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Abstract

High-resolution simulations such as the ICOsahedral Non-hydrostatic Large-Eddy
Model (ICON-LEM) can be used to understand the interactions between aerosols,
clouds, and precipitation processes that currently represent the largest source of
uncertainty involved in determining the radiative forcing of climate change. Nev-
ertheless, due to the exceptionally high computing cost required, this simulation-
based approach can only be employed for a short period of time within a limited
area. Despite the fact that machine learning can mitigate this problem, the related
model uncertainties may make it less reliable. To address this, we developed a
neural network (NN) model powered with evidential learning to assess the data
and model uncertainties applied to satellite observation data. Our study focuses on
estimating the rate at which small droplets (cloud droplets) collide and coalesce
to become larger droplets (raindrops) – autoconversion rates – since this is one
of the key processes in the precipitation formation of liquid clouds, hence crucial
to better understanding cloud responses to anthropogenic aerosols. The results of
estimating the autoconversion rates demonstrate that the model performs reason-
ably well, with the inclusion of both aleatoric and epistemic uncertainty estimation,
which improves the credibility of the model and provides useful insights for future
improvement.

1 Introduction

Future climate projections demand a deeper understanding of interactions between aerosols and
clouds since they constitute the biggest uncertainty in estimating the radiative forcing of climate
change [IPCC, 2021]. One way to reduce such uncertainties is to understand the interaction between
aerosols, clouds, and precipitation processes. One of the high-resolution simulations that can be used
to study these interactions is the ICON-LEM [Zängl et al., 2015, Dipankar et al., 2015, Heinze et al.,
2017]. Nevertheless, due to the exceptionally high computing cost required, it can only be employed
for a limited period and geographical area.

While machine learning has the potential to address the challenges mentioned, it is important to note
that predictions made by these models may be affected by noise and model inference error [Malinin,
2019]. The degree of uncertainty in a model depends on the machine learning algorithm and the
availability of data. These model uncertainties might be more pronounced for climate forecasts,
raising concerns about the model’s reliability.
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Figure 1: General framework.

The aforementioned issues are addressed in this study by employing deep evidential regression
[Amini et al., 2020, Meinert et al., 2023] and the massive collection of satellite data, providing
long-term global spatial coverage up to several decades. We focus in particular on autoconversion
rates estimation since this is one of the key processes in the precipitation formation of liquid clouds,
hence crucial to better understanding cloud responses to anthropogenic aerosols and, ultimately,
climate change.

Our current work represents a continuation and enhancement of our previous research efforts. Our
previous work [Novitasari et al., 2021] also considered the prediction of autoconversion rates from
satellite data; however, it entailed a more complex approach involving a machine learning model
with more features and higher number of trainable weights, resulting in increased computational
costs compared to our work. Furthermore, our previous approach utilized a more complex simulator
(COSP; Swales et al., 2018) to generate satellite-like data, while our current approach is more
cost-effective and straightforward as we simply define the cloud-top information based on cloud
optical thickness. Importantly, we have not quantitatively assess the inherent uncertainty in our
previous findings. This work offers a computationally effective solution by employing the fewest
features necessary and minimizing trainable weights while still obtaining accurate predictions of
autoconversion rates. Additionally, deep evidential learning evaluates data and model uncertainties
without the need for additional training or inference.

2 Proposed Approach

We present a novel approach for direct autoconversion rate extraction from satellite observation,
which includes the estimation of data and model uncertainties. The general framework, as illustrated
in Figure 1, involves climate science-based steps for generating training and testing datasets, along
with a machine learning framework incorporating uncertainty quantification methods, as elaborated
in the following section.

Datasets We use datasets from ICON-LEM output over Germany on 2 May 2013, where distinct
cloud regimes occurred, allowing for the investigation of quite different elements of cloud formation
and evolution [Heinze et al., 2017]. We study a time period of 09:55 UTC to 13:20 UTC. Our focus
is on ICON-LEM with a 156 m resolution on the native ICON grid, then regridded to a regular 1 km
resolution to match the resolution of MODIS. The autoconversion rates in our training and testing data
were derived using the two-moment microphysical parameterization of Seifert and Beheng (2006).
The autoconversion rates for cloud tops that simulate satellite data were determined by selecting
rates where the cloud optical thickness (COT), calculated from top to bottom, exceeds 1. The optical
thickness represents the extent to which optical satellite sensors can retrieve cloud microphysical
information.

We use dataset of ICON numerical weather prediction (ICON-NWP) Holuhraun which were per-
formed over Holuhraun volcano for a week from 1 to 7 September 2014 to further test the performance
of our machine learning models [Kolzenburg et al., 2017, Haghighatnasab et al., 2022]. The dataset
has a horizontal resolution of approximately 2.5 km. As for the satellite observation data displayed

2



on the right side of Figure 1, we use cloud product level-2 of Terra and Aqua MODIS [Platnick et al.,
2017, 2018].

Uncertainty Quantification Methods To capture the uncertainty associated with the predicted
autoconversion rates, we employ the evidential regression framework proposed by Amini et al.
(2020). However, we incorporate the modified version proposed by Meinert et al. (2023) because
the regularizer formulation proposed by Amini et al. (2020) is insufficient for finding the marginal
likelihood parameters.

Amini et al. (2020) approach the regression problem by representing it as a normal distribution
with an unknown mean and variance, N(µ, σ2). They adopt a normal prior distribution for the
mean, with µ following N(γ, σ2ν−1), and an inverse Gamma prior distribution for the variance, with
σ2 following Γ−1(α, β). As a result, they obtain a combined prior distribution known as Normal
Inverse-Gamma, characterized by the parameters γ, ν, α, and β.

Given a set of (xi, yi) pairs, the overall loss function Li(w) for the NN, as defined by Amini
et al.(2020), where w represents a set of weights, is formulated as: Li(w) = LNLL

i (w) + λLR
i (w),

where LNLL
i represents the negative log-likelihood to maximize the model fit, defined as:
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where Ω = 2β(1 + ν). LR
i denotes the regularization term, which is scaled by a regularization

coefficient, λ. Choosing a low value for λ could lead to overconfidence, whereas opting for a high
value might result in excessive uncertainty. However, instead of utilizing the L1 error, we employ
an adjustment to the residuals by incorporating the width of the student-t distribution (wSt), as
recommended by Meinert et al. (2023).

Consequently, the regularization term can be expressed as:

LR
i (w) =

∣∣∣∣yi − γ

wSt

∣∣∣∣p Φ (2)

where wSt is computed as
√

β(1+ν)
α·ν . wSt is also employed for evaluating the aleatoric uncertainty.

Conversely, the epistemic uncertainty is defined as 1√
ν

. The total evidence, denoted as Φ, is defined
as ν+2α [Meinert et al., 2023]. Additionally, the parameter p serves as an additional hyperparameter,
determining the magnitude of residual impact within regularization.

Machine Learning Models In this study, we trained our machine learning models using ICON-
LEM output as input. The input to our machine learning model is the cloud effective radius as this is
one of the crucial parameters of the cloud microphysical state that is typically obtained from satellite
retrievals [Platnick et al., 2017, Grosvenor et al., 2018]. The machine learning model output, serving
as groundtruth, is the autoconversion rates derived from ICON-LEM. The preprocessing step is
detailed in Appendix A.

We then trained and tested a deep evidential regression [Amini et al., 2020, Meinert et al., 2023]
model with an evidential regularizer coefficients, λ, set to 1e-6, chosen for optimal calibration (details
in Appendix C). Additionally, following Meinert et al. [2023], the hyperparameter p was chosen with
the value of 2. The shallow NN is trained to infer the hyperparameters of the evidential distribution
by applying evidential priors over the original Gaussian likelihood function.

In the early stages of our testing process, we compared our models’ performance against simulation
data. We then proceed to calculate the data (aleatoric) and model (epistemic) uncertainties, rigorously
evaluating their calibration through the implementation of the spread-skill plot [Wilks, 2011, Haynes
et al., 2023] and discard test [Barnes and Barnes, 2021, Haynes et al., 2023] methods. Finally, we
employ our shallow NN model to make direct predictions of the autoconversion rates from satellite
data, including the estimation of its data and model uncertainties.

We selected a shallow NN model for its superior performance compared to other machine learning
models as shown in Appendix B. Despite the fact that DNN model produced the best outcome in
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Table 1: Evaluation of autoconversion rates prediction results on simulation data (ICON) using NN
Evidential model.

Data R2 MAPE RMSPE SSIM PSNR

(a) ICON-LEM Germany 90.54% 9.14% 11.27% 90.11% 26.30
(b) Cloud-top ICON-LEM Germany 89.88% 10.86% 13.89% 89.96% 25.89
(c) Cloud-top ICON-NWP Holuhraun 84.39% 8.56% 10.73% 91.50% 25.81

(a) CER (b) Aut

Figure 2: Mean, standard deviation (Std), median, and percentiles (p25, p75) of cloud-top ICON-LEM
and MODIS variables over Germany: cloud effective radius (CER) and autoconversion rates (Aut).

our scenario (see Appendix B), we deem the NN model to be superior due to its ability to produce
comparable outcomes with significantly fewer trainable weights. Additionally, the use of NNs
(including DNN) can be coupled with evidential learning to enable estimation of aleatoric and
epistemic uncertainties without additional training.

3 Experimental Results

Autoconversion on Simulation Data (ICON) This stage involves testing our shallow NN model
in 3 scenarios with different datasets: (1) ICON-LEM Germany (different times), (2) Cloud-top
ICON-LEM Germany (satellite-like data), and (3) Cloud-top ICON-NWP Holuhraun (different data,
time, location, and resolution), details in Appendix E.1. All findings, displayed in Table 1, exhibit
strong performance with SSIM around 90%. This confirms our approach’s ability to accurately
estimate autoconversion rates using simulation data. Visual representations are available in Appendix
E.2. The details of the model architecture and additional experimental results with a different NN
(DNN) architecture from our previous work [Novitasari et al., 2021] are also available in Appendix
D.

Autoconversion on Satellite Observation (MODIS) This stage involves testing our models on
satellite data, MODIS Aqua over Germany (latitude: 47.50° to 54.50° N, longitude: 5.87° to 10.00°
E) on 2 May 2013 at 13:20 local time. Even though satellite predictions cannot be directly compared
with simulation results – due to the fact that the ICON-LEM simulation does not put clouds in their
exact right places – the autoconversion rates obtained from the simulation output and the predicted
autoconversion rates from satellite data demonstrated statistical concordance, as shown in Figure
2. The mean, standard deviation, median, 25th and 75th percentiles of the autoconversion rates of
the cloud-top ICON-LEM Germany compared to MODIS are relatively close. Additional results in
Appendix E.3. This implies that our approach is capable of estimating autoconversion rates directly
from satellite data.

Evaluation of Uncertainty Estimation The total uncertainty (aleatoric and epistemic) performance
of the deep evidential regression on simulation data was evaluated using the spread-skill plot and
discard test. Results showed that the deep evidential regression with a coefficient λ of 1e-6 was
well-calibrated, as depicted in Figure 3. This is demonstrated by spread skill plots that are very close
to the ideal line and discard test that decrease monotonically from left to right.
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(a) Spread-skill plot (b) Discard test

Figure 3: Evaluation of uncertainty estimation on simulation data (ICON).

(a) Aleatoric (b) Epistemic

Figure 4: (a) Aleatoric and (b) epistemic uncertainty estimates of autoconversion rates (kgm−3 s−1)
prediction using atmospheric simulation data (ICON) over Germany.

Uncertainty Estimation on Satellite-like and Satellite Data Figures 4 displays the visualization
of aleatoric and epistemic uncertainties on satellite-like data, over Germany (see Appendix E.4 for
satellite data over Germany, as well as satellite-like and satellite data over Holuhraun). The plots
reveal a wider range of aleatoric uncertainty compared to epistemic uncertainty. This observation
aligns with the fact that a single independent variable can correspond to multiple ranges of dependent
variables, as shown in Figure 4.

4 Conclusion

In this study, we provide a computationally efficient solution to unravel the key process of precipitation
formation for liquid clouds, the autoconversion process, from satellite data by employing the fewest
attributes necessary while still obtaining meaningful results. A thorough investigation, with details
provided in the appendix, is also included. Furthermore, we employ evidential learning to estimate
data and model uncertainties, eliminating the need for additional training or inference, hence reducing
the overall costs. It has demonstrated good calibration, enhancing the model’s credibility, and
providing valuable insights for future improvements. Our findings show that data uncertainty
contributes the most to the overall uncertainty, hence modifying the model architecture is unlikely
to improve outcomes significantly. Instead, it would be more effective to prioritize enhancing
data quality or incorporating an additional crucial feature, such as COT per layer. Unfortunately,
satellite data lacks this information, but future efforts will focus on estimating this feature to enhance
autoconversion rates estimation and reduce uncertainty.
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A Machine Learning Models

We split the data into 80% for training and validation, and 20% for testing. To enhance the model performance,
logarithmic transformations are applied to both the input and output variables for normalization. This normal-
ization process effectively addresses data presented with extremely small numerical values, thereby improving
interpretability and stability. Furthermore, the input variables undergo additional normalization using standard
scaling techniques.

The performance of each model is evaluated by calculating a range of metrics, including R2, MAPE (Mean
Absolute Percentage Error), RMSPE (Root Mean Squared Percentage Error), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM), on the testing data. Prior to calculating each metric, the data is
normalised by transforming it using base 10 logarithms and then scaling it to a range between 0 and 1.

B Initial Machine Learning Models (without Evidential Learning)

Table B1: Evaluation of the autoconversion rates prediction results on simulation model using various machine
learning models (linear regression, second order polynomial regression, random forest, shallow neural network,
and deep neural network) - ICON-LEM Germany.

Method R2 MAPE RMSPE SSIM PSNR (dB)

LR 88.77% 10.86% 15.28% 88.39% 25.56
PR 90.03% 9.57% 12.22% 89.96% 26.08
RF 90.53% 9.15% 11.54% 90.09% 26.30
NN 90.54% 9.15% 11.35% 90.11% 26.31

DNN 90.54% 9.15% 11.29% 90.11% 26.31

Table B1 presents the results of the initial series of experiments. It is evident from the table that a simple
linear regression (LR – which is discussed in the book of Gelman and Hill [2006]) model yields fairly good
results, with R2 and SSIM values exceeding 88%. The performance can be further improved by switching to a
second-degree polynomial regression (PR) model. Out of all the techniques tested, deep neural network (DNN –
[Schmidhuber, 2015]) produces the best results with R2 and SSIM values exceeding 90%. Random forest (RF –
[Breiman, 2001]) also performed admirably but not superior to the DNN model with a very slight difference.
The shallow neural network (NN – which was first proposed by McCulloch and Pitts [1943]) also demonstrated
comparable results to the DNN model, albeit with slightly elevated RMSPE values, thereby suggesting that
the DNN model still yielded the best results. Despite the fact that DNN model produced the best outcome in
our scenario, we deem the NN model to be superior due to its ability to produce comparable outcomes with
significantly fewer trainable weights. These findings suggest that there is a strong association between the liquid
cloud particle size (cloud effective radius) and the autoconversion rates.

The DNN architecture of our machine learning model consists of five fully connected hidden layers, with 64
nodes in the first layer, 128 nodes in the second layer, 256 nodes in the third layer, 512 nodes in the fourth layer,
and 1024 nodes in the fifth layer. Additionally, our NN is a basic neural network with a single hidden layer
comprising 64 neurons.

For both neural network models (NN and DNN), the training was performed using Adam’s optimizer. At each
hidden layer, Leaky ReLU as the activation function is performed. The batch size and learning rate are set based
on keras tuner algorithm [O’Malley et al., 2019]. However, it is worth noting that those architectures were
chosen arbitrarily and alternative architectures can also be employed.

C Selection of the Evidential Regularizer

Our evidential regression models were trained with varying evidential regularizer coefficients λ ranging from
1e-2 to 1e-9. Additionally, following Meinert et al. [2023], the hyperparameter p was chosen with the value of 2.
The calibration of uncertainty estimation was evaluated using a spread-skill plot, and the most well-calibrated
coefficient was selected. The results of this experiment is shown in Figure C1.

The best coefficient λ was found to be 1e-6 as it was closest to the ideal line in the spread-skill plot. The ideal
line represents a scenario where the predicted uncertainty matches the actual error of prediction. A value above
the diagonal indicates overconfidence in the model’s uncertainty estimate, while a value below the diagonal
represents underconfidence.
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Figure C1: Spread-skill plot of deep evidential regression model (based on shallow NN model) with varying
evidential regularizer coefficients.

Table D1: Evaluation of the autoconversion rate prediction results on simulation model (ICON-LEM Germany)
using evidential machine learning models, including both shallow neural network (NN) and deep neural network
(DNN) architectures.

Method R2 MAPE RMSPE SSIM PSNR (dB)

NN 90.54% 9.14% 11.27% 90.11% 26.30
DNN 90.50% 9.19% 11.26% 90.26% 26.29

Table D2: Evaluation of the autoconversion rate prediction results on simulation model (Cloud-top ICON-LEM
Germany) using evidential machine learning models, including both shallow neural network (NN) and deep
neural network (DNN) architectures.

Method R2 MAPE RMSPE SSIM PSNR (dB)

NN 89.88% 10.86% 13.89% 89.96% 25.89
DNN 89.95% 10.74% 13.65% 90.18% 25.93

D Evidential Machine Learning Models

To facilitate comparison, we train our deep evidential regression using two distinct neural network architectures.
The first model, referred to as the shallow NN or NN, is our preferred choice as indicated in Appendix A. It is a
basic neural network with a single hidden layer comprising 64 neurons. In contrast, the second model, known as
the pyramid-shaped DNN, was employed in our previous study [Novitasari et al., 2021] to predict autoconversion
rates. This model features a more intricate architecture and a greater number of trainable weights.

For both models, the activation function used at each hidden layer is Leaky ReLU. While for the loss function,
we use evidential deep regression loss (refer to Section 2). Furthermore, the training was performed using
Adam’s optimizer. The batch size and learning rate are set based on keras tuner algorithm. Given our use of
evidential deep learning, we modify the final layer of both models to incorporate the evidential component.

The details of the training and testing data utilized are described in Section 2. We use a lambda coefficient of
1e-6, determined as the most well-calibrated coefficient based on previous experiments (refer to Appendix C for
more details), and additionally, following Meinert et al. [2023], the hyperparameter p was chosen with the value
of 2.

The comparison results, presented in Tables D1, D2 and D3, demonstrate that all models exhibit comparable
performance, delivering quite good results for different testing datasets and scenarios (see Appendix E.1).
Despite the fact that DNN model yielding slightly better results in our specific scenario, we consider the NN
model (our current approach) to be preferable since it can achieve comparable outcomes with significantly fewer
trainable weights.
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Table D3: Evaluation of the autoconversion rate prediction results on simulation model (Cloud-top ICON-NWP
Holuhraun) using evidential machine learning models, including both shallow neural network (NN) and deep
neural network (DNN) architectures.

Method R2 MAPE RMSPE SSIM PSNR (dB)

NN 84.39% 8.56% 10.73% 91.50% 25.81
DNN 84.99% 8.39% 10.83% 91.77% 25.98

In line with our findings regarding epistemic uncertainty (refer to Section 3), modifying the model architecture
is unlikely to result in significant improvements. Alternatively, it is advisable to prioritize enhancing data quality
or incorporating additional crucial features, if available.

E Additional Results

E.1 Testing Dataset/Scenarios

We evaluate our NN model using different testing datasets and scenarios associated with the ICON-LEM
simulations over Germany and the ICON-NWP simulations over Holuhraun, as follows:

1. ICON-LEM Germany: In this testing scenario, we evaluate the performance of our machine learning
models using the same data that was utilised during its training process. This data, which consists
of a set of cloud effective radius and autoconversion rates corresponding to different points in three-
dimensional space, was collected through the use of ICON-LEM simulations specifically over Germany.
The testing data, however, differs from the training data as we focus on a different time period,
specifically 2 May 2013 at 1:20 pm. This approach enables us to assess the model’s generalisation
capability to new data within the same region and day, while considering significant weather variations
that evolved considerably (Heinze et al. [2017]). Number of data points: approximately 950,000.

2. Cloud-top ICON-LEM Germany: In this testing scenario, we evaluate the performance of our machine
learning model by utilising the same data as in the previous scenario, with the exception that we are
only considering the cloud-top information of the data. The data involved in this testing scenario is a
collection of cloud-top autoconversion rates and cloud-top effective radius pairs associated with 2D
spatial points, representing a specific range of latitude and longitude, as well as a specific altitude for
each point, specifically the cloud-top height for each point. We extract this cloud-top 2D data from the
3D atmospheric simulation model by selecting the variable value at any given latitude and longitude
where the cloud optical thickness exceeds 1, integrating vertically from cloud-top. Number of data
points: approximately 144,000.

3. Cloud-top ICON-NWP Holuhraun: This final testing scenario uses distinct data from that of previous
scenarios. In particular, we use cloud-top of ICON-NWP Holuhraun data that was acquired at a
different location, time, and resolution compared with the data used in the previous scenarios. The
ability of the model to perform well in the presence of new data is important in many practical
applications, allowing the model to make accurate predictions on unseen data, adapting to varying
geographical locations, and adapting to different metereological conditions. Number of data points:
approximately 1.7 million.

E.2 Autoconversion on Simulation Data (ICON)

A visualization of the autoconversion rates predicted by shallow NN with groundtruth can be seen in Figure E1.
As depicted in the figure, the effectiveness of the NN model in capturing and replicating the main characteristics
of the groundtruth is evident, as demonstrated by the strong resemblance between the groundtruth and the
model predictions. Moreover, it can be observed from Figure E1 that there is a minimal discrepancy between
the predicted values and the actual groundtruth in both the ICON-LEM Germany dataset and the ICON-NWP
Holuhraun dataset.

E.3 Autoconversion on Satellite Observation (MODIS)

The probability density function (PDF) of the autoconversion rates shows a slight difference at its peak, with
MODIS being slightly higher than cloud-top ICON-LEM Germany, as seen in Figure E2. This difference is
attributed to discrepancies in the cloud effective radius or liquid cloud particle size, which is an input variable,
between MODIS and cloud-top ICON-LEM over Germany.
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(a) ICON-LEM Germany

(b) Cloud-top ICON-LEM Germany

(c) Cloud-top ICON-NWP Holuhraun

Figure E1: Visualization of the autoconversion prediction results of ICON-LEM Germany and ICON-NWP
Holuhraun. The left side of the image depicts the groundtruth, while the middle side shows the prediction results
obtained from the NN model. The right side displays the difference between the groundtruth and the prediction
results. The top image (a) compares the groundtruth and predictions from ICON-LEM Germany at a resolution
of 1 km, while the second image (b) focuses on cloud-top information only at a resolution of 1 km. The third
figure (c) illustrates the comparison of comparison between groundtruth and predictions of the ICON-NWP
Holuhraun data with a horizontal resolution of 2.5 km, focusing on cloud-top information only.

Based on our study, we have arrived at the finding that the liquid cloud particle size plays a crucial role in
determining autoconversion rates. This impact is evident in the consistent shape of the PDF of autoconversion
rates, which closely mirrors the behavior of the input.

E.4 Uncertainty Estimation on Satellite-like and Satellite Data

Figure E4 illustrates the visualization of aleatoric and epistemic uncertainty estimations on satellite-like data
over Holuhraun, while Figures E3 and E5 show the visualization of uncertainty estimations on actual satellite
data over Germany and Holuhraun. These discoveries demonstrate consistency with our previous findings (refer
to Section 3). It indicates that our results remain aligned and consistent across different datasets.
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(a) Cloud Effective Radius (b) Autoconversion Rates

Figure E2: Probability density function of Cloud-top ICON Germany and MODIS variables: cloud effective
radius and autoconversion rates.

(a) Aleatoric (b) Epistemic

Figure E3: (a) Aleatoric and (b) epistemic uncertainty estimates of the autoconversion rates prediction
(kgm−3 s−1) on satellite data (MODIS) over Germany.

(a) Aleatoric (b) Epistemic

Figure E4: (a) Aleatoric and (b) epistemic uncertainty estimates of the autoconversion rates prediction
(kgm−3 s−1) on atmospheric simulation data (ICON) over Holuhraun.

(a) Aleatoric (b) Epistemic

Figure E5: (a) Aleatoric and (b) epistemic uncertainty estimates of the autoconversion rates prediction
(kgm−3 s−1) on satellite data (MODIS) over Holuhraun.
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