
Published as a conference paper at ICLR 2022

LABEL LEAKAGE AND PROTECTION IN
TWO-PARTY SPLIT LEARNING

Oscar Li1†∗, Jiankai Sun2§, Xin Yang2, Weihao Gao2, 1Carnegie Mellon University
Hongyi Zhang2, Junyuan Xie2, Virginia Smith1, Chong Wang2 2ByteDance Inc.

ABSTRACT

Two-party split learning is a popular technique for learning a model across feature-
partitioned data. In this work, we explore whether it is possible for one party to
steal the private label information from the other party during split training, and
whether there are methods that can protect against such attacks. Specifically, we
first formulate a realistic threat model and propose a privacy loss metric to quan-
tify label leakage in split learning. We then show that there exist two simple yet
effective methods within the threat model that can allow one party to accurately
recover private ground-truth labels owned by the other party. To combat these at-
tacks, we propose several random perturbation techniques, including Marvell,
an approach that strategically finds the structure of the noise perturbation by min-
imizing the amount of label leakage (measured through our quantification metric)
of a worst-case adversary. We empirically1 demonstrate the effectiveness of our
protection techniques against the identified attacks, and show that Marvell in
particular has improved privacy-utility tradeoffs relative to baseline approaches.

1 INTRODUCTION

With increasing concerns over data privacy in machine learning, federated learning (FL) (McMahan
et al., 2017) has become a promising direction of study. Based on how sensitive data are distributed
among parties, FL can be classified into different categories, notable among which are horizontal
FL and vertical FL (Yang et al., 2019). In contrast to horizontal FL where the data are partitioned
by examples, vertical FL considers data partitioned by features (including labels). As a canonical
example of vertical FL, consider an online media platform A which displays advertisements from
company B to its users, and charges B for each conversion (e.g., a user clicking the ad and buying
the product). In this case, both parties have different features for each user: A has features on the
user’s media viewing records, while B has the user’s conversion labels. B’s labels are not available
to A because each user’s purchase behaviors happen entirely on B’s website/app.

If both parties want to jointly learn a model to predict conversion without data sharing, split learn-
ing (Gupta & Raskar, 2018; Vepakomma et al., 2018) can be used to split the execution of a deep
network between the parties on a layer-wise basis. In vanilla split learning, before training begins,
both parties use Private Set Intersection (PSI) protocols (Kolesnikov et al., 2016; Pinkas et al., 2018)
to find the intersection of their data records and achieve an example ID alignment. This alignment
paves the way for the split training phase. During training (Figure 1), the party without labels (non-
label party) sends the intermediate layer (cut layer) outputs rather than the raw data to the party with
labels (label party), and the label party completes the rest of the forward computation to obtain the
training loss. To compute the gradients with respect to model parameters, the label party initiates
backpropagation from its training loss and computes its own parameters’ gradients. To allow the
non-label party to also compute gradients of its parameters, the label party also computes the gradi-
ents with respect to the cut layer outputs and communicates this information back to the non-label
party. As a result of the ID alignment, despite not knowing the label party’s raw label data, the
non-label party can identify the gradient value returned by the label party for each example.

At first glance, the process of split learning appears privacy-preserving because only the intermedi-
ate computations of the cut layer—rather than raw features or labels—are communicated between
the two parties. However, such “gradient sharing” schemes have been shown to be vulnerable to
privacy leakage in horizontal FL settings (e.g., Zhu et al., 2019). In vertical FL (and specifically
split learning), it remains unclear whether the raw data can similarly be leaked during communi-

∗work done during internship at ByteDance Inc. †oscarli@cmu.edu §jiankai.sun@bytedance.com
1Code available at https://github.com/OscarcarLi/label-protection

1

https://github.com/OscarcarLi/label-protection

Published as a conference paper at ICLR 2022

L

cut layer
X f(X) ℓ = h(f(X))f(X)

positive logit

dL
dL

= 1

{0, 1} ∋ y

forward
computation

backward
gradient

computation

non-label party label party

weights of h

communication
cross entropyf h

dL
dℓ

= (p̃1−y)
g := ∇f(X)L
= (p̃1−y)∇zh(z)

z=f(X)
g := ∇f(X)L

weights of f

no
buy buy

user
features

Can leak ?
Can we protect against this?

g y

Figure 1: Communication diagram of two-party split training for an example of online advertising. We study
whether it is possible for the communicated gradient g to leak private label information.

cation. In particular, as the raw labels often contain highly sensitive information (e.g., what a user
has purchased (in online advertising) or whether a user has a disease or not (in disease predic-
tion) Vepakomma et al. (2018)), developing a rigorous understanding of the threat of label leakage
and its protection is particularly important. Towards this goal, we make the following contributions:

1. We formalize a threat model for label leakage in two-party split learning in the context of binary
classification (Section 3.1), and propose specific privacy quantification metrics to measure the
severity of such threats (Section 3.2).

2. We identify two simple and realistic methods within this threat model which can accurately
recover the label party’s private label information (Section 3.3).

3. We propose several random perturbation techniques to limit the label-stealing ability of the
non-label party (Section 4). Among them, our principled approach Marvell directly searches
for the optimal random perturbation noise structure to minimize label leakage (as measured via
our quantification metric) against a worst-case adversarial non-label party.

4. We experimentally demonstrate the effectiveness of our protection techniques and MARVELL’s
improved privacy-utility tradeoffs compared to other protection baselines (Section 5).

2 RELATED WORK

Privacy leakage in split learning. Although raw data is not shared in federated learning, sensitive
information may still be leaked when gradients and/or model parameters are communicated between
parties. In horizontal FL, Zhu et al. (2019) showed that an honest-but-curious server can uncover
the raw features and labels of a device by knowing the model architecture, parameters, and com-
municated gradient of the loss on the device’s data. Based on their techniques, Zhao et al. (2020)
showed that the ground truth label of an example can be extracted by exploiting the directions of
the gradients of the weights connected to the logits of different classes. Here we study a different
setting—two-party split learning (in vertical FL) (Yang et al., 2019), where no party has access to the
model architecture or model parameters of the other party. In this setting, Vepakomma et al. (2019)
studied how the forward communication of feature representations can leak the non-label party’s
raw data to the label party. We instead study whether label information may be leaked from the
label party to the non-label party during the backward communication. Despite the importance of
maintaining the privacy of these labels, we are unaware of prior work that has studied this problem.

Privacy protection and quantification. Techniques to protect communication privacy in FL gen-
erally fall into three categories: 1) cryptographic methods such as secure multi-party computation
(e.g., Bonawitz et al., 2017); 2) system-based methods including trusted execution environments
(Subramanyan et al., 2017); and 3) perturbation methods that shuffle or modify the communicated
messages (e.g., Abadi et al., 2016; McMahan et al., 2018; Erlingsson et al., 2019; Cheu et al., 2019;
Zhu et al., 2019). Our protection techniques belong to the third category, as we add random per-
turbations to the gradients to protect the labels. Many randomness-based protection methods have
been proposed in the domain of horizontal FL. In this case, differential privacy (DP) (Dwork, 2006;
Dwork et al., 2014) is commonly used to measure the proposed random mechanisms’ ability to
anonymize the identity of any single participating example in the model iterates. However, in split
learning, after PSI, both parties know exactly the identity of which example has participated in a
given gradient update. As we explain in Section 3.1, the object we aim to protect (the communi-
cated cut layer gradients), unlike the model iterates, is not an aggregate function of all the examples
but are instead example-specific. As a result, DP and its variants (e.g. label DP (Chaudhuri &
Hsu, 2011; Ghazi et al., 2021)) are not directly applicable metrics in our setting, and we instead
propose a different metric (discussed in Section 3.2).

2

Published as a conference paper at ICLR 2022

3 LABEL LEAKAGE IN SPLIT LEARNING

We first introduce the two-party split learning problem for binary classification, and then formally
describe our threat model and privacy quantification metrics with two concrete attack examples.

3.1 TWO-PARTY SPLIT LEARNING IN BINARY CLASSIFICATION

Problem setup. Consider two parties learning a composition model h ◦ f jointly for a binary
classification problem over the domain X × {0, 1} (Figure 1). The non-label party owns the repre-
sentation function f : X → Rd and each example’s raw feature X ∈ X while the label party owns
the logit function h : Rd → R and each example’s label y ∈ {0, 1}2. Let ` = h(f(X)) be
the logit of the positive class whose predicted probability is given through the sigmoid function:
p̃1 = 1/(1 + exp(−`)). We measure the loss of such prediction through the cross entropy loss
L = log(1 + exp(−`)) + (1 − y)`. During model inference, the non-label party computes f(X)
and sends it to the label party who will then execute the rest of forward computation in Figure 1.

Model training (Figure 1: backward gradient computation). To train the model using gradient
descent, the label party starts by first computing the gradient of the loss L with respect to the logit
dL
d` = (p̃1 − y). Using the chain rule, the label party can then compute the gradient of L with
respect to its function h’s parameters and perform the gradient updates. To also allow the non-label
party to learn its function f , the label party needs to additionally compute the gradient with respect
to cut layer feature f(X) and communicate it to the non-label party. We denote this gradient by
g := ∇f(X)L = (p̃1 − y)∇zh(z)|z=f(X) ∈ Rd (by chain rule). After receiving g, the non-label
party continues the backpropagation towards f ’s parameters and also perform the gradient updates.

Why Not Differential Privacy? Note that for a given iteration, the non-label party randomly
chooses B example IDs to form a batch. Therefore, the identity of which examples are used is
known to the non-label party by default. In addition, the communicated features f(X) and returned
gradients g will both be matrices in RB×d with each row belonging to a specific example in the batch.
The different gradients (rows of the matrix) are not with respect to the same model parameters, but
are instead with respect to different examples’ cut-layer features; thus, no averaging over or shuffling
of the rows of the gradient matrix can be done prior to communication to ensure correct computa-
tion of f ’s parameters on the non-label party side. This example-aware and example-specific nature
of the communicated gradient matrix makes differential privacy (which focuses on anonymizing an
example’s participation in an aggregate function) inapplicable for this problem (see also Section 2).

3.2 THREAT MODEL AND PRIVACY QUANTIFICATION

Below we specify several key aspects of our threat model, including the adversary’s objective and
capabilities, our metric for quantifying privacy loss, and the possible inclusion of side information.

Adversary’s objective. At a given moment in time during training (with f and h fixed), since the
communicated cut layer gradient g is a deterministic function of y (see Section 3.1), we consider
an adversarial non-label party whose objective is to recover the label party’s hidden label y based on
the information contained in g for every training example.

Adversary’s capability. We consider an honest-but-curious non-label party which cannot tamper
with training by selecting which examples to include in a batch or sending incorrect features f(X);
instead, we assume that the adversary follows the agreed-upon split training procedure while trying
to guess the label y. This can be viewed as a binary classification problem where the (input, output)
distribution is the induced distribution of (g, y). We allow the adversary to use any binary classifier
q : Rd → {0, 1} to guess the labels. This classifier can be represented by a (scoring function r,
threshold t) tuple, where r : Rd → R maps an example’s cut layer gradient to a real-valued score
and the threshold t ∈ R determines a cut-off so that q(g) = 1 if r(g) > t and q(g) = 0 if r(g) ≤ t.
Moving forward, we use this tuple representation to describe adversarial non-label party classifiers.

Privacy loss quantification. As we consider binary classification, a natural metric to quantify
the performance of an adverary’s scoring function r is the AUC of its ROC curve. Denote the
unperturbed class-conditional distributions of the cut-layer gradients by P (1) and P (0) for the

2To simplify notation, we assume no additional features in the label party to compute the logit. The data
leakage problem still holds true for other more complicated settings (see WDL experiment setting in Section 5).

3

Published as a conference paper at ICLR 2022

(a)
0.0 0.2 0.4 0.6 0.8 1.0

|p1 y|

100up
da

te
 it

er
at

io
n y=1

y=0

200
300
400
500

(b)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

|| zh(z)|z = f(X)||2

100up
da

te
 it

er
at

io
n y=1

y=0

200
300
400
500

(c)
0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

||g||2

100up
da

te
 it

er
at

io
n y=1

y=0

200
300
400
500

(d)
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

cos(zh(z)|z = f(Xa), zh(z)|z = f(Xb))

100

up
da

te
 it

er
at

io
n

between all possible pair of example (a, b)

200

300

400

500

(e)
1.0 0.5 0.0 0.5 1.0

cos(g, g +)

100

up
da

te
 it

er
at

io
n

y=1
y=0

200

300

400

500

Figure 2: Distributions of quantities discussed in Observations 1-4 after the first 100, 200, 300, 400, 500 steps
of stochastic gradient descent training of the WDL model on Criteo (see experiments).

positive and negative class, respectively. The ROC curve of a scoring function r is a paramet-
ric curve t 7→ (FPRr(t),TPRr(t)) ∈ [0, 1]2 which maps a threshold value t ∈ R to the corre-
sponding (False Positive Rate, True Positive Rate) tuple of the classifier represented by (r, t), with
FPRr(t) := P (0)({g : r(g) > t}) and TPRr(t) := P (1)({g : r(g) > t}). The AUC of the ROC
curve of a scoring function r (denote by AUC(r)) can be expressed as an integral:

AUC(r) =
∫ −∞
∞ TPRr(t) dFPRr(t) ∈ [0, 1] (Leak AUC)

(more details on this expression see Appendix A.1.) We use this value as the privacy loss quantifi-
cation metric for a specific adversary scoring function r and refer to it as the leak AUC. This metric
summarizes the predictive performance of all classifiers that can be constructed through all threshold
values t and removes the need to tune this classifier-specific hyperparameter. The leak AUC being
close to 1 implies that the corresponding scoring function r can very accurately recover the private
label, whereas a value of around 0.5 means r is non-informative in predicting the labels. In practice,
during batch training, the leak AUC of r can be estimated at every gradient update iteration using
the minibatch of cut-layer gradients together with their labels.

Side information. Among all the scoring functions within our threat model, it is conceivable that
only some would recover the hidden labels accurately. Picking such effective ones would require
the non-label party to have population-level side information specifically regarding the properties of
(and distinction between) the positive and negative class’s cut-layer gradient distributions. Since we
allow the adversary to pick any specific (measurable) scoring function, we implicitly allow for such
population-level side information for the adversary. However, we assume the non-label party has no
example-level side information that is different example by example. Thus we also don’t use local
DP for privacy quantification (detailed explanation in Appendix A.8). Next we provide two example
scoring functions which use population-level side-information to effectively recover the label.

3.3 PRACTICAL ATTACK METHODS

Attack 1: Norm-based scoring function. Note that ‖g‖2 = |p̃1 − y| · ‖∇ah(a)|a=f(X)‖2. We
make the following observations for |p̃1 − y| and ‖∇ah(a)|a=f(X)‖2, which hold true for a wide
range of real-world learning problems.

• Observation 1: Throughout training, the model tends to be less confident about a positive ex-
ample being positive than a negative example being negative. In other words, the confidence gap
of a positive example 1− p̃1 = |p̃1 − y| (when y = 1) is typically larger than the confidence gap
of a negative example 1− p̃0 = p̃1 = |p̃1 − y| (when y = 0) (see Figure 2(a)). This observation
is particularly true for problems like advertising conversion prediction and disease prediction,
where there is inherently more ambiguity for the positive class than the negative. For example,
in advertising, uninterested users of a product will never click on its ad and convert, but those
interested, even after clicking, might make the purchase only a fraction of the time depending
on time/money constraints. (See A.2 for such an ambiguity even for a class-balanced setting.)

• Observation 2: Throughout training, the norm of the gradient vector ‖∇zh(z)|z=f(X)‖2 is
on the same order of magnitude (has similar distribution) for both the positive and negative
examples (Figure 2(b)). This is natural because∇ah(a)|a=f(X) is not a function of y.

4

Published as a conference paper at ICLR 2022

As a consequence of Observation 1 and 2, the gradient norm ‖g‖2 of the positive instances are
generally larger than that of the negative ones (Figure 2(c)). Thus, the scoring function rn(g) =
‖g‖2 is a strong predictor of the unseen label y. We name the privacy loss (leak AUC) measured
against the attack rn the norm leak AUC. In Figure 2(c), the norm leak AUCs are consistently above
0.9, signaling a high level of label leakage throughout training.

Attack 2: Direction-based scoring function. We now show that the direction of g (in addition to
its magnitude) can also leak the label. For a pair of examples, (Xa, ya), (Xb, yb), let their respective
predicted positive class probability be p̃1,a, p̃1,b and their communicated gradients be ga, gb. Let
cos : Rd×Rd → R denote the cosine similarity function cos(ga, gb) = gTa gb/(‖ga‖2‖gb‖2). It is easy
to see that cos(ga, gb) = sgn(p̃1,a − ya) · sgn(p̃1,a − yb) · cos(∇zh(z)|z=f(Xa),∇zh(z)|z=f(Xb)), where
sgn(x) is the sign function which returns 1 if x ≥ 0, and −1 if x < 0. We highlight two additional
observations that can allow us to use cosine similarity to recover the label.

• Observation 3: When the examples a, b are of different classes, the term sgn(p̃1,a − ya) ·
sgn(p̃1,a − yb) = −1 is negative. On the other hand, when examples a, b are of the same
class (both positive/both negative), this product will have a value of 1 and thus be positive.

• Observation 4: Throughout training, for any two examples a, b, their gradients of the function h
always form an acute angle, i.e. cos(∇zh(z)|z=f(Xa),∇zh(z)|z=f(Xb)) > 0 (Figure 2(d)). For
neural networks that use monotonically increasing activation functions (such as ReLU, sigmoid,
tanh), this is caused by the fact that the gradients of these activation functions with respect to its
inputs are coordinatewise nonnegative and thus always lie in the first closed hyperorthant.

Since cos(ga, gb) is the product of the terms from Observation 3 and 4, we see that for a given
example, all the examples that are of the same class result in a positive cosine similarity, while all
opposite class examples result in a negative cosine similarity. If the problem is class-imbalanced
and the non-label party knows there are fewer positive examples than negative ones, it can thus
determine the label of each example: the class is negative if more than half of the examples result
in positive cosine similarity; otherwise it is positive. For many practical applications, the non-label
party may reasonably guess which class has more examples in the dataset a priori without ever
seeing any data—for example, in disease prediction, the percentage of the entire population having
a certain disease is almost always much lower than 50%; in online advertising conversion prediction,
the conversion rate (fraction of positive examples) is rarely higher than 30%. Note that the non-label
party doesn’t need knowledge of the exact sample proportion of each class for this method to work.

To simplify this attack for evaluation, we consider an even worse oracle scenario where the non-label
party knows the clean gradient of one positive example g+. Unlike the aforementioned practical
majority counting attack which needs to first figure out the direction of one positive gradient, this
oracle scenario assumes the non-label party is directly given this information. Thus, any protection
method capable of defending this oracle attack would also protect against the more practical one.
With g+ given, the direction-based scoring function rd is simply rd(g) = cos(g, g+). We name
the privacy loss (leak AUC) against this oracle attack rd the cosine leak AUC. In practice, we
randomly choose a positive class clean gradient from each batch as g+ for evaluation. For iterations
in Figure 2(e), the cosine leak AUC all have the highest value of 1 (complete label leakage).

4 LABEL LEAKAGE PROTECTION METHODS

In this section, we first introduce a heuristic random perturbation approach designed to prevent the
practical attacks identified in Section 3.3. We then propose a theoretically justified method that aims
to protect against the entire class of scoring functions considered in our threat model (Section 3.2).

4.1 A HEURISTIC PROTECTION APPROACH

Random perturbation and the isotropic Gaussian baseline. To protect against label leakage, the
label party should ideally communicate essential information about the gradient without commu-
nicating its actual value. Random perturbation methods generally aim to achieve this goal. One
obvious consideration for random perturbation is to keep the perturbed gradients unbiased. In other
words, suppose g̃ is the perturbed version of an example’s true gradient g, then we want E[g̃ | g] = g.
By chain rule and linearity of expectation, this ensures the computed gradients of the non-label
party’s parameters f will also be unbiased, a desirable property for stochastic optimization. Among
unbiased perturbation methods, a simple approach is to add iid isotropic Gaussian noise to every
gradient to mix the positive and negative gradient distribution before sending to the non-label party.

5

Published as a conference paper at ICLR 2022

Although isotropic Gaussian noise is a valid option, it may not be optimal because 1) the gradients
are vectors but not scalars, so the structure of the noise covariance matrix matters. Isotropic noise
might neglect the direction information; 2) due to the asymmetry of the positive and negative gradi-
ent distribution, the label party could add noise with different distributions to each class’s gradients.

Norm-alignment heuristic. We now introduce an improved heuristic approach of adding zero-
mean Gaussian noise with non-isotropic and example-dependent covariance. [Magnitude choice]
As we have seen that ‖g‖2 can be different for positive and negative examples and thus leak label
information, this heuristic first aims to make the norm of each perturbed gradient indistinguishable
from one another. Specifically, we want to match the expected squared 2-norm of every perturbed
gradient in a mini-batch to the largest squared 2-norm in this batch (denote by ‖gmax‖22). [Direction
choice] In addition, as we have seen empirically from Figure 2(e), the positive and negative gradients
lie close to a one-dimensional line in Rd, with positive examples pointing in one direction and
negative examples in the other. Thus we consider only adding noise (roughly speaking) along “this
line”. More concretely, for a gradient gj in the batch, we add a zero-mean Gaussian noise vector
ηj supported only on the one-dimensional space along the line of gj . In other words, the noise’s
covariance is the rank-1 matrix Cov[ηj] = σ2

j gjg
T
j . To calculate σj , we aim to match E[‖gj+ηj‖22] =

‖gmax‖22. A simple calculation gives σj =
√
‖gmax‖22/‖gj‖22 − 1. Since we align to the maximum

norm, we name this heuristic protection method max norm. The advantage of max norm is that
it has no parameter to tune. Unfortunately, it does not have a strong theoretical motivation, cannot
flexibly trade-off between model utility and privacy, and may be broken by some unknown attacks.

4.2 OPTIMIZED PERTURBATION METHOD: MARVELL
Motivated by the above issues of max norm, we next study how to achieve a more principled
trade-off between model performance (utility) and label protection (privacy). To do so, we directly
minimize the worst-case adversarial scoring function’s leak AUC under a utility constraint. We
name this protection method Marvell (optiMized perturbAtion to pReVEnt Label Leakage).

Noise perturbation structure. Due to the distribution difference between the positive and nega-
tive class’s cut layer gradients, we consider having the label party additively perturb the randomly
sampled positive g(1) and negative g(0) gradients with independent zero-mean random noise vectors
η(1) and η(0) with possibly different distributions (denoted by D(1) and D(0)). We use P̃ (1) and P̃ (0)

to denote the induced perturbed positive and negative gradient distributions. Our goal is to find the
optimal noise distributions D(1) and D(0) by optimizing our privacy objective described below.

Privacy protection optimization objective. As the adversarial non-label party in our threat model
is allowed to use any measurable scoring function r for label recovery, we aim to protect against all
such scoring functions by minimizing the privacy loss of the worst case scoring function measured
through our leak AUC metric. Formally, our optimization objective is minD(1),D(0) maxr AUC(r).
Here to compute AUC(r), the FPRr(t) and TPRr(t) needs to be computed using the perturbed
distributions P̃ (1) and P̃ (0) instead of the unperturbed P (1) and P (0) (Section 3.2). Since AUC is
difficult to directly optimize, we consider optimizing an upper bound through the following theorem:
Theorem 1. For 0 ≤ ε < 4 and any perturbed gradient distributions P̃ (1) and P̃ (0) that are abso-
lutely continuous with respect to each other,

KL(P̃ (1) ‖ P̃ (0)) + KL(P̃ (0) ‖ P̃ (1)) ≤ ε implies maxr AUC(r) ≤ 1
2

+
√
ε

2
− ε

8
.

From Theorem 1 (proof in Appendix A.3), we see that as long as the sum KL divergence is below 4,
the smaller sumKL is, the smaller maxr AUC(r) is. (1/2 +

√
ε/2 − ε/8 decreases as ε decreases.)

Thus we can instead minimize the sum KL divergence between the perturbed gradient distributions:

sumKL∗ := minD(1),D(0) KL(P̃ (1) ‖ P̃ (0)) + KL(P̃ (0) ‖ P̃ (1)). (1)

Utility constraint. In an extreme case, we could add infinite noise to both the negative and positive
gradients. This would minimize (1) optimally to 0 and make the worst case leak AUC 0.5, which is
equivalent to a random guess. However, stochastic gradient descent cannot converge under infinitely
large noise, so it is necessary to control the variance of the added noise. We thus introduce the noise
power constraint: p · tr(Cov[η(1)]) + (1 − p) · tr(Cov[η(0)]) ≤ P , where p is the fraction of positive
examples (already known to the label party); tr(Cov[η(i)]) denotes the trace of the covariance matrix
of the random noise η(i); and the upper bound P is a tunable hyperparameter to control the level
of noise: larger P would achieve a lower sumKL and thus lower worst-case leak AUC and better
privacy; however, it would also add more noise to the gradients, leading to slower optimization

6

Published as a conference paper at ICLR 2022

convergence and possibly worse model utility. We weight each class’s noise level tr(Cov[η(i)]) by its
example proportion (p or 1− p) since, from an optimization perspective, we want to equally control
every training example’s gradient noise. The constrained optimization problem becomes:

min
D(1),D(0)

KL(P̃ (1) ‖ P̃ (0)) + KL(P̃ (0) ‖ P̃ (1)) s.t. p · tr(Cov[η(1)]) + (1− p) · tr(Cov[η(0)]) ≤ P. (2)

Optimizing the objective in practice. To solve the optimization problem we first introduce some
modelling assumptions. We assume that the unperturbed gradient of each class follows a Gaussian
distribution: g(1) ∼ N (ḡ(1), vId×d) and g(0) ∼ N (ḡ(0), uId×d). Despite this being an approximation,
as we see later in Section 5, it can achieve strong protection quality against our identified attacks. In
addition, it makes the optimization easier (see below) and provides us with insight on the optimal
noise structure. We also search for perturbation distributions that are Gaussian: D(1) = N (0,Σ1) and
D(0) = N (0,Σ0) with commuting covariance matrices: Σ1Σ0 = Σ0Σ1. The commutative require-
ment slightly restricts our search space but also makes the optimization problem more tractable. Our
goal is to solve for the optimal noise structure, i.e. the positive semidefinite covariance matrices Σ0,
Σ1. Let ∆g := ḡ(1) − ḡ(0) denote the difference between the positive and negative gradient’s mean
vectors. We now have the following theorem (proof and interpretation in Appendix A.4):
Theorem 2. The optimal Σ∗1 and Σ∗0 to (2) with the above assumptions have the form:

Σ∗1 =
λ
(1)∗
1 − λ(1)∗

2

‖∆g‖22
(∆g)(∆g)> + λ

(1)∗
2 Id, Σ∗0 =

λ
(0)∗
1 − λ(0)∗

2

‖∆g‖22
(∆g)(∆g)> + λ

(0)∗
2 Id, (3)

where (λ
(0)∗
1 , λ

(0)∗
2 , λ

(1)∗
1 , λ

(1)∗
2) is the solution to the following 4-variable optimization problem:

min
λ
(0)
1 ,λ

(1)
1 ,λ

(0)
2 ,λ

(1)
2

(d− 1)
λ
(0)
2 + u

λ
(1)
2 + v

+ (d− 1)
λ
(1)
2 + v

λ
(0)
2 + u

+
λ
(0)
1 + u+ ‖∆g‖22

λ
(1)
1 + v

+
λ
(1)
1 + v + ‖∆g‖22

λ
(0)
1 + u

s.t. pλ
(1)
1 + p(d− 1)λ

(1)
2 + (1− p)λ(0)

1 + (1− p)(d− 1)λ
(0)
2 ≤ P,

−λ(1)
1 ≤ 0, −λ(0)

1 ≤ 0, −λ(1)
2 ≤ 0, −λ(0)

2 ≤ 0, λ
(1)
2 − λ

(1)
1 ≤ 0, λ

(0)
2 − λ

(0)
1 ≤ 0

Additional details of Marvell. By Theorem 2, our optimization problem over two positive
semidefinite matrices is reduced to a much simpler 4-variable optimization problem. We include
a detailed description of how the constants in the problem are estimated in practice and what solver
we use in a full description of the Marvell algorithm in Appendix A.5. Beyond optimization de-
tails, it is worth noting how to set the power constraint hyperparameter P in Equation 2 in practice.
As directly choosing P requires knowledge of the scale of the gradients in the specific application
and the scale could also shrink as the optimization converges, we instead express P = s ‖∆g‖22, and
tune for a fixed hyperparameter s > 0. This alleviates the need to know the scale of the gradients
in advance, and the resulting value of P can also dynamically change throughout training as the
distance between the two gradient distributions’ mean ‖∆g‖2 changes.

5 EXPERIMENTS

In this section, we first describe our experiment setup and then demonstrate the label protection
quality of Marvell as well as its privacy-utility trade-off relative to baseline approaches.

Empirical Setup. We use three real-world binary classification datasets for evaluation: Criteo and
Avazu, two online advertising prediction datasets with millions of examples; and ISIC, a healthcare
image dataset for skin cancer prediction. All three datasets exhibit severe label leakage problem
without protection. (see Appendix A.6.1 on dataset and preprocessing details). We defer similar
results on Avazu to Appendix A.7 and focus on Criteo and ISIC in this section. For Criteo, we train
a Wide&Deep model (Cheng et al., 2016) where the non-label party owns the embedding layers for
input features and the first three 128-unit ReLU activated MLP layers (first half of the deep part)
while the label party owns the remaining layers of the deep part and the entire wide part of the
model3. For ISIC, we train a model with 6 convolutional layers each with 64 channels followed by
a 64-unit ReLU MLP layer, and the cut layer is after the fourth convolutional layer. In this case,
an example’s cut layer feature f(X) and gradient g are both in R5×5×64. We treat such tensors as
vectors in R1600 to fit into our analysis framework (for additional model architecture and training
details see Appendix A.6.2, A.6.3).

3In this setting, the label party will also process input features (through the wide part) just like the non-label
party, further relaxing our formal split learning setup in Section 3.

7

Published as a conference paper at ICLR 2022

0 10000 20000 30000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

 le
ak

 a
uc

(a) ISIC cut layer

no_noise Marvell, s=0.1 Marvell, s=0.25 Marvell, s=1.0 Marvell, s=4.0

0 10000 20000 30000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

co
sin

e
le

ak
 a

uc

(b) ISIC cut layer

0 10000 20000 30000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

 le
ak

 a
uc

(c) ISIC first layer

0 10000 20000 30000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

co
sin

e
le

ak
 a

uc

(d) ISIC first layer

Figure 3: Norm and cosine leak AUC (computed every batch) at the cut layer and at the first layer under no
protection vs. Marvell with different scale hyperparameter s throughout the ISIC training.

5.1 LABEL LEAKAGE AND MARVELL’S STRONG AND FLEXIBLE PROTECTION

We first evaluate the protection quality of Marvell against the norm and cosine attacks dis-
cussed in Section 3.3. We also compare against the leakage metrics when no protection is applied
(no noise). As the results across the three datasets are highly similar, we use ISIC as an example
(other datasets see Appendix A.7.1). We see in Figure 3(a)(b) that unlike no noisewhere the label
information is completely leaked (leak AUC ≈ 1) throughout training, Marvell achieves a flex-
ible degree of protection (by varying s) against both the norm 2(a) and direction attacks 2(b)
on the cut layer gradients and has strong protection (leak AUC ≈ 0.5) at s = 4.0. Additionally,
it is natural to ask whether the gradients of layers before the cut layer (on the non-label party side)
can also leak the labels as the non-label party keeps back propagating towards the first layer. In Fig-
ure 3(c)(d), we compute the leak AUC values when using the non-label party’s first layer activation
gradient as inputs to the scoring functions to predict y. Without protection, the first layer gradient
still leaks the label very consistently. In constrast, Marvell still achieves strong privacy protection
at the first layer (s = 4.0) despite the protection being analyzed at the cut layer.

5.2 PRIVACY-UTILITY TRADE-OFF COMPARISON

After showing Marvell can provide strong privacy protection against our identified attacks, we
now see how well it can preserve utility by comparing its privacy-utility tradeoff against other pro-
tection baselines: no noise, isotropic Gaussian (iso), and our proposed heuristic max norm.
Similar to how we allow Marvell to use a power constraint to depend on the current iteration’s
gradient distribution through P = s‖∆g‖22, we also allow iso to have such type of dependence—
specifically, we add η ∼ N (0, (t/d) · ‖gmax‖22Id×d) to every gradient in a batch with t a tunable
privacy hyperparameter to be fixed throughout training. To trace out the complete tradeoff curve
for Marvell and iso, we conduct more than 20 training runs for each protection method with a
different value of privacy hyperparameter (s for Marvell, t for iso) in each run on every dataset.
(Note that no noise and max norm do not have privacy hyperparameters.)

We present the tradeoffs between privacy (measured through norm and cosine leak AUC at cut
layer/first layer) and utility (measured using test loss and test AUC) in Figure 4. To summarize the
leak AUC over a given training run, we pick the 95% quantile over the batch-computed leak AUCs
throughout all training iterations. This quantile is chosen instead of the mean because we want to
measure the most-leaked iteration’s privacy leakage (highest leak AUC across iterations) to ensure
the labels are not leaked at any points during training. 95% quantile is chosen instead of the max
(100%) as we want this privacy leak estimate to be robust against randomness of the training process.

Privacy-Utility Tradeoff comparison results. In measuring the privacy-utility tradeoff, we aim to
find a method that consistently achieves a lower leak AUC (better privacy) for the same utility value.

• [Marvell vs iso] As shown in Figure 4, Marvell almost always achieves a better trade-
off than iso against both of our proposed attacks at both the cut layer and the first layer on
both the ISIC and Criteo datasets. It is important to note that although the utility constraint is
in terms of training loss optimization, Marvell’s better tradeoff still translates to the gener-
alization performance when the utility is measured through test loss or test AUC. Additionally,
despite achieving reasonable (though still worse than Marvell) privacy-utility tradeoff against
the norm-based attack, iso performs much worse against the direction-based attack: on ISIC,
even after applying a significant amount of isotropic noise (with t > 20), iso’s cosine leak
AUC is still higher than 0.9 at the cut layer (Figure 4(b,f)). In contrast, Marvell is effective
against this direction-based attack with a much lower cosine leak AUC ≈ 0.6.

8

Published as a conference paper at ICLR 2022

0.36 0.38 0.40 0.42
test loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(a) ISIC cut layer
iso
Marvell
max_norm
no_noise

0.36 0.38 0.40 0.42
test loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (b) ISIC cut layer

iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
test loss

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(c) Criteo cut layer
iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
test loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (d) Criteo cut layer

iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(e) ISIC cut layer
iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (f) ISIC cut layer

iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(g) Criteo cut layer
iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (h) Criteo cut layer

iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(i) ISIC first layer
iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (j) ISIC first layer

iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(k) Criteo first layer
iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (l) Criteo first layer

iso
Marvell
max_norm
no_noise

Figure 4: Privacy (norm & cosine leak AUC) vs Utility (test loss & test AUC) trade-off of protection methods
(Marvell, iso, no noise, max norm) at the cut and first layer on ISIC and Criteo.

• [max norm heuristic] Beyond Marvell, we see that our heuristic approach max norm can
match and sometimes achieve even lower (Figure 4(a,f,i)) leak AUC value than Marvell at the
same utility level. We believe this specifically results from our norm and direction consideration
when designing this heuristic. However, without a tunable hyperparameter, max norm cannot
tradeoff between privacy and utility. Additionally, unlike Marvell which is designed to protect
against the entire class of adversarial scoring functions, max norm might still fail to protect
against other future attack methods beyond those considered here.

In summary, our principled method Marvell significantly outperforms the isotropic Gaussian
baseline, and our proposed max norm heuristic can also work particularly well against the
norm- and direction-based attacks which we identified in Section 3.3.

6 CONCLUSION

In this paper, we formulate a label leakage threat model in the two-party split learning binary clas-
sification problem through a novel privacy loss quantification metric (leak AUC). Within this threat
model, we provide two simple yet effective attack methods that can accurately uncover the private
labels of the label party. To counter such attacks, we propose a heuristic random perturbation method
max norm as well as a theoretically principled method Marvell which searches for the optimal
noise distributions to protect against the worst-case adversaries in the threat model. We have con-
ducted extensive experiments to demonstrate the effectiveness of Marvell and max norm over
the isotropic Gaussian perturbation baseline iso.

Open questions and future work. Our work is the first we are aware of to identify, rigorously
quantify, and protect against the threat of label leakage in split-learning, and opens up a number of
worthy directions of future study. In particular, as the model parameters are updated every batch in
our problem setup, the true gradient of an example and the gradient distribution would both change.
An interesting question is whether the adversarial non-label party can remember the stale gradient
of the same example from past updates (possibly separated by hundreds of updates steps) in order to
recover the label information in the current iteration in a more complex threat model. It would also be
interesting to build on our results to study whether there exist attack methods when the classification
problem is multiclass instead of binary, and when the split learning scenario involves more than two
parties with possibly more complicated training communication protocols (e.g., Vepakomma et al.,
2018).

9

Published as a conference paper at ICLR 2022

Ethics Statement. In our paper, we have identified a realistic threat of label leakage in the two-
party split learning binary classification problem. We aim to raise awareness about potential privacy
issues in this problem domain, where many industrial applications have been deployed. Beyond
making such threats clear, we have taken the first steps towards protection—we have proposed both
heuristic and principled methods that can preserve label privacy. We hope our work will pave the
way for future analyses that make the two-party split learning framework more effective and secure.

Reproducibility Statement. To make our paper reproducible, we provide:

• Proofs of our Theorem 1 and Theorem 2 in Appendix A.3,A.4;
• Detailed experiment description including 1) data preprocessing, 2) model architecture, 3)

training algorithm and hyperparameters in Appendix A.6.
• Source code with running instructions (in README.md) at

https://github.com/OscarcarLi/label-protection.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 308–318, 2016.

Avazu. Avazu click-through rate prediction, 2015. URL https://www.kaggle.com/c/
avazu-ctr-prediction/data.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Kamalika Chaudhuri and Daniel Hsu. Sample complexity bounds for differentially private learn-
ing. In Proceedings of the 24th Annual Conference on Learning Theory, pp. 155–186. JMLR
Workshop and Conference Proceedings, 2011.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st workshop on deep learning for recommender systems,
pp. 7–10, 2016.

Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed differ-
ential privacy via shuffling. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pp. 375–403. Springer, 2019.

Criteo. Criteo display advertising challenge, 2014. URL https://www.kaggle.com/c/
criteo-display-ad-challenge/data.

Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener (eds.), Automata, Languages and Programming, pp. 1–12, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg. ISBN 978-3-540-35908-1.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy via
anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 2468–2479. SIAM, 2019.

Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan Zhang. On deep learn-
ing with label differential privacy. arXiv preprint arXiv:2102.06062, 2021.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

10

https://github.com/OscarcarLi/label-protection
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/criteo-display-ad-challenge/data

Published as a conference paper at ICLR 2022

ISIC. Siim-isic melanoma classification, 2020. URL https://www.kaggle.com/c/
siim-isic-melanoma-classification/data.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivi-
ous prf with applications to private set intersection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pp. 818–829, 2016.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BJ0hF1Z0b.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on
ot extension. ACM Transactions on Privacy and Security (TOPS), 21(2):1–35, 2018.

Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A Seshia. A formal
foundation for secure remote execution of enclaves. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2435–2450, 2017.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar. Reducing leakage in
distributed deep learning for sensitive health data. arXiv preprint arXiv:1812.00564, 2019.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural
Information Processing Systems, pp. 14774–14784, 2019.

11

https://www.kaggle.com/c/siim-isic-melanoma-classification/data
https://www.kaggle.com/c/siim-isic-melanoma-classification/data
https://openreview.net/forum?id=BJ0hF1Z0b

Published as a conference paper at ICLR 2022

A APPENDIX

Appendix Outline

A.1 Expressing AUC(r) as an integral

A.2 Toy Class-balanced Example of Positive Example Prediction Lacking Confidence

A.3 Proof of Theorem 1

A.4 Proof and Interpretation of Theorem 2

A.5 Marvell Algorithm Description

A.5.1 Marvell Time Complexity

A.5.2 Marvell Empirical Run Time

A.6 Data Setup and Experimental Details

A.6.1 Dataset Preprocessing

A.6.2 Model Architecture Details

A.6.3 Model Training Details

A.7 Complete Experimental Results

A.7.1 AUC Progression for Avazu and Criteo

A.7.2 Complete Privacy-Utility Tradeoffs

A.7.3 Impact of Activation Gradients’ Layer Location on the Corresponding Leak AUC

A.8 Reasons why we don’t use local DP in our setup

12

Published as a conference paper at ICLR 2022

A.1 EXPRESSING AUC(r) AS AN INTEGRAL

Recall that the ROC curve of a scoring function r : Rd → R is a parametric curve cr : R → [0, 1]2

such that cr(t) = (FPRr(t),TPRr(t)), with

FPRr : R→ [0, 1], such that FPRr(t) := P (0)
({
g ∈ Rd : r(g) > t

})
TPRr : R→ [0, 1], such that TPRr(t) := P (1)

({
g ∈ Rd : r(g) > t

})
.

We notice that FPRr and TPRr are both monotonically decreasing functions in t with
lim

t→−∞
FPRr(t) = 1, lim

t→∞
FPRr(t) = 0

lim
t→−∞

TPRr(t) = 1, lim
t→∞

TPRr(t) = 0.

However, FPRr and TPRr does not need to be differentiable everywhere with respect to t. Thus we
cannot simply express the area under the curve using

∫ −∞
∞ TPRr(t) FPR′r(t)dt. On the other hand,

because both FPRr and TPRr are functions of bounded variations, we can express the area under the
parametric curve cr through the Riemann-Stieltjes integral which involves integrating the function
TPRr with respect to the function FPRr:

AUC(r) =

∫ t=−∞

t=∞
TPRr(t) dFPRr(t)

Here the integration boundary is from∞ to−∞ in order to ensure the integral evaluates to a positive
value.

A.2 TOY CLASS-BALANCED EXAMPLE OF POSITIVE EXAMPLE PREDICTION LACKING
CONFIDENCE

As mentioned in Observation 1 of norm-based attack in Section 3.3, for many practical applications,
there is inherently more ambiguity for the positive class than the negative class. To make this more
concrete, let’s consider a simple toy example.

Suppose the binary classification problem is over the real line. Here, 50% of the data is positive and
lies uniformly in the interval [0, 1]. On the other hand, the remaining negative data (the other 50% of
the total data) is a mixture distribution: 10% of the negative data also lies uniformly in [0, 1], while
the rest 90% of the negative data lies uniformly in [1, 2].

p(x | y = 1) = 1(x ∈ [0, 1]), p(y = 1) = 0.5.

p(x | y = 0) = 0.1 · 1(x ∈ [0, 1]) + 0.9 · 1(x ∈ [1, 2]), p(y = 0) = 0.5.

This setup mirrors our online advertising example where for all the users interested in the product
(with feature x ∈ [0, 1]), only a part of them would actually make the purchase after clicking on its
advertisement.

In this case, the best possible probabilistic classifiers Copt that can be ever learned, by Bayes Rule,
would predict any example in [0, 1] to be of the positive class with probability 10

11 , while it would
predict any example in [1, 2] to be of the negative class with probability 1:

Copt(y = 1 | x) =

{
10
11 if x ∈ [0, 1]

0 if x ∈ [1, 2]
.

Thus even for this best possible classifier Copt, every positive example would have a confidence
gap of 1

11 while 90% of the negative examples (the ones in [1, 2]) would have a confidence gap of 0.
Hence we see that in this toy example, our empirical observation of the lack of prediction confidence
for positive examples would still hold true.

Besides, it is important to notice that this lack of positive prediction confidence phenomenon hap-
pens even in this class-balanced toy example (p(y = 1) = p(y = 0) = 0.5). Thus, Observation 1
does not require the data distribution to be class-imbalanced to hold, which further demonstrates
the generality of our norm-based attack.

13

Published as a conference paper at ICLR 2022

A.3 PROOF OF THEOREM 1

(Theorem 1). For 0 ≤ ε < 4 and any perturbed gradient distributions P̃ (1) and P̃ (0) that are
absolutely continuous with respect to each other,

KL(P̃ (1) ‖ P̃ (0)) + KL(P̃ (0) ‖ P̃ (1)) ≤ ε implies max
r

AUC(r) ≤ 1

2
+

√
ε

2
− ε

8
.

Proof of Theorem 1. Combining Pinsker’s inequality with Jensen’s inequality, we can obtain an up-
per bound of total variation distance by the symmetrized KL divergence (sumKL) for a pair of
distributions (P,Q) that are absolutely continuous with respect to each other:

TV(P,Q) ≤ 1

2
(
√

KL(P ‖ Q)/2 +
√

KL(Q ‖ P)/2) ≤ 1

2

√
KL(P ‖ Q) + KL(Q ‖ P). (4)

By our assumption, this implies that TV(P̃ (1), P̃ (0)) ≤
√
ε

2 . By the equivalent definition of total
variation distance TV(P̃ (1), P̃ (0))) = maxA⊂Rd [P̃ (1)(A) − P̃ (0)(A)], we know that for any A ⊂
Rd, P̃ (1)(A) − P̃ (0)(A) ≤

√
ε

2 . For any scoring function r and any threshold value t, let A =

{g : r(g) > t}, then we have TPRr(t)− FPRr(t) = P̃ (1)(A)− P̃ (0)(A) ≤
√
ε

2 .

Therefore, the AUC of the scoring function r can be upper bounded in the following way:

AUC(r) =

∫ −∞
∞

TPRr(t) dFPRr(t) (5)

≤
∫ −∞
∞

min

(
FPRr(t) +

√
ε

2
, 1

)
dFPRr(t), (6)

where in (6) we use the additional fact that TPRr(t) ≤ 1 for all t ∈ R.

When ε ∈ [0, 4), we have 1 −
√
ε

2 ∈ (0, 1]. As FPRr(t) is a monotonically nonincreas-

ing function in t with range in [0, 1], the set
{
t : FPRr(t) ≤ 1−

√
ε

2

}
6= φ is not empty. Let

k := inf
{
t : FPRr(t) ≤ 1−

√
ε

2

}
. Again by FPRr(t) being a monotonically nonincreasing function

in t, we can break the integration in Equation (6) into two terms:

AUC(r)

=

∫ k

∞
min

(
FPRr(t) +

√
ε

2
, 1

)
dFPRr(t) +

∫ −∞
k

min

(
FPRr(t) +

√
ε

2
, 1

)
dFPRr(t) (7)

≤
∫ k

∞

(
FPRr(t) +

√
ε

2

)
dFPRr(t) +

∫ −∞
k

1 dFPRr(t) (8)

=

[
[FPRr(t)]2

2
+

√
ε

2
FPRr(t)

] ∣∣∣∣∣
t=k

t=∞

+ FPRr(t)
∣∣∣∣t=−∞
t=k

(9)

≤
(1−

√
ε

2)2

2
+

√
ε

2

(
1−
√
ε

2

)
+

[
1−

(
1−
√
ε

2

)]
(10)

=
1

2
+

√
ε

2
− ε

8
(11)

Since this inequality is true for any scoring function r, it is true for the maximum value. Thus the
proof is complete.

14

Published as a conference paper at ICLR 2022

A.4 PROOF AND INTERPRETATION OF THEOREM 2

(Theorem 2). The optimal Σ∗1 and Σ∗0 to the following problem

min
Σ0,Σ1∈S

KL(N (ḡ(1), vI + Σ1) ‖ N (ḡ(0), uI + Σ0)) + KL(N (ḡ(0), uI + Σ0) ‖ N (ḡ(1), vI + Σ1))

subject to

Σ0Σ1 = Σ1Σ0,

p · tr(Σ1) + (1− p) · tr(Σ0) ≤ P,
Σ1 � 0,

Σ0 � 0.

have the form:

Σ∗1 =
λ

(1)∗
1 − λ(1)∗

2

‖∆g‖22
(∆g)(∆g)> + λ

(1)∗
2 Id, Σ∗0 =

λ
(0)∗
1 − λ(0)∗

2

‖∆g‖22
(∆g)(∆g)> + λ

(0)∗
2 Id, (12)

where (λ
(0)∗
1 , λ

(0)∗
2 , λ

(1)∗
1 , λ

(1)∗
2) is the solution to the following 4-variable optimization problem:

min
λ
(0)
1 ,λ

(1)
1 ,λ

(0)
2 ,λ

(1)
2

(d− 1)
λ

(0)
2 + u

λ
(1)
2 + v

+ (d− 1)
λ

(1)
2 + v

λ
(0)
2 + u

+
λ

(0)
1 + u+ ‖∆g‖22

λ
(1)
1 + v

+
λ

(1)
1 + v + ‖∆g‖22

λ
(0)
1 + u

s.t. pλ
(1)
1 + p(d− 1)λ

(1)
2 + (1− p)λ(0)

1 + (1− p)(d− 1)λ
(0)
2 ≤ P,

− λ(1)
1 ≤ 0, −λ(0)

1 ≤ 0, −λ(1)
2 ≤ 0, −λ(0)

2 ≤ 0,

λ
(1)
2 − λ

(1)
1 ≤ 0, λ

(0)
2 − λ

(0)
1 ≤ 0

Proof of Theorem 2. By writing out the analytical close-form of the KL divergence between two
Gaussian distributions, the optimization can be written as:

min
Σ0,Σ1∈S

tr((Σ1 + vI)−1(Σ0 + uI)) + tr((Σ0 + uI)−1(Σ1 + vI))+

(ḡ(1) − ḡ(0))>
(
(Σ1 + vI)−1 + (Σ0 + uI)−1

)
(ḡ(1) − ḡ(0))

subject to

Σ0Σ1 = Σ1Σ0,

p · tr(Σ1) + (1− p) · tr(Σ0) ≤ P,
Σ1 � 0,

Σ0 � 0.

(13)

By the commutative constraint on the two positive semidefinite matrices Σ1 and Σ0, we know that
we can factor these two matrices using the same set of eigenvectors. We thus write:

Σ0 =Q>diag(λ
(0)
1 , . . . , λ

(0)
d)Q,

Σ1 =Q>diag(λ
(1)
1 , . . . , λ

(1)
d)Q, (14)

where Q ∈ Rd×d is an orthogonal matrix and the eigenvalues λ(0)
i , λ

(1)
i are nonnegative and de-

creasing in value.

Using this alternative expression of Σ1 and Σ0, we can express the optimization in terms of
{λ(1)

i }, {λ
(0)
i }, Q:

min
{λ(1)

i },{λ
(0)
i },Q

d∑
i=1

λ
(0)
i + u

λ
(1)
i + v

+

d∑
i=1

λ
(1)
i + v

λ
(0)
i + u

+

[
Q(ḡ(1) − ḡ(0))

]>
diag

(
. . . ,

1

λ
(0)
i + u

+
1

λ
(1)
i + v

, . . .

)
Q(ḡ(1) − ḡ(0))

15

Published as a conference paper at ICLR 2022

subject to p(

d∑
i=1

λ
(1)
i) + (1− p)(

d∑
i=1

λ
(0)
i) ≤ P

− λ(1)
i ≤ 0, ∀i ∈ [d]

− λ(0)
i ≤ 0, ∀i ∈ [d].

λ
(1)
i ≥ λ

(1)
j ,∀i < j.

λ
(0)
i ≥ λ

(0)
j ,∀i < j.

Q orthogonal.

For any fixed feasible {λ(1)
i }, {λ

(0)
i }, we see that the corresponding minimizing Q will set its first

row to be the unit vector in the direction of ∆g. Thus by first minimizing Q, the optimization
objective reduces to:

d∑
i=1

λ
(0)
i + u

λ
(1)
i + v

+

d∑
i=1

λ
(1)
i + v

λ
(0)
i + u

+
g

λ
(0)
1 + u

+
g

λ
(1)
1 + v

=

d∑
i=2

λ
(0)
i + u

λ
(1)
i + v

+

d∑
i=2

λ
(1)
i + v

λ
(0)
i + u

+
λ

(1)
1 + v + ‖∆g‖22

λ
(0)
1 + u

+
λ

(0)
1 + u+ ‖∆g‖22

λ
(1)
1 + v

We see that for the pair of variable (λ
(1)
i , λ

(0)
i) (i ≥ 2), the function λ

(0)
i +u

λ
(1)
i +v

+
λ
(1)
i +v

λ
(0)
1 +u

is strictly

convex over the line segment pλ(1)
i + (1 − p)λ

(0)
i = c for any nonnegative c and attains the the

minimum value at λ(1)
i = 0 when u < v and λ(0)

i = 0 when u ≥ v. Suppose without loss of
generality u ≥ v, then for the optimal solution we must have λ(0)

i = 0 for all i ≥ 2. Under this
condition, we notice that the function m(x) = u

x+v + x+v
u is strictly convex on the positive reals.

Thus for all
{
λ

(1)
i

}
that satisfies

∑d
i=2 λ

(1)
i = c for a fixed nonnegative c, by Jensen inequality, we

have

1

d− 1

d∑
i=2

(
u

λ
(1)
i + v

+
λ

(1)
i + v

u

)

=
1

d− 1

d∑
i=2

m(λ
(1)
i)

≥ m

(
1

d− 1

d∑
i=2

λ
(1)
i

)

= m

(
c

d− 1

)
.

From this, we see that the optimal solution’s variables {λ(1)
i } must take on the same value (c

d−1) for
all i ≥ 2. The case when u ≤ v is similar. As a result, we have proved that at the optimal solution,
we must have:

λ
(0)
i = λ

(0)
j and λ(1)

i = λ
(1)
j , for i, j ≥ 2.

16

Published as a conference paper at ICLR 2022

Hence, the optimization problem over the 2d variables
{
λ

(1)
i

}d
i=1

⋃{
λ

(0)
i

}d
i=1

can be reduced to

an optimization problem over the four variables
{
λ

(1)
1 , λ

(1)
2 , λ

(0)
1 , λ

(0)
2

}
:

min
λ
(0)
1 ,λ

(1)
1 ,λ

(0)
2 ,λ

(1)
2

(d− 1)
λ

(0)
2 + u

λ
(1)
2 + v

+ (d− 1)
λ

(1)
2 + v

λ
(0)
2 + u

+
λ

(0)
1 + u+ ‖∆g‖22

λ
(1)
1 + v

+
λ

(1)
1 + v + ‖∆g‖22

λ
(0)
1 + u

(15)

subject to pλ
(1)
1 + p(d− 1)λ

(1)
2 + (1− p)λ(0)

1 + (1− p)(d− 1)(λ
(0)
2) ≤ P

− λ(1)
1 ≤ 0

− λ(0)
1 ≤ 0

− λ(1)
2 ≤ 0

− λ(0)
2 ≤ 0

λ
(1)
2 − λ

(1)
1 ≤ 0

λ
(0)
2 − λ

(0)
1 ≤ 0.

Given the optimal solution to the above 4-variable problem (λ
(0)∗
1 , λ

(0)∗
2 , λ

(1)∗
1 , λ

(1)∗
2), we can set

Q to be any orthogonal matrix whose first row is the vector ∆g
‖∆g‖2

. Plugging this back into the
expression of Σ1 and Σ0 in Equation (14) gives us the final result.

Thus the proof is complete.

Remark (Interpreting the optimal Σ∗1 and Σ∗0). From the form of the optimal solution in (12), we
see that the optimal covariance matrices are both linear combinations of two terms: a rank one
matrix (∆g)(∆g)> and the identity matrix Id. Because a zero-mean Gaussian random vector with
convariance matrix (A+B) can be constructed as the sum of two independent zero-mean Gaussian
random vectors with covariance matrices A and B respectively, we see that the optimal additive
noise random variables η(1) and η(0) each consist of two independent components: one random
component lies along the line that connects the positive and negative gradient mean vectors (whose
covariance matrix is proportional to ∆g∆g>); the other component is sampled from an isotropic
Gaussian. The use of the first random directional component and the fact that the isotropic Gaussian
component have different variance scaling for the positive and negative class clearly distinguishes
Marvell from the isotropic Gaussian baseline iso.

Remark (How to solve). By analyzing the KKT condition of this four variable problem we can find
that the optimal solution must exactly lie on the hyperplane pλ(1)

1 + p(d − 1)λ
(1)
2 + (1 − p)λ(0)

1 +

(1 − p)(d − 1)λ
(0)
2 = P . From the proof above we additionally know that λ(1)∗

2 = 0 if u < v and
λ

(0)∗
2 = 0 if u ≥ v. Thus the problem is further reduced to a 3-variable problem. If we consider

keeping one of the 3 remaining variables’ values fixed, then the feasible region becomes restricted
to a line segment. We can simply perform a line search optimization of the convex objective and
find the optimal values for the remaining two free variables. We can then alternate over which one
of the three variables to fix and optimize over the other two. This optimization procedure would
eventually converge and give us the optimal solution. This approach mimics the Sequential Minimal
Optimization technique used to solve the dual of the support vector machine (SVM).

17

Published as a conference paper at ICLR 2022

A.5 MARVELL ALGORITHM DESCRIPTION

We use 1 ∈ Rd to denote the vector with 1 in each coordinate. We use g[j] to denote the j-th row of
the matrix g and y[j] to denote the j-th coordinate of the vector y.

Algorithm 1: Marvell algorithm
input : g ∈ RB×d, a size-B batch of unperturbed gradients

y ∈ {0, 1}B , the label for each example in the batch
s, privacy hyperparameter for the power constraint P

output: g̃ ∈ RB×d, batch of perturbed gradients
// Step 1: estimate the optimization constants from the batch

gradients using maximum likelihood estimation (MLE)

1 p← 1T y
d ; /* positive fraction */

2 ḡ(1) ← 1
1T y

gT y ; /* positive mean */

3 ḡ(0) ← 1
B−1T y

gT (1− y) ; /* negative mean */

4 ∆g = ḡ(1) − ḡ(0);

5 v ← 1
d·(1T y)

∑B
j=1 y[j] ·

∥∥g[j]− ḡ(1)
∥∥2

2
; /* positive convariance */

6 u← 1
d·(B−1T y)

∑B
j=1(1− y[j]) ·

∥∥g[j]− ḡ(0)
∥∥2

2
; /* negative convariance */

7 P ← s · ‖∆g‖22 ; /* power constraint hyperparameter */
// Step 2: optimize the four-variable problem

8 if u < v then
9 λ

(1)
2 ← 0 ; /* this variable is optimal at 0 */

10 Randomly initialize the optimization variables λ(1)
1 , λ(0)

1 , λ(0)
2 in the feasible region in (15).

11 else
12 λ

(0)
2 ← 0 ; /* this variable is optimal at 0 */

13 Randomly initialize the optimization variables λ(1)
1 , λ(1)

2 , λ(0)
1 in the feasible region in (15).

14 end
15 while not converged do
16 Fix one of the newly updated optimization variables;

// The 4-variable optimal solution lies on a hyperplane in R4 (see
Appendix A.4 Remark) so fixing two variables gives us a
line-segment

17 Update the remaining two optimization variables by performing 1-d line-search
minimization of the convex function (15) while satisfying the constraints;

18 end
// Step 3: compute the optimal covariance matrices

19 Σ∗1 ←
λ
(1)
1 −λ

(1)
2

‖∆g‖22
(∆g)(∆g)> + λ

(1)
2 Id;

20 Σ∗0 ←
λ
(0)
1 −λ

(0)
2

‖∆g‖22
(∆g)(∆g)> + λ

(0)
2 Id;

// Step 4: perturb the gradients
21 g̃ ← 0B×d ; /* an empty matrix to store the perturbed gradients */
22 for j ← 1 to B do
23 if y[j] = 1 then
24 g̃[j]← g[j] + η(1), where η(1) ∼ N (0,Σ∗1);
25 else // y[j] = 0
26 g̃[j]← g[j] + η(0), where η(0) ∼ N (0,Σ∗0);
27 end
28 end

18

Published as a conference paper at ICLR 2022

A.5.1 MARVELL TIME COMPLEXITY

The Marvell algorithm in 1 consists of the following steps:

Step 1. Compute the positive and negative gradient mean and their difference (line 1 - 4). This
amounts to averaging over at most B numbers over each of the d gradient dimensions.
Thus would have a time complexity of O(Bd).

Step 2. Compute the positive and negative covariance constants u and v (line 5, 6). This operation
also takes O(Bd) as it averages over squares of coordinate differences.

Step 3. Use the results from step 1 and 2, solve the 4-variable optimization problem (line 7-18).
Here because the constant size of the number of optimization variables. Solving this prob-
lem up to a fixed precision takes constant time O(1).

Step 4. Perform the actual random perturbation (line 19 - 28). Because of the additive structure
of each class’s covariance matrix, for every example’s gradient in the batch, we can in-
dependently sample one random Gaussian vector with rank-1 covariance and also another
spherical Gaussian random vector and add both vectors to this gradient for perturbation.
This step would take O(d) for each example and thus takes O(Bd) in total.

As a result, the entire Marvell algorithm has a time complexity of O(Bd). This can be further sped
up through parallel computation using multi-threading/multi-core. Considering backpropagation
through the cut layer would also require O(Bd) time complexity, the Marvell algorithm would not
slow down the split-learning process in any significant way at all.

A.5.2 MARVELL EMPIRICAL RUN TIME

Empirically, in Table 1, we present the average amount of time it takes to run Marvell with the
privacy hyperparameter value s = 4 for the three models (one for each dataset) we considered in
our experiments (s value is chosen as it achieves good privacy protection as shown with purple line
in Figure 3, 5, 6). We also compare it to the average time it takes to run one update iteration. We
additionally include the 95% confidence interval for the mean estimator of the run time. Here we
notice that the total run time of Marvell only takes up a very small amount of the total training time
for each method, further corroborating our algorithm’s time efficiency advantage.

batch cut layer feature average average
size dimension Marvell run time update time
B d (seconds / run) (seconds / iteration)

ISIC 128 1600 1.79× 10−2 3.94× 10−1

= 5× 5× 64 ± 7.03× 10−5 ± 4.05× 10−3

Criteo 1024 128
1.68× 10−2 4.84
± 8.67× 10−5 ± 3.28× 10−1

Avazu 32768 128
1.75× 10−2 6.22
± 1.47× 10−4 ± 3.71× 10−1

Table 1: Average run time of Marvell (s = 4) and average total update time per iteration for models trained
on ISIC, Criteo, and Avazu.

19

Published as a conference paper at ICLR 2022

A.6 DATA SETUP AND EXPERIMENTAL DETAILS

We first describe how we preprocess each of the datasets in A.6.1. We then describe the model
architecture used for each dataset in A.6.2. Finally, we describe what the training hyperparameters
are used for each dataset/model combination and the amount of compute used for the experiments
in A.6.3.

A.6.1 DATASET PREPROCESSING

[Criteo] Every record of Criteo has 27 categorical input features and 14 real-valued input features.
We first replace all the NA values in categorical features with a single new category (which we
represent using the empty string) and replace all the NA values in real-valued features with 0. For
each categorical feature, we convert each of its possible value uniquely to an integer between 0
(inclusive) and the total number of unique categories (exclusive). For each real-valued feature, we
linearly normalize it into [0, 1]. We then randomly sample 10% of the entire Criteo publicly provided
training set as our entire dataset (for faster training to generate privacy-utility trade-off comparision)
and further make the subsampled dataset into a 90%-10% train-test split.

[Avazu] Unlike Criteo, each record in Avazu only has categorical input features. We similarly
replace all NA value with a single new category (the empty string), and for each categorical feature,
we convert each of its possible value uniquely to an integer between 0 (inclusive) and the total
number of unique categories (exclusive). We use all the records in provided in Avazu and randomly
split it into 90% for training and 10% for test.

[ISIC] The official SIIM-ISIC Melanoma Classification dataset has a total 33126 of skin lesion
images with less than 2% positive examples. Because for image classification model training it is
desirable to use a batch size of ∼ 102, it is highly likely that there won’t be any positive examples
sampled in a batch of such size. Thus to make the label leakage problem more severe, we modify
the dataset by retaining all the 584 positive examples and randomly choosing 584× 9 examples out
of all the negative examples. By doing this, we enforce that there are 10% positive examples in this
modified dataset. We randomly split these 5840 examples into a 80%-20% training and test split.
We also resize the images to size 84× 84 for efficient model training.

A.6.2 MODEL ARCHITECTURE DETAILS

[Criteo, Avazu] We use a popular deep learning model architecture WDL (Cheng et al., 2016)
for online advertising. Here the deep and wide part each first processes the categorical features in
a given record by applying an embedding lookup for every categorical feature’s value. We use an
embedding dimension of 4 for the deep part and embedding dimension of 1 for the wide part. After
the lookup, the deep/wide embeddings are then concatenated with the continuous features to form the
raw input vectors for both the deep part and wide part respectively. (This step is skipped for Avazu
as it has no continuous features.) Then the wide part computes the wide part logit value through
a real-valued linear function (with bias) of its raw input vectors, while the deep part processes its
raw input features using 6 ReLU-activated 128-unit MLP layers before producing a single deep part
logit. The two logits are summed up to form the final logic value. The cut layer is after the output
of the 3rd ReLU layer on the deep part.

[ISIC] Every input image after resizing is of size 84×84×3. We use a convolutional model with 6
convolutional layers each with 64 channels 3×3 filter size with 1×1 stride size. Each convolutional
layer is followed by a ReLU activation function whose output is then max pooled with 2×2 window
and stride size 2×2. The max-pooled output of the 6th layer is then flattened and pass into a 64-unit
ReLU-activated MLP layer before finally being linearly transformed into a single logit score. The
cut layer is after the output of the 4th max pool layer. Thus the cut layer feature and gradient are
both of shape 5× 5× 64.

A.6.3 MODEL TRAINING DETAILS

Because the protection mechanism requires adding noise to the cut layer gradient, the induced vari-
ance of the gradients of non-label party’s f -parameters becomes larger. Thus to ensure smooth

20

Published as a conference paper at ICLR 2022

optimization and sufficient training loss minimization, we use a slightly smaller learning rate than
what is normally used.

[Criteo] We use the Adam optimizer with a batch size of 1024 and a learning rate of 1e−4 through-
out the entire training of 5 epochs (approximately 20k stochastic gradient updates).

[ISIC] We use the Adam optimizer with a batch size of 128 and a learning rate of 1e−5 throughout
the entire training of 1000 epochs (approximately 35k stochastic gradient updates).

[Avazu] We use the Adam optimizer with a batch size of 32768 and a learning rate of 1e−4
throughout the entire training of 5 epochs (approximately 5.5k stochastic gradient updates).

We conduct our experiments over 16 Nvidia 1080Ti GPU card. Each run of Avazu takes about 11
hours to finish on a single GPU card occupying 8GB of GPU RAM. Each run of Criteo takes about
37 hours to finish on a single GPU card using 5 GB of GPU RAM. Each run of ISIC takes about 12
hours to finish on a single GPU card occupying 4GB of GPU RAM.

21

Published as a conference paper at ICLR 2022

A.7 COMPLETE EXPERIMENTAL RESULTS

A.7.1 LEAK AUC PROGRESSION FOR AVAZU AND CRITEO

In addition to the leak AUC progression on ISIC shown in Figure 3 in the main paper, we also show
the leak AUC progression on the Avazu and Criteo datasets throughout training here in Figure 5 and
Figure 6. We similarly compare Marvell with different levels of protection strength (s values)
against the no protection baseline no noise. As we can see, Marvell still achieves strong and
flexible privacy protection on these two datasets against our label attacks at different model layers.

0 2000 4000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

 le
ak

 a
uc

(a) Avazu cut layer

no_noise Marvell, s=0.1 Marvell, s=0.25 Marvell, s=1.0 Marvell, s=4.0

0 2000 4000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

co
sin

e
le

ak
 a

uc

(b) Avazu cut layer

0 2000 4000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

 le
ak

 a
uc

(c) Avazu first layer

0 2000 4000
number of sgd updates

0.5

0.6

0.7

0.8

0.9

1.0

co
sin

e
le

ak
 a

uc

(d) Avazu first layer

Figure 5: Norm and cosine leak AUC (computed every batch) at the cut layer and at the first layer of
no noise (no protection) vs. Marvell with different scale hyperparameter s throughout the Avazu training.

0 5000 10000 15000 20000
number of sgd updates

0.4

0.6

0.8

1.0

no
rm

 le
ak

 a
uc

(a) Criteo cut layer

no_noise Marvell, s=0.1 Marvell, s=0.25 Marvell, s=1.0 Marvell, s=4.0

0 5000 10000 15000 20000
number of sgd updates

0.4

0.6

0.8

1.0

co
sin

e
le

ak
 a

uc

(b) Criteo cut layer

0 5000 10000 15000 20000
number of sgd updates

0.4

0.6

0.8

1.0

no
rm

 le
ak

 a
uc

(c) Criteo first layer

0 5000 10000 15000 20000
number of sgd updates

0.4

0.6

0.8

1.0

co
sin

e
le

ak
 a

uc

(d) Criteo first layer

Figure 6: Norm and cosine leak AUC (computed every batch) at the cut layer and at the first layer of
no noise (no protection) vs. Marvell with different scale hyperparameter s throughout the Criteo training.

A.7.2 COMPLETE PRIVACY-UTILITY TRADEOFFS

We show additional Privacy-Utility tradeoff results for all three datasets considered in this paper.
(Some of the plots have already been shown in the main paper but we still include them here for
completeness and ease of reference.) For each dataset, we compare the privacy-utility tradeoff over
multiple measures of privacy and utility:

Privacy

We consider our introduced privacy metrics using the activation gradient from the cut layer and the
first layer of the non-label party :

• 95% norm leak AUC at cut layer
• 95% cosine leak AUC at cut layer
• 95% norm leak AUC at first layer
• 95% cosine leak AUC at first layer

Utility

We consider three metrics of utility:

• training loss (train loss): the lowest loss achieved on the training set throughout training.
This directly measures how much the random protection perturbation influences the opti-
mization.

• test loss. Because we only control the training optimization stochastic gradient’s variance,
measuring test loss directly tells us how much impact the training optimization random per-
turbation influences beyond optimization but on the learned model’s generalization ability.

• test AUC. As we are dealing with binary classification problem (where performance is
commonly measured through test AUC), we also naturally consider it as a utility metric.

22

Published as a conference paper at ICLR 2022

As shown in Figure 7,8,9, Marvell consistently outperforms the isotropic Gaussian baseline over
all the different privacy-utility definitions. In addition, our proposed heuristic max norm is also
particularly effective against our identified norm and direction-based attacks.

0.46 0.48 0.50 0.52 0.54 0.56 0.58
train loss

0.50

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(a) Avazu cut layer
iso
Marvell
max_norm
no_noise

0.46 0.48 0.50 0.52 0.54 0.56 0.58
train loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (b) Avazu cut layer

iso
Marvell
max_norm
no_noise

0.46 0.48 0.50 0.52 0.54 0.56 0.58
train loss

0.50

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(c) Avazu first layer
iso
Marvell
max_norm
no_noise

0.46 0.48 0.50 0.52 0.54 0.56 0.58
train loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (d) Avazu first layer

iso
Marvell
max_norm
no_noise

0.46 0.48 0.50 0.52 0.54 0.56
test loss

0.50

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(e) Avazu cut layer
iso
Marvell
max_norm
no_noise

0.46 0.48 0.50 0.52 0.54 0.56
test loss

0.60

0.70

0.80

0.90

1.00
95

%
 q

ua
nt

ile
 c

os
in

e
le

ak
 A

UC (f) Avazu cut layer

iso
Marvell
max_norm
no_noise

0.46 0.48 0.50 0.52 0.54 0.56
test loss

0.50

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(g) Avazu first layer
iso
Marvell
max_norm
no_noise

0.46 0.48 0.50 0.52 0.54 0.56
test loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (h) Avazu first layer

iso
Marvell
max_norm
no_noise

0.740 0.745 0.750 0.755 0.760
test auc

0.50

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(i) Avazu cut layer
iso
Marvell
max_norm
no_noise

0.740 0.745 0.750 0.755 0.760
test auc

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (j) Avazu cut layer

iso
Marvell
max_norm
no_noise

0.740 0.745 0.750 0.755 0.760
test auc

0.50

0.60

0.70

0.80

0.90

1.00
95

%
 q

ua
nt

ile
 n

or
m

 le
ak

 A
UC

(k) Avazu first layer
iso
Marvell
max_norm
no_noise

0.740 0.745 0.750 0.755 0.760
test auc

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (l) Avazu first layer

iso
Marvell
max_norm
no_noise

Figure 7: Privacy (norm and cosine leak AUC) vs Utility (train loss, test loss, and test AUC) trade-off of
protection methods (Marvell, iso, no noise, max norm) at the cut layer and first layer on Avazu.

0.50 0.55 0.60 0.65 0.70 0.75
train loss

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(a) Criteo cut layer
iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
train loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (b) Criteo cut layer

iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
train loss

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(c) Criteo first layer
iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
train loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (d) Criteo first layer

iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
test loss

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(e) Criteo cut layer
iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
test loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (f) Criteo cut layer
iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
test loss

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(g) Criteo first layer
iso
Marvell
max_norm
no_noise

0.50 0.55 0.60 0.65 0.70 0.75
test loss

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (h) Criteo first layer

iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(i) Criteo cut layer
iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (j) Criteo cut layer

iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(k) Criteo first layer
iso
Marvell
max_norm
no_noise

0.73 0.74 0.75 0.76 0.77 0.78
test auc

0.60

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (l) Criteo first layer

iso
Marvell
max_norm
no_noise

Figure 8: Privacy (norm and cosine leak AUC) vs Utility (train loss, test loss, and test AUC) trade-off of
protection methods (Marvell, iso, no noise, max norm) at the cut layer and first layer on Criteo.

23

Published as a conference paper at ICLR 2022

0.34 0.36 0.38 0.40 0.42
train loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(a) ISIC cut layer
iso
Marvell
max_norm
no_noise

0.34 0.36 0.38 0.40 0.42
train loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (b) ISIC cut layer

iso
Marvell
max_norm
no_noise

0.34 0.36 0.38 0.40 0.42
train loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(c) ISIC first layer

iso
Marvell
max_norm
no_noise

0.34 0.36 0.38 0.40 0.42
train loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (d) ISIC first layer

iso
Marvell
max_norm
no_noise

0.36 0.38 0.40 0.42
test loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(e) ISIC cut layer
iso
Marvell
max_norm
no_noise

0.36 0.38 0.40 0.42
test loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (f) ISIC cut layer

iso
Marvell
max_norm
no_noise

0.36 0.38 0.40 0.42
test loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(g) ISIC first layer

iso
Marvell
max_norm
no_noise

0.36 0.38 0.40 0.42
test loss

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (h) ISIC first layer

iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(i) ISIC cut layer
iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (j) ISIC cut layer

iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 n
or

m
 le

ak
 A

UC

(k) ISIC first layer
iso
Marvell
max_norm
no_noise

0.80 0.81 0.82 0.83 0.84 0.85
test auc

0.70

0.80

0.90

1.00

95
%

 q
ua

nt
ile

 c
os

in
e

le
ak

 A
UC (l) ISIC first layer

iso
Marvell
max_norm
no_noise

Figure 9: Privacy (norm and cosine leak AUC) vs Utility (train loss, test loss, and test AUC) trade-off of
protection methods (Marvell, iso, no noise, max norm) at the cut layer and first layer on ISIC.

24

Published as a conference paper at ICLR 2022

A.7.3 IMPACT OF ACTIVATION GRADIENTS’ LAYER LOCATION ON THE CORRESPONDING
LEAK AUC

In Section 5.1, we have shown that the activation gradients of not only the cut layer but also the
first layer can leak the label if no protection is applied. In this section, we analyze the effect of
this layer location on the degree of label leakage under our proposed attacks measured through leak
AUC. Here, for the convolutional neural network trained on ISIC, we have allocated 4 Conv-ReLU-
MaxPool layers on the non-label party side. Here each of these 4 layers’ activation (from ReLU
output) gradients can be used to infer the label. In Figure 10, we plot the progression of norm and
cosine leak AUC for layer 2 and 3 in addition to the first layer (layer 1) and the cut layer (layer
4) when applying no protection or Marvell with s = 4. We notice that when no protection is
applied, the norm and cosine leak AUC are approximately the same across the layers and both
at a very high level, indicating a strong degree of label leakage. In contrast, when Marvell is
applied, the leak AUCs are much lowered to a reasonable level of around 0.6 throughout all the
layers. Empirically, we notice that the leak AUCs for a given training iteration are close among all
the layers with a maximum difference of around 0.05. Here it is unclear whether the earlier layers’
gradients would leak the labels more than the cut layer or not — for norm leak AUC, the earlier
layers have a higher AUC values (more leakage) than the cut layer, while for cosine leak AUC, the
earlier layers have a lower AUC values (less leakage) than the cut layer. Further understanding the
relationship between these leak AUC values across different layers is an open question motivated by
our observations here.

0 10000 20000 30000
number of sgd updates

0.95

0.96

0.97

0.98

0.99

1.00

no
rm

 le
ak

 a
uc

(a) no_noise

layer 1 (first layer) layer 2 layer 3 layer 4 (cut layer)

0 10000 20000 30000
number of sgd updates

0.95

0.96

0.97

0.98

0.99

1.00

co
sin

e
le

ak
 a

uc

(b) no_noise

0 10000 20000 30000
number of sgd updates

0.54

0.56

0.58

no
rm

 le
ak

 a
uc

(c) Marvell, s=4.0

0 10000 20000 30000
number of sgd updates

0.58

0.60

0.62

0.64

co
sin

e
le

ak
 a

uc

(d) Marvell, s=4.0
ISIC, non-label party's convolution network f with four Conv-ReLU-MaxPool layers

Figure 10: For a non-label party’s four-layer convolutional architecture trained on ISIC, we plot the progression
of the norm or cosine leak AUC computed using the activation gradients from each of the four layers throughout
training in (a), (b) when no random protection is applied and in (c), (d) when using Marvell with privacy
hyperparameter s = 4 at the cut layer (layer 4). The four curves overlap in (b) at the value of 1.0. For each
layer’s data in each figure, a 1-d Gaussian kernel with standard deviation of 5 is convolved with the raw 1-d
array of leak AUC values to smooth out the fluctuations and make the different layers’ degree of leakage more
visually distinct.

Beyond the four layer convolutional neural network trained on ISIC, we also train a new MLP model
architecture on Criteo. Here instead of having 3 128-unit ReLU-activated MLP layers for the non-
label party’s function f as described in Section A.6.2, we use 8 such layers for f while keeping
every other architectural component the same. We plot the progression of leak AUC values on each
of the eight layers in Figure 11. Here the observations are very similar to what we see in Figure 10,
confirming our aforementioned conclusions in this section.

25

Published as a conference paper at ICLR 2022

0 5000 10000 15000 20000
number of sgd updates

0.85

0.90

0.95

1.00
no

rm
 le

ak
 a

uc

(a) no_noise

layer 1 (first layer)
layer 2

layer 3
layer 4

layer 5
layer 6

layer 7
layer 8 (cut layer)

0 5000 10000 15000 20000
number of sgd updates

0.980

0.985

0.990

0.995

1.000

1.005

co
sin

e
le

ak
 a

uc

(b) no_noise

0 10000 20000
number of sgd updates

0.45

0.50

0.55

0.60

no
rm

 le
ak

 a
uc

(c) Marvell, s=4.0

0 10000 20000
number of sgd updates

0.60

0.62

0.64

0.66

co
sin

e
le

ak
 a

uc

(d) Marvell, s=4.0
Criteo, non-label party's MLP network f with eight 128-unit ReLU-activated MLP layers

Figure 11: For a non-label party’s eight-layer MLP architecture trained on Criteo, we plot the progression of
the norm or cosine leak AUC computed using the activation gradients from each of the eight layers throughout
training in (a), (b) when no random protection is applied and in (c), (d) when using Marvell with privacy
hyperparameter s = 4 at the cut layer (layer 4). The eight curves overlap in (b) at the value of 1.0. For each
layer’s data in each figure, a 1-d Gaussian kernel with standard deviation of 100 is convolved with the raw 1-d
array of leak AUC values to smooth out the fluctuations and make the different layers’ degree of leakage more
visually distinct.

26

Published as a conference paper at ICLR 2022

A.8 REASONS WHY WE DON’T USE LOCAL DP IN OUR SETUP

It is possible to use a local differential privacy definition to analyze our problem setup if we treat any
single training example as a dataset and two examples (dataset) are adjacent if they share the sameX
but have the opposite label y. Then one can analyze the activation gradient computation function’s
local DP properties. However, we choose not to use local DP in our setup for the following two
reasons:

1. We are not aware of any attacks associated with local DP that are suitable for practical
use in our problem setup. In contrast, our leak AUC privacy quantification metrics have
corresponding concrete, realistic attack methods that the non-label party can use in practice.

2. Even if there exists a practical attack associated with local DP, this attack would require
example-level side information as the activation gradient distributions would be example-
specific. Distinguishing between such gradient distributions for a pair of adjacent examples
(with same X but opposite label y) would require knowledge about the two distributions
specific to this example pair itself. As we have mentioned in Section 3.2, we do not assume
the non-label party would realistically have access to such fine-grained knowledge.
Instead, in our setup, the non-label party uses a scoring function that only takes in the
communicated cut layer gradient without any additional information.

27

	Introduction
	Related Work
	Label Leakage in Split Learning
	Two-party Split Learning in Binary Classification
	Threat Model and Privacy Quantification
	Practical Attack Methods

	Label Leakage Protection Methods
	A Heuristic Protection Approach
	Optimized Perturbation Method: Marvell

	Experiments
	Label Leakage and Marvell's Strong and Flexible Protection
	Privacy-Utility Trade-off Comparison

	Conclusion
	Appendix
	Expressing AUC(r) as an integral
	Toy class-balanced example of positive example prediction lacking confidence
	Proof of Theorem 1
	Proof and Interpretation of Theorem 2
	Marvell algorithm description
	Marvell time complexity
	Marvell Empirical Run Time

	Data Setup and Experimental Details
	Dataset preprocessing
	Model architecture details
	Model training details

	Complete Experimental Results
	Leak AUC progression for Avazu and Criteo
	Complete Privacy-Utility tradeoffs
	Impact of Activation Gradients' Layer Location on the Corresponding Leak AUC

	Reasons why we don't use local DP in our setup

