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ABSTRACT

Fine-tuning large language models (LLMs) on tabular data for classification can
lead to the phenomenon of fine-tuning multiplicity, where equally well-performing
models make conflicting predictions on the same input. Fine-tuning multiplic-
ity can arise due to variations in the training process, e.g., seed, random weight
initialization, retraining on a few additional or deleted data points. This raises
critical concerns about the robustness and reliability of Tabular LLMs, partic-
ularly when deployed for high-stakes decision-making, such as finance, hiring,
education, healthcare, etc. This work formalizes the unique challenge of fine-
tuning multiplicity in Tabular LLMs and proposes a novel measure to quantify
the robustness of individual predictions without expensive model retraining. Our
measure quantifies a prediction’s robustness by analyzing (sampling) the model’s
local behavior around the input in the embedding space. Interestingly, we show
that sampling in the local neighborhood can be leveraged to provide probabilistic
robustness guarantees against a broad class of equally-well-performing fine-tuned
models. By leveraging Bernstein’s Inequality, we show that predictions with suf-
ficiently high robustness (as defined by our measure) will remain consistent with
high probability. We also provide empirical evaluation on real-world datasets to
support our theoretical results. Our work highlights the importance of address-
ing fine-tuning instabilities to enable trustworthy deployment of Tabular LLMs in
high-stakes and safety-critical applications.

1 INTRODUCTION

Large language models (LLMs) are generating significant interest in high-stakes applications, e.g.,
finance, healthcare, etc., particularly in few-shot classification scenarios. Tabular data is prevalent
in these sectors, making the development of Tabular LLMs (TabLLMs) an emerging research pri-
ority (van Breugel & van der Schaar, 2024). Recent studies have shown that TabLLMs perform
commendably in scenarios with limited training data due to their transfer learning abilities (Hegsel-
mann et al., 2023; Dinh et al., 2022; Yin et al., 2020; Yan et al., 2024; Wang et al., 2023). However,
these models are often fine-tuned from large pre-trained models with millions or billions of param-
eters on small, proprietary datasets (Hu et al., 2021; Liu et al., 2022). This paucity of training data,
combined with the large parameter space, introduces instability across fine-tuned variants, raising
concerns about their trustworthy adoption in high-stakes applications.

One imminent challenge is the concern of fine-tuning multiplicity in TabLLMs. This is the phe-
nomenon where multiple well-performing models, fine-tuned from the same pre-trained LLM under
slightly varying conditions (e.g., different random seeds or minor changes in the training data),
produce conflicting predictions for the same inputs. This concept is closely related to predictive
multiplicity, often referred to as the Rashomon effect in the context of neural networks (Marx et al.,
2020; Breiman, 2003; Hsu & Calmon, 2022). While multiplicity has also been observed recently in
LLMs in the text classification (Gomez et al., 2024), it would become particularly concerning in the
context of TabLLMs for high-stakes applications. In areas like finance (Yin et al., 2023) and health-
care (Wang et al., 2024b; Chen et al., 2023b; Kim et al., 2024), arbitrary and conflicting predictions
on the same input can lead to undesirable consequences, such as reputational risk and distrust.

Aside from the inherent need for predictions to be robust to minor model variations (e.g., due to
different training seeds), TabLLMs deployed by institutions may also need to be updated for various
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reasons, e.g., to retrain on additional data points to improve performance (Wu et al., 2024), or
even removing datapoints for privacy. For instance, regulatory frameworks like the GDPR (Voigt,
2017) introduce the right to be forgotten which necessitates the removal of an individual’s data upon
request, potentially leading to model updates. These updates could, in turn, impact the validity
of previously issued predictions. Fine-tuning multiplicity also paves the way for fairwashing and
explanation bias (Black et al., 2022; Sokol et al., 2023; Rudin et al., 2024), making quantifying
robustness against fine-tuning multiplicity an important and practically relevant problem.

Existing approaches to measure multiplicity in classical machine learning often involve retraining
and ensembling multiple models (Marx et al., 2020). However, such approaches can be computa-
tionally expensive for LLMs due to their large parameter sizes. This raises a key question: Can
we quantify the robustness of individual predictions without the need for expensive retraining? To
address this question, we propose a novel measure, termed consistency, which leverages the model’s
local behavior around each input data point within the embedding space to estimate the prediction’s
susceptibility to multiplicity. Interestingly, by analyzing this local neighborhood, we can derive
probabilistic guarantees on the robustness of predictions with high consistency scores under a broad
class of equally-well-performing fine-tuned models. Our contribution is summarized as follows:

• Model multiplicity in fine-tuned Tabular LLMs. We study the intriguing nature of fine-tuning
multiplicity in Tabular LLMs. We demonstrate that prediction inconsistency exists when we ac-
tually fine-tune several models from the same pre-trained model, as observed through existing
multiplicity measures such as Arbitrariness, Discrepancy, Pairwise Disagreement, as well as two
of our proposed multiplicity measures, Prediction Variance, and Range (defined in Section 2).
Furthermore, we also visualize the decision boundary for several Tabular LLMs fine-tuned for a
simple classification task and unravel an interesting “noise” pattern: unlike neural network clas-
sifiers which typically have locally-smooth decision boundaries, Tabular LLMs show abrupt and
impulsive variations (see Figure 2). A model having high confidence in a prediction alone does
not guarantee its robustness under fine-tuning multiplicity.

• A measure to quantify prediction robustness under fine-tuning multiplicity. We introduce a
novel measure, termed consistency (see Definition 5), to quantify the robustness of model pre-
dictions under fine-tuning multiplicity, without retraining several models. Given an input x and
model f(·) ∈ (0, 1), our robustness measure is Sk,σ(x, f) =

1
k

∑
xi∈Nx,k

(f(xi)−|f(x)−f(xi)|),
where Nx,k is a set of k points sampled independently from a distribution over a hypersphere of
radius σ centered at x. This measure uses the input’s local neighborhood (in the embedding space)
to inform prediction robustness, capturing both the mean model outputs and its variability.

• Probabilistic guarantees on consistency over a broad class of fine-tuned models. We pro-
vide a theoretical guarantee (see Theorem 1) that predictions with sufficiently high consistency
(as defined by our measure) will remain consistent with high probability over a broad range of
equally-well-performing fine-tuned models. To achieve this guarantee, we characterize the behav-
ior and statistical properties of this model class (see Assumption 1; Stochastic Fine-Tuned Model
Class). Our results leverage Bernstein’s Inequality (see Lemma 2) to derive rigorous concentration
bounds used to prove our theoretical guarantee.

• Empirical validation. We validate our results on the Diabetes, German Credit, Bank, Heart, Car,
and Adult datasets (Kahn; Hofmann, 1994; Becker & Kohavi, 1996). We employ the BigScience
T0 encoder-decoder model (Sanh et al., 2021) and Google FLAN-T5 (Chung et al., 2024), fine-
tuned via the T-Few recipe (Liu et al., 2022), and LORA (Hu et al., 2021). For each case,
we empirically evaluate the extent of fine-tuning multiplicity, and also study how effectively our
consistency measure Sk,σ(x, f), (measured only using one model f ) captures the multiplicity of
predictions over a broad range of fine-tuned models.

Related Works: LLM in tabular predictions. The application of LLMs to tabular data is a grow-
ing area of research, demonstrating commendable performance due to the transfer learning capabil-
ities (Yin et al., 2020; Li et al., 2020; Narayan et al., 2022; Borisov et al., 2022; Bertsimas et al.,
2022; Onishi et al., 2023; Zhang et al., 2023; Wang et al., 2023; Sui et al., 2024; Yan et al., 2024;
Yang et al., 2024). While neural networks and gradient boosting machines (e.g., XGBoost) perform
well with tabular data when ample labeled data is available, their effectiveness drops considerably in
data-scarce scenarios. In contrast, LLMs can leverage their reasoning, in-context learning, and pre-
trained knowledge to maintain strong performance even on small, limited tabular datasets (Hegsel-
mann et al., 2023). Dinh et al. (2022) proposes LIFT, a method for adapting LLMs to non-language
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(a) Finetuning LLMs for Tabular Data

(b) Finetuning Multiplicity in Tabular LLMs
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Embedding Layer
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Models fine-tuned from the same pre-trained LLM under slightly varying 
conditions (e.g. random seeds), exhibit comparable performance yet 
generate conflicting predictions for the same inputs.

Predicted probabilities Test Input

Figure 1: (a) illustrates the process of fine-tuning LLMs for Tabular data using few labeled ex-
amples (Hegselmann et al., 2023; Dinh et al., 2022). (b) demonstrates the concept of finetuning
multiplicity. Models fine-tuned from the same pre-trained LLM under slightly varying conditions,
such as different random seeds, can exhibit comparable performance metrics but may yield con-
flicting predictions for the same input. (c) introduces our proposed consistency measure designed to
quantify the robustness of individual predictions without requiring the retraining of multiple models.
By sampling points in a bounded neighborhood around a given input in the embedding space, the
consistency measure Sk,σ(x, f) informs a prediction’s susceptibility to multiplicity.

classification and regression tasks without changing the model architecture or loss function. Hegsel-
mann et al. (2023) investigates the use of LLMs for zero-shot and few-shot classification of tabular
data and finds that this method outperforms previous deep-learning-based approaches and is compet-
itive with traditional baselines like gradient-boosted trees. Wang et al. (2024b) presents MediTab,
a method that uses LLMs to combine different medical datasets, significantly improving predic-
tions for patient and trial outcomes. Tabular LLMs have also been applied in other high-stakes
domains (Chen et al., 2023b; Kim et al., 2024; Li et al., 2023; Yin et al., 2023). Yin et al. (2023)
presents FinPT an LLM based approach to financial risk prediction. We refer to Fang et al. (2024)
for a more detailed survey on LLMs for Tabular Data.

Model multiplicity in machine learning. Breiman (2003) introduced the idea that models can
differ significantly while achieving similar average performance, known as the Rashomon effect.
Marx et al. (2020) highlighted the prevalence of arbitrary decisions in simple classification prob-
lems, coining this phenomenon predictive multiplicity. Creel & Hellman (2022) discuss the harms
of predictive multiplicity and arbitrary decisions. Methods such as TreeFarms (Xin et al., 2022),
CorelsEnum (Mata et al., 2022), and RashomonGB (Hsu et al.) provide tools to enumerate models
in the Rashomon set for different hypothesis spaces. Efforts to leverage model multiplicity bene-
ficially while addressing its implications have been explored by (Black et al., 2022; Fisher et al.,
2019; Xin et al., 2022; Coston et al., 2021). The effect of model multiplicity in fairness (Sokol
et al., 2022) and explainability are examined by Hamman et al. (2023); Black et al. (2021); Dutta
et al. (2022); Pawelczyk et al. (2020). Watson-Daniels et al. (2023); Hsu & Calmon (2022) offered a
framework for measuring predictive multiplicity in classical machine learning models, however, this
involves retraining several models, with the exception of Hsu et al. (2024) who propose a drop-out
based approach to explore the Rashomon set for neural networks. Model multiplicity has not been
extensively studied in Tabular LLMs. The closest work is by (Gomez et al., 2024), which empiri-
cally investigates prediction arbitrariness for text classification (online content moderation). In this
work, we isolate and examine a specific form of multiplicity in Tabular LLMs (see Section 2). We
leverage the rich embedding space of LLMs to quantify vulnerability to multiplicity without the
need for expensive retraining, as fine-tuning LLMs is computationally expensive (see Section 3).
There are other dimensions of robustness that focus on different aspects of model behavior such as
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out-of-distribution generalization, adversarial examples, and uncertainty estimation (Djolonga et al.,
2020; Han et al., 2023).

1.1 PRELIMINARIES

We consider a classification task for a tabular dataset D = {(xi, yi)}ni=1, where each xi is a d-
dimensional feature vector (rows of a tabular input), and each label yi is binary, yi ∈ {0, 1}. We
study an n-shot classification problem by fine-tuning a pre-trained model on n examples from a
training set. This fine-tuning process aims to adapt the pre-trained model to effectively predict new,
unseen data points by learning from a limited number of training examples.

Serialization of Tabular Data for LLMs: To effectively apply LLMs to tabular data, it is crucial
to transform the data into a natural text format. This process, known as serialization, involves con-
verting the table rows into a text string that includes both the column names and their corresponding
values (Yin et al., 2020; Jaitly et al., 2023; Hegselmann et al., 2023; Dinh et al., 2022). The resultant
serialized string is combined with a task-specific prompt to form the input for the LLM. There have
been various proposed methods for serialization, and this is still a topic of active research Jaitly
et al. (2023). Among the serializations we have examined are: list template (a list of column names
and feature values), and text template ( “The <column name> is <value>.”). LLMs can be
adapted for classification tasks by training them on serialized tabular data. This training involves
using the natural-language outputs of the LLM, mapped to valid classes in the target space, as part
of a fine-tuning process (see Figure 1). To clarify, table values are serialized into serialize(x) and
then transformed into a format understandable by the LLM, tokenize(serialize(x)), which is some
embedding. Since these transformations are one-to-one mappings, we denote the embedded form
of x as x ∈ X to represent x in the embedding space. This allows us to simplify the notation and
directly use x to refer to the table values in the embedding space.

2 MODEL MULTIPLICITY IN FINE-TUNED TABULAR LLMS

Let f(·) : X → [0, 1] denote an LLM that performs binary classification. We let F denote a broad
class of competing fine-tuned models that are equally-well-performing (i.e., a set of competing
models as measured by the accuracy), i.e, Fδ = {f : err(f) ≤ err(f0) + δ} where err(f0) =
1
n

∑n
i=1 I[f̂0(xi) ̸= yi] for a reference model f0 (with satisfactory accuracy) and dataset with n

examples. Here, f̂(x) = I[f(x) ≥ 0.5] denotes the predicted labels. This is a set of models that
perform just as well as the baseline classifier, where δ ∈ (0, 1) is the error tolerance (Marx et al.,
2020). The appropriate choice of δ is application-dependent.

Fine-tuning multiplicity. In this work, we explore the nature of multiplicity that arises in LLMs
when fine-tuned for tabular tasks. While model multiplicity in machine learning has been studied in
various contexts (see Related Works in Section 1), the unique challenges of fine-tuning multiplicity
in Tabular LLMs remain relatively unexplored.

Traditional models, such as neural networks and gradient boosting machines (e.g., XGBoost), re-
main state-of-the-art when ample labeled data is available (Kadra et al., 2021; Gorishniy et al., 2021).
However, their performance declines significantly in data-scarce scenarios. In contrast, LLMs can
leverage their reasoning and pre-trained knowledge to achieve strong performance even with limited
tabular data (few-shot learning) (Hegselmann et al., 2023). This makes LLMs appealing for few-
shot tabular tasks, which often involve a mix of numerical and textual features. However, fine-tuning
these large models may risk multiplicity.

To illustrate this, we conduct experiments using synthetic 2D datasets (see Figure 2). While fine-
tuning an LLM on such data might seem excessive, it provides a clear visualization of the phe-
nomenon. We fine-tune several competing models using the text template (“The <column name>
is <value>”) and varying only the random training seed. We reveal that fine-tuned LLMs on such
non-language tasks exhibit noisy and non-smooth decision boundaries, even in regions where the
model is expected to confidently predict a specifc class. We hypothesize that this noisy behavior
in non-language tasks is likely because LLMs are optimized for capturing complex language struc-
tures. When fine-tuned on tabular data tasks, which often involve both text and numeric values,
LLMs can leverage their pre-trained abilities but may still exhibit such instabilities.
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Figure 2: Decision boundaries for multiple fine-tuned models of an LLM on synthetic datasets.
We fine-tuned several models by only changing the random training seed. All models achieve com-
parable training loss and accuracy, yet they converge to different functions, exhibiting intriguing
noisy patterns (a phenomenon absent in models like neural networks which are typically locally-
smooth). Interestingly, these noisy behaviors appear even in regions where the model is expected
to confidently predict a specifc class. Observe the location and shape of these noisy patterns vary
unpredictably across the various fine-tuned models, making them a possible factor contributing to
prediction multiplicity. This highlights that model predictions alone may be unreliable and moti-
vates our perturbation-based approach to quantify multiplicity.

Evaluating Fine-tuning Multiplicity. To evaluate the extent of fine-tuning multiplicity on real-
world datasets, we introduce specific empirical metrics that assess how predictions may vary across
different competing fine-tuned models.
Definition 1 (Arbitrariness (Gomez et al., 2024)). Arbitrariness over set Fδ measures the extent of
conflicting predictions across the model space for a given set of inputs {x1, . . . , xn}. It is defined
as: Aδ = 1

n

∑n
i=1 I[∃f, f ′ ∈ Fδ, : f̂(xi) ̸= f̂ ′(xi)].

Arbitrariness generalizes the Ambiguity measure which computes the fraction of points where at
least one model in Fδ disagrees with a reference model (Marx et al., 2020). Abitrariness measures
the percentage of points that receive conflicting predictions from any two models within the set Fδ .
Arbitrariness can be defined on an input, i.e., A(xi) = I[∃f, f ′ ∈ Fδ, : f̂(xi) ̸= f̂ ′(xi)].
Definition 2 (Discrepancy). Discrepancy quantifies the maximum proportion of conflicting pre-
dictions between the reference model and any competing model in the set. It is defined as:
Dδ(f0) := maxf∈Fδ

( 1n
∑n

i=1 I[f̂(xi) ̸= f̂0(xi)]).

Discrepancy measures the maximum number of predictions that could change if a reference model is
replaced with a competing model. This means that, in practice, altering multiple predictions requires
that all conflicting predictions come from a single competing model.
Definition 3 (Pairwise Disagreement (Black et al., 2022)). Pairwise Disagreement assesses the
variability among models by measuring the proportion of instances where pairs of models within
the competing set disagree: PDδ(x) :=

1
|Fδ|(|Fδ|−1)

∑
fi,fj∈Fδ,fi ̸=fj

I[f̂i(x) ̸= f̂j(x)].

Since existing measures of multiplicity focus on predicted labels, we propose more nuanced mea-
sures that leverage the predicted probabilities of model outputs:
Definition 4 (Prediction Variance). PV measures the variability of the model outputs for a given
input x across different models in the set Fδ: PVδ(x) :=

1
|Fδ|

∑
f∈Fδ

(f(x)− 1
|Fδ|

∑
f ′∈Fδ

f ′(x))2.

Prediction Variance is unaffected by accept/reject thresholds, allowing it to detect multiplicity even
when predictions are consistently on one side of the decision boundary. We also define Predic-
tion Range (PRδ) to measure the maximum difference in model outputs for an input: PRδ(x) :=
maxf∈Fδ

f(x) −minf∈Fδ
f(x). PR captures the extreme differences, providing another perspec-

tive on prediction variability.
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3 A NOVEL MEASURE OF PREDICTION CONSISTENCY

Our objective is to define a measure, denoted as S(x, f), for an input x and a given fine-tuned model
f , that quantifies its robustness of predictions to a broad class of equally-well-performing fine-tuned
models. We desire that the measure S(x, f) should be high if the input x is consistent across this
broad class models (see Figure 1).

Candidate Measure: Prediction probability (S(x, f) := f(x)). While prediction probabilities of
a model f(·) can offer insights into its confidence in predicting a given class, they are insufficient
for assessing robustness against fine-tuning multiplicity (see Table 2, Figure 3, i.e., data point with
high f(x) or confidence can still be susceptible to multiplicity). In our synthetic data experiments
(see Figure 2), we also observe that noisy behaviors emerge in regions where the model should be
confident in its predictions, leading to conflicting outcomes across various fine-tuned models. This
indicates that relying solely on an input x may not provide a reliable assessment of robustness. To
address this, we propose a perturbation-based approach that leverages the local neighborhood around
the input x in the embedding space, ultimately leading to our theoretical measure of consistency.

3.1 PROPOSED CONSISTENCY MEASURE

Definition 5 (Consistency). The consistency of a given prediction f(x) ∈ [0, 1] is defined as follows:

Sk,σ(x, f) :=
1

k

∑
xi∈Nx,k

f(xi)−
1

k

∑
xi∈Nx,k

|f(x)− f(xi)|, (1)

where Nx,k is a set of k points sampled independently from a distribution over a hypersphere of
radius σ centered at x, i.e., Nx,k = {x1, x2, . . . , xk} ⊂ B(x, σ) = {x′ ∈ X : ∥x′ − x∥2 < σ}.

Remark 1. Our consistency measure is tied to the confidence in predicting a specific class and not
the predicted labels. The concept can be seamlessly applied by considering the softmax logits for
predicting any given class. This also extends to multi-class classification by using the softmax logits
for each class, thereby maintaining the measure’s applicability across various classification tasks.

See Appendix B for intuitions and properties of consistency measure.

3.2 THEORETICAL GUARANTEES ON CONSISTENCY

Here, we present theoretical insights that motivate and provide guarantees for our proposed robust-
ness measure Sk,σ(x, f), ensuring consistent predictions across a broad class of fine-tuned models.
We represent the class of fine-tuned models by a stochastic (random) function F , such that F ∈ F .
We denote two random models, F and F ′, both of which are independently and identically dis-
tributed within F . For clarity, we use capital letters (e.g., F, F ′, Xi, Z) to denote random variables,
while lowercase letters (e.g., xi, f, ϵ) indicate specific realizations. In our framework, we define a set
of assumptions that delineates the behavior of a broad class of finetuned models and the statistical
properties of their predictions.

Assumption 1 (Stochastic Fine-Tuned Model Class). We assume that for any two random models
F (X) and F ′(X) are i.i.d. given an input X = x. Also, let the stochastic divergence between
predictions of two random models F and F ′ be: Zi := F ′(Xi) − F (Xi) − |F (Xi) − F (x)| +
|F ′(Xi) − F ′(x)|, where Xi is a random point sampled independently from a distribution over a
hypersphere B(x, σ). Then, we assume: Var [Zi|F ′ = f ′, F = f ] ≤ β for all f, f ′ ∈ F .

Intuition. The random variable Zi captures the neighborhood stochastic divergence between pre-
dictions of two independently fine-tuned models F and F ′. This captures both the difference in
predictions and variability around a given point x. The first assumption ensures that F and F ′ pro-
vide an unbiased estimate of the prediction for x. The assumption on the variance of Zi indicates
that the variance of the stochastic neighborhood divergence within a σ-Ball of a data point between
any two models’ predictions is controlled. The parameter β essentially captures the similarity of
the models within the local neighborhood of a data point. This concept is also somewhat analogous
to the Lipschitz constant of a general function, which bounds how much the function’s output can
change relative to changes in its input. However, in this context, the β-bound reflects an average
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behavior of the models’ predictions within the local neighborhood. It does not strictly enforce a uni-
form Lipschitz constant, especially considering that transformer models are not typically Lipschitz
continuous (Kim et al., 2021) (also observe noisy non-smooth behavior in Figure 2).

Theorem 1 (Probabilistic Guarantee on Consistency). Given a data point x, a random model F ′

and consistency measure Sk,σ(x, F
′). Then under Assumption 1, and |E [Zi|F ′ = f ′, F = f ] | ≤ ϵ′,

a prediction over a broad class of fine-tuned models satisfies:

Pr (F (x) ≥ Sk,σ(x, F
′)− ϵ) ≥ 1− exp

(
−kϵ2

8(β + 2
3ϵ)

)
, (2)

for all ϵ > 2ϵ′, The probability is over the stochastic models F and F ′, and the random perturbations
Xi’s are random points sampled independently from a distribution over a hypersphere B(x, σ).

Theoretical guarantee on consistency interpretation. Our consistency measure S(x, F ′) provides
a probabilistic guarantee that if a data point x has a sufficiently high consistency score with respect
to a random model F ′, then the prediction of another random model F from the same broad class of
fine-tuned models will be at least S(x, F ′)−ϵ with high probability. For example, if S(x, F ′) = 0.8,
we can be confident that F (x) will be at least 0.8 − ϵ with high probability (i.e, the prediction will
remain on the positive predicted side). This implies that high consistency scores are indicative of
robust predictions across different fine-tuned models. Conversely, a low consistency score does not
provide significant information about the prediction’s behavior, as it does not guarantee a lower
bound on the prediction. For F (x) ≥ S(x, F ′)− ϵ to hold with high probability, a large k is needed,
ideally k ≫ β. This implies that when β is large then more samples are needed.

Goodness of model class. The term ϵ′ in our guarantee captures the quality or goodness of the
fine-tuned model class. A small ϵ′ indicates a well-behaved model class, suggesting that different
fine-tuned models produce similar outputs in expectation within the local neighborhood of x even
if predictions might vary for a given data point. Similar behavior is visualized in Figure 2, where,
despite the presence of noisy variations in the decision boundaries, the local predictions around a
given point remain relatively consistent across models. This behavior is expected since these models
are derived from the same pre-trained model and trained with the goal of achieving similar accuracy
on the dataset. In this case, our consistency measure provides a useful and informative lower bound
on the predictions F (x) with a certifiably small gap. This aligns with related formalizations, which
show the existence of simpler functions within a Rashomon set, where

∑
xi∈D |f(xi)−f ′(xi)| ≤ ∆,

across a dataset D (Semenova et al., 2022). Recent mathematical analyses of LORA also corroborate
with our assumptions, such as EX∥f(X)− f ′(X)∥ ≤ ∆, for a random variable X over a bounded
set (Zeng & Lee, 2023).

Conversely, a large ϵ′ indicates a more erratic model class. In this case, our bound becomes less
informative, and the consistency measure might perform poorly for a given point. We interpret
our results as follows: The model class is not well-behaved; thus, one cannot certify a small gap
between F (x) and our proposed measure. We do not provide guarantees for all types of model
changes, as this would be challenging with only a single model. For example, if fine-tuned models
do not achieve sufficient accuracy, encounter significant variations in hyperparameter choices, or
large changes in the training data, ϵ′ is likely to be large. Our focus is on the multiplicity that
arises due to randomness in training, such as changes in the training seed or minor adjustments in
training settings (what we term the broad class of equally-well-performing fine-tuned models). In
our evaluations (see Section 4), we do not assume any specific values for ϵ′ and consider regular
fine-tuned models without imposing any theoretical constraint. The complete proof of Theorem 1 is
provided in Appendix C. Here, we include a proof sketch.

Proof Sketch: From Assumption 1, F and F ′ are identically distributed given Xi, hence
E[F ′(Xi)|Xi] = E[F (Xi)|Xi] and E[|F ′(Xi) − F ′(x)||Xi] = E[|F (Xi) − F (x)||Xi]. The terms
in E [Z] cancel each other out, resulting in E[Z] = 0. The next step of the proof leverages the
Bernstein’s inequality (see Lemma 2) to provide a bound on the stochastic neighborhood diver-
gence (see Lemma 1). The final steps of the proof leverages the reverse triangle inequality so show:
F (x) ≥ 1

k

∑k
i=1(F (Xi) − |F (Xi) − F (x)|). Combining that along with Lemma 1 derives our

consistency measure and guarantees.
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Table 1: Evaluated Multiplicity for Different Datasets and Number of Shots on BigScience T0. Evaluated on
40 fine-tuned models on T-Few recipe using different random seeds. Multiplicity observed in predictions across
different fine-tuned model, even when models exhibit similar accuracy (in this setting δ = 0.02). Fine-tuning
using LORA achieves results in the same ballpark (see LORA Table 3 in Appendix D)

Dataset No. Multiplicity Evaluation Metrics (BigScience T0)

Shots Arbitrariness Discrepancy Avg. Pairwise Avg. Pred. Avg. Pred. Avg. Model
Disagreement Variance Range Accuracy

Adult
64 10% 9% 7% 0.01 0.10 83%
128 10% 7% 8% 0.01 0.10 84%
512 11% 8% 7% 0.01 0.12 85%

German
64 18% 10% 6% 0.01 0.20 71%
128 17% 11% 6% 0.01 0.16 71%
512 23% 12% 7% 0.02 0.23 72%

Diabetes
64 29% 18% 10% 0.04 0.31 71%
128 13% 17% 11% 0.03 0.13 72%
512 16% 16% 10% 0.02 0.18 78%

Bank
64 11% 9% 6% 0.01 0.31 66%
128 15% 8% 7% 0.03 0.22 75%
512 14% 8% 7% 0.02 0.16 81%

Heart
64 6% 4% 2% 0.01 0.05 78%
128 9% 4% 3% 0.01 0.10 83%
512 18% 7% 5% 0.01 0.19 82%

Car
64 19% 10% 6% 0.01 0.18 81%
128 16% 7% 5% 0.01 0.14 86%
512 8% 4% 2% 0.01 0.09 94%

4 EMPIRICAL VALIDATION

In this section, we experiment across different datasets to (i) quantify the prevalence of fine-tuning
multiplicity in Tabular LLMs, and (ii) validate the effectiveness of our proposed measure in quantify-
ing the consistency of predictions over a broad range of equally-well-performing fine-tuned models.

Datasets and Serialization. Our experiments utilize the Diabetes (Kahn), German Credit (Hof-
mann, 1994), Bank (Moro et al., 2014), Heart, Car, and Adult datasets (Becker & Kohavi, 1996),
serialized using the Text Template method where each tabular entry is converted into a natural lan-
guage format by stating “The <column name> is <value>” This approach helps align the inputs
with the training distribution of LLMs, enhancing their performance in both zero-shot and few-shot
scenarios (Hegselmann et al., 2023; Dinh et al., 2022).

Models and Fine-tuning Methods. We use the BigScience T0 (Sanh et al., 2021) and Google
FLAN-T5 (Chung et al., 2024) encoder-decoder models as our pretrained LLMs. T0 is specifi-
cally pre-trained for zero-shot generalization through multitask learning. FLAN-T5 is instruction
fine-tuned on a diverse range of tasks, achieving strong performance in few-shot settings. These
characteristics make both models well-suited for our experiments. For fine-tuning, we adopt the T-
Few recipe (Liu et al., 2022), known for its effectiveness in few-shot learning, and LORA (Hu et al.,
2021), a parameter-efficient method that constrains weight matrix updates to be low-rank. Detailed
setup can be found in Appendix D.3.

Evaluating Extent of Fine-tuning Multiplicity. We measure the extent of fine-tuning multiplic-
ity across the various datasets and fine-tuning methods, we use the multiplicity evaluation metrics
(introduced in Section 2) To evaluate these multiplicity metrics across our datasets, we fine-tune 40
models on Tfew recipe and LORA using different random seeds and test on a sample set. Here are
the experiments we conducted:

• We evaluate multiplicity on the BigScience T0 model fine-tuned using T-Few (see Table 1).
• We evaluate multiplicity on BigScience T0 fine-tuned using LORA (see Table 3 in Appendix D).
• We evaluate multiplicity on Flan-T5 model fine-tuned using T-Few (see Table 4 in Appendix D).

Comparing Consistency Measure to Evaluated Multiplicity. We assess the utility of our proposed
consistency measure Sk,σ(x, f) in informing the presence of fine-tuning multiplicity. This utility is
measured using the Spearman correlation coefficient (see Definition 6), between our consistency
Sk,σ(x, f) (estimated on just one model) and the evaluated multiplicity (evaluated on several fine-
tuned models), e.g., Spearman(Sk,σ(x, f), PVδ(x)) across the test set.
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Figure 3: Evaluated multiplicity (assessed on 40 retrained models) versus our consistency measure, predicted
probabilities, and drop-out method (evaluated on one model) for the 128-shot setting on the Adult dataset.
The plots demonstrate that high consistency values correspond to low multiplicity across various multiplicity
evaluation metrics. Also, observe that high predicted probability values (i.e., high prediction confidence) do
not imply low multiplicity. Our consistency measure provides better insight into the multiplicity of predictions
compared to the predicted probabilities or drop-out prediction. Appendix D for visualizations on other Datasets.

Baselines: For comparison, we include the following baselines: 1) Prediction probability f(x)
which measures the confidence of the model in predicting a given class. 2) Binary Drop-Out
Method (Hsu et al., 2024): Since there are no other baselines, we adapt this Drop-out method for
TabLLMs. This method drops random weights of the model to explore models in the Rashomon set
(i.e., set of competing models) without retraining several models. For a fair comparison, we compare
our method (sampling k points in the neighborhood of our data point in the embedding space, and
computing the consistency measure) to theirs (averaging the predictions of k models with different
dropped-out weights). Note that these require the same number of inferences, hence complexity for
both methods are around the same.1 Here are the experiments we conducted:

• We plot the evaluated multiplicity against our consistency measure, predicted probabilities, and the
drop-out method. See Figure 3 for illustration on the Adult 128 shot (BigScience T0 model). For
the Bank, Diabetes, and German Credit dataset refer to Figure 4, 5, 6 in Appendix D.

• We compute the absolute spearman correlation between the consistency measures and various
multiplicity evaluation metrics (128-shot setting on all datasets presented in Table 2). Full results
on BigScience T0 model including 64 and 512 shot cases are presented in Table 5 in Appendix D.
Results for Google FLAN-T5 model are presented in Table 6 in Appendix D.

Hyperparameter Selection and Ablations. Based on our theoretical results, choosing a larger
sample size k is advantageous as it ensures the consistency guarantee holds with high probability.
However, this also increases the computational cost of model inference. In our experiments, we set
k = 30, the maximum number that fits into one inference pass on the GPU. For the neighborhood
radius σ, we sampled perturbed points from a truncated Gaussian distribution with a variance of
0.01, which consistently performed well across all experiments. To guide the choice of σ, one could
consider the spread of training samples. For the drop-out rate in the baseline, we use p = 0.1 follow-
ing the recommendation in their paper (Hsu et al., 2024). The choice of δ in the competing set Fδ is
application-dependent; in our study, we used δ = 0.02, corresponding to a 2% margin of accuracy
deviation. Evaluating multiplicity by refining multiple models is computationally expensive. Thus,
we limited our study to 40 models. To evaluate the impact of varying key parameters, we conducted
the following ablation studies:

• We perform an ablation study on the sample size k, observing improved performance with increas-
ing k. Detailed results are provided in Table 7 in Appendix D.

• We explore the effect of varying the perturbation radius σ. Results of this ablation study are
summarized in Figure 7 and Table 8 in Appendix D. Best performance is observed at σ = 10−2.
When σ is too small (e.g., 10−4), we basically sample (almost) the same points and our consistency
measure is not more informative than the prediction probability. When σ is too large (e.g., 10−1),
one loses all information about the data point.

1Hsu et al. (2024) requires a prior check to ensure all dropped-out models (the models to be aggregated) are
competing models (in terms of accuracy or loss), hence our method would be more computationally efficient
under the same k.
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Table 2: This table reports the Absolute Spearman Correlation between the consistency measure and various
multiplicity evaluation metrics for 128 shots on the datasets. In most cases, our consistency measure Sk,σ(x, f)
shows a higher correlation with these multiplicity measures compared to predicted probabilities and drop-out
method, indicating that the consistency measure Sk,σ(x, f) better informs about the multiplicity than other
measures. See full Table 5 with 64 and 512 shot cases in Appendix D.

Dataset Number of Shots Measure Arbitrariness Pairwise Disagreement Prediction Variance Prediction Range

Adult 128 Consistency 0.80 0.96 0.84 0.91
Drop-Out 0.74 0.83 0.69 0.81

Pred. Prob. 0.67 0.62 0.30 0.54

German 128 Consistency 0.54 0.54 0.87 0.87
Drop-Out 0.50 0.56 0.74 0.84

Pred. Prob. 0.57 0.57 0.86 0.86

Diabetes 128 Consistency 0.92 0.95 0.93 0.95
Drop-Out 0.89 0.92 0.92 0.94

Pred. Prob. 0.88 0.93 0.93 0.95

Bank 128 Consistency 0.79 0.84 0.87 0.86
Drop-Out 0.62 0.70 0.75 0.51

Pred. Prob. 0.54 0.57 0.73 0.62

Heart 128 Consistency 0.89 0.90 0.97 0.87
Drop-Out 0.64 0.76 0.74 0.83

Pred. Prob. 0.61 0.46 0.50 0.26

Car 128 Consistency 0.97 0.91 0.93 0.94
Drop-Out 0.63 0.66 0.57 0.52

Pred. Prob. 0.56 0.26 0.29 0.01

• We also evaluate the Drop-Out method with varying drop-out rates p ∈ {0.01, 0.1, 0.2, 0.5}. The
correlation values between evaluated multiplicity and the consistency measures for the 512-shot
setting on the Diabetes dataset are summarized in Table 9 in Appendix D. Our consistency measure
outperforms the dropout method for all p values.

Discussions. Our multiplicity evaluation metrics, summarized in Table 1,3,4, reveal significant
variability in model predictions across different fine-tuned variants, even when they exhibit similar
accuracy. This multiplicity is not captured by merely examining predicted probabilities, as predic-
tions with high confidence can still be susceptible to multiplicity (see Figure 3). Our consistency
measure, Sk,σ(x, f), was compared with prediction probabilities f(x). The results, presented in
Table 2,5,6, demonstrate that our consistency measure consistently shows mainly higher correlation
with multiplicity metrics across all models and datasets compared to prediction probabilities and
drop-out method. This indicates that Sk,σ(x, f) is more informative than the baselines in informing
the fine-tuning multiplicity. The drop-out method is however better than the prediction probabilities
alone. We hypothesize that our method is more suitable for LLMs because the embedding space
of LLMs is significantly smaller than the parameter space (possibly more informative also). The
drop-out method might need significantly more inferences to compete due to this.

We study the unique nature of fine-tuning multiplicity in Tabular LLMs. Marx et al. (2020); Rudin
et al. (2024) argue for the necessity of measuring and reporting multiplicity to better inform pre-
dictions. Traditional methods to measure multiplicity in classical ML are impractical for LLMs
due to the computational challenge of retraining several fine-tuned models (Marx et al., 2020; Hsu
& Calmon, 2022; Watson-Daniels et al., 2023). Our proposed measure, which requires only the
given model and leverages the embedding space to inform multiplicity, addresses this issue. This
approach reduces the complexity from retraining and inference to just inference, making it more
feasible to apply in practice. Although, from our theoretical guarantee, a large k (number of sam-
pled points) might be needed for accurate consistency estimation (particularly when β is large), it
remains computationally more efficient than retraining multiple models. Our work provides practi-
tioners with meaningful information about the multiplicity of predictions, which may lead them to
carefully evaluate which predictions to trust and which to treat with caution. Our research has sig-
nificant implications in several high-stakes applications, e.g., hiring, finance, education, etc., where
inconsistent predictions can lead to distrust. A limitation of our work is that while we inform about
fine-tuning multiplicity for a given sample, we do not resolve it. Future work could focus on devel-
oping methods to mitigate fine-tuning multiplicity, ensuring more consistent model predictions (see
Appendix A for detailed discussion on Societal Impact and Limitations).
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A SOCIAL IMPACT AND LIMITATIONS

Limitations. While our work provides a measure to assess fine-tuning multiplicity, it does not
directly resolve this issue. Future research could focus on mitigation methods to ensure more con-
sistent model predictions. A key constraint is the applicability to higher-dimensional datasets due
to the limited context window size of current LLMs, though extending context windows is an active
area of research (Peng et al., 2023; Chen et al., 2023a). Additionally, our method’s performance can
be sensitive to hyperparameters, such as sample size and neighborhood radius; incorrect choices may
lead to an inaccurate assessment of robustness. Our approach also assumes access to the embedding
space, limiting its application to open-source models. Furthermore, the bound in Theorem 1 is not
directly computable. Estimating these unknowns such as β, ϵ′ could be a direction for future work.
Despite these limitations, our measure serves as a crucial step toward understanding and quantifying
fine-tuning multiplicity, laying the groundwork for future advancements.

Broader Societal Impacts. The application of LLMs to tabular data, particularly in high-stakes
domains such as finance and healthcare, presents both opportunities and risks (Bommasani et al.,
2021). Our work aims to address one of the critical challenges associated with these models: the
instability introduced when fine-tuning large models on small datasets. This instability, manifested
as overfitting and multiplicity, can undermine the reliability of model predictions in scenarios where
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consistency is crucial. By measuring multiplicity, our work contributes to the responsible deploy-
ment of LLMs in domains where erroneous predictions can have severe consequences (Bommasani
et al., 2021; Creel & Hellman, 2022).

Tabular data remains a dominant modality in many critical fields, yet it has received less research
attention compared to text and image data (Hegselmann et al., 2023). Recent work van Breugel &
van der Schaar (2024) argues that developing reliable foundation models for tabular data should be
a research priority. Our deliberate focus on Tabular LLMs aligns with this perspective, as we aim to
bridge a significant gap in the current research landscape. While it is understood that some degree
of multiplicity is inherent in fine-tuned models, understanding its nature and impact is essential for
building trust in Tabular LLMs.

Our approach also supports regulatory compliance by enhancing transparency and accountability
in automated decision-making systems. Quantifying prediction robustness aligns with regulations
such as the General Data Protection Regulation (GDPR) (Voigt, 2017) and upcoming AI legisla-
tion, which increasingly demand explainable and reliable AI models (Chamola et al., 2023). While
LLMs are more computationally expensive than traditional models, our method reduces the costs of
assessing multiplicity. By avoiding repeated retraining, it enhances cost efficiency and minimizes en-
vironmental impact, lowering both energy consumption and carbon footprint (Luccioni et al., 2023).

Furthermore, observing the nature of fine-tuning multiplicity in Tabular LLMs pave the way for
future research into model stability. It also facilitates continual learning by informing the robust-
ness of a prediction to potential model updates in a dynamic environments where data constantly
evolves (Amba Hombaiah et al., 2021; Wu et al., 2024; Wang et al., 2024a). Lastly, our work could
play a role in mitigating fairwashing risks and explanation bias (Black et al., 2022; Sokol et al.,
2023; Rudin et al., 2024). This transparency is crucial for maintaining ethical standards and trust-
worthiness in AI deployment (Chamola et al., 2023).

B ADDITIONAL INTUITION BEHIND THE CONSISTENCY MEASURE

The consistency measure quantifies the robustness of a model’s prediction at a specific point x
by examining the model’s behavior in the local neighborhood of x within the embedding space.
Our measure is motivated by our observations on synthetic data experiments where the model was
exhibiting noisy and non-smooth patterns in the decision space.

Local Averaging: The term 1
k

∑
xi∈Nx,k

f(xi) represents the average prediction of the model on
points sampled from a neighborhood around x. This captures the general tendency of the model in
the vicinity of x.

Variability Penalization: The term 1
k

∑
xi∈Nx,k

|f(x) − f(xi)| computes the average absolute dif-
ference between the model’s prediction at x and its predictions at neighboring points. Subtracting
this from the local average penalizes the consistency score when there is high variability in a neigh-
borhood in spite of high local mean, reflecting instability in the model’s predictions around x.

By combining these two terms, Sk,σ(x, f) provides a measure that is high when the model’s predic-
tions are both strong (i.e., high average prediction) and stable (i.e., low variability) in the neighbor-
hood of x. The metric is designed to capture the local stability of the model’s predictions, which is
critical in assessing robustness to fine-tuning multiplicity.

Consistency Interpretation of f(x) and 2f(xi)− f(x): This interesting structure of our consistency
measure is not a heuristic design but arises directly from the reverse triangle inequality step in the
proof of our theoretical consistency guarantee (Theorem 1): |f(x)| ≥ |f(xi)| − |f(xi)− f(x)|.
When f(xi) ≥ f(x), the contribution to the consistency score is f(x), indicating that the neighbor-
hood prediction f(xi) reinforces and supports the robustness of prediction f(x).

When f(xi) < f(x), the contribution becomes 2f(xi) − f(x). If f(xi) is significantly less than
f(x), the term 2f(xi) − f(x) becomes negative, penalizing the consistency score due to large dis-
crepancies between f(x) and its neighbor. However, if f(xi) is only slightly less than f(x) (i.e.,
f(xi) >

f(x)
2 ), the term 2f(xi)− f(x) remains positive, thereby contributing positively to the con-

sistency measure. The intuition is that we only penalize significant drops in neighboring predictions
and allow neighbors that closely support f(x) prediction.
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How consistency differs from existing robustness: Our focus on model multiplicity distinguishes this
work from traditional robustness measures, which address different aspects of model behavior such
as out-of-distribution (OOD) generalization, stability under natural perturbations, and uncertainty
estimation (Djolonga et al., 2020). OOD generalization typically evaluates how well a model per-
forms on data that differs from the training distribution (e.g., classifying objects seen from novel
viewpoints or in cluttered settings). This is often quantified using test datasets with altered condi-
tions or domain shifts, and methods like domain adaptation are employed to enhance robustness.
Stability under natural perturbations assesses the sensitivity of predictions and predicted probabil-
ities to small, random changes in the input, such as Gaussian noise or image transformations. Un-
certainty estimation, on the other hand, focuses on calibrating the predicted probabilities to reflect
true likelihoods, often using measures like Expected Calibration Error or entropy-based metrics to
evaluate how well the model quantifies confidence in its predictions. While these methods provide
valuable insights into different facets of robustness, their goals differ significantly from ours.

Han et al. (2023) is more closely related to our approach, as it quantifies robustness by measuring
the fraction of consistent predictions within a local neighborhood. While both approaches leverage
the neighborhood around a data point, the objectives diverge: Han et al. (2023) focuses on quanti-
fying the probability of consistent predictions against perturbations to evaluate robustness to noise.
In contrast, our measure captures the consistency of predictions (multiplicity) among competing
models within the Rashomon set.

Additionally, our consistency measure’s unique mean-variance nature further distinguishes it. Un-
like existing metrics, it not only accounts for the average prediction within a neighborhood but also
penalizes the variability in predictions. Moreover, we provide theoretical guarantees on the robust-
ness of predictions with high consistency scores over a broad range of equally-well performing
models.

C PROOF OF THEORETICAL GUARANTEE

Theorem 1 (Probabilistic Guarantee on Consistency). Given a data point x, a random model F ′

and consistency measure Sk,σ(x, F
′). Then under Assumption 1, and |E [Zi|F ′ = f ′, F = f ] | ≤ ϵ′,

a prediction over a broad class of fine-tuned models satisfies:

Pr (F (x) ≥ Sk,σ(x, F
′)− ϵ) ≥ 1− exp

(
−kϵ2

8(β + 2
3ϵ)

)
, (2)

for all ϵ > 2ϵ′, The probability is over the stochastic models F and F ′, and the random perturbations
Xi’s are random points sampled independently from a distribution over a hypersphere B(x, σ).

Proof. To prove Theorem 1, we begin with Lemma 1.

Assume the fine-tuned models F belong to a discrete class of random variables. A specific
model realization is represented as fi for i = 1, 2, . . . , |Fδ|, with the complete set denoted by
F = {f1, f2, . . . , f|F|}. Each model fi is selected with probability pi, where

∑|Fδ|
i=1 pi = 1.

Lemma 1 (Neighborhood Divergence Bound). Given the neighborhood discrepancy Z, under As-
sumption 1, for any ϵ̃ > ϵ′ > 0, we have:

Pr(Z ≥ ϵ′ + ϵ̃) ≤ exp

(
−k(ϵ̃+ ϵ′)2

8β + 16
3 (ϵ̃+ ϵ′)

)
. (3)
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Let Z = 1
k

∑k
i=1 Zi. We show that E [Z] = 0:

E[Z]
(a)
= EXi

[
EF |Xi

[
1

k

k∑
i=1

(F ′(Xi)− F (Xi)− |F (Xi)− F (x)|+ |F ′(Xi)− F ′(x)|)
]]

(4)

(b)
=

1

k

k∑
i=1

EXi
[EF |Xi

[(F ′(Xi)− F (Xi)− |F (Xi)− F (x)|+ |F ′(Xi)− F ′(x)|)]] (5)

(c)
=

1

k

k∑
i=1

EXi

[
E[F ′(Xi)|Xi]− E[F (Xi)|Xi]− E[|F (Xi)− F (x)||Xi] (6)

+ E[|F ′(Xi)− F ′(x)||Xi]
]

(7)

(d)
=

1

k

k∑
i=1

EXi

[
E[F (Xi)|Xi]− E[F (Xi)|Xi]− E[|F (Xi)− F (x)||Xi] (8)

+ E[|F (Xi)− F (x)||Xi]
]
= 0 (9)

Here (a) holds from applying the law of total expectation. (b) Distributing the expectation over
the summation. (c) Applying the linearity of expectations inside the inner expectation. (d) From
Assumption 1, F and F ′ are identically distributed given Xi, hence E[F ′(Xi)|Xi] = E[F (Xi)|Xi]
and E[|F ′(Xi) − F ′(x)||Xi] = E[|F (Xi) − F (x)||Xi]. The terms cancel each other out, resulting
in E[Z] = 0. The rest of the proof leverages Bernstien’s Inequality:

Lemma 2 (Bernstein Inequality). For a given random variable Xi such that Pr(|Xi| ≤ c) = 1 ,
and β = 1

k

∑k
i=1 Var [Xi] then, for any ε > 0,

Pr

(∣∣∣∣1k
k∑

i=1

Xi − E(Xi)

∣∣∣∣ > ε

)
≤ 2 exp

(
−kε2

2β + 2cε
3

)
. (10)

See Sridharan (2002) for detailed proof of Bernstein’s Inequality.

Observe that |Zi| = |F ′(Xi) − F (Xi) − |F (Xi) − F (x)| + |F ′(Xi) − F ′(x)|| ≤ 2. Hence, we
have:

Pr (|Z − E[Z|F ′ = f ′, F = f ]| ≥ ϵ̃ | F ′ = f ′, F = f) ≤ 2 exp

(
− kϵ̃2

2β + 4
3 ϵ̃

)

where 1
k

∑k
i=1 Var [Zi|F ′ = f ′, F = f ] ≤ β from Assumption 1.

Given |E [Z|F ′ = f ′, F = f ]− E [Z] | < ϵ′ and E [Z] = 0,

we have −ϵ′ < E [Z|F ′ = f ′, F = f ] < ϵ′ ∀f, f ′. Now observe that:

Pr(Z ≥ ϵ′ + ϵ̃|F ′ = f ′, F = f)
(a)
≤Pr(Z ≥ E [Z|F ′ = f ′, F = f ] + ϵ̃|F ′ = f ′, F = f) (11)

≤ exp

(
−kϵ̃2

2β + 4
3 ϵ̃

)
. (12)

Here, (a) holds since E [Z|F ′ = f ′, F = f ] < ϵ′. The event on the left is a subset of that on the right.
Therefore, the probability of the event {Z ≥ ϵ′ + ϵ̃} occurring cannot be more than the probability
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of the event {Z ≥ E [Z|F ′ = f ′, F = f ] + ϵ̃} occurring.

Pr(Z ≥ ϵ′ + ϵ̃)
(b)
=
∑
i,j

Pr(Z ≥ ϵ′ + ϵ̃|F ′ = fi, F = fj) Pr(F
′ = fi, F = fj) (13)

(c)
≤ exp

(
−kϵ̃2

2β + 4
3 ϵ̃

)∑
i,j

Pr(F ′ = fi, F = fj) (14)

= exp

(
−kϵ̃2

2β + 4
3 ϵ̃

)
(15)

(d)
≤ exp

(
−k(ϵ̃+ ϵ′)2

8β + 16
3 (ϵ̃+ ϵ′)

)
(16)

Here, (b) holds from the law of total probability. Next, (c) follows from Equation 12. Finally, (d)
holds from using the inequality 4ϵ̃2 > (ϵ̃ + ϵ′)2 which holds for ϵ̃ > ϵ′ > 0 at the numerator and
ϵ̃ ≤ ϵ̃+ ϵ′ at the denominator. Setting ϵ = ϵ̃+ ϵ′.

We have:

Pr

(
1

k

k∑
i=1

F (Xi) ≥
1

k

k∑
i=1

(
F ′(Xi)−|F ′(Xi)−F ′(x)|+|F (Xi)−F (x)|

)
−ϵ

)
≥ 1−exp

(
−kϵ2

8β + 16
3 ϵ

)
.

(17)

Observe that F (x) ≥ F (xi) − |F (xi) − F (x)|. This applies directly from the reverse triangle
inequality, i.e., for any real numbers a and b, we have:|a| ≥ |b| − |a− b|.
Hence,

F (x) ≥ 1

k

k∑
i=1

(F (Xi)− |F (Xi)− F (x)|) (18)

Therefore, plugging equation 18 into equation 17, we have:

Pr
(
F (x) ≥ 1

k

k∑
i=1

(F ′(Xi)− |F ′(Xi)− F ′(x)|+ |F (Xi)− F (x)| − |F (Xi)− F (x)| − ϵ)
)
(19)

= Pr
(
F (x) ≥ 1

k

k∑
i=1

(F ′(Xi)− |F ′(Xi)− F ′(x)|)− ϵ
)
≥ 1− exp

(
−kϵ2

8β + 16
3 ϵ

)
. (20)

Given Sk,σ(x, F
′) = 1

k

∑k
i=1(F (Xi)− |F ′(x)− F ′(Xi)|), we have:

Pr
(
F (x) ≥ Sk,σ(x, F

′)− ϵ
)
≥ 1− exp

(
−kϵ2

8β + 16
3 ϵ

)
. (21)

Remark 2 (Randomness of F and F ′ ). In Theorem 1, we consider both F and F ′ as random to
capture the variability inherent in the fine-tuning process. This approach models the real-world sce-
nario where different fine-tuning runs can lead to different models due to changes in random seeds
or training conditions. Fixing F ′ = f ′ will require an alternate assumption instead of Assumption
1 that the predictions of other models are centered around f ′, i.e., E[F (X)|X = x] = f ′(x). While
alternative bounds using a fixed F ′ could provide valuable insights, our current approach aims to
capture the randomness of the initial fine-tuned model (F ′) and understand robustness across the
broader distribution of possible fine-tuned models.

Remark 3 (Variance of Z). The variance of Z is bounded for functions F and F ′, and we could
have used the trivial bound of β ≤ 2 in our guarantee. However, we anticipate that β is significantly
smaller, particularly on the data manifold, because F and F ′ are models fine-tuned from the same
pretrained on the same dataset. For samples lying on the data manifold—where realistic samples
exist—we expect several models (from the same pretrained model) fine tuned on the same dataset
with different training seed to exhibit “similar” prediction probabilities. However, fine-tuned models
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can differ significantly in regions outside the data manifold, as the absence of training samples in
these areas means there is no shared information to constrain their behavior.

The upper bound of β ≤ 2 can be used to determine the worst-case sample size k needed to en-
sure the guarantees to some certifiable gap. This provides a conservative estimate that remains
applicable even in the absence of precise parameter knowledge.

D EXPANDED EXPERIMENTAL RESULTS

D.1 RELEVANT DEFINITION

Definition 6 (Spearman Correlation). Spearman’s correlation, Spearman(X,Y ), measures the
strength and direction of a monotonic relationship between two variables. It is the Pearson cor-
relation coefficient of their ranked values.

Given n pairs (Xi, Yi), it is computed as:

Spearman(X,Y ) = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
=

cov(rank(X), rank(Y ))

σrank(X)σrank(Y )
,

where di is the difference between the ranks of Xi and Yi. The value ranges from −1 (perfect nega-
tive monotonicity) to 1 (perfect positive monotonicity), with 0 indicating no monotonic relationship.

D.2 DATASET DETAILS

Adult Dataset. The Adult dataset (Becker & Kohavi, 1996), also known as the “Census Income”
dataset, is used for predicting whether an individual earns more than $50,000 annually based on
various demographic attributes. It consists of 48,842 instances with 14 attributes, including age,
work class, education, marital status, occupation, relationship, race, sex, capital gain, capital loss,
hours per week, and native country. The dataset is commonly used in classification tasks.

German Credit Dataset. The German Credit dataset (Hofmann, 1994) is used for credit risk eval-
uation. It consists of 1, 000 instances with 20 attributes, which include personal information, credit
history, and loan attributes. The target variable indicates whether the credit is good or bad. This
dataset is often used for binary classification problems and helps in understanding the factors affect-
ing creditworthiness. The dataset is commonly used in classification tasks.

Diabetes Dataset. The Diabetes dataset Kahn is used for predicting the onset of diabetes based
on diagnostic measurements. It contains 768 instances with 8 attributes, including the number of
pregnancies, glucose concentration, blood pressure, skin thickness, insulin level, body mass index
(BMI), diabetes pedigree function, and age. The target variable indicates whether the individual has
diabetes. The dataset is commonly used in classification tasks.

Bank Dataset. The Bank dataset (Moro et al., 2014) is used for predicting whether a client will
subscribe to a term deposit based on data from direct marketing campaigns of a Portuguese bank. It
includes 45,211 instances in the training set and 18 attributes, such as age, job type, marital status,
education, credit balance, housing loan status, and contact details from the marketing campaigns.
The target variable indicates whether the client subscribed to the term deposit. This dataset is com-
monly used in binary classification tasks.

Heart Dataset. The Heart dataset contains data from four different hospitals. It includes 918 pa-
tients, each represented by 11 clinical variables, with the task being a binary classification of coro-
nary artery disease. Among the patients, 508 are labeled positive for the condition.

Car Dataset. The Car dataset contains entries describing various cars characterized by six attributes.
The task is a classification problem aimed at evaluating the state of each car. The dataset comprises
1,728 examples.
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Table 3: Multiplicity Evaluation Metrics for Different Datasets and Number of Shots. Evaluated on 40 fine-
tuned BigScience T0 models on LORA using different random seeds. Multiplicity observed in predictions
across different fine-tuned model, even when models exhibit similar accuracy (in this setting δ = 0.02).

Dataset No. Multiplicity Evaluation Metrics (BigScience T0)

Shots Arbitrariness Discrepancy Avg. Pairwise Avg. Pred. Avg. Pred. Avg. Model
Disagreement Variance Range Accuracy

Adult
64 11% 6% 9% 0.01 0.11 83%
128 10% 9% 6% 0.01 0.10 84%
512 11% 3% 10% 0.01 0.12 85%

German
64 19% 10% 6% 0.04 0.40 70%
128 17% 11% 6% 0.01 0.16 71%
512 21% 14% 8% 0.03 0.26 72%

Diabetes
64 20% 13% 11% 0.04 0.21 70%
128 16% 14% 11% 0.08 0.14 73%
512 19% 13% 11% 0.04 0.17 76%

Bank
64 13% 9% 7% 0.01 0.28 66%
128 14% 9% 7% 0.03 0.21 73%
512 14% 8% 7% 0.03 0.22 78%

Table 4: Evaluated Multiplicity for Different Datasets and Number of Shots. Evaluated on 40 fine-tuned
FLAN-T5 models using Tfew recipe with different random seeds. Multiplicity observed in predictions across
different fine-tuned models, even when models exhibit similar accuracy (in this setting δ = 0.02). The accuracy
of FLAN T5 model on the dataset is less than the BigScience T0 model observed in Table 1.

Dataset No. Multiplicity Evaluation Metrics (Google FLAN-T5)

Shots Arbitrariness Discrepancy Avg. Pairwise Avg. Pred. Avg. Pred. Avg. Model
Disagreement Variance Range Accuracy

Adult
64 13.96% 6.93% 5.05% 0.010 0.139 74.25%
128 8.81% 3.84% 3.39% 0.008 0.091 77.50%
512 12.02% 5.71% 4.49% 0.012 0.123 79.17%

German
64 18.50% 11.00% 6.19% 0.015 0.194 64.85%
128 30.00% 13.50% 10.47% 0.031 0.287 69.25%
512 35.50% 16.50% 12.88% 0.041 0.362 69.40%

Diabetes
64 15.58% 7.79% 6.23% 0.016 0.170 68.18%
128 11.69% 5.84% 4.81% 0.012 0.129 59.29%
512 21.43% 9.74% 7.37% 0.022 0.207 69.55%

Bank
64 12.86% 7.46% 4.69% 0.003 0.125 66.96%
128 17.95% 6.90% 6.59% 0.006 0.165 65.94%
512 17.17% 6.61% 6.24% 0.017 0.173 79.40%

Figure 4: Evaluated multiplicity (assessed on 40 retrained models) versus our consistency measure
(evaluated on one model) for the 512-shot setting on the Bank dataset. The plots demonstrate
that high consistency values correspond to low multiplicity across various multiplicity evaluation
metrics. Predictive probabilities and Drop-Out not providing any providing any useful insight into
multiplicity.
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Figure 5: Evaluated multiplicity (assessed on 40 retrained models) versus our consistency measure
(evaluated on one model) for the 512-shot setting on the Diabetes dataset. The plots demonstrate
that high consistency values correspond to low multiplicity across various multiplicity evaluation
metrics. Predictive probabilities not providing any providing any useful insight about multiplicity.
The drop-out method performs better than predictive probabilities but still worse than consistency.

Figure 6: Evaluated multiplicity (assessed on 40 retrained models) versus our consistency mea-
sure (evaluated on one model) for the 512-shot setting on the German Credit dataset. The plots
demonstrate that high consistency values correspond to low multiplicity across various multiplicity
evaluation metrics. In this setting Prediction probability is performing competitively. But gener-
ally consistency measure provides better insight into the multiplicity of predictions compared to the
predicted probabilities. The drop-out method is performing significantly worse than the other two
measures.
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D.3 EXPERIMENTAL SETUP

Our experiments were conducted using the BigScience T0 and Google Flan T5 models fine-tuned on
four datasets: German Credit, Diabetes, Bank, and Adult Income. We explored the performance and
robustness of the fine-tuned models in few-shot scenarios. The number of shots was set to 64,128,
and 512 for each dataset. To evaluate model multiplicity and consistency, we fine-tuned 40 models
with different random seeds for each dataset and recorded their predictions. The training process
involved setting the batch size to 2 for smaller training sizes and 8 for larger sizes. The learning rate
was set to 0.003. For each dataset, we determined the number of training steps adaptively based on
the number of shots, ensuring sufficient iterations for model convergence. Specifically, for the num-
ber of shots-shot settings, the training steps were calculated as 20 × (number of shots/batch size).
All experiments were performed on 2 NVIDIA RTX A4500 and 4 NVIDIA RTX 6000 GPUs. To
ensure reproducibility and robustness of the results, different random seeds (i.e., 2, 4, 8, etc) were
used for each fine-tuning iteration. For fine-tuning with LORA we use a rank of 4.
Remark 4. Given the infeasibility of computing the exact size of |Fδ| due to its potentially vast
model space, we employ an expensive sampling approach, i.e., fine-tuning with various seeds. We
select a finite number of models from Fδ for practical evaluation, allowing us to evaluate the mul-
tiplicity metrics. It is very computationally expensive to fine-tune several models to evaluate multi-
plicity. This motivates the need for a measure to quantify consistency given one model.

Figure 7: Ablation study on different σ values: The chosen value of σ = 0.01 yields the best performance
across all evaluation metrics. Smaller values of σ (e.g., σ = 10−4) result in perturbations that are too close
to the original data points, leading to similar outcomes as prediction probability alone, as the sampled points
are nearly identical. On the other hand, larger values (e.g., σ = 10−2) produce overly noisy perturbations,
rendering the results uninformative.
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Table 5: This table reports the Spearman correlation between the consistency measure, predicted probabilities,
and the drop-out method with various multiplicity evaluation metrics for different numbers of shots on the
Adult, German Credit, Diabetes, Heart, Car, and Bank datasets (BigScience T0 fine-tuned using Tfew recipe).
In most cases, the consistency measure Sk,σ(x, f) shows a higher correlation with these multiplicity measures
compared to predicted probabilities and drop-out, indicating that the consistency measure Sk,σ(x, f) better
informs about the multiplicity than the other measures do. The dropout method performing better than naive
predicted probability.

Dataset Number of Shots Measure Arbitrariness Pairwise Disagreement Prediction Variance Prediction Range

Adult

64
Consistency 0.95 0.90 0.91 0.89
Drop-Out 0.83 0.78 0.81 0.87

Pred. Prob. 0.67 0.66 0.50 0.62

128
Consistency 0.80 0.96 0.84 0.91
Drop-Out 0.74 0.83 0.69 0.81

Pred. Prob. 0.67 0.62 0.30 0.54

512
Consistency 0.90 0.86 0.93 0.92
Drop-Out 0.78 0.78 0.88 0.88

Pred. Prob. 0.70 0.69 0.56 0.72

German Credit

64
Consistency 0.95 0.95 0.98 0.84
Drop-Out 0.73 0.71 0.82 0.76

Pred. Prob. 0.99 0.99 0.80 0.79

128
Consistency 0.54 0.54 0.87 0.87
Drop-Out 0.50 0.56 0.74 0.84

Pred. Prob. 0.57 0.57 0.86 0.86

512
Consistency 0.59 0.60 0.87 0.86
Drop-Out 0.69 0.67 0.72 0.65

Pred. Prob. 0.54 0.56 0.83 0.82

Diabetes

64
Consistency 0.45 0.51 0.31 0.23
Drop-Out 0.30 0.19 0.54 0.46

Pred. Prob. 0.03 0.38 0.04 0.08

128
Consistency 0.92 0.95 0.93 0.95
Drop-Out 0.89 0.92 0.92 0.94

Pred. Prob. 0.88 0.93 0.93 0.95

512
Consistency 0.80 0.89 0.74 0.68
Drop-Out 0.74 0.83 0.75 0.74

Pred. Prob. 0.21 0.23 0.24 0.30

Bank

64
Consistency 0.83 0.78 0.81 0.80
Drop-Out 0.79 0.77 0.77 0.80

Pred. Prob. 0.70 0.69 0.56 0.74

128
Consistency 0.79 0.84 0.87 0.86
Drop-Out 0.62 0.70 0.75 0.51

Pred. Prob. 0.54 0.57 0.73 0.62

512
Consistency 0.91 0.92 0.91 0.87
Drop-Out 0.90 0.89 0.87 0.84

Pred. Prob. 0.71 0.68 0.81 0.76

Heart

64
Consistency 0.98 0.86 0.98 0.98
Drop-Out 0.56 0.48 0.54 0.56

Pred. Prob. 0.70 0.21 0.30 0.69

128
Consistency 0.89 0.90 0.97 0.87
Drop-Out 0.64 0.76 0.74 0.83

Pred. Prob. 0.61 0.46 0.50 0.26

512
Consistency 0.89 0.95 0.86 0.95
Drop-Out 0.94 0.90 0.90 0.94

Pred. Prob. 0.80 0.65 0.48 0.35

Car

64
Consistency 0.76 0.69 0.86 0.75
Drop-Out 0.85 0.83 0.96 0.97

Pred. Prob. 0.83 0.83 0.40 0.83

128
Consistency 0.97 0.91 0.93 0.94
Drop-Out 0.63 0.66 0.57 0.52

Pred. Prob. 0.56 0.26 0.29 0.01

512
Consistency .68 0.59 0.56 0.67
Drop-Out 0.98 0.96 0.95 0.93

Pred. Prob. 0.91 0.94 0.72 0.86

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 6: This table reports the Spearman correlation between the predicted probabilities, drop-out method, and
the consistency measure with various multiplicity evaluation metrics for different numbers of shots on the Adult,
German Credit, Diabetes, and Bank datasets (Flan T5 model fine-tuned using Tfew recipe). In most cases,
the consistency measure shows a higher correlation with these multiplicity measures compared to predicted
probabilities and drop-out, indicating that the consistency measure better informs about the multiplicity than
the other measures do. The dropout method performs competitively in some cases.

Dataset Number of Shots Measure Arbitrariness Pairwise Disagreement Prediction Variance Prediction Range

Adult

64
Pred. Prob. 0.62 0.67 0.72 0.56
Drop-Out 0.60 0.65 0.67 0.57

Consistency 0.63 0.72 0.72 0.60

128
Pred. Prob. 0.75 0.74 0.65 0.75
Drop-Out 0.85 0.78 0.83 0.75

Consistency 0.88 0.90 0.84 0.79

512
Pred. Prob. 0.78 0.68 0.42 0.45
Drop-Out 0.78 0.78 0.42 0.45

Consistency 0.79 0.71 0.78 0.68

German Credit

64
Pred. Prob. 0.27 0.04 0.27 0.17
Drop-Out 0.73 0.45 0.60 0.17

Consistency 0.77 0.67 0.78 0.76

128
Pred. Prob. 0.85 0.76 0.85 0.91
Drop-Out 0.86 0.91 0.85 0.91

Consistency 0.89 0.91 0.89 0.92

512
Pred. Prob. 0.42 0.29 0.27 0.19
Drop-Out 0.43 0.36 0.28 0.33

Consistency 0.61 0.60 0.67 0.69

Diabetes

64
Pred. Prob. 0.09 0.04 0.27 0.23
Drop-Out 0.24 0.41 0.54 0.50

Consistency 0.27 0.55 0.31 0.25

128
Pred. Prob. 0.16 0.06 0.17 0.16
Drop-Out 0.46 0.55 0.54 0.63

Consistency 0.52 0.57 0.44 0.52

512
Pred. Prob. 0.61 0.35 0.12 0.19
Drop-Out 0.71 0.42 0.42 0.51

Consistency 0.79 0.40 0.39 0.40

Bank

64
Pred. Prob. 0.26 0.04 0.27 0.17
Drop-Out 0.24 0.60 0.60 0.60

Consistency 0.77 0.67 0.78 0.76

128
Pred. Prob. 0.45 0.54 0.73 0.62
Drop-Out 0.62 0.70 0.75 0.82

Consistency 0.89 0.71 0.78 0.84

512
Pred. Prob. 0.42 0.29 0.27 0.11
Drop-Out 0.44 0.29 0.37 0.43

Consistency 0.61 0.60 0.30 0.38

Table 7: Ablation study on different k values: Correlation between our consistency measure (evaluated
on a single model) and various measures of multiplicity for different sample sizes k on the Diabetes dataset
(T0 model). We observe better performance with increasing k as suggested by our theoretical results. Larger
sample size k values are advantageous, as they ensure that the guarantees hold with high probability. However,
computational cost of model inference (forward pass) increases.

k Prediction Range Prediction Variance Pairwise Disagreement Arbitrariness

2 0.77 0.77 0.53 0.52
5 0.82 0.83 0.56 0.55

10 0.87 0.87 0.62 0.61
20 0.89 0.88 0.70 0.79
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Table 8: Ablation study on different σ values: Correlation between our consistency measure (evaluated on
one model) and various evaluation measures for different values of σ and evaluated multiplicity for Diabetes
dataset and 128-shot case (T0 model). Best performance observed when σ = 10−2. To guide the choice of σ,
one could consider the spread of training data points in the embedding space (e.g., we use a value equivalent
to 10% of the variance of the training data). For all our experiments, we used a fixed value of 0.01, which
consistently worked well across different datasets and experiments. When σ is too small, we basically sample
(almost) the same points and our consistency measure is not more informative than the prediction probability.
When σ is too large, one loses all information about the data point.

σ Prediction Range Prediction Variance Pairwise Disagreement Arbitrariness

10−4 0.82 0.83 0.84 0.80
10−3 0.91 0.92 0.90 0.86
10−2 0.95 0.93 0.95 0.92
10−1 0.10 0.08 0.33 0.23

Table 9: This table reports the correlation between the consistency measure and various evaluated multiplicity
for the 512-shot setting on the Diabetes dataset. The consistency measure Sk,σ(x, f) shows a higher correlation
with multiplicity compared to predicted probabilities and drop-out and ensemble method (Hsu et al., 2024), in-
dicating that the consistency measure Sk,σ(x, f) better informs about the multiplicity than the other measures.

Method Arbitrariness Pairwise Disagreement Prediction Variance Prediction Range

drop-out p = 0.01 0.21 0.23 0.27 0.28
drop-out p = 0.1 0.62 0.61 0.59 0.64
drop-out p = 0.2 0.74 0.36 0.53 0.54
drop-out p = 0.5 0.16 0.17 0.18 0.16
Pred Prob 0.21 0.23 0.24 0.30
Consistency (ours) 0.80 0.89 0.74 0.68
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