mapping from (x, y) to Zt(x, y)
characterized by the ODE dZt(x, y) = vt(Zt(x, y))dt with
initial condition Z0(x, y) ≜ (x, y) (see Sec. 3.3). This
intuitively means that we can sample from pt by simulating
the ODE with initial point sampled from p0.

To estimate the velocity field vt, we follow Liutkus et al.
(2019) to consider a particle system so that pt (and thus
vt) can be estimated within the system. More precisely,
we consider M particles {Z̄jt = (X̄j

t , Ȳ
j
t ) ∈ Rd+l}Mj=1,

described by a collection of characteristic ODEs:

dZ̄jt = v̂t(Z̄
j
t )dt, j = 1, . . . ,M, (6)

where v̂t is the velocity field estimated with the empirical
distributions p̂t ≜ 1

M

∑M
j=1 δZ̄j

t
and q̂ ≜ 1

N

∑N
i=1 δ(xi,yi).

Specifically, given a projection θ, the projected empirical
distributions θ∗♯ p̂t and θ∗♯ q̂ become two sets of scalar values.
Then, estimating ψ′

t,θ is essentially the problem of fitting
one-dimensional distributions (i.e., Fθ∗♯ q̂ and Fθ∗♯ p̂t). We
simply estimate the CDFs with linear interpolations between
the empirical distribution functions. Finally, the velocity is
approximated using a Monte Carlo estimate of the integral:

v̂t(x, y) ≜ − 1

H

H∑
h

ψ̂′
t,θh

(
θ⊤h,xx+ θ⊤h,yy

)
·
[
θh,x
θh,y

]
, (7)

where {θh}Hh=1 are H i.i.d. samples from the unit sphere
Sd+l−1 and ψ̂′

t,θh
is the derivative of the Kantorovich poten-

tial computed with the estimated CDFs:

ψ̂′
t,θh

(z) = z − F−1
θ∗h♯q̂

◦ Fθ∗h♯p̂t
(z). (8)

Velocity Masking Although the initialization has provided
a good approximation of the required conditions, the ve-
locity may still has a small Y-component, which can be
accumulated over time t. We correct this by manually set-
ting v̂Yt (x, y) = 0, which means that only the X -component
of each particle is updated during the simulation.

Finally, we adopt the Euler method with step size η to iter-
atively simulate the particle system (i.e., the characteristic
ODEs) for K steps. The particles {Z̄j0 = (X̄j

0 , Ȳ
j
0 )}Mj=1 are

initialized by independently sampling {Ȳ j0 }Mj=1 from q(y)

and sampling {X̄j
0}Mj=1 from N (0, Id). In cases where we

do not have access to the true marginal q(y), we can alterna-
tively sample {Ȳ j0 }Mj=1 from the dataset (with replacement).
We describe the overall CSWF algorithm in Algorithm 1.
Note that by simulating the particle system, we end up with
M conditional samples {X̄j

K}Mj=1, which we refer to as the
batched samples. Once we have simulated a particle system,

Algorithm 1: Conditional Sliced-Wasserstein Flow

Input: D = {(xi, yi)}Ni=1, {Ȳ j0 }Mj=1, ξ, H , η, K
Output: {X̄j

K}Mj=1

// Initialize the X-component

{X̄j
0}Mj=1

i.i.d.∼ N (0, Id)
// Discretize the ODEs

for k = 0, . . . ,K − 1 do
for h = 1, . . . ,H do
// Generate random projections

θh ∼ Uniform(Sd+l−1)
// Estimate the CDFs

Fθ∗h♯q̂
= CDF({θ ⊤

h,xxi + ξ · θ ⊤
h,yyi}Ni=1)

Fθ∗h♯p̂k
= CDF({θ ⊤

h,xX̄
j
k + ξ · θ ⊤

h,yȲ
j
0 }Mj=1)

// Update the X-component with (7)&(8)

X̄j
k+1 = X̄j

k − η · v̂Xk (X̄j
k, ξ · Y

j
0 ) j = 1, . . . ,M

we can opt to save all the θ and the CDFs and reuse them as
a model. Then, we can generate new samples conditioned
on any input y ∈ Y , by following the same pipeline of Al-
gorithm 1 but with the shaded lines skipped. We refer to
such samples as the offline samples.

4.4. Discussions

The advantages of considering the joint SWF instead of
separate conditional SWFs as described in Sec. 4.1 become
more clear now. As one can see, the generalization abil-
ity comes from interpolating the empirical CDFs. In our
method, we always interpolate the CDFs of the projected
joint distributions θ∗♯ q̂, suggesting that we are indeed gener-
alizing across both X and Y . Hence, the estimated velocity
field applies to all y ∈ Y even if it does not exist in D.
Moreover, the CDFs are always estimated using the entire
dataset, which means the knowledge is shared for all y ∈ Y .

The time complexity is discussed here. In each step of the
simulation, estimating the empirical CDFs for each projec-
tion requires sorting two sets of scalar values, with time
complexity O(M logM +N logN). Therefore, the overall
time complexity is O(KH(M logM +N logN)) and the
per-sample complexity is O(KH(logM + N

M logN)). For
the offline samples, since querying Fθ∗h♯p̂t

and F−1
θ∗h♯q̂

are in-
deed binary search and indexing operations, the per-sample
time complexity is O(KH logM). Note that the constant
KH can possibly be further reduced by sharing projection
between steps, which is left for future work.

Similar to Liutkus et al. (2019), the nonparametric nature of
CSWF stems from expressing the CDFs directly with empir-
ical data (e.g., sorted arrays of projections). This makes it
fundamentally different from parametric generative models
that are typically learned via (stochastic) gradient descent
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training and thus implies many potential advantages over
them. Notably, when new data samples are observed, the em-
pirical CDFs of the projected data distributions θ∗♯ q̂ can be
updated perfectly by only insertion operations (in O(logN)
time), which suggests that CSWF has great potential to be
adapted to online methods and bypass the challenges associ-
ated with parametric online learning, such as catastrophic
forgetting (Kirkpatrick et al., 2017; French, 1999). This is
also an exciting direction for follow-up research.

Finally, it is worth noting that by setting ξ = 0 the effect of
conditions is completely removed and our method falls back
to an unconditional variant similar to Liutkus et al. (2019).

5. SWFs with Visual Inductive Biases
In this section, we propose to introduce appropriate induc-
tive biases for image tasks into SWF-based methods via
locally-connected projections and pyramidal schedules. The
key idea is to use domain-specific projection distributions
instead of the uniform distribution, thus focusing more on
the OT problems in critical directions. We shall show below
how we adapt our CSWF with these techniques. Adapting
the SWF algorithm should then be straightforward.

5.1. Locally-Connected Projections

For an image domain X ⊆ Rd, We assume that d = C ×
H × W, where H and W denote the height and width of the
image in pixels and C denotes the number of channels.

We observe that projecting an image x ∈ X with uniformly
sampled θ is analogous to using a fully-connected layer on
the flattened vector of the image in neural networks, in the
sense that all pixels contribute to the projected values (or the
neurons). On the other hand, it has been widely recognized
that local connectivity is one of the key features making
CNNs effective for image tasks (Ngiam et al., 2010). This
motivates us to use locally-connected projections, where θx
is made sparse so that it only projects a small patch of the
image x. Specifically, given a patch size S, we first sample
a projection θpatch at the patch level from the (C× S× S)-
dimensional sphere. Then, we sample a spatial position
(r, c) (i.e., the row and column indices), which stands for
the center of the patch. Finally, we obtain θx by embedding
θpatch into a (C× H× W)-dimensional zero vector such that
θ⊤x x is equivalent to the projection of the S× S patch of x
centered at (r, c) using θpatch,3 as illustrated in Fig. 1.

The domain knowledge of Y can be incorporated into θy in a
similar way. To obtain the final projection θ, we simply con-
catenate θx and θy and normalize it to ensure θ ∈ Sd+l−1.

3Note that such choices of projections result in a non-uniform
distribution over Sd−1 and thus do not necessarily induce a well-
defined metric in P2(Rd). However, it can be practically effective
for image data. See more discussion in Nguyen & Ho (2022b).

𝜃patch

c

r

Locally-connected projection Upsampled projection

S = 3 H = 6 W = 6 H = 12 W = 12

Figure 1. An illustration of locally-connected projection and the
upsampled projection used in pyramidal schedules. Left panel
shows an example of how we generate a projection θx for 6× 6
image with patch size 3× 3 and spatial position (r = 4, c = 3).
Right panel shows how we upsample the projection to size 12×12.

5.2. Pyramidal Schedules

Pyramid (or multiscale) representation of images has been
widely used in computer vision (Adelson et al., 1984; Lin
et al., 2017). In image classification (Krizhevsky et al.,
2012), neural networks start from a high-resolution input
with details and gradually apply subsampling to obtain low-
resolution feature maps that contain high-level information.
Image generation usually follows the reverse order, i.e.,
starts by sketching the high-level structure and completes
the details gradually (Ramesh et al., 2022; Jing et al., 2022).

We thus adapt our CSWF to image tasks by introducing
pyramidal schedules, where we apply locally-connected
projections at different resolutions from low to high sequen-
tially. However, due to the dimension-preserving constraint
of SWF, instead of working directly on a low-resolution
image, we translate the operation to the full-sized image by
upsampling the projection filter and modifying the stride
parameter accordingly. See Fig. 1 for an illustration and
more details in Sec. 6 and Appendix C.

In the following, we refer to our CSWF combined with
locally-connected projections and pyramidal schedules as
the locally-connected CSWF and denote it as ℓ-CSWF. We
refer to unconditional SWF (Liutkus et al., 2019) combined
with the same techniques as ℓ-SWF.

6. Experiments
In this section, we first examine the efficacy of the proposed
techniques of locally-connected projections and pyramidal
schedules. We then demonstrate that with these techniques
our ℓ-CSWF further enables superior performances on con-
ditional modeling tasks, including class-conditional genera-
tion and image inpainting.

We use MNIST, Fashion-MNIST (Xiao et al., 2017), CIFAR-
10 (Krizhevsky et al., 2009) and CelebA (Liu et al., 2015)
datasets in our experiments. For CelebA, we first center-
crop the images to 140×140 according to Song et al. (2020)
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100 200 500 1000 1500 2000 3000 4500 200 500 1000 1500 2000 3000 5000 7500 9000

Figure 2. Ablation study of the proposed locally-connected pro-
jections and pyramidal schedules. Initially, uniformly sampled
projections leads to slow convergence (top rows). Using locally-
connected projections, the samples converge rapidly but lose se-
mantic information (middle rows). Further combined with the
pyramidal schedules, it is possible to generate high-quality sam-
ples quickly (bottom rows). Numbers indicate the simulation steps.

Table 1. FID↓ scores obtained by ℓ-SWF on CIFAR-10 and
CelebA. ⋄ Use 160 × 160 center-cropping. ∗ Use 128 × 128
center-cropping. † Use 140× 140 center-cropping.

Method CIFAR-10 CelebA

Auto-encoder based
VAE (Kingma & Welling, 2013) 155.7 85.7⋄

SWAE (Wu et al., 2019) 107.9 48.9∗

WAE (Tolstikhin et al., 2017) − 42†

CWAE (Knop et al., 2020) 120.0 49.7†

Autoregressive & Energy based
PixelCNN (Van den Oord et al., 2016) 65.9 −

EBM (Du & Mordatch, 2019) 37.9 −
Adversarial

WGAN (Arjovsky et al., 2017) 55.2 41.3⋄

WGAN-GP (Gulrajani et al., 2017) 55.8 30.0⋄

CSW (Nguyen & Ho, 2022b) 36.8 −
SWGAN (Wu et al., 2019) 17.0 13.2∗

Score based
NCSN (Song & Ermon, 2019) 25.3 −

Nonparametric
SWF (Liutkus et al., 2019) > 200 > 150†

SINF (Dai & Seljak, 2021) 66.5 37.3∗

ℓ-SWF (Ours) 59.7 38.3†

and then resize them to 64 × 64. For all experiments, we
set H = 10000 for the number of projections in each step
and set the step size η = d. The number of simulation steps
K varies from 10000 to 20000 for different datasets, due to
different resolutions and pyramidal schedules. For MNIST
and Fashion-MNIST, we set M = 2.5× 105. For CIFAR-
10 and CelebA, we set M = 7× 105 and M = 4.5× 105,
respectively. Additional experimental details and ablation
studies are provided in Appendix C & D.1. Code is available
at https://github.com/duchao0726/Conditionial-SWF.

6.1. Unconditional Generation

To assess the effectiveness of the inductive biases intro-
duced by the locally-connected projections and the pyrami-
dal schedules, we opt to first evaluate ℓ-SWF on standard
unconditional image generation tasks. We do so because this

Figure 3. Uncurated batched samples from ℓ-SWF on MNIST,
Fashion MNIST, CIFAR-10 and CelebA.

makes more existing generative models comparable since
most of them are designed for unconditional generation.

Fig. 3 shows uncurated batched samples (see Sec. 4.3) from
ℓ-SWF on MNIST, Fashion MNIST, CIFAR-10 and CelebA.
More samples, including their nearest neighbors in the
datasets and the offline samples, are shown in Appendix D.2.
We observe that the generated images are of high quality. To
intuit the effectiveness of locally-connected projections and
pyramidal schedules, we show in Fig. 2 an ablation study. It
can be observed that with the introduced inductive biases,
the number of simulation steps can be greatly reduced, and
the generative quality is significantly improved. For com-
parison, Liutkus et al. (2019) report that uniformly sampled
projections (i.e. without the inductive biases) fail to produce
satisfactory samples on high-dimensional image data.

We report the FID scores (Heusel et al., 2017) on CIFAR-
10 and CelebA in Table 1 for quantitative evaluation. We
compare with SWF (Liutkus et al., 2019) and SINF (Dai
& Seljak, 2021), which are also iterative methods based on
the SW2 distance. We also include the results of other
generative models based on optimal transport for com-
parison, including SWAE & SWGAN (Wu et al., 2019),
WAE (Tolstikhin et al., 2017), CWAE (Knop et al., 2020),
CSW (Nguyen & Ho, 2022b), WGAN (Arjovsky et al.,
2017) and WGAN-GP (Gulrajani et al., 2017). For better
positioning our method in the literature of generative models,
we also list results of some representative works, including
VAE (Kingma & Welling, 2013), PixelCNN (Van den Oord
et al., 2016), EBM (Du & Mordatch, 2019) and NCSN (Song
& Ermon, 2019). Our ℓ-SWF significantly outperforms
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Figure 4. Class-conditional samples from ℓ-CSWF (ξ = 10) on MNIST, Fashion MNIST and CIFAR-10.

Figure 5. Image inpainting results of ℓ-CSWF (ξ = 1) on MNIST, Fashion MNIST, CIFAR-10 and CelebA. In each figure, the leftmost
column shows the occluded images and the rightmost column shows the original images.

SWF due to the appropriately introduced inductive biases
via the techniques described in Sec. 5. On CIFAR-10, it also
outperforms SINF (which is layer-wise optimized), proba-
bly because SINF requires the projections to be orthogonal,
which limits its capability. We include results on CelebA
for reference, while we note that different preprocessing
make the scores not directly comparable. It is worth noting
that, as a nonparametric method that does not require any
optimization (e.g. backpropagation), ℓ-SWF achieves com-
parable results to many elaborate parametric methods such
as WGAN and PixelCNN, showing great promise.

6.2. Conditional Modeling

We now demonstrate that, with the help of the introduced
inductive biases, our ℓ-CSWF is capable of handling com-
monly concerned conditional distribution modeling tasks
such as class-conditional generation and image inpainting.

6.2.1. CLASS-CONDITIONAL IMAGE GENERATION

For class-conditional generation tasks, we let Y be the set
of one-hot vectors representing the class labels. The initial

{Ȳ j0 }Mj=1 are sampled according to the label distribution
in the dataset (which is categorically uniform for all three
datasets tested here). For each projection θx, we additionally
sample a θy uniformly from Sl−1 with l being the number of
classes and then normalize it together with θx, ensuring that
θ = [θ⊤x , θ

⊤
y ]

⊤ has unit length. We set the amplifier ξ =
10 for all datasets. Other experimental settings, including
the hyperparameters and the pyramidal schedules, are the
same as in Sec. 6.1. The generated images are shown in
Fig. 4. We observe that the samples are of good visual
quality and consistent with the class labels. Interestingly,
by varying the amplifier ξ, ℓ-CSWF can smoothly transit
between class-conditional and unconditional generation, as
shown in Appendix D.1.

6.2.2. IMAGE INPAINTING

For inpainting tasks, we let X and Y represent the pixel
spaces of the occluded and observed portions of images,
respectively. Since the true marginal q(y) is not available
in this setting, we set the initial {Ȳ j0 }Mj=1 to the partially-
observed images created from the dataset. We directly sam-
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ple θ (using locally-connected projections) rather than deal-
ing with θx and θy separately, as both X and Y are in the
image domain. The amplifier is set to ξ = 1 for all datasets.
In Fig. 5, we show inpainting results (offline samples) for the
occluded images created from the test split of each dataset.
We observe that the inpaintings are semantically meaningful
and consistent with the given pixels.

7. Conclusions
In this work, we make two major improvements to SWF,
a promising type of nonparametric generative model. We
first extend SWF in a natural way to support conditional
distribution modeling, which opens up the possibility to
applications that rely on conditional generation, e.g. text-
to-image, image inpainting. On the other hand, we intro-
duce domain-specific inductive biases for image generation,
which significantly improves the efficiency and generative
quality. Despite being a nonparametric model that does
not rely on backpropagation training, our method performs
comparably to many parametric models. This promising
performance could inspire more further research in this field.
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A. Illustrations of Joint SWFs, Conditional SWFs and CSWF
In this section, we show several 2-dimensional toy examples (i.e. X = Y = R) to motivate our CSWF method.

The Joint SWF Suppose we have a target distribution q(x, y) ∈ P2(R2), which is a mixture of two Gaussian distributions
(outlined in blue shaded contours in Fig. 6a) and an initial distribution p0(x, y) ∈ P2(R2), which is a mixture of another
two Gaussian distributions with different modes (outlined in red contours in Fig. 6a). The joint SWF (pt)t≥0 starting from
p0 and targeting q is demonstrated in Fig. 6a, chronologically from left to right. We observe that each mixture component of
p0 is “split” into two parts and moves to two different components of the target distribution q.

The Ideal Conditional SWFs In the setting of conditional modeling described in Sec. 4, we aim to fit q(x|y) for all y ∈ Y .
Ideally, we can achieve this with a conditional SWF starting from p0(x|y) and targeting q(x|y) for each y, as described in
Sec. 4.1. Fig. 6b illustrates the effect of the ideal conditional SWFs (py,t(x))t≥0,∀y ∈ Y .

A Difference Joint SWF We now alter the initial distribution p0(x, y) and the target q(x, y) by simply shifting their mixture
components farther apart in the y-direction (i.e., the vertical direction), and then show the new joint SWF in Fig. 6c. The
mixture components now move (roughly) horizontally, resulting in a significantly different trajectory than in Fig. 6a.

Motivation of CSWF While the above example (Fig. 6c) remains a joint SWF, it bears considerable resemblance to the
desired conditional SWFs (Fig. 6b). This motivates us to approximate conditional SWFs with a joint SWF of scaled initial
and target distributions (Algorithm 1). Specifically, we first stretch the initial and target distributions along the Y-component
(using a factor ξ, which we call an amplifier), then simulate the joint SWF of the streched initial and target distributions, and
finally compress the distributions to the original scale. We show the results of our CSWF in Fig. 6d.

Significance of ξ in CSWF Note that the effect of a large amplifier ξ is significant, since scaling the Y-component is the
key factor in making the joint SWF approximate the conditional SWFs. In Fig. 6e, we show the results of CSWF without
amplifying (i.e., with ξ = 1) for comparison.

B. Recap of the SWF Algorithm (Liutkus et al., 2019)
Liutkus et al. (2019) consider minimizing the functional Fq

λ(·) =
1
2SW

2
2 (·, q) + λH(·), where H(·) denotes the negative

entropy defined by H(p) ≜
∫
Rd p(x) log p(x)dx. The introduced entropic regularization term helps to have the convergence

of the Wasserstein gradient flow. In specific, they prove that under certain conditions the Wasserstein gradient flow of Fq
λ

admits density (pt)t≥0 that satisfies the following continuity equation:

∂pt(x)

∂t
+∇ · (pt(x)vt(x))− λ∆pt = 0, vt(x) ≜ −

∫
Sd−1

ψ′
t,θ(θ

⊤x) · θ dλ(θ).

Compared to Eq. (3), there is an extra Laplacian term which corresponds to the entropic regularization in Fq
λ. By drawing a

connection between this Fokker-Planck-type equation and stochastic differential equations (SDE), they propose to simulate
the above equation with a stochastic process dXt = vt(Xt)dt+

√
2λdWt, where (Wt)t denotes a standard Wiener process.

Finally, they propose to approximate the SDE with a particle system and present a practical algorithm for unconditional
generative modeling, which we recap in Algorithm 2 (using our notations).

C. Additional Experimental Details
In our experiments, we augment the CIFAR-10 dataset with horizontally flipped images, resulting in a total of 100000
training images. This is analogous to the random flip data augmentation used in training neural networks. We do not employ
this augmentation for the CelebA dataset due to limited computing resources. The pixel values of all images are dynamically
dequantized at each step during the simulation and are rescaled to the range of [−1, 1].

We set the simulation step size η = d (i.e. the dimensionality of the images) due to the following reasons. In one-dimensional
cases (d = 1), we can solve the optimal transport problem between θ∗♯ pt and θ∗♯ q using Eq. (7) with step size η = 1, since
it recovers the optimal transport map T . In d-dimensional cases, for any d orthogonal projections, the optimal transport
problems between the projected distributions are independent of each other and can be solved simultaneously. In Eq. (7),
however, the transport maps (i.e., the derivatives of the Kantorovich potentials) of all directions are averaged. Therefore, we
set η = d so that the step size in each direction equals to 1 in the average sense.
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(a) The joint SWF.

(b) The ideal conditional SWFs.

(c) The joint SWF after moving components farther apart in the y-direction.

(d) Illustration of the proposed CSWF.

(e) Illustration of the proposed CSWF without amplifying (i.e., with ξ = 1).

Figure 6. Illustrations of joint SWFs, conditional SWFs and the proposed CSWF algorithm. See more explanations in Appendix A.
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Algorithm 2: Sliced-Wasserstein Flow (SWF) (Liutkus et al., 2019)

Input: D = {xi}Ni=1, M , H , η, λ, K
Output: {X̄j

K}Mj=1

// Initialize the particles

{X̄j
0}Mj=1

i.i.d.∼ N (0, Id)
// Generate random directions

{θh}Hh=1
i.i.d.∼ Uniform(Sd−1)

// Quantiles of projected target

for h = 1, . . . ,H do
F−1
θ∗h♯q̂

= QF({θ⊤h xi}Ni=1) // QF denotes the quantile function

// Iterations

for k = 0, . . . ,K − 1 do
for h = 1, . . . ,H do
// CDF of projected particles

Fθ∗h♯p̂k
= CDF({θ⊤h X̄

j
k}Mj=1)

for j = 1, . . . ,M do
// Update the particles

X̄j
k+1 = X̄j

k − η · v̂k(X̄j
k) +

√
2λη · ϵjk+1, ϵjk+1 ∼ N (0, Id)

C.1. Locally-Connected Projections and Pyramidal Schedules

We summarize the pyramidal schedules used for each dataset in Table 2. When upsampling projections with a lower
resolution than the image, we empirically find that Lanczos upsampling works better than nearest neighbor upsampling.

C.2. CDF Estimations

We estimate the CDFs of the projected distributions θ∗♯ p̂t and θ∗♯ q̂ by first sorting their (scalar) projected values {θ⊤x X̄j +

ξ · θ⊤y Ȳ j}Mj=1 and {θ⊤x xi + ξ · θ⊤y yi}Ni=1, respectively. After sorting, the linear interpolation is performed as follows.
Let {zi}Ni=1 denote the sorted array, i.e., z1 ≤ · · · ≤ zN . When estimating the CDF of an input value z′, we first find
its insert position I (i.e., the index I satisfying zI ≤ z′ ≤ zI+1) with binary search. Then the CDF of z′ is estimated
with I−1

N + 1
N

z′−zI
zI+1−zI . For an input a ∈ [0, 1], we inverse the CDF by first calculating the index I = ⌊a×N⌋ and then

computing the inverse value as zI + (a×N − I) ∗ (zI+1 − zI). For CIFAR-10 and CelebA, since we use a relatively large
number of particles which leads to a slow sorting procedure, we choose a subset of particles for the estimation of θ∗♯ p̂t.

D. Additional Experiments
D.1. Ablation Studies of H , M and ξ

We present the FID scores obtained by ℓ-SWF using different numbers of Monte Carlo samples H in Table 3. The results of
ℓ-SWF using different numbers of particles M are shown in Table 4. We show the class-conditional generation of ℓ-CSWF
using different amplifiers ξ from 0 to 10 in Fig. 7.

D.2. Additional Samples

More unconditional samples from ℓ-SWF are shown in Fig. 8. We show the nearest neighbors of the generated samples in
Fig. 9, where we observe that the generated samples are not replicated training samples or combined training patches, but
generalize at the semantic level. In Fig. 10, we show the offline samples, which appear to be comparable in visual quality to
the batch samples (in Fig. 3). Quantitatively, the FID score of the offline samples on CIFAR-10 is 61.1, which is also close
to that of the batched samples (59.7).

Fig. 11 and Fig. 12 show additional class-conditional samples and image inpainting results of ℓ-CSWF, respectively.
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Table 2. Details of the pyramidal schedules for each dataset. In each entry, (H× W) [S1, . . . , Sk] denotes that we use locally-connected
projections of resolution H× W with patch size S1 × S1, . . . , Sk × Sk sequentially. We upsample all projections to image resolution.

MNIST & Fashion MNIST CIFAR-10 CelebA

(1× 1) [1] (1× 1) [1] (1× 1) [1]
(2× 2) [2] (2× 2) [2] (2× 2) [2]
(3× 3) [3] (3× 3) [3] (3× 3) [3]
(4× 4) [4] (4× 4) [4] (4× 4) [4]
(5× 5) [5] (5× 5) [5] (5× 5) [5]
(6× 6) [6] (6× 6) [6] (6× 6) [6]
(7× 7) [7, 5, 3] (7× 7) [7] (7× 7) [7]
(11× 11) [11, 9, 7, 5, 3] (8× 8) [8, 7, 5, 3] (8× 8) [8, 7, 5, 3]
(14× 14) [14, 13, 11, 9, 7, 5, 3] (12× 12) [12, 11, 9, 7, 5, 3] (12× 12) [12, 11, 9, 7, 5, 3]
(21× 21) [15, 13, 11, 9, 7, 5, 3] (16× 16) [15, 13, 11, 9, 7, 5, 3] (16× 16) [15, 13, 11, 9, 7, 5, 3]
(28× 28) [15, 13, 11, 9, 7, 5, 3] (24× 24) [15, 13, 11, 9, 7, 5, 3] (24× 24) [15, 13, 11, 9, 7, 5, 3]

(32× 32) [15, 13, 11, 9, 7, 5, 3] (32× 32) [15, 13, 11, 9, 7, 5, 3]
(64× 64) [15, 13, 11, 9, 7, 5, 3]

Table 3. FID↓ scores of ℓ-SWF using different number of Monte Carlo samples H on CIFAR-10.

# Monte Carlo Samples FID

H = 1000 90.8
H = 5000 68.1
H = 10000 59.7

Table 4. FID↓ scores of ℓ-SWF using different number of particles M on CIFAR-10.

# Particles FID

M = 1× 105 64.0
M = 3× 105 61.4
M = 7× 105 59.7
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(a) MNIST, ξ = 0 (b) Fashion MNIST, ξ = 0 (c) CIFAR-10, ξ = 0

(d) MNIST, ξ = 2 (e) Fashion MNIST, ξ = 2 (f) CIFAR-10, ξ = 2

(g) MNIST, ξ = 5 (h) Fashion MNIST, ξ = 5 (i) CIFAR-10, ξ = 5

(j) MNIST, ξ = 10 (k) Fashion MNIST, ξ = 10 (l) CIFAR-10, ξ = 10

Figure 7. Class-conditional generation of ℓ-CSWF with different amplifiers ξ on MNIST, Fashion MNIST and CIFAR-10. In each figure,
each row corresponds to a class. We observe that ξ = 0 recovers unconditional generation and the generated samples become more
consistent with the classes as ξ grows.
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(a) MNIST (b) Fashion MNIST

(c) CIFAR-10 (d) CelebA

Figure 8. Additional uncurated batched samples from ℓ-SWF on MNIST, Fashion MNIST, CIFAR-10 and CelebA.
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(a) CIFAR-10 (b) CelebA

Figure 9. L2 nearest neighbors of the generated samples from ℓ-SWF on CIFAR-10 and CelebA. The leftmost columns are the generated
images. Images to the right are the nearest neighbors in the dataset.

(a) MNIST (b) Fashion MNIST (c) CIFAR-10 (d) CelebA

Figure 10. Uncurated offline samples from ℓ-SWF on MNIST, Fashion MNIST, CIFAR-10 and CelebA.
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(a) MNIST

(b) Fashion MNIST

(c) CIFAR-10

Figure 11. Additional class-conditional samples from ℓ-CSWF (ξ = 10) on MNIST, Fashion MNIST and CIFAR-10.
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(a) CIFAR-10

(b) CelebA

Figure 12. Additional image inpainting results of ℓ-CSWF (ξ = 1) on CIFAR-10 and CelebA.
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