
Team07
Forecasting Gold Price Movements in India

using Language Models and Sentiment Analysis
Adithya Jayana;*, Deepak Kumara;**, Jaison Fernandeza;***, Mohan Pa;****, Prayaga

Nagasree Tejashwinia;*****, Sai Yaswanth Divvelaa;****** and Tarun Vinjamurua;*******

aMTech Online, Indian Institute of Science, Bangalore

Abstract. This project presents a language model-based automation
workflow for forecasting gold price movements in India, leveraging
sentiment signals extracted from financial news, stock market data,
and technical indicators such as moving averages and RSI. While
sentiment-driven models are widely used in equity markets, their ap-
plication in gold price movement prediction is underexplored.

The proposed methodology orchestrates a system capable of per-
forming data collection, web scraping, preprocessing, sentiment
analysis, LLM encoder-based sentiment extraction, and gold price
movement assertion. The system includes a custom fine-tuned lan-
guage model trained locally on domain-specific data, integrated into
an orchestration framework for real-time inference. The performance
of the model is also benchmarked against standard baseline models.

1 Introduction

Gold plays a critical role in the Indian economy as both a cultural
commodity and a financial instrument. Its price is influenced by a
complex interplay of global economic indicators, investor sentiment,
and local market dynamics. Although traditional time-series models
have been widely used for forecasting gold prices, they are not ca-
pable of capturing information embedded in financial news and un-
derstanding market sentiment. Using large language models (LLMs),
we can extract key topics and sentiments from unstructured text data,
which can improve prediction accuracy.

This project uses key topics and their sentiment signals derived
from financial and stock market news to forecast short-term gold
price movements in India. We propose an Orchestration framework
that integrates structured financial data and unstructured news con-
tent using langchain to predict gold price movement.

The workflow contains English and Indic news scrapers, a price
data scraper, and domain-specific technical indicators. News data is
processed using supervised fine-tuned pre-trained LLMs to extract
topic-specific sentiment features. These features are then fed into a
custom set-transformer model trained to predict gold price direction.

∗ Email: adithyajayan@iisc.ac.in
∗∗ Email: deepakkumar6@iisc.ac.in
∗∗∗ Email: jaisonf@iisc.ac.in
∗∗∗∗ Email: mohanpanakam@iisc.ac.in
∗∗∗∗∗ Email: prayagan@iisc.ac.in
∗∗∗∗∗∗ Email: saiyaswanthd@iisc.ac.in
∗∗∗∗∗∗∗ Email: tarunv@iisc.ac.in

Additionally, we use traditional baseline statistical and ML/DL mod-
els that are trained solely on historical price data. The outputs of
these models are combined using a meta-model to generate the final
prediction.

This workflow enables the integration of market indicators with
sentiment features, for efficient price forecasting. We benchmark
our model against standard baseline predictors and demonstrate it’s
value.

2 Methodology

Figure 1. Chain Functional Block Diagram

The overall chain is designed to handle every step of the flow start-
ing from news-data-scraping, processing, prediction, to fine-tuning
for periodic self-improvement. Figure 1, provides a visual represen-
tation of the same. The principal components present in the chain are
listed below.

2.1 News data scraping

We need a comprehensive dataset of financial news due to its rele-
vance to gold price movements. We implemented a set of web scrap-
ing functions targeting multiple reputable sources to systematically
collect, processes, and consolidate news articles from BullionVault,
Yahoo Finance and Reuters. In addition to the English news, we are
scraping local language news (like BBC Telugu) and using SARVAM

AI to translate local languages to english, thus seamlessly integrat-
ing this into our developed orchestration while ensuring linguistic
consistency. This helps to capture the regional perspectives. Detailed
information in Appendix A.

2.2 Gold price database update

To obtain historical gold price data for modeling and analysis, we
retrieved the daily trading data of the GOLDBEES Exchange Traded
Fund (ETF) listed on the Bombay Stock Exchange (BSE) under the
ticker GOLDBEES.BO. Detailed information in Appendix C.

2.3 Data cleaning and Pre-processing

News articles and historical gold price data were sourced from pub-
lic repositories, but inconsistencies required preprocessing. Irrele-
vant prefixes were removed, text was standardized, and incomplete
entries were filtered. Dates were uniformly formatted to align news
with price data. Articles were segmented into chunks preserving sen-
tence boundaries, and directional price movements (up, down, un-
changed) were computed to label each article. The resulting dataset
pairs cleaned news content with corresponding price movement la-
bels for model training and evaluation. Detailed information in Ap-
pendix B.

2.4 Topic extraction

We use a variation of ’Aspect based’ sentiment in our flow to predict
change in asset price. We opted to use a ’Universal Sentence En-
coder’ [10] for representing the topic associated with each input text
vector. The UAN converts the text-vectors into 256-long encodings.
In this encoded space, articles with similar and related content have
similar representation. An example is shown in Figure 2. We can ob-
serve that similar contexts have similar representations, allowing for
better generalization in impact of such articles.

Figure 2. Correlation plot of various news encodings.

This allows the predictor model to learn meaningful relations and
generalize on how different types of news will impact the overall
asset price. This also helps the model decide relative importance
and impact between different articles whose associated sentiments
could have opposite impacts on the price. Detailed information in
Appendix D.

2.5 Model Finetuning and Sentiment extraction

To adapt the ProsusAI/finbert model—a BERT-based model
pretrained on financial texts. This finetuning specifically targets the
gold market domain(goldbert), allowing the model to learn sen-
timent patterns and context relevant to gold-related financial dis-
cussions. This specialization enhances its predictive accuracy com-
pared to relying solely on the globally pretrained FinBERT. —for our
domain-specific sequence classification task, we utilized Parameter-
Efficient Fine-Tuning (PEFT) through Low-Rank Adaptation
(LoRA).

These adapters were injected into the attention projection layers
of the model. During training, only the LoRA adapter weights were
updated, while the original FinBERT parameters were frozen.

This PEFT strategy provided several practical benefits:

• Efficiency: Only a small fraction (∼0.1–1%) of model parameters
are trainable.

• Memory Savings: Lower GPU memory footprint compared to full
fine-tuning.

• Modularity: LoRA adapters can be saved, reused, or merged
across tasks.

• Performance: Achieves accuracy comparable to full fine-tuning
with better generalization in low-resource settings.

This approach enabled robust fine-tuning of FinBERT on our
specialized financial task while significantly reducing compute and
memory overhead. The LoRA-based fine-tuning of FinBERT for fi-
nancial sentiment classification yielded consistent, high-quality pre-
dictions across three folds, demonstrating:

• Stable cross-validation performance (Avg. Val F1: 91.51%)
• Efficient training with parameter-efficient tuning (LoRA)
• Minimal overfitting, as evidenced by matching train/val trends
• Scalable optimization verified through W&B runtime analytics

Detailed information as well as performance metrics are discussed in
Appendix E.

2.6 The prediction model

The prediction-model is the final component on the sentiment based
prediction branch before being combined with the time-series model
predictions at the meta-model.

Here, we use the topic-weighted sentiment values obtained by the
previous blocks in the chain to predict the relative price percentage
change in gold close-price for the next day. We make use of the Set
Transformer architecture [5] to perform this prediction.

The set transformer model being an encoder-decoder-based trans-
former architecture, takes variable length data for prediction, and it is
specifically designed to be permutation invariant which is necessary
as we use article data whose order has no relevance.

The final trained model displayed accuracy metrics as follows
while predicting gold price for each day: MAE=0.46; RMSE: 0.63;
R²: 0.993; MAPE: 0.70. Overall performance was below expectation.
We believe this can be attributed to a lack of sufficient scraped text
corpus for training. Detailed information in Appendix F.

2.7 Statistical, machine learning and deep learning
prediction models

To reinforce the prediction capability of the Set Transformer-
based model, we employ a meta-ensemble approach that integrates

outputs from statistical, machine learning, and deep learning mod-
els—including SARIMAX, XGBoost, Random Forest, LSTM—as
well as the Set Transformer itself. Detailed information in Appendix
G.

2.8 Meta-Ensemble (Ridge Regression) Model

This meta-model aggregates the outputs of multiple base models:
SARIMAX, XGBoost, Random Forest, LSTM and set transformer
using a regularized linear regression approach(used RidgeCV). This
ensemble strategy leverages the strengths of individual models and
mitigates their weaknesses. Detailed information in Appendix H.

2.9 Feedback loop

The meta-ensemble model weights are re-evaluated daily using
rolling windows of the most recent 100 days of predictions, including
backtesting data. This dynamic updating process serves as a feedback
mechanism for the base models.

Possible future improvements to the feedback loop to improve per-
formance overtime is discussed in Section 5.

3 Results and analysis

Comprehensive results and outputs from each of the pipeline stages
are provided in the appendices at the conclusion of the paper. A sum-
mary is provided below.

3.1 Set-Transformer vs Statistical, Machine Learning,
and Deep Learning Prediction Models

The bar chart in Figure 3 presents the predicted Gold ETF prices gen-
erated by multiple models—ARIMAX, XGBoost, Random Forest,
LSTM, and Set-Transformer—alongside the aggregated prediction
produced by a meta-ensemble model.

Figure 3. Gold ETF price prediction across models and meta-ensemble

3.2 SARIMAX Model: Actual vs. Predicted (300-Day
Backtest)

Table 1 presents a comparative analysis of four gold price prediction
models—ARIMAX, LSTM, Random Forest, and XGBoost—over a
300-day backtest period. More details on the evaluation metrics can
be found in Appendix I.

More details on the SARIMAX Model: Actual vs. Predictedcan be
found in Appendix J.

Table 1. Performance Comparison of Gold Price Prediction Models (300-
Day Backtest)
Model Cur. () Pred. () %Chg MAE RMSE DirAcc (%)
ARIMAX 82.64 83.01 +0.45 0.27 0.39 81.21
LSTM 82.23 81.38 -1.03 0.97 1.38 49.16
Random Forest 82.64 82.63 -0.01 0.60 0.80 50.50
XGBoost 82.23 82.91 +0.82 0.62 0.81 52.51

Figure 4. GUI User Interface

3.3 Performance

An interactive browser based GUI interface to facilitate running and
usage was implemented as seen in Figure 4. Final integration with
the overall lang-chain framework was partially completed.

3.4 Implementation and Code

All code and resources related to the project can be found in the
github repository: [https://github.com/dsygnt11-iisc/DL-7-25].

4 Conclusion
This work presents a comprehensive framework for forecasting
short-term gold price movements in India by leveraging sentiment
signals extracted from financial news and technical indicators. By
combining web scraping, sentiment analysis using large language
models, and structured time-series data, overall chain augments sen-
timent information with quantitative financial trends.

Overall, this study highlights the potential of language model-
driven approaches in commodity forecasting and opens possibilities
for further exploration of multilingual sentiment fusion, model ex-
plainability, and real-time market applications.

5 Future scope
Potential future scope of this work can be include

1. Expanding data sources to incorporate multilingual news, social
media sentiment, and macroeconomic indicators for better diver-
sity.

2. Enhancing the model architecture with temporal attention could
better capture interactions between sentiment and price trends

3. Regression-based forecasting can provide finer-grained predic-
tions.

https://github.com/dsygnt11-iisc/DL-7-25

6 Individual Contributions

All team members contributed actively throughout each phase of the
project, including model development, training, evaluation, and doc-
umentation. Additionally, the following individuals demonstrated ex-
ceptional initiative and made significant contributions in specific ar-
eas:

Adithya Jayan Dataset preparation for training, research and im-
plementation of news-topic-context informatio extraction from news
data. Architecture design to combine sentiment and context encod-
ings for price-prediction and it’s implementation and training. Gradio
based GUI-template for integration with overall functional chain.

Deepak Kumar In Data Cleaning: Used pandas to load, inspect,
and clean raw .csv datasets. Applied regular expressions (re module)
to remove unwanted text like "Title:" prefixes. Used string methods
to normalize case, spacing, and remove null or non-string content.
Converted dates into datetime format using pd.to_datetime(). Inte-
grated cleaning inside automated pipelines (e.g., LangChain).

In Data Pre-processing: Defined sentence segmentation and
chunking logic to split long texts into 1500-character segments for
transformer models (approx. 512 tokens). Applied heuristic senti-
ment labeling via keyword matching. Merged cleaned text with his-
torical gold price data using pandas.merge() and aligned by date.
Created a final labeled dataset with "date", "content", and "label"
columns.

Jaison Fernandez The overall system architecture includes
pathfinding (using the Filbert sample test), gold price action extrac-
tion, and technical analysis-based feature generation. It incorporates
statistical, machine learning, and deep learning models—including
SARIMAX, XGBoost, Random Forest, and LSTM—for predictive
modeling. Each model is defined, trained, and backtested against ac-
tual price data to evaluate performance. An ensemble model is also
constructed and trained to combine individual predictions for en-
hanced accuracy.

Mohan P Sentiment extraction from news and provided sentiment,
probabilities of classes and confidence. Fine tuned Finbert-model us-
ing PEFT (LoRa) method, tuned hyper-parameters and extracted re-
quired metrics for analysis. Trained GoldBert model can be used to
generate sentiments by giving gold news as an input and based on
gold price data from scraped news data.

Prayaga Nagasree Tejashwini In Data Cleaning: Used pandas
to load, inspect, and clean raw .csv datasets. Applied regular ex-
pressions (re module) to remove unwanted text like "Title:" pre-
fixes. Used string methods to normalize case, spacing, and remove
null or non-string content. Converted dates into datetime format us-
ing pd.to_datetime(). Integrated cleaning inside automated pipelines
(e.g., LangChain).

In Data Pre-processing: Defined sentence segmentation and
chunking logic to split long texts into 1500-character segments for
transformer models (approx. 512 tokens). Applied heuristic senti-
ment labeling via keyword matching. Merged cleaned text with his-
torical gold price data using pandas.merge() and aligned by date.
Created a final labeled dataset with "date", "content", and "label"
columns.

Sai Yaswanth Divvela Developed a suit of web scrapping tools to
extract and consolidate English and Regional NEWS for training and
validation data and real-time inference.

Tarun Vinjamuru Implemented the LangChain-based workflow
for a multi-model gold price prediction system. Integrated indepen-
dently developed model components into an execution pipeline us-
ing SequentialChain and TransformChain. I handled all environment
setup, model loading, and dynamic path generation, ensuring smooth
end-to-end execution. I optimized data handling, maintained modu-
larity, and ensured compatibility across inputs and outputs.

Acknowledgements
We would like to thank Prof. Deepak Subramani for guidance
through the course.

References
[1] Dogu Araci, ‘FinBERT: Financial sentiment analysis with pre-trained

language models’, (August 2019).
[2] Rohit Arora. Fun with Topic Extraction — medium.com.

https://medium.com/analytics-vidhya/fun-with-topic-extraction-
8aa11e0437d0, 2021.

[3] Dávid Javorský, Ondřej Bojar, and François Yvon. Assessing word
importance using models trained for semantic tasks, 05 2023.

[4] Juho Lee. GitHub - juho-lee/set_transformer: Pytorch implementa-
tion of set transformer — github.com. https://github.com/juho-lee/
set_transformer.

[5] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin
Choi, and Yee Whye Teh, ‘Set transformer: A framework for attention-
based permutation-invariant neural networks’, (October 2018).

[6] Daniel Melchor. A detailed guide to Pytorch’s nn.Transformer()
module. | Towards Data Science — towardsdatascience.com.
https://towardsdatascience.com/a-detailed-guide-to-pytorchs-nn-
transformer-module-c80afbc9ffb1/, 2021.

[7] Seongsik Park and Harksoo Kim, ‘Effective sentence-level relation ex-
traction model using entity-centric dependency tree’, PeerJ Comput.
Sci., 10, e2311, (September 2024).

[8] Ankur Sinha. Sentiment analysis of commodity news.
https://www.kaggle.com/code/ankurzing/sentiment-analysis-of-
commodity-news/input. Kaggle.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin, ‘Attention
is all you need’, (2017).

[10] Georg Wiese. Enhancing Intent Classification with the Universal
Sentence Encoder — medium.com. https://medium.com/webknossos/
enhancing-intent-classification-with-the-universal-sentence-encoder-
ecbcd7a3005c, 2018.

[11] Haolun Wu, Ye Yuan, Liana Mikaelyan, Alexander Meulemans, Xue
Liu, James Hensman, and Bhaskar Mitra, ‘Learning to extract struc-
tured entities using language models’, (February 2024).

[12] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poc-
zos, Russ R Salakhutdinov, and Alexander J Smola, ‘Deep sets’, in
Advances in Neural Information Processing Systems, eds., I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, volume 30. Curran Associates, Inc., (2017).

A News Data scraping
News articles are scraped from BullionVault, Yahoo Finance,
Reuters, and BBC Telugu. For each source, a dedicated scraping
function was developed to extract article titles, publication dates, and
full article text.

The get_latest_bullionvault_articles function retrieves the most
recent articles from BullionVault’s gold news section. Similarly,
get_latest_yf_articles uses Selenium to dynamically load and parse
Yahoo Finance news, handling JavaScript-rendered content. For
Reuters, the get_latest_yf_articles and its sub-functions crawl the
site’s search results for gold-related news, following links to indi-
vidual articles to get the data.

To incorporate regional perspectives, the fetch_bbc_telugu_news
function scrapes popular news from BBC Telugu. Since these arti-
cles are in regional language (here Telugu), we employ the Sarvam
translation API via the sarvam_translate_text function to automati-
cally translate content into English, ensuring linguistic consistency
across the dataset.

All scraped articles are structured into pandas DataFrames with
standardized columns for date and content. Dates are normalized to
a consistent format.

B Data Cleaning and Pre-processing
News Data Cleaning Raw news data included inconsistencies

such as static prefixes (e.g., "Title:"), erratic spacing, and casing mis-
matches. The following steps were applied:

• Removed fixed prefixes using regular expressions.
• Normalized all whitespace characters (e.g., tabs, multiple spaces).
• Converted all text to lowercase.
• Discarded empty, null, or non-string entries.
• Converted date fields into standardized datetime objects using the

pandas library.

Text Chunking Given the input token limitation of transformer
models (typically 512 tokens), news articles were split into chunks
of up to 1500 characters. Sentence segmentation was performed us-
ing regex patterns to ensure semantic coherence, and short sentences
were grouped together to retain context.

Price Data Matching Historical gold price data was matched with
news articles by date. In cases where price data was missing for cer-
tain article dates, either forward-filling or row removal was used,
depending on how continuous the data was. Price movements were
computed by comparing closing prices across consecutive days. Ar-
ticles labeled with price direction (increase, decrease, unchanged)
were used for training models.

Sentiment Labeling Two methods were employed to perform sen-
timent annotation:

• If a dataset had an existing sentiment column (e.g., Price Sen-
timent), the labels in this column were mapped to numerical
values: positive → 0, neutral or none → 1, negative → 2.

• The heuristic rule-based approach was used for unlabeled data.
Sentiment was determined by the occurrence of specific financial
trading keywords such as “bullish”, “surge”, and “safe-haven”
(positive), or “fall”, “bearish”, and “decline” (negative). Content
lacking these indicators was labeled as neutral.

https://medium.com/analytics-vidhya/fun-with-topic-extraction-8aa11e0437d0
https://medium.com/analytics-vidhya/fun-with-topic-extraction-8aa11e0437d0
https://github.com/juho-lee/set_transformer
https://github.com/juho-lee/set_transformer
https://towardsdatascience.com/a-detailed-guide-to-pytorchs-nn-transformer-module-c80afbc9ffb1/
https://towardsdatascience.com/a-detailed-guide-to-pytorchs-nn-transformer-module-c80afbc9ffb1/
https://www.kaggle.com/code/ankurzing/sentiment-analysis-of-commodity-news/input
https://www.kaggle.com/code/ankurzing/sentiment-analysis-of-commodity-news/input
https://medium.com/webknossos/enhancing-intent-classification-with-the-universal-sentence-encoder-ecbcd7a3005c
https://medium.com/webknossos/enhancing-intent-classification-with-the-universal-sentence-encoder-ecbcd7a3005c
https://medium.com/webknossos/enhancing-intent-classification-with-the-universal-sentence-encoder-ecbcd7a3005c

This ensured that every processed text chunk was uniformly la-
beled and suitable for input to sentiment classification models.

Final Dataset Structure Each record in the final processed dataset
contained three key elements:

• A cleaned and chunked portion of a financial news article,
• Its corresponding sentiment label, encoded as an integer (0, 1, or

2),
• A directional gold price movement label, indicating whether the

market moved upward, downward, or remained unchanged on the
corresponding date.

This structured format ensured consistency and alignment across all
records, enabling effective supervised learning for both sentiment
classification and financial trend prediction tasks.

C Gold price database update
This extraction was accomplished using the yfinance Python library,
which provides programmatic access to Yahoo Finance data. The
dataset includes key financial indicators such as Open, High, Low,
Close, and Volume for each trading day within the specified date
range. The raw data is preprocessed, formatted into a flat structure
if necessary, and saved locally in CSV format for further use in the
modeling pipeline.

D Topic extraction
Problem In traditional aspect-based sentiment analysis, senti-

ments related to a particular ’aspect’ is extracted from the text corpus.
In our project, our aspect of interest is ’Impact on gold price’. This
collection of extracted sentiment values alone lacks information on
the relative impact of different news-topics on our prediction-target.
Furthermore, having a pre-decided set of High impact topics, to ex-
tract sentiment based on - would restrict the insights from uncommon
or un-covered areas and topic.

Our Solution To help form a better representation of the con-
text associated with each extracted gold price sentiment, we perform
Topic extraction on each input text vector. This topic, in combina-
tion with it’s related sentiment is then combined to give an encoded
context-sentiment encoding. A collection of such encodings corre-
sponding to a single day can then be used for prediction.

Representation method Our initial approach of extracting topic
or context in terms of tokenized words [2] proved inefficient as
words-tokens belong to a high-dimensional space which would re-
duce model generalization in categorizing topic impact. Furthermore,
words alone often lack context, and using phrases instead of words
to improve context would only further increases the dimensionality
and hence reduce the generalization.

To overcome this, we opted to use a ’Universal Sentence
Encoder’[10].

E Sentiment extraction

LoRA Configuration. We applied LoRA using the Hugging Face
peft library with the following settings:

• r = 8
• lora_alpha = 16
• target_modules = [“query”, “key”, “value”]
• lora_dropout = 0.1
• bias = “none”
• task_type = TaskType.SEQ_CLS

Training Hyperparameters. Fine-tuning was performed using
the Hugging Face Trainer API with the following configuration:

• per_device_train_batch_size = 4
• per_device_eval_batch_size = 2
• num_train_epochs = 5
• learning_rate = 5e-5
• warmup_steps = 500
• weight_decay = 0.1
• logging_steps = 500
• eval_steps = 1500
• save_steps = 1500
• evaluation_strategy = “steps”
• save_strategy = “steps”
• load_best_model_at_end = True
• metric_for_best_model = “f1”
• fp16 = False (disabled for MPS compatibility)

K-Fold Cross-Validation Performance To assess the generaliz-
ability of the LoRA-fine-tuned ProsusAI/finbert model, we
conducted a 3-fold cross-validation on our labeled sentiment classi-
fication dataset. The evaluation was carried out for both training and
validation sets, and performance metrics were recorded at each fold.

Table 2. Fold-wise Validation Metrics
Fold Accuracy (%) F1 Score (%) Precision (%) Recall (%)

Fold 1 90.64 89.52 89.80 89.27
Fold 2 92.03 91.15 91.32 90.99
Fold 3 94.35 93.86 94.05 93.68

Average 92.34 91.51 91.72 91.31

These results demonstrate consistent and strong performance
across all folds. The model achieves an average validation accuracy
of 92.34% and F1 score of 91.51%, confirming high generalizabil-
ity. Despite a slight drop in the neutral class, overall performance
remains stable across sentiment categories.

Final Average Metrics Summary After aggregating performance
across all folds, we report the following consolidated results:

• Average Training Accuracy: 93.59%
• Average Training F1 Score: 92.93%
• Average Validation Accuracy: 92.34%
• Average Validation F1 Score: 91.51%

These metrics confirm strong agreement between training and val-
idation performance, with minimal overfitting and well-maintained
precision-recall tradeoffs.

W&B Training Dynamics To monitor training behavior and opti-
mization progress, key metrics were logged using Weights & Biases
(W&B). The following insights were derived from the visualizations:

• Training and Evaluation Loss: Both training and validation loss
decreased over time, indicating effective convergence without sig-
nificant overfitting.

• F1 and Accuracy Trends: Evaluation F1 and accuracy consistently
improved with training steps, peaking in the final epochs.

• Learning Rate Schedule: A linear decay schedule was applied, de-
creasing from 5× 10−5 to zero across 5 epochs.

• Gradient Norm Behavior: Spikes in gradient norm indicate opti-
mizer steps, but values remained bounded, reflecting stable opti-
mization under LoRA tuning.

• Throughput: Metrics such as eval/steps_per_second and
samples_per_second remained steady, confirming computa-
tional efficiency and no hardware bottlenecks.

Figure 5. W&B - Evaluation Metrics vs. Global Steps

Figure 6. W&B - Training Metrics vs. Global Steps

These results support the claim that LoRA is an effective strategy
for fine-tuning large transformer models with minimal compute cost,
especially in low-resource or domain-specific scenarios.

F Prediction Model
Set-Transformer architecture The choice of this architecture is

influenced by two main reasons.

1. The number of news snippets per day is variable: We want to make
use of all the information available in one day to perform the day’s
prediction.

2. The order of the articles-snippets has no relevance: Traditional
auto-regressive models capable of taking sequential data are not
order-agnostic.

The set transformer model solves both of the above issues. Being
an encoder-decoder-based transformer architecture, it can take vari-
able length data for prediction. Further, the set-transformer is specif-
ically designed to be permutation invariant.

Training Training of the model was done by first annotating the
overall training news corpus with it’s associated sentiment and con-
text/topic encoding. These were then combined and grouped by date
- to produce sets of 256 length sentiment-weighted-topic-encoding
values.

These sets being of variable length, were then padded with uni-
formity. The original model [4] was updated to accept an additional
masking argument - to mask out these padding during the forward
pass. Additionally, the ground truth is also obtained for the corre-
sponding dates, and relative price change is calculated for adjacent
days in terms of percentage change. This is important as the sen-
timent based predictor model generally has no idea of the current
gold price while making a prediction, hence all prediction made is
relative-change.

We use early-stopping to prevent overfitting of the model on the
data by monitoring the validation loss. Figure 7 shows the training
and validation losses over 30 epochs. Our final model training trained
to only 10 epochs to prevent overfitting.

Performance The overall final predicted price vs true price using
just the sentiment-based chain is provided in Figure 7.

Figure 7. Pure sentiment based price prediction.

However, the value predicted by the model is the relative-price-
percentage change, which when combined with the very slow rate
of chainge in gold - leads to near tracking ever if the model under-
performs as observed in ??.

Performance can potentially be improved by scraping a larger
news-text dataset for training. The current model uses a data-corpus
that is a combination of scraped-news data, combined with anno-
tated news text dataset obtained from Kaggle [8]. We observe that

the model over fits easily on our current training dataset - hence it is
likely that it is not generalizing enough due to lack of data. This can
be taken as a future scope for exploration and study.

G Statistical, machine learning and deep learning
prediction models

• SARIMAX: A classical statistical time series model that captures
linear trends, seasonality, and temporal dependencies. It extends
the ARIMA framework by incorporating exogenous variables (de-
noted as Xt), such as sentiment scores. The general form is:

yt = µ+

p∑
i=1

ϕiyt−i +

q∑
j=1

θjϵt−j +

K∑
k=1

βkX
(k)
t + ϵt,

where yt is the gold price at time t, ϕi and θj are the autoregres-
sive (AR) and moving average (MA) coefficients, X(k)

t represents
the kth exogenous feature (e.g., sentiment), and ϵt is the error term.

• XGBoost: An efficient and scalable machine learning algorithm
based on gradient boosting of decision trees. It builds an ensemble
of weak learners sequentially, where each tree learns to correct the
errors of the previous one. The prediction for gold price ŷt is given
by:

ŷt =

K∑
k=1

fk(xt), fk ∈ F ,

where xt is the feature vector at time t (e.g., technical indicators
and sentiment scores), fk denotes the k-th regression tree, and F
is the space of all possible trees. The model optimizes a regular-
ized objective function:

L =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk),

where l is a differentiable loss function (e.g., squared error), and
Ω(fk) = γT + 1

2
λ
∑

j w
2
j penalizes model complexity to avoid

overfitting.
• Random Forest: A machine learning ensemble method that

builds multiple decision trees using bootstrapped subsets of the
data and aggregates their outputs to improve prediction accuracy
and reduce overfitting. For gold price prediction, the model out-
puts the average of K independently trained trees:

ŷt =
1

K

K∑
k=1

Tk(xt),

where xt is the input feature vector at time t (e.g., historical prices
and sentiment scores), Tk represents the kth decision tree, and ŷt
is the predicted gold price. Random feature selection at each split
introduces decorrelation between trees, enhancing generalization
performance and robustness to noisy inputs.

• LSTM: A type of recurrent neural network (RNN) designed to
capture long-term dependencies in sequential data, making it well-
suited for modeling time series such as gold prices influenced by
historical trends and sentiment dynamics. At each time step t, the
LSTM updates its internal memory using a series of gating mech-

anisms:

ft = σ(Wf [ht−1, xt] + bf) (forget gate)

it = σ(Wi[ht−1, xt] + bi) (input gate)

C̃t = tanh(WC [ht−1, xt] + bC) (candidate state)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (cell state update)

ot = σ(Wo[ht−1, xt] + bo) (output gate)

ht = ot ⊙ tanh(Ct) (hidden state)

Here, xt represents the input features at time t (e.g., gold price
and sentiment), ht is the hidden state, Ct is the memory cell state,
and σ is the sigmoid activation function. The final prediction ŷt is
typically obtained through a dense output layer applied to ht.

H Meta-Ensemble (Ridge Regression) Model
This meta-model uses RidgeCV, a cross-validated ridge regression
model, to learn optimal weights to combine predictions. Given a fea-
ture matrix X ∈ Rn×m, where each column corresponds to a pre-
dicted gold price from a base model, and a target vector y ∈ Rn

containing actual prices, the model solves:

ŷ = Xβ + ϵ, with β = argmin
β

{
∥y −Xβ∥22 + λ∥β∥22

}
,

where λ is the regularization parameter selected via cross-validation.

I Performance Evaluation Metrics
The following metrics were used to evaluate the predictive perfor-
mance of the models:

% Change: Captures the relative percentage difference between the
predicted and actual price, reflecting directional deviation.

MAE (Mean Absolute Error): Quantifies the average magnitude
of absolute errors in prediction, offering a straightforward mea-
sure of model accuracy.

RMSE (Root Mean Squared Error): Emphasizes larger predic-
tion errors by squaring deviations, providing insight into overall
prediction reliability.

DirAcc (%)(Directional Accuracy): Reflects the percentage of
times the model correctly predicts the direction of price move-
ment, which is particularly useful for trading strategy evaluation.

J SARIMAX Model: Actual vs. Predicted
(300-Day Backtest)

J.1 Meta-ensemble model weight training

Figure 8 below illustrates the meta-model weight distribution derived
from 100 backtested predictions across various individual models.
These weights represent the contribution of each base model and are
utilized to compute the final ensemble prediction output.

Figure 9 shows the ARIMAX model’s 300-day backtest perfor-
mance, comparing predicted prices against actual Gold ETF prices.
The model closely tracks the actual price trajectory, capturing both
short-term fluctuations and long-term trends with high accuracy. The
visual alignment between red (predicted) and blue (actual) markers
demonstrates the effectiveness of ARIMAX in modeling temporal
dependencies in gold price movements.

The plot in Figure 10 illustrates the day-wise prediction errors
(Predicted − Actual) over a 300-day backtest period, highlighting

Figure 8. Meta-model weight distribution across individual models

Figure 9. Actual vs. Predicted Gold ETF Prices Using the ARIMAX Model
(300-Day Backtest)

Figure 10. Prediction error over a 300-day backtest period using the ARI-
MAX model

the fluctuations and occasional spikes in SARIMAX model predic-
tion deviations.

Figure 11 compares actual gold prices with predictions from
four different models—ARIMAX, XGBoost, Random Forest, and
LSTM—over a 300-day backtest period. All models demonstrate
strong alignment with the actual price trend, although the LSTM
model shows slightly higher volatility in short-term predictions.

Figure 11. Comparison of actual gold prices with predictions from ARI-
MAX, XGBoost, Random Forest, and LSTM models over a 300-day backtest
period

	Introduction
	Methodology
	News data scraping
	Gold price database update
	Data cleaning and Pre-processing
	Topic extraction
	Model Finetuning and Sentiment extraction
	The prediction model
	Statistical, machine learning and deep learning prediction models
	Meta-Ensemble (Ridge Regression) Model
	Feedback loop

	Results and analysis
	Set-Transformer vs Statistical, Machine Learning, and Deep Learning Prediction Models
	SARIMAX Model: Actual vs. Predicted (300-Day Backtest)
	Performance
	Implementation and Code

	Conclusion
	Future scope
	Individual Contributions
	News Data scraping
	Data Cleaning and Pre-processing
	Gold price database update
	Topic extraction
	Sentiment extraction
	Prediction Model
	Statistical, machine learning and deep learning prediction models
	Meta-Ensemble (Ridge Regression) Model
	Performance Evaluation Metrics
	SARIMAX Model: Actual vs. Predicted (300-Day Backtest)
	Meta-ensemble model weight training

