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ABSTRACT

Learning to optimize is a rapidly growing area that aims to solve optimiza-
tion problems or improve existing optimization algorithms using machine learn-
ing (ML). In particular, the graph neural network (GNN) is considered a suit-
able ML model for optimization problems whose variables and constraints are
permutation–invariant, for example, the linear program (LP). While the literature
has reported encouraging numerical results, this paper establishes the theoretical
foundation of applying GNNs to solving LPs. Given any size limit of LPs, we con-
struct a GNN that maps different LPs to different outputs. We show that properly
built GNNs can reliably predict feasibility, boundedness, and an optimal solution
for each LP in a broad class. Our proofs are based upon the recently–discovered
connections between the Weisfeiler–Lehman isomorphism test and the GNN. To
validate our results, we train a simple GNN and present its accuracy in mapping
LPs to their feasibilities and solutions.

1 INTRODUCTION

Applying machine learning (ML) techniques to accelerate optimization, also known as Learning
to Optimize (L2O), is attracting increasing attention. It has been reported that L2O shows great
potentials on both continuous optimization (Monga et al., 2021; Chen et al., 2021; Amos, 2022) and
combinatorial optimization (Bengio et al., 2021; Mazyavkina et al., 2021). Many of the L2O works
train a parameterized model that takes the optimization problem as input and outputs information
useful to classic algorithms, such as a good initial solution and branching decisions (Nair et al.,
2020), and some even directly generate an approximate optimal solution (Gregor & LeCun, 2010).

In these works, one is building an ML model to approximate the mapping from an explicit optimiza-
tion instance either to its key properties or directly to its solution. The ability to achieve accurate
approximation is called the representation power or expressive power of the model. When the ap-
proximation is accurate, the model can solve the problem or provide useful information to guide an
optimization algorithm. This paper tries to address a fundamental but open theoretical problem for

∗A major part of the work of Z. Chen was completed during his internship at Alibaba US DAMO Academy.
†Corresponding author.
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linear programming (LP):

Which neural network can represent LP and predict its key properties and solution? (P0)

To clarify, by solution we mean the optimal solution. Let us also remark that this question is not
only of theoretical interest. Although currently neural network models may not be powerful enough
to replace those mathematical-grounded LP solvers and obtain an exact LP solution, they are still
useful in helping LP solvers from several perspectives, including warm-start and configuration. It
requires that neural networks have sufficient power to recognize key characteristics of LPs. Some
very recent papers (Deka & Misra, 2019; Pan et al., 2020; Chen et al., 2022) on DC optimal power
flow (DC-OPF), an important type of LP, experimentally show the possibility of fast approximating
LP solutions with deep neural networks. Practitioners may initialize an LP solver with those ap-
proximated solutions. We hope the answer to (P0) paves the way toward answering this question for
other optimization types.

Linear Programming (LP). LP is an important type of optimization problem with a wide range
of applications, such as scheduling (Hanssmann & Hess, 1960), signal processing (Candes & Tao,
2005), machine learning (Dedieu et al., 2022), etc. A general LP problem is defined as:

min
x∈Rn

c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, (1.1)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n, and ◦ ∈ {≤,=,≥}m.
Any LP problems must follow one of the following three cases (Bertsimas & Tsitsiklis):

• Infeasible. The feasible set XF := {x ∈ Rn : Ax ◦ b, l ≤ x ≤ u} is empty. In another word,
there is no point in Rn that satisfies the constraints in LP (1.1).

• Unbounded. The feasible set is non-empty, but the objective value can be arbitrarily good, i.e.,
unbounded from below. For any R > 0, there exists an x ∈ XF such that c⊤x < −R.

• Feasible and bounded. There exists x∗ ∈ XF such that c⊤x∗ ≤ c⊤x for all x ∈ XF . Such x∗ is
named as an optimal solution, and c⊤x∗ is the optimal objective value.

Thus, considering (P0), an ideal ML model is expected to be able to predict the three key charac-
teristics of LP: feasibility, boundedness, and one of its optimal solutions (if exists), by taking the
LP features (A, b, c, l, u, ◦) as input. Actually, such input has a strong mathematical structure. If
we swap the positions of the i, j-th variable in (1.1), elements in vectors b, c, l, u, ◦ and columns
of matrix A will be reordered. The reordered features (Â, b, ĉ, l̂, û, ◦̂) actually represent an exactly
equivalent LP problem with the original one (A, b, c, l, u, ◦). Such property is named as permutation
invariance. If we do not explicitly restrict ML models with a permutation invariant structure, the
models may overfit to the variable/constraint orders of instances in the training set. Motivated by
this point, we adopt Graph Neural Networks (GNNs) that are permutation invariant naturally.

GNN in L2O. GNN is a type of neural networks defined on graphs and widely applied in many
areas, for example, recommender systems, traffic, chemistry, etc (Wu et al., 2020; Zhou et al., 2020).
Accelerating optimization solvers with GNNs attracts rising interest recently (Peng et al., 2021; Cap-
part et al., 2021). Many graph-related optimization problems, like minimum vertex cover, traveling
salesman, vehicle routing, can be represented and solved approximately with GNNs due to their
problem structures (Khalil et al., 2017; Kool et al., 2019; Joshi et al., 2019; Drori et al., 2020). Be-
sides that, one may solve a general LP or mixed-integer linear programming (MILP) with the help of
GNNs. Gasse et al. (2019) proposed to represent an MILP with a bipartite graph and apply a GNN
on this graph to guide an MILP solver. Ding et al. (2020) proposed a tripartite graph to represent
MILP. Since that, many approaches have been proposed to guide MILP or LP solvers with GNNs
(Nair et al., 2020; Gupta et al., 2020; 2022; Shen et al., 2021; Khalil et al., 2022; Liu et al., 2022;
Paulus et al., 2022; Qu et al., 2022; Li et al., 2022). Although encouraging empirical results have
been observed, theoretical foundations are still lack for this approach. Specifying (P0), we ask:

Are there GNNs that can predict the feasibility, boundedness and an optimal solution of LP? (P1)

Related works and contributions. To answer (P1), one needs the theory of separation power and
representation power. Separation power of a neural network (NN) means its ability to distinguish
two different inputs. In our settings, a NN with strong separation power means that it can outputs
different results when it is applied on any two different LPs. Representation power of NN means
its ability to approximate functions of interest. The theory of representation power is established
upon the separation power. Only functions with strong enough separation power may possess strong
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representation power. The power of GNN has been studied in the literature (see Sato (2020); Jegelka
(2022); Li & Leskovec (2022) for comprehensive surveys), and some theoretical efforts have been
made to represent some graph-related optimization problems with GNN (Sato et al., 2019; Loukas,
2020). However, there are still gaps to answer question (P1) since the relationships between charac-
teristics of LP and properties of graphs are not well established. Our contributions are listed below:

• (Separation Power). In the literature, it has been shown that the separation power of GNN is equal
to the WL test (Xu et al., 2019; Azizian & Lelarge, 2021; Geerts & Reutter, 2022). However, there
exist many pairs of LPs that cannot be distinguished by the WL test. We show that those puzzling
LP pairs share the same feasibility, boundedness, and even an optimal solution if exists. Thus,
GNN has strong enough separation power.

• (Representation Power). To the best of our knowledge, we established the first complete proof
that GNN can universally represent a broad class of LPs. More precisely, we prove that, there
exist GNNs that can be arbitrarily close to the following three mappings: LP → feasibility, LP →
optimal objective value (−∞ if unbounded and ∞ if infeasible), and LP → an optimal solution (if
exists), although they are not continuous functions and cannot be covered by the literature (Keriven
& Peyré, 2019; Chen et al., 2019; Maron et al., 2019a;b; Keriven et al., 2021).

• (Experimental Validation). We design and conduct experiments that demonstrate the power of
GNN on representing LP.

The rest of this paper is organized as follows. In Section 2, we provide preliminaries, including
related notions, definitions and concepts. In Section 3, we present our main theoretical results. The
sketches of proofs are provided in Section4. We validate our results with numerical experiments in
Section 5 and we conclude this paper with Section 6.

2 PRELIMINARIES

In this section, we present concepts and definitions that will be used throughout this paper. We first
describe how to represent an LP with a weighted bipartite graph, then we define GNN on those
LP-induced graphs, and finally we further clarify question (P1) with strict mathematical definitions.

2.1 LP REPRESENTED AS WEIGHTED BIPARTITE GRAPH

Before representing LPs with graphs, we first define the graph that we will adopt in this paper:
weighted bipartite graph. A weighted bipartite graph G = (V ∪ W,E) consists of a vertex set
V ∪W that are divided into two groups V and W with V ∩W = ∅, and a collection E of weighted
edges, where each edge connects exactly one vertex in V and one vertex in W . Note that there
is no edge connecting vertices in the same vertex group. E can also be viewed as a function E :
V ×W → R. We use Gm,n to denote the collection of all weighted bipartite graphs G = (V ∪W,E)
with |V | = m and |W | = n. We always write V = {v1, v2, . . . , vm}, W = {w1, w2, . . . , wn}, and
Ei,j = E(vi, wj), for i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}.

One can equip each vertex with a feature vector. Throughout this paper, we denote hV
i ∈ HV as the

feature vector of vertex vi ∈ V and denote hW
j ∈ HW as the feature vector of vertex wj ∈ W , where

HV ,HW are feature spaces. Then we define HV
m := (HV )m,HW

n := (HW )n and concatenate all
the vertex features together as H = (hV

1 , h
V
2 , . . . , h

V
m, hW

1 , hW
2 , . . . , hW

n ) ∈ HV
m ×HW

n . Finally, a
weighted bipartite graph with vertex features is defined as a tuple (G,H) ∈ Gm,n ×HV

m ×HW
n .

With the concepts described above, one can represent an LP (1.1) as a bipartite graph (Gasse et al.,
2019): Each vertex in W represents a variable in LP and each vertex in V represents a constraint.
The graph topology is defined with the matrix A in the linear constraint. More specifically, let us set

• Vertex vi represents the i-th constraint in Ax ◦ b, and vertex wj represents the j-th variable xj .
• Information of constraints is involved in the feature of vi: hV

i = (bi, ◦i).
• The space of constraint features is defined as HV := R× {≤,=,≥}.
• Information of variables is involved in the feature of wi: hW

j = (cj , lj , uj).
• The space of variable features is defined as HW := R× (R ∪ {−∞})× (R ∪ {+∞}).
• The edge connecting vi and wj has weight Ei,j = Ai,j .

Then an LP is represented as a graph (G,H) ∈ Gm,n×HV
m×HW

n . In the rest of this paper, we coin
such graphs as LP-induced Graphs or LP-Graphs for simplicity. We present an LP instance and its
corresponding LP-graph in Figure 1.
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min
x∈R2

x1 + 2x2,

s.t. x1 + 2x2 ≥ 1,

2x1 + x2 = 2,

x1 ≥ 0, x2 ≥ −1.

v1

v2

w1

w2

hV
1 = (1,≥)

hV
2 = (2,=)

hW
1 = (1, 0,+∞)

hW
2 = (2,−1,+∞)

1

2
2

1

Figure 1: An example of LP-graph

2.2 GRAPH NEURAL NETWORKS FOR LP

The GNNs in this paper always take an LP-Graph as input and the output has two cases:

• The output is a single real number. In this case, GNN is a function Gm,n ×HV
m ×HW

n → R and
usually used to predict the properties of the whole graph.

• Each vertex in W has an output. Consequently, GNN is a function Gm,n × HV
m × HW

n → Rn.
Since W represents variables in LP, GNN is used to predict properties of each variable in this case.

Now we define the GNN structure precisely. First we encode the input features into the embedding
space with learnable functions fV

in : HV → Rd0 and fW
in : HW → Rd0 :

h0,V
i = fV

in (h
V
i ), h0,W

j = fW
in (hW

j ), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (2.1)

where h0,V
i , h0,W

j ∈ Rd0 are initial embedded vertex features and d0 is their dimension. Then we
choose learnable functions fV

l , fW
l : Rdl−1 → Rdl and gVl , gWl : Rdl−1 × Rdl → Rdl and update

the hidden states with1:

hl,V
i = gVl

(
hl−1,V
i ,

n∑
j=1

Ei,jf
W
l (hl−1,W

j )

)
, i = 1, 2, . . . ,m, (2.2)

hl,W
j = gWl

(
hl−1,W
j ,

m∑
i=1

Ei,jf
V
l (hl−1,V

i )

)
, j = 1, 2, . . . , n, (2.3)

where hl,V
i , hl,W

j ∈ Rdl are vertex features at layer l (1 ≤ l ≤ L) and their dimensions are
d1, · · · , dL respectively. The output layer of the single-output GNN is defined with a learnable
function fout : RdL × RdL → R:

yout = fout

( m∑
i=1

hL,V
i ,

n∑
j=1

hL,W
j

)
. (2.4)

The output of the vertex-output GNN is defined with fW
out : RdL × RdL × RdL → R:

yout(wj) = fW
out

( m∑
i=1

hL,V
i ,

n∑
j=1

hL,W
j , hL,W

j

)
, j = 1, 2, · · · , n. (2.5)

We denote collections of single-output GNNs and vertex-output GNNs with FGNN and FW
GNN, re-

spectively:
FGNN ={F : Gm,n ×HV

m ×HW
n → R | F yields (2.1), (2.2), (2.3), (2.4)},

FW
GNN ={F : Gm,n ×HV

m ×HW
n → Rn | F yields (2.1), (2.2), (2.3), (2.5)}.

(2.6)

In practice, all the learnable functions in GNN fV
in , f

W
in , fout, f

W
out , {fV

l , fW
l , gVl , gWl }Ll=0 are usually

parameterized with multi-linear perceptrons (MLPs). In our theoretical analysis, we assume for
simplicity that those functions may take all continuous functions on given domains, following the
settings in Azizian & Lelarge (2021, Section C.1). Thanks to the universal approximation properties
of MLP (Hornik et al., 1989; Cybenko, 1989), one can extend our theoretical results by taking those
learnable functions as large enough MLPs.

2.3 REVISITING QUESTION (P1)

With the definitions of LP-Graph and GNN above, we revisit the question (P1) and provide its
precise mathematical description here. First we define three mappings that respectively describe the
feasibility, optimal objective value and an optimal solution of an LP (if exists).

1Note that the update rules in (2.2) and (2.3) follow a message-passing way, where each vertex only collects
information from its neighbors. Since Ei,j = 0 if there is no connection between vertices vi and wj , the sum
operator in (2.2) can be rewritten as

∑
j∈N (vi)

, where N (vi) denotes the set of neighbors of vertex vi.
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Feasibility mapping The feasibility mapping is a classification function

Φfeas : Gm,n ×HV
m ×HW

n → {0, 1}, (2.7)
where Φfeas(G,H) = 1 if the LP associated with (G,H) is feasible and Φfeas(G,H) = 0 otherwise.

Optimal objective value mapping Denote
Φobj : Gm,n ×HV

m ×HW
n → R ∪ {∞,−∞}, (2.8)

as the optimal objective value mapping, i.e., for any (G,H) ∈ Gm,n × HV
m × HW

n , Φobj(G,H) is
the optimal objective value of the LP problem associated with (G,H).
Remark 2.1. The optimal objective value of a LP problem can be a real number or ∞/−∞. The
“∞” case corresponds to infeasible problems, while the “−∞” case consists of LP problems whose
objective function is unbounded from below in the feasible region. The preimage of all finite real
numbers under Φobj, Φ−1

obj (R), actually describes all LPs with finite optimal objective value.

Remark 2.2. In the case that a LP problem has finite optimal objective value, it is possible that
the problem admits multiple optimal solutions. However, the optimal solution with the smallest
ℓ2-norm must be unique. In fact, if x ̸= x′ are two different solutions with ∥x∥ = ∥x′∥, where
∥ · ∥ denotes the ℓ2-norm throughout this paper. Then 1

2 (x + x′) is also an optimal solution due
to the convexity of LPs, and it holds that ∥ 1

2 (x + x′)∥2 < 1
2∥x∥

2 + 1
2∥x

′∥2 = ∥x∥2 = ∥x′∥2, i.e.,
∥ 1
2 (x+ x′)∥ < ∥x∥ = ∥x′∥, where the inequality is strict since x ̸= x′. Therefore, x and x′ cannot

be optimal solutions with the smallest ℓ2-norm.

Optimal solution mapping For any (G,H) ∈ Φ−1
obj (R), we have remarked before that the LP

problem associated with (G,H) has a unique optimal solution with the smallest ℓ2-norm. Let

Φsolu : Φ−1
obj (R) → Rn, (2.9)

be the mapping that maps (G,H) ∈ Φ−1
obj (R) to the optimal solution with the smallest ℓ2-norm.

Invariance and Equivariance We denote Sm, Sn as the group consisting of all permutations on
vertex groups V,W respectively. In another word, Sm involves all permutations on the constraints
of LP and Sn involves all permutations on the variables. In this paper, we say a function F :
Gm,n ×HV

m ×HW
n → R is invariant if it satisfies
F (G,H) = F ((σV , σW ) ∗ (G,H)) , ∀σV ∈ Sm, σW ∈ Sn,

and a function FW : Gm,n ×HV
m ×HW

n → Rn is equivariant if it satisfies
σW (FW (G,H)) = FW ((σV , σW ) ∗ (G,H))) , ∀σV ∈ Sm, σW ∈ Sn,

where (σV , σW ) ∗ (G,H) is the permuted graph obtained from reordering indices in (G,H) using
(σV , σW ), which is the group action of Sm × Sn on Gm,n ×HV

m ×HW
n . One can check that Φfeas,

Φobj, and any F ∈ FGNN are invariant, and that Φsolu and any FW ∈ FW
GNN are equivariant.

Question (P1) actually asks: Does there exist F ∈ FGNN that well approximates Φfeas or Φobj? And
does there exist FW ∈ FW

GNN that well approximates Φsolu?

3 MAIN RESULTS

This section presents our main theorems that answer question (P1). As we state in the introduction,
representation power is built upon separation power in our paper. We first present with the following
theorem that GNN has strong enough separation power to represent LP.

Theorem 3.1. Given any two LP instances (G,H), (Ĝ, Ĥ) ∈ Gm,n × HV
m × HW

n , if F (G,H) =

F (Ĝ, Ĥ) for all F ∈ FGNN, then they share some common characteristics:

(i) Both LP problems are feasible or both are infeasible, i.e., Φfeas(G,H) = Φfeas(Ĝ, Ĥ).

(ii) The two LP problems have the same optimal objective value, i.e., Φobj(G,H) = Φobj(Ĝ, Ĥ).

(iii) If both problems are feasible and bounded, they have the same optimal solution with the small-
est ℓ2-norm up to a permutation, i.e., Φsolu(G,H) = σW (Φsolu(Ĝ, Ĥ)) for some σW ∈ Sn.

Furthermore, if FW (G,H) = FW (Ĝ, Ĥ), ∀ FW ∈ FW
GNN, then (iii) holds without taking permuta-

tions, i.e., Φsolu(G,H) = Φsolu(Ĝ, Ĥ).
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This theorem demonstrates that the function spaces FGNN and FW
GNN are rich enough to distinguish

the characteristics of LP. Given two LP instances (G,H), (Ĝ, Ĥ), as long as their feasibility or
boundedness are different, there must exist F ∈ FGNN that can distinguish them: F (G,H) ̸=
F (Ĝ, Ĥ). Moreover, as long as their optimal solutions with the smallest ℓ2-norm are different, there
must exist FW ∈ FW

GNN that can distinguish them: FW (G,H) ̸= FW (Ĝ, Ĥ). With Theorem 3.1
served as a foundation, we can prove that GNN can approximate the three mappings Φfeas, Φobj and
Φsolu to arbitrary precision. Before presenting those results, we first define some concepts of the
space Gm,n ×HV

m ×HW
n .

Topology and measure Throughout this paper, we consider Gm,n × HV
m × HW

n , where HV =
R × {≤,=,≥} and HW = R × (R ∪ {−∞}) × (R ∪ {+∞}), as a topology space with product
topology and a measurable space with product measure. It’s enough to define the topology and
measure of each part separately. Since each graph in this paper (without vertex features) can be
represented with matrix A ∈ Rm×n, the graph space Gm,n is isomorphic to the Euclidean space
Rm×n: Gm,n

∼= Rm×n and we equip Gm,n with the standard Euclidean topology and the standard
Lebesgue measure. The real spaces R in HW and HV are also equipped with the standard Euclidean
topology and Lebesgue measure. All the discrete spaces {≤,=,≥}, {−∞}, and {+∞} have the
discrete topology, and all unions are disjoint unions. We equip those spaces with a discrete measure
µ(S) = |S|, where |S| is the number of elements in a finite set S. This finishes the whole definition
and we denote Meas(·) as the measure on Gm,n ×HV

m ×HW
n .

Theorem 3.2. Given any measurable X ⊂ Gm,n ×HV
m ×HW

n with finite measure, for any ϵ > 0,
there exists some F ∈ FGNN, such that

Meas
({

(G,H) ∈ X : IF (G,H)>1/2 ̸= Φfeas(G,H)
})

< ϵ,

where I· is the indicator function, i.e., IF (G,H)>1/2 = 1 if F (G,H) > 1/2 and IF (G,H)>1/2 = 0
otherwise.

This theorem shows that GNN is a good classifier for LP instances in X as long as X has finite
measure. If we use F (G,H) > 1/2 as the criteria to predict the feasibility, the classification error
rate is controlled by ϵ/Meas(X), where ϵ can be arbitrarily small. Furthermore, we show that GNN
can perfectly fit any dataset with finite samples, which is presented in the following corollary.

Corollary 3.3. For any D ⊂ Gm,n ×HV
m ×HW

n with finite instances, there exists F ∈ FGNN that

IF (G,H)>1/2 = Φfeas(G,H), ∀ (G,H) ∈ D.

Besides the feasibility, GNN can also approximate ϕobj and ϕsolu.

Theorem 3.4. Given any measurable X ⊂ Gm,n ×HV
m ×HW

n with finite measure, for any ϵ > 0,
there exists F1 ∈ FGNN such that

Meas
({

(G,H) ∈ X : IF1(G,H)>1/2 ̸= IΦobj(G,H)∈R
})

< ϵ, (3.1)

and for any ϵ, δ > 0, there exists F2 ∈ FGNN such that

Meas
({

(G,H) ∈ X ∩ Φ−1
obj (R) : |F2(G,H)− Φobj(G,H)| > δ

})
< ϵ. (3.2)

Recall the definition of Φobj in (2.8) that it can take {±∞} as its value. Thus, Φobj(G,H) ∈ R means
the LP corresponding to (G,H) is feasible and bounded with a finite optimal objective value, and
inequality (3.1) illustrates that GNN can identify those feasible and bounded LPs among the whole
set X , up to a given precision ϵ. Inequality (3.2) shows that GNN can also approximate the optimal
value. The measure of the set of LP instances of which the optimal value cannot be approximated
with δ-precision is controlled by ϵ. The following corollary gives the results on dataset with finite
instances.

Corollary 3.5. For any D ⊂ Gm,n ×HV
m ×HW

n with finite instances, there exists F1 ∈ FGNN such
that

IF1(G,H)>1/2 = IΦobj(G,H)∈R, ∀ (G,H) ∈ D,

and for any δ > 0, there exists F2 ∈ FGNN, such that

|F2(G,H)− Φobj(G,H)| < δ, ∀ (G,H) ∈ D ∩ Φ−1
obj (R).

Finally, we show that GNN is able to represent the optimal solution mapping Φsolu.
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Theorem 3.6. Given any measurable X ⊂ Φ−1
obj (R) ⊂ Gm,n ×HV

m ×HW
n with finite measure, for

any ϵ, δ > 0, there exists some FW ∈ FW
GNN, such that

Meas ({(G,H) ∈ X : ∥F (G,H)− Φsolu(G,H)∥ > δ}) < ϵ.

Corollary 3.7. Given any D ⊂ Φ−1
obj (R) ⊂ Gm,n ×HV

m ×HW
n with finite instances, for any δ > 0,

there exists FW ∈ FW
GNN, such that

∥F (G,H)− Φsolu(G,H)∥ < δ, ∀ (G,H) ∈ D.

4 SKETCH OF PROOF

In this section, we will present a sketch of our proof lines and provide examples to show the intu-
itions. The full proof lines are presented in the appendix.

Separation power The separation power measures a neural network with whether it generates
different outcomes given different inputs, which serves as a foundation of the representation power.
The separation power of GNNs is closely related to the Weisfeiler-Lehman (WL) test (Weisfeiler
& Leman, 1968), a classical algorithm to identify whether two given graphs are isomorphic. To
apply the WL test on LP-graphs, we describe a modified WL test in Algorithm 1, which is slightly
different from the standard WL test.

Algorithm 1 The WL test for LP-Graphs2(denoted by WLLP)

Require: A graph instance (G,H) ∈ Gm,n ×HV
m ×HW

n and iteration limit L > 0.
1: Initialize with C0,V

i = HASH0,V (h
V
i ), C

0,W
j = HASH0,W (hW

j ).
2: for l = 1, 2, · · · , L do
3: Cl,V

i = HASHl,V

(
Cl−1,V

i ,
∑n

j=1 Ei,jHASH′
l,W

(
Cl−1,W

j

))
.

4: Cl,W
j = HASHl,W

(
Cl−1,W

j ,
∑m

i=1 Ei,jHASH′
l,V

(
Cl−1,V

i

))
.

5: end for
6: return The multisets containing all colors {{CL,V

i }}mi=0, {{C
L,W
j }}nj=0.

We denote Algorithm 1 by WLLP(·), and we say that two LP-graphs (G,H), (Ĝ, Ĥ) can be
distinguished by Algorithm 1 if and only if there exist a positive integer L and injective hash
functions {HASHl,V ,HASHl,W }Ll=0 ∪ {HASH′

l,V ,HASH′
l,W }Ll=1 such that WLLP

(
(G,H), L

)
̸=

WLLP

(
(Ĝ, Ĥ), L

)
. Unfortunately, there exist infinitely many pairs of non-isomorphic LP-graphs

that cannot be distinguished by Algorithm 1. Figure 2 provide such an example.

Since the separation power of GNNs is actually equal to the WL test (Xu et al., 2019), one would
expect that the limitation of the WL test might restrict GNNs from universally representing LP.
However, any two LP-graphs that cannot be distinguished by the WL test must share some common
characteristics even if they are not isomorphic. For example, let us consider the six LP instances in
Figure 2. In each of the three columns, the two non-isomorphic LP instances cannot be distinguished
by the WL test. It can be checked that the two instances in the same column share some common
characteristics. More specifically, both instances in the first column are infeasible; both instances in
the second column are feasible but unbounded; both instances in the third column are feasible and
bounded with (1/2, 1/2, 1/2, 1/2) being the optimal solution with the smallest ℓ2-norm. Actually,
this phenomenon does not only happen on the instances in Figure 2, but also serves as an universal
principle for all LP instances. We summarize the results in the following theorem:

Theorem 4.1. If (G,H), (Ĝ, Ĥ) ∈ Gm,n×HV
m×HW

n are not distinguishable by Algorithm 1, then

Φfeas(G,H) = Φfeas(Ĝ, Ĥ) and Φobj(G,H) = Φobj(Ĝ, Ĥ).

2In Algorithm 1, multisets, denoted by {{}}, are collections of elements that allow multiple appearance
of the same element. Hash functions {HASHl,V ,HASHl,W }Ll=0 injectively map vertex information to vertex
colors, while the others {HASH′

l,V ,HASH′
l,W }Ll=1 injectively map vertex colors to a linear space so that one

can define sum and scalar multiplications on their outputs. In addition, such an algorithm is usually named as
the 1-WL test in the literature since it only considers the neighborhood with distance 1 for each vertex. In this
paper, we abbreviate Algorithm 1 or the 1-WL test to the WL test for simplicity.
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v1

v2

v3

v4

w1

w2

w3

w4

min x1 + x2 + x3 + x4,

s.t. x1 + x2 = 1,

x2 + x3 = 1,

x3 + x4 = 1,

x4 + x1 = 1,

xj ≥ 1, 1 ≤ j ≤ 4.

min x1 + x2 + x3 + x4,

s.t. x1 + x2 ≤ 1,

x2 + x3 ≤ 1,

x3 + x4 ≤ 1,

x4 + x1 ≤ 1,

xj ≤ 1, 1 ≤ j ≤ 4.

min x1 + x2 + x3 + x4,

s.t. x1 + x2 = 1,

x2 + x3 = 1,

x3 + x4 = 1,

x4 + x1 = 1,

xj ≤ 1, 1 ≤ j ≤ 4.

v1

v2

v3

v4

w1

w2

w3

w4

min x1 + x2 + x3 + x4,

s.t. x1 + x2 = 1,

x2 + x1 = 1,

x3 + x4 = 1,

x4 + x3 = 1,

xj ≥ 1, 1 ≤ j ≤ 4.

min x1 + x2 + x3 + x4,

s.t. x1 + x2 ≤ 1,

x2 + x1 ≤ 1,

x3 + x4 ≤ 1,

x4 + x3 ≤ 1,

xj ≤ 1, 1 ≤ j ≤ 4.

min x1 + x2 + x3 + x4,

s.t. x1 + x2 = 1,

x2 + x1 = 1,

x3 + x4 = 1,

x4 + x3 = 1,

xj ≤ 1, 1 ≤ j ≤ 4.

Figure 2: LP-graphs that cannot be distinguished by the WL test. Since the features and neighbor
information of {vi} and {wj} in the two graphs are equal, it holds for both graphs that Cl,V

1 =

· · ·Cl,V
4 and Cl,W

1 = · · ·Cl,W
4 for all l ≥ 0, whatever the hash functions are chosen. Based on this

graph pair, we construct three pairs of LPs that are both infeasible, both unbounded, both feasible
bounded with the same optimal solution, respectively.

Furthermore, if (G,H), (Ĝ, Ĥ) ∈ Φ−1
obj (R), then it holds that Φsolu(G,H) = σW (Φsolu(Ĝ, Ĥ)) for

some σW ∈ Sn.

In other words, the above theorem guarantees the sufficient power of the WL test for separating LP
problems with different characteristics, including feasibility, optimal objective value, and optimal
solution with smallest ℓ2-norm (up to permutation). This combined with the following theorem,
which states the equivalence of the separation powers of the WL test and GNNs, yields that GNNs
also have sufficient separation power for LP-graphs in the above sense.

Theorem 4.2. For any (G,H), (Ĝ, Ĥ) ∈ Gm,n ×HV
m ×HW

n , the followings are equivalent:

(i) (G,H) and (Ĝ, Ĥ) are not distinguishable by Algorithm 1.

(ii) F (G,H) = F (Ĝ, Ĥ), ∀ F ∈ FGNN.

(iii) For any FW ∈ FW
GNN, there exists σW ∈ Sn such that FW (G,H) = σW (FW (Ĝ, Ĥ)).

Theorem 4.2 extends the results in Xu et al. (2019); Azizian & Lelarge (2021); Geerts & Reutter
(2022) to the case with the modified WL test (Algorithm 1) and LP-graphs.

Representation power Based on the separation power of GNNs, one is able to investigate the rep-
resentation/approximation power of GNNs. To prove Theorems 3.2, 3.4, and 3.6, we first determine
the closure of FGNN or FW

GNN in the space of invariant/equivariant continuous functions with respect
to the sup-norm, which is also named as the universal approximation. The result of FGNN is stated
as follows, where C(X,R) is the collection/algebra of all real-valued continuous function on X . The
result of FW

GNN can be found in the appendix.

Theorem 4.3. Let X ⊂ Gm,n ×HV
m ×HW

n be a compact set. For any Φ ∈ C(X,R) that satisfies
Φ(G,H) = Φ(Ĝ, Ĥ) for all (G,H), (Ĝ, Ĥ) ∈ X that are not distinguishable by Algorithm 1, and
any ϵ > 0, there exists F ∈ FGNN such that

sup
(G,H)∈X

|Φ(G,H)− F (G,H)| < ϵ.

Theorem 4.3 can be viewed as an LP-graph version of results in Azizian & Lelarge (2021); Geerts &
Reutter (2022). Roughly speaking, graph neural networks can approximate any invariant continuous
function whose separation power is upper bounded by that of WL test on compact domain with arbi-
trarily small error. Although our target mappings Φfeas,Φobj,Φsolu are not continuous, we prove (in
appendix) that they are measurable. Applying Lusin’s theorem (Evans & Garzepy, 2018, Theorem
1.14), we show that GNN can be arbitrarily close to the target mappings except for a small domain.
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5 NUMERICAL EXPERIMENTS

We present the numerical results that validate our theoretical results in this section. We generate
LP instances with m = 10 and n = 50 that are possibly infeasible or feasible and bounded. To
check whether GNN can predict feasibility, we generate three data sets with 100, 500, 2500 inde-
pendent LP instances respectively, and call the solver wrapped in scipy.optimize.linprog
to get the feasibility, optimal objective value and an optimal solution for each generated LP. To
generate enough feasible and bounded LPs to check whether GNN can approximate the opti-
mal objective value and optimal solution, we follow the same approach as before to generate LP
randomly and discard those infeasible LPs until the number of LPs reach our requirement. We
train GNNs to fit the three LP characteristics by minimizing the distance between GNN-output
and those solver-generated labels. The building and the training of the GNNs are implemented
using TensorFlow. The codes are modified from Gasse et al. (2019) and can be found in
https://github.com/liujl11git/GNN-LP.git. We set L = 2 for all GNNs and those
learnable functions fV

in , f
W
in , fout, f

W
out , {fV

l , fW
l , gVl , gWl }Ll=0 are all parameterized with MLPs. De-

tails can be found in the appendix. Our results are reported in Figure 3.
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Figure 3: GNN can approximate Φfeas, Φobj, and Φsolu

All the errors reported in Figure 3 are training errors since generalization is out of the scope of this
paper. In Figure 3a, the “rate of errors” means the proportion of instances with IF (G,H)>1/2 ̸=
Φfeas(G,H). This metric exactly equals to zeros as long as the number of parameters in GNN
is large enough, which directly validates Corollary 3.3: the existence of GNNs that can accru-
ately predict the feasibility of LP instances. With the three curves in Figure 3a combined together,
we conclude that such principle does not violate as the number of samples increases. This con-
sists with Theorem 3.2. Mean squared errors in Figures 3b and 3c are respectively defined as
E(G,H)|F (G,H) − Φfeas(G,H)|2 and E(G,H)∥F (G,H) − Φfeas(G,H)∥2. Therefore, Figures 3b
and 3c validates Theorems 3.4 and 3.6 respectively. Note that all the instances used in Figure 3b
are feasible and bounded. Thus, Figure 3b actually only validates (3.2) in Theorem 3.4. However,
due to the fact that feasibility of an LP is equal to the boundedness of its dual problem, one may
dualize each LP and use the conclusion of Figure 3a to validate (3.1) in Theorem 3.4. Some extra
experimental results on generalization, i.e., the performance of the trained models on the test set, are
presented in Appendix G.

6 CONCLUSIONS

In this work, we show that graph neural networks, as well as the WL test, have sufficient separation
power to distinguish linear programming problems with different characteristics. In addition, GNNs
can approximate LP feasibility, optimal objective value, and optimal solution with arbitrarily small
errors on compact domains or finite datasets. These results guarantee that GNN is a proper class
of machine learning models to represent linear programs, and hence contribute to the theoretical
foundation in the learning-to-optimize community. Future directions include the size/complexity of
GNNs and the generalization, that are not covered in our current theory but are of great importance.
Another future topic is investing the representation power of graph neural networks for mixed-
integer linear programming (MILP), which has been observed with promising experimental results
in the literature.
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Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. Graph isomorphism, color
refinement, and compactness. computational complexity, 26(3):627–685, 2017.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural net-
works. In International Conference on Learning Representations, 2021.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Christoph Berkholz, Paul Bonsma, and Martin Grohe. Tight lower and upper bounds for the com-
plexity of canonical colour refinement. Theory of Computing Systems, 60(4):581–614, 2017.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
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A WEISFEILER-LEHMAN (WL) TEST AND COLOR REFINEMENT

The WL test can be viewed as a coloring refinement procedure if there are no collisions of hash
functions and their weighted averages. More specifically, each vertex is colored initially accord-
ing to the group it belongs to and its feature – two vertices have the same color if and only if
they are in the same vertex group and have the same feature. The initial colors are denoted as
C0,V

1 , C0,V
2 , . . . , C0,V

m , C0,W
1 , C0,W

2 , . . . , C0,W
n . Then at iteration l, the set of vertices with the

same color at iteration l − 1 are further partitioned into several subsets according to the colors
of their neighbours – two vertices vi and vi′ are in the same subset if and only if Cl−1,V

i = Cl−1,V
i′

and for any C ∈ {Cl−1,W
j : 1 ≤ j ≤ n},∑

Cl−1,W
j =C

Ei,j =
∑

Cl−1,W
j =C

Ei′,j ,

and it is similar for vertices wj and wj′ . After such partition/refinement, vertices are associated with
the same color if and only if they are in the same subset, which is the coloring at iteration l. This
procedure is terminated if the refinement is trivial, meaning that no sets with the same color are
partitioned into at least two subsets, i.e., the coloring is stable. For more information about color
refinement, we refer to Berkholz et al. (2017); Arvind et al. (2015; 2017).

We then discuss the stable coloring that Algorithm 1 will converge to, for which we made the
following definition, where S = {S1, S2, . . . , Ss} is called a partition of a set S if S1∪S2∪· · ·∪Ss =
S and Si ∩ Si′ = ∅, ∀ 1 ≤ i < i′ ≤ s.

Definition A.1 (Stable Partition Pair of Vertices). Let G = (V ∪ W,E) be a weighted bi-
partite graph with V = {v1, v2, . . . , vm}, W = {w1, w2, . . . , wn}, and vertex features H =
(hV

1 , h
V
2 , . . . , h

V
m, hW

1 , hW
2 , . . . , hW

n ), and let I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} be
partitions of {1, 2, . . . ,m} and {1, 2, . . . , n}, respectively. We say that (I,J ) is a stable partition
pair of vertices for the graph G if the followings are satisfied:

(i) hV
i = hV

i′ holds if i, i′ ∈ Ip for some p ∈ {1, 2, . . . , s}.

(ii) hW
j = hW

j′ holds if j, j′ ∈ Jq for some q ∈ {1, 2, . . . , t}.

(iii) For any p ∈ {1, 2, . . . , s}, q ∈ {1, 2, . . . , t}, and i, i′ ∈ Ip,
∑

j∈Jq
Ei,j =

∑
j∈Jq

Ei′,j .

(iv) For any p ∈ {1, 2, . . . , s}, q ∈ {1, 2, . . . , t}, and j, j′ ∈ Jq ,
∑

i∈Ip
Ei,j =

∑
i∈Ip

Ei,j′ .

We denote (Il,J l) as the partition pair corresponding the coloring at iteration l of Algorithm 1.
Suppose that there are no collisions. Then it is clear that (Il+1,J l+1) is finer than (Il,J l), denoted
as (Il+1,J l+1) ⪯ (Il,J l), which means that for any I ∈ Il+1 and any J ∈ J l+1, there exist
I ′ ∈ Il and J ′ ∈ J l such that I ⊂ I ′ and J ⊂ J ′. In addition, (Il+1,J l+1) = (Il,J l) if and only
if (Il,J l) is a stable partition pair of vertices. Note that there is at most O(|V | + |W |) iterations
leading to strictly finer partition pair, i.e, (Il+1,J l+1) ⪯ (Il,J l) but (Il+1,J l+1) ̸= (Il,J l).
We can immediately obtain the following result:

Theorem A.2. If there are no collision of hash functions and their weighted averages, then Algo-
rithm 1 terminates at a stable partition pair of vertices in O(|V |+ |W |) iterations.

Furthermore, for every (G,H) ∈ Gm,n × HV
m × HW

n , the coarsest stable partition pair of vertices
exists and is unique, which can be proved using techniques similar to the proof of Berkholz et al.
(2017, Proposition 3). Algorithm 1 terminates at the unique coarsest stable partition pair. This is
because that the coloring gin each iteration of Algorithm 1 is always coarser than the unique coarsest
stable partition pair (see Berkholz et al. (2017, Proposition 2)).

B SEPARATION POWER OF THE WL TEST

This section gives the proof and some corollaries of Theorem 4.1. First we present some definitions
and lemmas, from which the proof of Theorem 4.1 can be immediately derived.
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Definition B.1. Given (G,H), (Ĝ, Ĥ) ∈ Gm,n ×HV
m ×HW

n , we say that (G,H) and (Ĝ, Ĥ) can
be distinguished by the WL test if there exists some L ∈ N and some choices of hash functions,
HASH0,V , HASH0,W , HASHl,V , HASHl,W , HASH′

l,V , and HASH′
l,W , for l = 1, 2, . . . , L, such that

the multisets of colors at the L-th iteration of the WL test are different for (G,H) and (Ĝ, Ĥ). Let
∼ be an equivalence relationship on Gm,n ×HV

m ×HW
n defined via: (G,H) ∼ (Ĝ, Ĥ) if and only

if they can not be distinguished by the WL test.

It is clear that (G,H) ∼ (Ĝ, Ĥ) if they are isometric, i.e., there exist two permutations, σV :
{1, 2, . . . ,m} → {1, 2, . . . ,m} and σW : {1, 2, . . . , n} → {1, 2, . . . , n}, such that EσV (i),σW (j) =

Êi,j , hV
σV (i) = ĥV

i , and hW
σW (j) = ĥW

j , for any i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. How-
ever, not every pair of WL-indistinguishable graphs consists of isometric ones; see Figure 2 for an
example. However, for LP problems that cannot be distinguished by the WL test will share some
common properties, even if their associated graphs are not isomorphic.
Lemma B.2. If two weighted bipartite graphs with vertex features corresponding to two LP prob-
lems are indistinguishable by the WL test, then either both problems are feasible or both are infea-
sible. In other words, the WL test can distinguish two LP problems if one of them is feasible while
the other one is infeasible.

Proof of Lemma B.2. Let us consider two LP problems:

min
x∈Rn

c⊤x,

s.t. Ax ◦ b, l ≤ x ≤ u,
(B.1)

and
min
x∈Rn

ĉ⊤x,

s.t. Âx ◦̂ b̂, l̂ ≤ x ≤ û.
(B.2)

Let (G,H) and (Ĝ, Ĥ), where G = (V ∪ W,E) and Ĝ = (V ∪ W, Ê), be the weighted bipartite
graphs with vertex features corresponding to (B.1) and (B.2), respectively.

Since (G,H) ∼ (Ĝ, Ĥ), for some choice of hash functions with no collision during Algorithm 1
for (G,H) and (Ĝ, Ĥ), Theorem A.2 guarantees that Algorithm 1 outputs the same stable color-
ing for (G,H) and (Ĝ, Ĥ) up to permutation. More specifically, after doing some permutation,
there exist I = {I1, I2, . . . , Is} and J = {J1, J2, . . . , Jt} that are partitions of {1, 2, . . . ,m} and
{1, 2, . . . , n}, respectively, such that the followings hold:

• (bi, ◦i) = (b̂i, ◦̂i) and is independent of i ∈ Ip, for any p ∈ {1, 2, . . . , s}.

• (lj , uj) = (l̂j , ûj) and is independent of j ∈ Jq for any q ∈ {1, 2, . . . , t}.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

j∈Jq
Ai,j =

∑
j∈Jq

Âi,j and is independent of
i ∈ Ip.

• For any p ∈ {1, 2, . . . , s} and q ∈ {1, 2, . . . , t},
∑

i∈Ip
Ai,j =

∑
i∈Ip

Âi,j and is independent of
j ∈ Jq .

Suppose that the problem (B.1) is feasible with x ∈ Rn be some point in the feasible region. Define
y ∈ Rt via yq = 1

|Jq|
∑

j∈Jq
xj and x̂ ∈ Rn via x̂j = yq , j ∈ Jq . Fix any p ∈ {1, 2, . . . , s} and

some i0 ∈ Ip. It holds for any i ∈ Ip that
n∑

j=1

Ai,jxj ◦i bi, i.e.,
t∑

q=1

∑
j∈Jq

Ai,jxj ◦i0 bi0 ,

which implies that

1

|Ip|
∑
i∈Ip

t∑
q=1

∑
j∈Jq

Ai,jxj =
1

|Ip|

t∑
q=1

∑
j∈Jq

∑
i∈Ip

Ai,j

xj ◦i0 bi0 .
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Notice that
∑

i∈Ip
Ai,j is constant for j ∈ Jq , ∀ q ∈ {1, 2, . . . , t}. Let us denote αq =

∑
i∈Ip

Ai,j =∑
i∈Ip

Âi,j for any j ∈ Jq . Then it holds that

1

|Ip|

t∑
q=1

∑
j∈Jq

αqxj =
1

|Ip|

t∑
q=1

∑
j∈Jq

αqyq =
1

|Ip|

t∑
q=1

∑
j∈Jq

∑
i∈Ip

Âi,j

 yq ◦i0 bi0 .

Note that

1

|Ip|

t∑
q=1

∑
j∈Jq

∑
i∈Ip

Âi,j

 yq =
1

|Ip|
∑
i∈Ip

t∑
q=1

∑
j∈Jq

Âi,j

 yq,

and that
∑

j∈Jq
Âi,j is constant for i ∈ Ip. So one can conclude that

n∑
j=1

Âi,j x̂j =

t∑
q=1

∑
j∈Jq

Âi,j x̂j =

t∑
q=1

∑
j∈Jq

Âi,j

 yq ◦i bi, ∀ i ∈ Ip,

which leads to Âx̂ ◦̂ b̂. It can also be seen that l̂ = l ≤ x̂ ≤ u ≤ û. Therefore, x̂ is feasible for
(B.2).

We have shown above that the feasibility of (B.1) implies the feasibility of (B.2). The inverse is also
true by the same reasoning. Hence, we complete the proof.

Lemma B.3. If two weighted bipartite graphs with vertex features corresponding to two LP prob-
lems are indistinguishable by the WL test, then these two problems share the same optimal objective
value (could be ∞ or −∞).

Proof of Lemma B.3. If both problems are infeasible, then their optimal objective values are both ∞.
We then consider the case that both problems are feasible. We use the same setting and notations as
in Lemma B.2, and in addition we have that cj = ĉj , which is part of hW

j = ĥW
j , is independent of

j ∈ Jq for any q ∈ {1, 2, . . . , t}. Suppose that x is an feasible solution to the problem (B.1) and let
x̂ ∈ Rn be defined via x̂j = 1

|Jq|
∑

j′∈Jq
xj′ , j ∈ Jq . It is guaranteed by the proof of Lemma B.2

that x̂ is a feasible solution to (B.2). One can also see that c⊤x = ĉ⊤x̂. Since this holds for any
feasible solution x to (B.1), the optimal value of the objective function for (B.2) is smaller than or
equal to that for (B.1). The inverse is also true and the proof is completed.

Lemma B.4. Suppose that two weighted bipartite graphs with vertex features corresponding to two
LP problems are indistinguishable by the WL test and the their optimal objective values are both
finite. Then these two problems have the same optimal solution with the smallest ℓ2-norm, up to
permutation.

Proof of Lemma B.4. We work with the same setting as in Lemma B.3, where permutations have
already been applied. Let x and x′ be the optimal solution to (B.1) and (B.2) with the smallest
ℓ2-norm, respectively. (Recall that the optimal solution to a LP problem with the smallest ℓ2-norm
is unique, see Remark 2.2.) Let x̂ ∈ Rn be defined via x̂j = 1

|Jq|
∑

j′∈Jq
xj′ for j ∈ Jq , q =

1, 2, . . . , t. According to the arguments in the proof of Lemma B.2 and Lemma B.3, x̂ is an optimal
solution to (B.2). The minimality of x′ yields that

∥x′∥22 ≤ ∥x̂∥22 =

t∑
q=1

|Jq|

 1

|Jq|
∑
j∈Jq

xj

2

=

t∑
q=1

1

|Jq|

∑
j∈Jq

xj

2

≤
t∑

q=1

∑
j∈Jq

x2
j = ∥x∥22,

(B.3)
which implies ∥x′∥ ≤ ∥x∥. The converse ∥x∥ ≤ ∥x′∥ is also true. Therefore, we must have
∥x∥ = ∥x′∥ and hence, the inequalities in (B.3) must hold as equalities. Then one can conclude
that xj = xj′ for any j, j′ ∈ Jq and q = 1, 2, . . . , t, which leads to x = x̂. Furthermore, it follows
from ∥x′∥ = ∥x̂∥ and the uniqueness of x′ (see Remark 2.2) that x′ = x̂ = x, which completes the
proof.
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One corollary one can see from the proof of Lemma B.4 is that the components of the optimal
solution with the smallest ℓ2-norm must be the same if the two corresponding vertices have the
same color in the WL test.
Corollary B.5. Let (G,H) be a weighted bipartite graph with vertex features and let x be the
optimal solution to the corresponding LP problem with the smallest ℓ2-norm. Suppose that for some
j, j′ ∈ {1, 2, . . . , n}, one has Cl,W

j = Cl,W
j′ for any l ∈ N and any choices of hash functions, then

xj = xj′ .

Let us also define another equivalence relationship on Gm,n × HV
m × HW

n where colors of
w1, w2, . . . , wj with ordering (not just multisets) are considered:

Definition B.6. Given (G,H), (Ĝ, Ĥ) ∈ Gm,n × HV
m × HW

n , (G,H) and (Ĝ, Ĥ) are not in

the same equivalence class of W∼ if and only if there exist some L ∈ N and some hash func-
tions HASH0,V , HASH0,W , HASHl,V , HASHl,W , HASH′

l,V , and HASH′
l,W , l = 1, 2, . . . , L, such

that {{CL,V
1 , CL,V

2 , . . . , CL,V
m }} ̸= {{ĈL,V

1 , ĈL,V
2 , . . . , ĈL,V

m }} or Cl,W
j ̸= Ĉl,W

j for some
j ∈ {1, 2, . . . , n}.

It is clear that (G,H)
W∼ (Ĝ, Ĥ) implies (G,H) ∼ (Ĝ, Ĥ). One can actually obtain a stronger

version of Lemma B.4 given (G,H)
W∼ (Ĝ, Ĥ).

Corollary B.7. Suppose that two weighted bipartite graphs with vertex features corresponding to
two LP problems, (G,H) and (Ĝ, Ĥ), satisfies that (G,H)

W∼ (Ĝ, Ĥ). Then these two problems
have the same optimal solution with the smallest ℓ2-norm.

Proof of Corollary B.7. The proof of Lemma B.4 still applies with the difference that there is no
permutation on {w1, w2, . . . , wn}.

Proof of Theorem 4.1. The proof of Theorem 4.1 follows immediately from Lemmas B.2, B.3 and
B.4.

C SEPARATION POWER OF GRAPH NEURAL NETWORKS

This section aims to prove Theorem 4.2, i.e., the separation power of GNNs is equivalent to that of
the WL test. Similar results can be found in previous literature, see e.g. Xu et al. (2019); Azizian
& Lelarge (2021); Geerts & Reutter (2022). We first introduce some lemmas that can directly imply
Theorem 4.2. The lemma below, similar to Xu et al. (2019, Lemma 2), states that the separation
power of GNNs is at most that of the WL test.

Lemma C.1. Let (G,H), (Ĝ, Ĥ) ∈ Gm,n ×HV
m ×HW

n . If (G,H) ∼ (Ĝ, Ĥ), then for any FW ∈
FW

GNN, there exists a permutation σW ∈ Sn such that FW (G,H) = σW (FW (Ĝ, Ĥ)).

Proof of Lemma C.1. First we describe the sketch of our proof. The assumption (G,H) ∼ (Ĝ, Ĥ)

implies that, if we apply the WL test on (G,H) and (Ĝ, Ĥ), the test results should be exactly the
same whatever the hash functions in the WL test we choose. In the first step, we define a set of hash
functions that are injective on all possible inputs. Second, we show that, if we apply an arbitrarily
chosen GNN: FW ∈ FW

GNN on (G,H) and (Ĝ, Ĥ), the vertex features of the two graphs are exactly
the same up to permutation, given the fact that the WL test results are the same. Finally, it concludes
that FW (G,H) should be the same with FW (Ĝ, Ĥ) up to permutation.

Let us first define hash functions. We choose HASH0,V and HASH0,W that are injective on the
following sets (not multisets) respectively:

{hV
1 , . . . , h

V
m, ĥV

1 , . . . , ĥ
V
m} and {hW

1 , . . . , hW
n , ĥW

1 , . . . , ĥW
n }.

Let {Cl−1,V
i }mi=1, {C

l−1,W
j }nj=1 and {Ĉl−1,V

i }mi=1, {Ĉ
l−1,W
j }nj=1 be the vertex colors in the (l−1)-

th iteration (1 ≤ l ≤ L) in the WL test for (G,H) and (Ĝ, Ĥ) respectively. Define two sets (not
multisets) that collect different colors:

CV
l−1 = {Cl−1,V

1 , . . . , Cl−1,V
m , Ĉl−1,V

1 , . . . , Ĉl−1,V
m },
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and
CW

l−1 = {Cl−1,W
1 , . . . , Cl−1,W

n , Ĉl−1,W
1 , . . . , Ĉl−1,W

n }.
The hash function HASH′

l,V and HASH′
l,W are chosen such that the outputs are located in some

linear spaces and that {HASH′
l,V (C) : C ∈ CV

l−1} and {HASH′
l,W (C) : C ∈ CW

l−1} are both lin-
early independent. Finally, we choose hash functions HASHl,V and HASHl,W such that HASHl,V

is injective on the set (not multiset)
Cl−1,V

i ,

n∑
j=1

Ei,jHASH′
l,W

(
Cl−1,W

j

) : 1 ≤ i ≤ m


∪


Ĉl−1,V

i ,

n∑
j=1

Ei,jHASH′
l,W

(
Ĉl−1,W

j

) : 1 ≤ i ≤ m

 ,

and that HASHl,W is injective on the set (not multiset){(
Cl−1,W

j ,

n∑
i=1

Ei,jHASH′
l,V

(
Cl−1,V

i

))
: 1 ≤ j ≤ n

}

∪

{(
Ĉl−1,W

j ,

n∑
i=1

Ei,jHASH′
l,V

(
Ĉl−1,V

i

))
: 1 ≤ j ≤ n

}
.

Those hash functions give the vertex colors at the next iteration (l-th layer): {Cl,V
i }mi=1, {C

l,W
j }nj=1

and {Ĉl,V
i }mi=1, {Ĉ

l,W
j }nj=1.

Consider any FW ∈ FW
GNN and let {hl−1,V

i }mi=1, {h
l−1,W
j }nj=1 and {ĥl−1,V

i }mi=1, {ĥ
l−1,W
j }nj=1 be

the vertex features in the l-th layer (0 ≤ l ≤ L) of the graph neural network FW . (Update rule refers
to equations (2.1),(2.2),(2.3),(2.5)) We aim to prove by induction that for any l ∈ {0, 1, . . . , L}, the
followings hold:

(i) Cl,V
i = Cl,V

i′ implies hl,V
i = hl,V

i′ , for 1 ≤ i, i′ ≤ m;

(ii) Ĉl,V
i = Ĉl,V

i′ implies ĥl,V
i = ĥl,V

i′ , for 1 ≤ i, i′ ≤ m;

(iii) Cl,V
i = Ĉl,V

i′ implies hl,V
i = ĥl,V

i′ , for 1 ≤ i, i′ ≤ m;

(iv) Cl,W
j = Cl,W

j′ implies hl,W
j = hl,W

j′ , for 1 ≤ j, j′ ≤ n;

(v) Ĉl,W
j = Ĉl,W

j′ implies ĥl,W
j = ĥl,W

j′ , for 1 ≤ j, j′ ≤ n;

(vi) Cl,W
j = Ĉl,W

j′ implies hl,W
j = ĥl,W

j′ , for 1 ≤ j, j′ ≤ n.

The above claims (i)-(vi) are clearly true for l = 0 due to the injectivity of HASH0,V and HASH0,W .
Now we assume that (i)-(vi) are true for some l−1 ∈ {0, 1, . . . , L−1}. Suppose that Cl,V

i = Cl,V
i′ ,

i.e.,

HASHl,V

Cl−1,V
i ,

n∑
j=1

Ei,jHASH′
l,W

(
Cl−1,W

j

)
= HASHl,V

Cl−1,V
i′ ,

n∑
j=1

Ei′,jHASH′
l,W

(
Cl−1,W

j

) ,

for some 1 ≤ i, i′ ≤ m. It follows from the injectivity of HASHl,V that

Cl−1,V
i = Cl−1,V

i′ , (C.1)

17



Published as a conference paper at ICLR 2023

and
n∑

j=1

Ei,jHASH′
l,W

(
Cl−1,W

j

)
=

n∑
j=1

Ei′,jHASH′
l,W

(
Cl−1,W

j

)
.

According to the linearly independent property of HASH′
l,W , the above equation implies that∑

Cl−1,W
j =C

Ei,j =
∑

Cl−1,W
j =C

Ei′,j , ∀ C ∈ CW
l−1. (C.2)

Note that the induction assumption guarantees that hl−1,W
j = hl−1,W

j′ as long as Cl−1,W
j = Cl−1,W

j′ .
So one can assign for each C ∈ CW

l−1 some h(C) ∈ Rdl−1 such that hl−1,W
j = h(C) as long as

Cl−1,W
j = C for any 1 ≤ j ≤ n. Therefore, it follows from (C.2) that

n∑
j=1

Ei,jf
W
l (hl−1,W

j ) =
∑

C∈CW
l−1

∑
Cl−1,W

j =C

Ei,jf
W
l (h(C))

=
∑

C∈CW
l−1

∑
Cl−1,W

j =C

Ei′,jf
W
l (h(C)) =

n∑
j=1

Ei′,jf
W
l (hl−1,W

j ).

Note also that (C.1) and the induction assumption lead to hl−1,V
i = hl−1,V

i′ . Then one can conclude
that

hl,V
i = gVl

hl−1,V
i ,

n∑
j=1

Ei,jf
W
l (hl−1,W

j )

 = gVl

hl−1,V
i′ ,

n∑
j=1

Ei′,jf
W
l (hl−1,W

j )

 = hl,V
i′ .

This proves the claim (i) for l. The other five claims can be proved using similar arguments.

Therefore, we obtain from (G,H) ∼ (Ĝ, Ĥ) that{{
hL,V
1 , hL,V

2 , . . . , hL,V
m

}}
=
{{

ĥL,V
1 , ĥL,V

2 , . . . , ĥL,V
m

}}
,

and that {{
hL,W
1 , hL,W

2 , . . . , hL,W
n

}}
=
{{

ĥL,W
1 , ĥL,W

2 , . . . , ĥL,W
n

}}
.

By the definition of the output layer, the above conclusion guarantees that FW (G,H) =

σW (FW (Ĝ, Ĥ)) for some σW ∈ Sn.

Lemma C.2. Let (G,H), (Ĝ, Ĥ) ∈ Gm,n × HV
m × HW

n . Suppose that for any FW ∈ FW
GNN,

there exists a permutation σW ∈ Sn such that FW (G,H) = σW (FW (Ĝ, Ĥ)). Then F (G,H) =

F (Ĝ, Ĥ) holds for any F ∈ FGNN.

Proof of Lemma C.2. Pick an arbitrary F ∈ FGNN. We choose FW ∈ FW
GNN such that

FW (G′, H ′) = (F (G′, H ′), . . . , F (G′, H ′))
⊤ ∈ Rn, ∀ (G′, H ′) ∈ Gm,n ×HV

m ×HW
n .

Note that every entry in the output of FW is equal to the output of F . Thus, it follows from
FW (G,H) = σW (FW (Ĝ, Ĥ)) that F (G,H) = F (Ĝ, Ĥ).

The next lemma is similar to Xu et al. (2019, Theorem 3) and states that the separation power of
GNNs is at least that of the WL test.

Lemma C.3. Let (G,H), (Ĝ, Ĥ) ∈ Gm,n × HV
m × HW

n . If F (G,H) = F (Ĝ, Ĥ) holds for any
F ∈ FGNN, then (G,H) ∼ (Ĝ, Ĥ).
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Proof of Lemma C.3. It suffices to prove that, if (G,H) can be distinguished from (Ĝ, Ĥ) by the
WL test, then there exists F ∈ FGNN, such that F (G,H) ̸= F (Ĝ, Ĥ). The distinguish-ability of
the WL test implies that there exists L ∈ N and hash functions, HASH0,V , HASH0,W , HASHl,V ,
HASHl,W , HASH′

l,V , and HASH′
l,W , for l = 1, 2, . . . , L, such that{{

CL,V
1 , CL,V

2 , . . . , CL,V
m

}}
̸=
{{

ĈL,V
1 , ĈL,V

2 , . . . , ĈL,V
m

}}
, (C.3)

or {{
CL,W

1 , CL,W
2 , . . . , CL,W

n

}}
̸=
{{

ĈL,W
1 , ĈL,W

2 , . . . , ĈL,W
n

}}
, (C.4)

We aim to construct some GNNs such that the followings hold for any l = 0, 1, . . . , L:

(i) hl,V
i = hl,V

i′ implies Cl,V
i = Cl,V

i′ , for 1 ≤ i, i′ ≤ m;

(ii) ĥl,V
i = ĥl,V

i′ implies Ĉl,V
i = Ĉl,V

i′ , for 1 ≤ i, i′ ≤ m;

(iii) hl,V
i = ĥl,V

i′ implies Cl,V
i = Ĉl,V

i′ , for 1 ≤ i, i′ ≤ m;

(iv) hl,W
j = hl,W

j′ implies Cl,W
j = Cl,W

j′ , for 1 ≤ j, j′ ≤ n;

(v) ĥl,W
j = ĥl,W

j′ implies Ĉl,W
j = Ĉl,W

j′ , for 1 ≤ j, j′ ≤ n;

(vi) hl,W
j = ĥl,W

j′ implies Cl,W
j = Ĉl,W

j′ , for 1 ≤ j, j′ ≤ n.

It is clear that the above conditions (i)-(vi) hold for l = 0 as long as we choose fV
in and fW

in that are
injective on the following two sets (not multisets) respectively:

{hV
1 , . . . , h

V
m, ĥV

1 , . . . , ĥ
V
m} and {hW

1 , . . . , hW
n , ĥW

1 , . . . , ĥW
n }.

We then assume that (i)-(vi) hold for some 0 ≤ l − 1 < L, and show that these conditions are also
satisfied for l if we choose fV

l , fW
l , gVi , gWl properly. Let us consider the set (not multiset):

{α1, α2, . . . , αs} ⊂ Rdl−1

that collects all different values in hl−1,W
1 , hl−1,W

2 , . . . , hl−1,W
n , ĥl−1,W

1 , ĥl−1,W
2 , . . . , ĥl−1,W

n . Let
dl ≥ s and let edl

p = (0, . . . , 0, 1, 0, . . . , 0) be the vector in Rdl with the p-th entry being 1 and all
other entries being 0, for 1 ≤ p ≤ s. Choose fW

l : Rdl−1 → Rdl as a continuous function satisfying
fW
l (αp) = edl

p , p = 1, 2, . . . , s, and choose gVl : Rdl−1 × Rdl → Rdl that is continuous and is
injective when restricted on the set (not multiset)

hl−1,V
i ,

n∑
j=1

Ei,jf
W
l (hl−1,W

j )

 : 1 ≤ i ≤ m


∪


ĥl−1,V

i ,

n∑
j=1

Êi,jf
W
l (ĥl−1,W

j )

 : 1 ≤ i ≤ m

 .

Noticing that
n∑

j=1

Ei,jf
W
l (hl−1,W

j ) =

s∑
p=1

 ∑
hl−1,W
j =αp

Ei,j

 edl
p ,

and that {edl
1 , edl

2 , . . . , edl
s } is linearly independent, one can conclude that hl,V

i = hl,V
i′ if and only

if hl−1,V
i = hl−1,V

i′ and
∑n

j=1 Ei,jf
W
l (hl−1,W

j ) =
∑n

j=1 Ei′,jf
W
l (hl−1,W

j ), where the second
condition is equivalent to∑

hl−1,W
j =αp

Ei,j =
∑

hl−1,W
j =αp

Ei′,j , ∀ p ∈ {1, 2, . . . , s}.
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This, as well as the condition (iv) for l − 1, implies that
n∑

j=1

Ei,jHASH′
l,W

(
Cl−1,W

j

)
=

n∑
j=1

Ei′,jHASH′
l,W

(
Cl−1,W

j

)
,

and hence that Cl,V
i = Cl,V

i′ by using hl−1,V
i = hl−1,V

i and condition (i) for l − 1. Therefore, we
know that (i) is satisfied for l, and one can show (ii) and (iii) for l using similar arguments by taking
dl large enough. In addition, fV

l and gWl can also be chosen in a similar way such that (iv)-(vi) are
satisfied for l.

Combining (C.3), (C.4), and condition (i)-(iv) for L, we obtain that{{
hL,V
1 , hL,V

2 , . . . , hL,V
m

}}
̸=
{{

ĥL,V
1 , ĥL,V

2 , . . . , ĥL,V
m

}}
, (C.5)

or {{
hL,W
1 , hL,W

2 , . . . , hL,W
n

}}
̸=
{{

ĥL,W
1 , ĥL,W

2 , . . . , ĥL,W
n

}}
.

Without loss of generality, we can assume that (C.5) holds.

Consider the set (not multiset)
{β1, β2, . . . , βt} ⊂ RdL ,

that collects all different values in hL,V
1 , hL,V

2 , . . . , hL,V
m , ĥL,V

1 , ĥL,V
2 , . . . , ĥL,V

m . Let k > 1 be
a positive integer that is greater than the maximal multiplicity of an element in the multisets
{{hL,V

1 , hL,V
2 , . . . , hL,V

m }} and {{ĥL,V
1 , ĥL,V

2 , . . . , ĥL,V
m }}. There exists a continuous function

φ : RdL → R such that φ(βq) = kq for q = 1, 2, . . . , t, and due to (C.5) and the fact that the
way of writing an integer as k-ary expression is unique, it hence holds that

m∑
i=1

φ(hL,V
i ) ̸=

m∑
i=1

φ(ĥL,V
i ).

Set the dimension of (L + 1)-th layer as 1: dL+1 = 1, and set fL+1,V = 0, fL+1,W = 0,
gL+1,V (h, 0) = φ(h), and gL+1,W = 0. Then we have hL+1,V

i = φ(hL,V
i ), ĥL+1,V

i = φ(ĥL,V
i ),

and hL+1,W
j = ĥL+1,W

j for i = 1, 2, . . . ,m and j = 1, 2, · · · , n. Define fout : R × R → R via
fout(h, h

′) = h. Then it follows that

fout

 m∑
i=1

hL+1,V
i ,

n∑
j=1

hL+1,W
j

 =

m∑
i=1

φ(hL,V
i )

̸=
m∑
i=1

φ(ĥL,V
i ) = fout

 m∑
i=1

ĥL+1,V
i ,

n∑
j=1

ĥL+1,W
j

 ,

which guarantees the existence of F ∈ FGNN that has L + 1 layers and satisfies F (G,H) ̸=
F (Ĝ, Ĥ).

Proof of Theorem 4.2. The equivalence of the three conditions follow immediately from
Lemma C.1, C.2, and C.3.

Corollary C.4. For any two weighted bipartite graphs with vertex features (G,H), (Ĝ, Ĥ) ∈
Gm,n ×HV

m ×HW
n , the followings are equivalent:

(i) (G,H)
W∼ (Ĝ, Ĥ).

(ii) For any FW ∈ FW
GNN, it holds that FW (G,H) = FW (Ĝ, Ĥ).

Proof of Corollary C.4. The proof follows similar lines as in the proof of Theorem 4.2 with the
difference that there is no permutation on {w1, w2, . . . , wn}.
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In addition to the separation power of GNNs for two weighted bipartite graphs with vertex features,
one can also obtain results on separating different vertices in one weighted bipartite graph with
vertex features.
Corollary C.5. For any weighted bipartite graph with vertex features (G,H) and any j, j′ ∈
{1, 2, . . . , n}, the followings are equivalent:

(i) Cl,W
j = Cl,W

j′ holds for any l ∈ N and any choice of hash functions.

(ii) FW (G,H)j = FW (G,H)j′ , ∀ FW ∈ FW
GNN.

Proof of Corollary C.5. “(i) =⇒ (ii)” and “(ii) =⇒ (i)” can be proved using similar arguments in
the proof of Lemma C.1 and Lemma C.3, respectively.

D UNIVERSAL APPROXIMATION OF FGNN

This section provides the proof of Theorem 4.3. The main mathematical tool used in the proof is the
Stone–Weierstrass theorem:
Theorem D.1 (Stone–Weierstrass theorem (Rudin, 1991, Section 5.7)). Let X be a compact Haus-
dorff space and let F ⊂ C(X,R) be a subalgebra. If F separates points on X , i.e., for any x, x′ ∈ X
with x ̸= x′, there exists F ∈ F such that F (x) ̸= F (x′), and 1 ∈ F , then F is dense in C(X,R)
with the topology of uniform convergence.

Proof of Theorem 4.3. Let π : X → X/ ∼ be the quotient map, where π(X) = X/ ∼ is equipped
with the quotient topology. For any F ∈ FGNN, since F : X → R is continuous and by Theorem 4.2,
F (G,H) = F (Ĝ, Ĥ), ∀ (G,H) ∼ (Ĝ, Ĥ), there exists a unique continuous F̃ : π(X) → R such
that F = F̃ ◦ π. Set

F̃GNN =
{
F̃ : F ∈ FGNN

}
⊂ C(π(X),R).

In addition, the assumption on Φ, i.e,

Φ(G,H) = Φ(Ĝ, Ĥ), ∀ (G,H) ∼ (Ĝ, Ĥ),

leads to the existence of a unique Φ̃ ∈ C(π(X),R) with Φ = Φ̃ ◦ π.

Since X is compact, then π(X) is also compact due to the continuity of π. According to Lemma D.2
below, F̃GNN is a subalgebra of C(π(X),R). By Theorem 4.2, F̃GNN separates points on π(X). This
can further imply that π(X) is Hausdorff. In fact, for any x, x′ ∈ π(X), there exists F̃ ∈ F̃GNN

with F̃ (x) ̸= F̃ (x′). Without loss of generality, we assume that F̃ (x) < F̃ (x′) and choose some
c ∈ R with F̃ (x) < c < F̃ (x′). By continuity of F̃ , we know that F̃−1((−∞, c)) ∩ π(X)

and F̃−1((c,+∞)) ∩ π(X) are disjoint open subsets of π(X) with x ∈ F̃−1((−∞, c)) ∩ π(X)

and x′ ∈ F̃−1((c,+∞)) ∩ π(X), which leads to the Hausdorff property of π(X). Note also that
1 ∈ F̃GNN. Using Theorem D.1, we can conclude the denseness of F̃GNN in C(π(X),R). Therefore,
for any ϵ > 0, there exists F ∈ FGNN, such that

sup
(G,H)∈X

|Φ(G,H)− F (G,H)| = sup
x∈π(X)

|Φ̃(x)− F̃ (x)| < ϵ,

which completes the proof.

Lemma D.2. FGNN is a subalgebra of C(Gm,n × HV
m × HW

n ,R), and as a corollary, F̃GNN is a
subalgebra of C(Gm,n ×HV

m ×HW
n / ∼,R).

Proof of Lemma D.2. It suffices to show that FGNN is closed under addition and multiplication. Con-
sider any F, F̂ ∈ FGNN. Thanks to Lemma D.3, we can assume that both F and F̂ have L layers.
Suppose that F is constructed by

fV
in : HV → Rd0 , fW

in : HW → Rd0 ,

fV
l , fW

l : Rdl−1 → Rdl , gVl , gWl : Rdl−1 × Rdl → Rdl , 1 ≤ l ≤ L,

fout : RdL × RdL → R,
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and that F̂ is constructed by

f̂V
in : HV → Rd̂0 , f̂W

in : HW → Rd̂0 ,

f̂V
l , f̂W

l : Rd̂l−1 → Rd̂l , ĝVl , ĝWl : Rd̂l−1 × Rd̂l → Rd̂l , 1 ≤ l ≤ L,

f̂out : Rd̂L × Rd̂L → R.

One can then construct two new GNNs computing F + F̂ and F · F̂ as follows:

The input layer The update rule of the input layer is defined by

fVin : HV → Rd0 × Rd̂0 ,

h 7→
(
fV
in (h), f̂

V
in (h)

)
,

fWin : HW → Rd0 × Rd̂0 ,

h 7→
(
fW
in (h), f̂W

in (h)
)
.

Then the vertex features after the computation of the input layer h0,V
i and h0,W

j are given by:

h0,V
i = fVin (h

V
i ) =

(
fV
in (h

V
i ), f̂

V
in (h

V
i )
)
= (h0,V

i , ĥ0,V
i ) ∈ Rd0 × Rd̂0 ,

h0,W
j = fWin (hW

j ) =
(
fW
in (hW

j ), f̂W
in (hW

j )
)
= (h0,W

j , ĥ0,W
j ) ∈ Rd0 × Rd̂0 ,

for i = 1, 2 . . . ,m, and j = 1, 2, . . . , n.

The l-th layer (1 ≤ l ≤ L) . We set

fVl : Rdl−1 × Rd̂l−1 → Rdl × Rd̂l ,

(h, ĥ) 7→
(
fV
l (h), f̂V

l (ĥ)
)
,

fWl : Rdl−1 × Rd̂l−1 → Rdl × Rd̂l ,

(h, ĥ) 7→
(
fW
l (h), f̂W

l (ĥ)
)
,

gV
l : Rdl−1 × Rd̂l−1 × Rdl × Rd̂l → Rdl × Rd̂l ,

(h, ĥ, h′, ĥ′) 7→
(
gWl (h, h′), ĝWl (ĥ, ĥ′)

)
,

and

gW
l : Rdl−1 × Rd̂l−1 × Rdl × Rd̂l → Rdl × Rd̂l ,

(h, ĥ, h′, ĥ′) 7→
(
gVl (h, h′), ĝVl (ĥ, ĥ′)

)
.

Then the vertex features after the computation of the l-th layer hl,V
i and hl,W

j are given by:

hl,V
i = gV

l

hl−1,V
i ,

n∑
j=1

Ei,jf
W
l (hl−1,W

j )


=

gVl

hl−1,V
i ,

n∑
j=1

Ei,jf
W
l (hl−1,W

j )

 , ĝVl

ĥl−1,V
i ,

n∑
j=1

Ei,j f̂
W
l (ĥl−1,W

j )


= (hl,V

i , ĥl,V
i ) ∈ Rdl × Rd̂l ,

and

hl,W
j = gW

l

(
hl−1,W
j ,

m∑
i=1

Ei,jf
V
l (hl−1,V

i )

)
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=

(
gWl

(
hl−1,W
j ,

m∑
i=1

Ei,jf
V
l (hl−1,V

i )

)
, ĝWl

(
ĥl−1,W
j ,

m∑
i=1

Ei,j f̂
V
l (ĥl−1,V

i )

))
= (hl,W

j , ĥl,W
j ) ∈ Rdl × Rd̂l ,

for i = 1, 2 . . . ,m, and j = 1, 2, . . . , n.

The output layer To obtain F + F̂ , we set

fadd
out : RdL × Rd̂L × RdL × Rd̂L → R,

((h, ĥ), (h′, ĥ′)) 7→ fout(h, h
′) + f̂out(ĥ, ĥ

′).

Then it holds that

fadd
out

 m∑
i=1

hL,V
i ,

n∑
j=1

hL,W
1

 =fout

 m∑
i=1

hL,V
i ,

n∑
j=1

hL,W
j

+ f̂out

 m∑
i=1

ĥL,V
i ,

n∑
j=1

ĥL,W
j


=F (G,H) + F̂ (G,H).

To obtain F · F̂ , we set

fmultiply
out : RdL × Rd̂L × RdL × Rd̂L → R,

((h, ĥ), (h′, ĥ′)) 7→ fout(h, h
′) · f̂out(ĥ, ĥ

′).

Then it holds that

fmultiply
out

 m∑
i=1

hL,V
i ,

n∑
j=1

hL,W
1

 =fout

 m∑
i=1

hL,V
i ,

n∑
j=1

hL,W
j

 · f̂out

 m∑
i=1

ĥL,V
i ,

n∑
j=1

ĥL,W
j


=F (G,H) · F̂ (G,H).

The constructed GNNs satisfy F (G,H) + F̂ (G,H) ∈ FGNN and F (G,H) · F̂ (G,H) ∈ FGNN,
which finishes the proof.

Lemma D.3. If F ∈ FGNN has L layers, then there exists F̂ ∈ FGNN with L + 1 layers such that
F = F̂ .

Proof of Lemma D.3. Suppose that F is constructed by fV
in , f

W
in , fout, {fV

l , fW
l , gVl , gWl }Ll=0. We

choose fV
L+1 ≡ 0, fW

L+1 ≡ 0, gVL+1(h, h
′) = h, gWL+1(h, h

′) = h. Let F̂ be constructed by
fV
in , f

W
in , fout, {fV

l , fW
l , gVl , gWl }L+1

l=0 . Then F̂ has L+ 1 layers with F̂ = F .

E UNIVERSAL APPROXIMATION OF FW
GNN

This section provides an universal approximation result of FW
GNN.

Theorem E.1. Let X ⊂ Gm,n ×HV
m ×HW

n be a compact subset that is closed under the action of
Sm × Sn. Suppose that Φ ∈ C(X,Rn) satisfies the followings:

(i) For any σV ∈ Sm, σW ∈ Sn, and (G,H) ∈ X , it holds that

Φ ((σV , σW ) ∗ (G,H)) = σW (Φ(G,H)). (E.1)

(ii) Φ(G,H) = Φ(Ĝ, Ĥ) holds for all (G,H), (Ĝ, Ĥ) ∈ X with (G,H)
W∼ (Ĝ, Ĥ).

(iii) Given any (G,H) ∈ X and any j, j′ ∈ {1, 2, . . . , n}, if Cl,W
j = Cl,W

j′ (the vertex colors
obtained in the l-th iteration in WL test) holds for any l ∈ N and any choices of hash functions,
then Φ(G,H)j = Φ(G,H)j′ .
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Then for any ϵ > 0, there exists F ∈ FW
GNN such that

sup
(G,H)∈X

∥Φ(G,H)− F (G,H)∥ < ϵ.

Theorem E.1 is a LP-graph version of results on the closure of equivariant GNN class in Azizian &
Lelarge (2021); Geerts & Reutter (2022). The main tool in the proof of Theorem E.1 is the following
generalized Stone-Weierstrass theorem for equivariant functions established in Azizian & Lelarge
(2021).

Theorem E.2 (Generalized Stone-Weierstrass theorem (Azizian & Lelarge, 2021, Theorem 22)).
Let X be a compact topology space and let G be a finite group that acts continuously on X and Rn.
Define the collection of all equivariant continuous functions from X to Rn as follows:

CE(X,Rn) = {F ∈ C(X,Rn) : F (g ∗ x) = g ∗ F (x), ∀ x ∈ X, g ∈ G}.

Consider any F ⊂ CE(X,Rn) and any Φ ∈ CE(X,Rn). Suppose the following conditions hold:

(i) F is a subalgebra of C(X,Rn) and 1 ∈ F .

(ii) For any x, x′ ∈ X , if f(x) = f(x′) holds for any f ∈ C(X,R) with f1 ∈ F , then for any
F ∈ F , there exists g ∈ G such that F (x) = g ∗ F (x′).

(iii) For any x, x′ ∈ X , if F (x) = F (x′) holds for any F ∈ F , then Φ(x) = Φ(x′).

(iv) For any x ∈ X , it holds that Φ(x)j = Φ(x)j′ , ∀ (j, j′) ∈ J(x), where J(x) =
{{1, 2, . . . , n}n : F (x)j = F (x)j′ , ∀ F ∈ F}.

Then for any ϵ > 0, there exists F ∈ F such that

sup
x∈X

∥Φ(x)− F (x)∥ < ϵ.

We refer to Timofte (2005) for different versions of Stone-Weierstrass theorem, that is also used in
Azizian & Lelarge (2021). In the proof of Theorem E.1, we also need the following lemma whose
proof is almost the same as the proof of Lemma D.2 and is hence omitted.

Lemma E.3. FW
GNN is a subalgebra of C(Gm,n ×HV

m ×HW
n ,Rn).

Proof of Theorem E.1. Let Sm × Sn act on Rn via

(σV , σW ) ∗ y = σW (y), ∀ σV ∈ Sm, σW ∈ Sn, y ∈ Rn.

Then it follows from (E.1) that Φ is equivariant. In addition, the definition of graph neural networks
directly guarantees the equivariance of functions in FW

GNN. Therefore, one only needs to verify the
conditions with F as FW

GNN and G as Sn in Theorem E.2:

• Condition (i) in Theorem E.2 follows from Lemma E.3 and the definition of FW
GNN.

• Condition (ii) in Theorem E.2 follows from Theorem 4.2 and FGNN1 ⊂ FW
GNN.

• Condition (iii) in Theorem E.2 follows from Corollary C.4 and Condition (ii) in Theorem E.1.

• Condition (iv) in Theorem E.2 follows from Corollary C.5 and Condition (iii) in Theorem E.1.

It finishes the proof.

F PROOF OF MAIN THEOREMS

We collect the proofs of main theorems stated in Section 3 in this section.
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Proof of Theorem 3.1. If F (G,H) = F (Ĝ, Ĥ) holds for any F ∈ FGNN, then Theorem 4.2 guar-
antees that (G,H) ∼ (Ĝ, Ĥ). Thus, Condition (i), (ii), and (iii) follow directly from Lemmas B.2,
B.3, and B.4, respectively.

Furthermore, if FW (G,H) = FW (Ĝ, Ĥ), ∀ FW ∈ FW
GNN, then it follows from Corollary C.4 and

Corollary B.7 that the two LP problems associated to (G,H) and (Ĝ, Ĥ) share the same optimal
solution with the smallest ℓ2-norm.

Then we head into the proof of three main approximation theorems, say Theorem 3.2, 3.4, and
3.6, that state that GNNs can approximate the feasibility mapping Φfeas, the optimal objective value
mapping Φobj, and the optimal solution mapping Φsolu with arbitrarily small error, respectively. We
have established in Sections D and E several theorems for graph neural networks to approximate
continuous mappings. Therefore, the proof of Theorem 3.2, 3.4, and 3.6 basically consists of two
steps:

(i) Show that the mappings Φfeas, Φobj, and Φsolu are measurable.
(ii) Use continuous mappings to approximate the target measurable mappings, and then apply the

universal approximation results established in Sections D and E.

Let us first prove the feasibility of Φfeas, Φobj, and Φsolu in the following three lemmas.

Lemma F.1. The feasibility mapping Φfeas defined in (2.7) is measurable, i.e., the preimages Φ−1
feas(0)

and Φ−1
feas(1) are both measurable subsets of Gm,n ×HV

m ×HW
n .

Proof of Lemma F.1. It suffices to prove that for any ◦ ∈ {≤,=≥}m and any Nl, Nu ⊂
{1, 2, . . . , n}, the set

Xfeas := {(A, b, l, u) ∈ Rm×n × Rm × R|Nl| × R|Nu| :

∃ x ∈ Rn, s.t. Ax ◦ b, xj ≥ lj , ∀ j ∈ Nl, xj ≤ uj , ∀ j ∈ Nu},

is a measurable subset in Rm×n × Rm × R|Nl| × R|Nu|. Without loss of generality, we assume
that ◦ = (≤, . . . ,≤,=, . . . ,=,≥, . . . ,≥) where “≤”, “=”, and “≥” appear for k1, k2 − k1, and
m− k1 − k2 times, respectively, 0 ≤ k1 ≤ k2 ≤ m.

Let us define a function Vfeas : Rm×n × Rm × R|Nl| × R|Nu| × Rn → R≥0 that measures to what
extend a point in Rn violates the constraints:

Vfeas(A, b, l, u, x) = max

 max
1≤i≤k1

 n∑
j=1

Ai,jxj − bi


+

, max
k1<i≤k2

∣∣∣∣∣∣
n∑

j=1

Ai,jxj − bi

∣∣∣∣∣∣ ,
max

k2<i≤m

bi −
n∑

j=1

Ai,jxj


+

, max
j∈Nl

(lj − xj)+, max
j∈Nu

(xj − uj)+

 ,

where y+ = max{y, 0}. It can be seen that Vfeas is continuous and Vfeas(A, b, l, u, x) = 0 if and
only if Ax ◦ b, xj ≥ lj , ∀ j ∈ Nl, and xj ≤ uj , ∀ j ∈ Nu. Therefore, for any (A, b, l, u) ∈
Rm×n × Rm × R|Nl| × R|Nu|, the followings are equivalent:

• (A, b, l, u) ∈ Xfeas.

• There exists R ∈ N+ and x ∈ BR := {x′ ∈ Rn : ∥x′∥ ≤ R}, such that Vfeas(A, b, l, u, x) = 0.

• There exists R ∈ N+ such that for any r ∈ N+, Vfeas(A, b, l, u, x) ≤ 1/r holds for some x ∈
BR ∩Qn.

This implies that Xfeas can be described via⋃
R∈N+

⋂
r∈N+

⋃
x∈BR∩Qn

{
(A, b, l, u) ∈ Rm×n × Rm × R|Nl| × R|Nu| : Vfeas(A, b, l, u, x) ≤ 1

r

}
.
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Since Qn is countable and V is continuous, we immediately obtain from the above expression that
Xfeas is measurable.

Lemma F.2. The optimal objective value mapping Φobj defined in (2.8) is measurable.

Proof of Lemma F.2. It suffices to prove that for any ◦ ∈ {≤,=≥}m, any Nl, Nu ⊂ {1, 2, . . . , n},
and any ϕ ∈ R, the set

Xobj := {(A, b, c, l, u) ∈ Rm×n × Rm × Rn × R|Nl| × R|Nu| :

∃ x ∈ Rn, s.t. c⊤x ≤ ϕ, Ax ◦ b, xj ≥ lj , ∀ j ∈ Nl, xj ≤ uj , ∀ j ∈ Nu},

is a measurable subset in Rm×n×Rm×Rn×R|Nl|×R|Nu|. Then the proof follows the same lines
as in the proof of Lemma F.1, with a different violation function

Vobj(A, b, c, l, u, x) = max
{
(c⊤x− ϕ)+, Vfeas(A, b, l, u, x)

}
.

Lemma F.3. The optimal solution mapping Φsolu defined in (2.9) is measurable.

Proof of Lemma F.3. It suffices to show that for every j0 ∈ {1, 2, . . . , n}, the mapping

πj0 ◦ Φsolu : Φ−1
obj (R) → R,

is measurable, where πj0 : Rn → R maps a vector x ∈ Rn to its j0-th component. Similar as before,
one can consider any ◦ ∈ {≤,=≥}m, any Nl, Nu ⊂ {1, 2, . . . , n}, and any ϕ ∈ R, and prove that
the set

Xsolu := {(A, b, c, l, u) ∈ Rm×n × Rm × Rn × R|Nl| × R|Nu| :

The LP problem, min
x∈Rd

c⊤x, s.t. Ax ◦ b, xj ≥ lj , ∀ j ∈ Nl, xj ≤ uj , ∀ j ∈ Nu,

has a finite optimal objective value, and its optimal solution with the smallest ℓ2 − norm,

xopt, satisfies (xopt)j0 < ϕ},

is measurable.

Note that we have fixed ◦ ∈ {≤,=≥}m and Nl, Nu ⊂ {1, 2, . . . , n}. Let

ι : Rm×n × Rm × Rn × R|Nl| × R|Nu| → Gm,n ×HV
m ×HW

n ,

be the embedding map. Define another violation function

Vsolu : (Φobj ◦ ι)−1(R)× Rn → R,

via

Vsolu(A, b, c, l, u, x) = max
{(

c⊤x− Φobj(ι(A, b, c, l, u))
)
+
, Vfeas(A, b, c, l, u, x)

}
,

which is measurable with respect to (A, b, c, l, u) for any fixed x ∈ Rn, due to the measurability
of Φobj and the continuity of Vfeas. Moreover, Vsolu is continuous with respect to x. Therefore, the
followings are equivalent for (A, b, c, l, u) ∈ (Φobj ◦ ι)−1(R):

• (A, b, c, l, u) ∈ Xsolu.

• There exists x ∈ Rn with xj0 < ϕ, such that Vsolu(A, b, c, l, u, x) = 0 and Vsolu(A, b, c, l, u, x′) >
0, ∀ x′ ∈ B∥x∥, x

′
j0

≥ ϕ.

• There exists R ∈ Q+, r ∈ N+, and x ∈ BR with xj0 ≤ ϕ−1/r, such that Vsolu(A, b, c, l, u, x) = 0
and Vsolu(A, b, c, l, u, x′) > 0, ∀ x′ ∈ BR, x

′
j0

≥ ϕ.

• There exists R ∈ Q+ and r ∈ N+, such that for all r′ ∈ N+, ∃ x ∈ BR ∩ Qn, xj0 ≤ ϕ − 1/r,
s.t. Vsolu(A, b, c, l, u, x) < 1/r′ and that ∃ r′′ ∈ N+, s.t., Vsolu(A, b, c, l, u, x′) ≥ 1/r′′, ∀ x′ ∈
BR ∩Qn, x′

j0
≥ ϕ.
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Therefore, one has that

Xsolu =
⋃

R∈Q+

⋃
r∈N+ ⋂

r′∈N+

⋃
x∈BR∩Qn, xj0

≤ϕ− 1
r

{
(A, b, c, l, u) ∈ (Φobj ◦ ι)−1(R) : Vsolu(A, b, c, l, u, x) <

1

r′

}
∩

 ⋃
r′′∈N+

⋂
x′∈BR∩Qn, x′

j0
≥ϕ

{
(A, b, c, l, u) ∈ (Φobj ◦ ι)−1(R) : Vsolu(A, b, c, l, u, x′) ≥ 1

r′′

} ,

which is measurable.

With the measurability of Φfeas, Φobj, and Φsolu established, the next step is to approximate Φfeas,
Φobj, and Φsolu using continuous mappings, and hence graph neural networks. Before proceeding,
let us mention that Gm,n × HV

m × HW
n is essentially the disjoint union of finitely many product

spaces of Euclidean spaces and discrete spaces that have finitely many points and are equipped with
discrete measures. More specifically,

Gm,n ×HV
m ×HW

n
∼= Rm×n × (R× {≤,=,≥})m × (R× (R ∪ {−∞})× (R ∪ {+∞}))n

∼=
n⋃

k,k′=0

(nk)⋃
s=1

(n
k′)⋃

s′=1

Rm×n × Rm × Rn × Rn−k × Rn−k′

× {≤,=,≥}m × {−∞}k × {+∞}k
′
.

Therefore, many results in real analysis for Euclidean spaces still apply for Gm,n ×HV
m ×HW

n and
Meas(·), including the following Lusin’s theorem.
Theorem F.4 (Lusin’s theorem (Evans & Garzepy, 2018, Theorem 1.14)). Let µ be a Borel regular
measure on Rn and let f : Rn → Rm be µ-measurable. Then for any µ-measurable X ⊂ Rn with
µ(X) < ∞ and any ϵ > 0, there exists a compact set E ⊂ X with µ(X\E) < ϵ, such that f |E is
continuous.

Proof of Theorem 3.2. Since X ⊂ Gm,n×HV
m×HW

n is measurable with finite measure, according to
Lusin’s theorem, there is a compact set E ⊂ X such that Φfeas|E is continuous with Meas(X\E) <
ϵ. By Lemma B.2 and Theorem 4.3, there exists F ∈ FGNN such that

sup
(G,H)∈E

|F (G,H)− Φfeas(G,H)| < 1

2
,

which implies that
IF (G,H)>1/2 = Φfeas(G,H), ∀ (G,H) ∈ E.

Therefore, one obtains

Meas
({

(G,H) ∈ X : IF (G,H)>1/2 ̸= Φfeas(G,H)
})

≤ Meas(X\E) < ϵ,

and the proof is completed.

Proof of Corollary 3.3. As a finite set, D is compact and Φfeas|D is continuous. The rest of the proof
is similar to that of Theorem 3.2, using Lemma B.2 and Theorem 4.3.

Proof of Theorem 3.4. (i) The proof follows the same lines as in the proof of Theorem 3.2, with the
difference that we approximate

Φ(G,H) =

{
1, if Φobj(G,H) ∈ R,
0, otherwise,

instead of Φfeas and we use Lemma B.3 instead of Lemma B.2.
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(ii) The proof is still similar to that of Theorem 3.2. By Lusin’s theorem, there is a compact set
E ⊂ X ∩ Φ−1

obj (R) such that Φobj|E is continuous with Meas
(
(X ∩ Φ−1

obj (R))\E
)

< ϵ. Using
Lemma B.3 and Theorem 4.3, there exists F2 ∈ FGNN with

sup
(G,H)∈E

|F2(G,H)− Φobj(G,H)| < δ,

which implies that

Meas ({(G,H) ∈ X : |F2(G,H)− Φobj(G,H)| > δ}) ≤ Meas
(
(X ∩ Φ−1

obj (R))\E
)
< ϵ.

Proof of Corollary 3.5. The results can be proved using similar techniques as in Theorem 3.2 and
Theorem 3.4 by noticing that any finite dataset is compact on which any real-valued function is
continuous.

Proof of Theorem 3.6. Without loss of generality, we can assume that X ⊂ Φ−1
obj (R) ⊂

Gm,n × HV
m × HW

n is closed under the action of Sm × Sn; otherwise, we can replace X by⋃
(σV ,σW )∈Sm×Sn

(σV , σW ) ∗X . By Lusin’s theorem, there exists a compact subset E′ ⊂ X such
that Meas(A\X) < ϵ/|Sm × Sn| and that Φsolu|E′ is continuous. Define another compact set:

E =
⋂

(σV ,σW )∈Sm×Sn

(σV , σW ) ∗ E′ ⊂ X,

which is closed under the action of Sm × Sn and satisfies

Meas(X\E) ≤
∑

(σV ,σW )∈Sm×Sn

Meas(X\(σV , σW ) ∗ E′)

=
∑

(σV ,σW )∈Sm×Sn

Meas((σV , σW ) ∗X\(σV , σW ) ∗ E′)

=
∑

(σV ,σW )∈Sm×Sn

µ((σV , σW ) ∗ (X\E′))

=
∑

(σV ,σW )∈Sm×Sn

µ(X\E′)

<
∑

(σV ,σW )∈Sm×Sn

ϵ

|Sm × Sn|

= ϵ.

Note that the three conditions in Theorem E.1 are satisfied by the definition of Φsolu, Corollary B.7,
and Corollary B.6, respectively. Using Theorem E.1, there exists FW ∈ FW

GNN such that

sup
(G,H)∈E

∥FW (G,H)− Φsolu(G,H)∥ < δ.

Therefore, it holds that

Meas ({(G,H) ∈ X : ∥FW (G,H)− Φsolu(G,H)∥ > δ}) ≤ Meas(X\E) < ϵ,

which completes the proof.

Proof of Corollary 3.7. One can assume that D is closed under the action of Sm × Sn; otherwise, a
larger but still finite dataset,

⋃
(σV ,σW )∈Sm×Sn

(σV , σW ) ∗ D, can be considered instead of D. The
rest of the proof is similar to that of Theorem 3.6 since D is compact and Φsolu|D is continuous.
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G DETAILS OF THE NUMERICAL EXPERIMENTS AND EXTRA EXPERIMENTS

LP instance generation We generate each LP with the following way. We set m = 10 and
n = 50. Each matrix A is sparse with 100 nonzero elements whose positions are sampled uni-
formly and values are sampled normally. Each element in b, c are sampled i.i.d and uniformly from
[−1, 1]. Additionally, each element in c is scaled by 0.01. The variable bounds l, u are sampled with
N (0, 10). If lj > uj , then we swap lj and uj for all 1 ≤ j ≤ n. Furthermore, we sample ◦i i.i.d
with P(◦i = “ ≤ ”) = 0.7 and P(◦i = “ = ”) = 0.3. With the generation approach above, the
probability that each LP to be feasible is around 0.53.

MLP architectures As we mentions in the main text, all the learnable functions in GNN
are taken as MLPs. The input functions fV

in , f
W
in have one hidden layer and other functions

fout, f
W
out , {fV

l , fW
l , gVl , gWl }Ll=0 have two hidden layers. The embedding size d0, · · · , dL are uni-

formly taken as d that is chosen from {2, 4, 8, 16, 32, 64, 128, 256, 512}. All the activation functions
are ReLU.

Training settings We use Adam (Kingma & Ba, 2014) as our training optimizer with learning rate
of 0.0003. The loss function is taken as mean squared error. All the experiments are conducted on a
Linux server with an Intel Xeon Platinum 8163 GPU and eight NVIDIA Tesla V100 GPUs.

Extra experiments on generalization We generate the testing set consisting of 1000 LP problems
using the same distribution as that of the training set. The performance of the trained GNNs on
training set and testing set is presented in Table 1, 2, and 3 for feasibility, optimal objective value,
and optimal solution, respectively. The metric in Table 1 is the rate of classification errors; the metric
in Table 2 is a relative error defined as |F −Φobj|/(|Φobj|+ 1); the metric in Table 3 is defined with
∥FW − Φsolu∥/(∥Φsolu∥+ 1).

Number of Training Samples 100 500 2500
The Error on the training set 0 0 0.067
The Error on the testing set 0.454 0.339 0.175

Table 1: Generalization for feasibility (Num. GNN parameters: 1254)

Number of Training Samples 100 500 2500
The Error on the training set 1.9e-6 0.080 0.128
The Error on the testing set 0.790 0.591 0.173

Table 2: Generalization for optimal objective value (Num. GNN parameters: 1254)

Number of Training Samples 100 500 2500
The Error on the training set 0.141 0.193 0.205
The Error on the testing set 0.550 0.351 0.274

Table 3: Generalization for optimal solution (Num. GNN parameters: 7888)

One can observe that, for a GNN with fixed size, its generalization performance, i.e., the perfor-
mance on the testing set is increasing if it is trained with more training samples. Given these nu-
merical results, we believe that understanding the generalization quantitatively and theoretically
deserves future research.
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