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ABSTRACT

Deep generative models can create remarkably photorealistic fake images while
raising concerns about misinformation and copyright infringement, known as
deepfake threats. Deepfake detection technique is developed to distinguish be-
tween real and fake images, where the existing methods typically learn classifiers
in the image domain or various feature domains. However, the generalizability
of deepfake detection against emerging and more advanced generative models re-
mains challenging. In this paper, being inspired by the zero-shot advantages of
Vision-Language Models (VLMs), we propose a novel approach using VLMs (e.g.
InstructBLIP) and prompt tuning techniques to improve the deepfake detection
accuracy over unseen data. We formulate deepfake detection as a visual question
answering problem, and tune soft prompts for InstructBLIP to answer the real/fake
information of a query image. We conduct full-spectrum experiments on datasets
from 3 held-in and 16 held-out generative models, covering modern text-to-image
generation, image editing and adversarial image attacks. Results demonstrate that
(1) the deepfake detection accuracy can be significantly and consistently improved
(from 61.79% to 92.72%, in average accuracy over unseen data) using pretrained
vision-language models with prompt tuning; (2) our superior performance is at
less cost of training data and trainable parameters, resulting in an effective and ef-
ficient solution for deepfake detection. Data, code, models will be open-sourced.

1 INTRODUCTION

In recent years, we have witnessed the magic leap upon the development of generative models,
where the cutting-edge models such as Stable Diffusion (Rombach et al., 2022), DALLE-2 (Ramesh
et al., 2022), Imagen (Saharia et al., 2022) and DALLE-3 (OpenAI, 2023) have become capable of
producing high-quality images, ranging from beautiful artworks to incredibly realistic images.

However, the progress of such image synthesis technique, which is called “deepfake", poses real
threats to our society, as some realistic fake images could be produced to deceive people and spread
false information. For example, images of the war in Ukraine could be generated with having
the false or misleading information and may be used for propaganda 1. More concerningly, some
of these created images may be falsely claimed as works of photographers or artists, potentially
leading to copyright infringements and their misuse in commercial contexts. As BBC reported, some
fake artworks generated by text-to-image generation models won first place in an art competition,
which harming the fairness of the contest2. To protect against these threats arising from deepfake
content, the use of effective deepfake detection techniques becomes crucial. These techniques help
distinguish real content from manipulated images, serving as a vital defense against deception and
safeguarding intellectual property rights in the digital era.

One straightforward deepfake detection prototype is to train a classifier to distinguish between real
and fake images (Wang et al., 2020; Guarnera et al., 2023; Yu et al., 2019). However, along with
the rapid development of generative models, this approach often struggles with overfitting thus lead-
ing to poor performance on unseen data from emerging generators. To overcome this limitation,

1https://techcrunch.com/2022/08/12/
a-startup-wants-to-democratize-the-tech-behind-dall-e-2-consequences-be-damned/

2https://www.bbc.com/news/technology-62788725
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researchers are exploring more general features in deepfake images, such as frequency maps of the
images (Zhang et al., 2019b). Additionally, some innovative methods are not only based on visual
features. For example, DE-FAKE (Sha et al., 2022) harnesses the power of large language models
and trains a classifier that conditions on both visual and textual information.

Despite years of development in deepfake detection techniques, challenges persist. First, most pre-
vious works such as (Wang et al., 2020) have concentrated on Generative Adversarial Networks
(GANs), which may not effectively address the latest diffusion-based generative models includ-
ing Stable Diffusion (Rombach et al., 2022), Stable Diffusion-XL (Podell et al., 2023), DALLE-2
(Ramesh et al., 2022), Imagen (Saharia et al., 2022), DeepFloyd IF (StabilityAI, 2023). Second, gen-
eralizability remains a significant challenge. Classifiers trained on images generated by one model
tend to perform poorly when being tested on images from different generative models, especially
from more emerging and advanced ones.

To address the aforementioned challenges and to utilize the strong generality of LLMs, we have
harnessed the zero-shot capabilities of pretrained vision-language models (Li et al., 2022; 2023; Zhu
et al., 2023; Liu et al., 2023; Dai et al., 2023) to capture more general instruction-aware features
from images, enhancing the transferability of our deepfake detector. We formulate the deepfake
detection problem as a Visual Question Answering (VQA) task, asking the model with the question
"Is this photo real?", to tackle this challenge. However, directly asking questions for a pretrained
VLM may not lead to effective answers, considering either the query images or questions are unseen
during VLM training. We therefore use prompt tuning to boost the performance. Without loss of
generality, we build implementation on the recent state-of-the-art VLM, InstructBLIP (Dai et al.,
2023). Specifically, we insert a "pseudo-word" into the prompt and optimize the corresponding
word embedding in the model for correctly answering “Yes" and “No" to the question for real and
fake images on training data, respectively. This approach not only significantly reduces training
costs but also substantially improves performance on both held-in and held-out testing datasets from
a full spectrum of generative models. From the perspective of instruction tuning, we realized that
there are many good answers, all waiting for a good question. In summary, our paper makes the
following key contributions:

1. We pioneer to leverage pretrained vision-language models to solve the deepfake detection
problem. We are the first to formulate the problem as a VQA scenario, asking the model
to distinguish between real and fake images. Additionally, we employ soft prompt tuning
techniques to optimize for the most effective question to the VLMs, and leverage their
zero-shot generalizability on unseen data produced by held-out generative models.

2. Our detector consistently outperforms the recent baseline methods proposed in (Wang et al.,
2020; Sha et al., 2022; Wang et al., 2023; Wu et al., 2023; Ricker et al., 2022; Le & Woo,
2023) over held-out datasets generated by a full spectrum of generator categories. Our
superior performance and generalizability benefit from the nature of pretrained VLMs, and
at less cost of training data and trainable parameters.

2 RELATED WORK

2.1 VISUAL GENERATIVE MODELS

The recent advance of deep generative models can be broadly categorized into two main types:
Generative-Adversarial-Networks-based (GAN-based) models and diffusion-based models. Within
the realm of GAN-based model, notable progress has been made. Starting from GAN (Goodfel-
low et al., 2014), SA-GAN (Zhang et al., 2019a) and BigGAN (Brock et al., 2018) contributed to
the enhancement of training stability and the generation of diverse images with higher resolution.
Subsequently, StyleGAN (Karras et al., 2019) and its successors (Karras et al., 2020; 2021) have
allowed for finer control over the stylistic attributes of the generated images while maintaining high
image quality. Building upon StyleGAN-3 (Karras et al., 2021) and ProjectGAN (Sauer et al., 2021),
StyleGAN-XL (Sauer et al., 2022b) is able to generate 1024×1024 images with even lower Fréchet
Inception Distance (FID) scores and higher Inception Scores (IS) , w.r.t. all its predecessors.

In regard to the diffusion-based models, starting from DDPM (Ho et al., 2020), DDIM (Song et al.,
2020) speeds up the generating process by relaxing the constraint of Markov Chain towards forward
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and backward processes. Latent Diffusion (Rombach et al., 2021) and Stable Diffusion (Rombach
et al., 2022) further shift the diffusion process to latent space, granting user controls over the models;
thus, it flexibly enables the text-to-image generation through diffusion-based models. Building upon
this foundation, several seccessors (e.g. SDXL (Podell et al., 2023), DeepFloyd IF (StabilityAI,
2023), Imagen (Saharia et al., 2022), Dalle-2 (Ramesh et al., 2022), and Dalle-3 (OpenAI, 2023))
further refine the text comprehension capabilities of diffusion-based models, enabling them to create
images that better align with input texts.

Apart from text-to-image generation, image editing tasks, such as inpainting and super resolution,
are also widely-used applications of generative models. Notably, (Suvorov et al., 2022; Rombach
et al., 2022; Liu et al., 2020) have demonstrated exceptional performances in the domain of image
inpainting, while (Lee & Jin, 2022; Rombach et al., 2022; Chen et al., 2021) are known for their
remarkable performances in image super resolution.

Without the loss of representativeness, we select a diverse set of generative models (namely SD2,
SDXL, IF, Dalle-2, SGXL, ControlNet, LaMa, LTE, SD2 inpainting model, and SD2 super resolu-
tion model) to cover the full spectrum of generation tasks, and generate corresponding fake images
for conducting our experiments.

2.2 DEEPFAKE DETECTION METHODS

Recent advances in detection methods have focused on training detectors capable of identifying
artifacts specific to certain types of generative models. For example, (Wang et al., 2020; Nataraj
et al., 2019; Yu et al., 2019; Ricker et al., 2022; Wang et al., 2023; Wu et al., 2023; Ma et al., 2023;
Lorenz et al., 2023) leverage artifacts from synthesized images generated by GANs or diffusion
models, (Zhang et al., 2019b; Giudice et al., 2021; He et al., 2021) concentrate on artifacts in the
frequency domain, and (Le & Woo, 2023) also study the detection of low-quality or low-resolution
fake images. These methods have reported outstanding performance on images generated by the
seen models, but they often suffer from significant drops in performance when being applied to
unseen datasets. Therefore, we aim to propose a general detector that can demonstrate exceptional
performance on both in-domain and out-of-domain datasets.

2.3 VISION-LANGUAGE MODELS AND VISUAL QUESTION ANSWERING

With the impressive success of Large language models (LLM) (Chung et al., 2022; Touvron et al.,
2023), recent studies work on Vision-Language Models (VLMs) (Li et al., 2022; 2023; Zhu et al.,
2023; Liu et al., 2023; Ye et al., 2023; Dai et al., 2023) to improve multimodal comprehension and
generation through utilizing the strong generalizability of LLMs. These models takes advantage of
cross-modal transfer, allowing knowledge to be shared between language and multimodal domains.
BLIP-2 (Li et al., 2023) employing a Flan-T5 (Chung et al., 2022) with a Q-former to efficiently align
the visual features with language model. MiniGPT-4 (Zhu et al., 2023) employs the pretrained visual
encoder and Q-Former as used in BLIP-2, but chooses Vicuna (Chiang et al., 2023) as the LLM and
performs training using ChatGPT 3-generated image captions instead of the BLIP-2 training data.
InstructBLIP (Dai et al., 2023) also utilizes the pretrained visual encoder and Q-former from BLIP-
2, with Vicuna/Flan-T5 as pretrained LLM, but performs instruction tuning on Q-former using a
variety of vision-language tasks and datasets. LLaVA (Liu et al., 2023) projects the output of a visual
encoder as input to a LLaMA/Vinuca LLM with a linear layer, and finetunes the LLM on vision-
language conversational data generated by GPT-4 (OpenAI, 2023) and ChatGPT. mPLUG-owl (Ye
et al., 2023) finetunes a low-rank adaption (Hu et al., 2021) module on a LLaMA (Touvron et al.,
2023) model using both text instruction data and vision-language instruction data from LLaVA.

Among the vision-language tasks, visual question answering (VQA) problem is one of the most gen-
eral and practical tasks because of its flexibility in terms of the questions. For training the models for
VQA problems, lots of datasets (Goyal et al., 2017; Gurari et al., 2018; Marino et al., 2019; Schwenk
et al., 2022; Mishra et al., 2019; Singh et al., 2019) have been proposed. VQAv2 (Goyal et al., 2017)
and VizWiz (Gurari et al., 2018) collect images, questions, as well as the corresponding answers
for studying visual understanding. OKVQA (Marino et al., 2019) and A-OKVQA (Schwenk et al.,
2022) propose visual question-answer pairs with external knowledge (e.g. Wikipedia). OCR-VQA

3https://chat.openai.com/
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(Mishra et al., 2019) and TextVQA (Singh et al., 2019) introduce images and questions that require
reasoning about text to answer. To solve the VQA problem, TextVQA propose a method called
LoRRA, which reads the text in the image and predicts the answer which might be a deduction
based on the text and the image or composed of the strings found in the image. On top of that, the
aforementioned VLMs can also be potential solutions, as they have strong multimodal comprehen-
sion and generality.

Given the remarkable multimodal capabilities of VLMs, we have harnessed their potential to address
the deepfake detection challenge. Therefore, we formulate the deepfake detection method as a VQA
problem to take advantage of the capabilities of these VLMs.

Furthermore, as (Chen et al., 2023; Zou et al., 2023; Deng et al., 2022; Zhang et al., 2022) concluded,
prompt tuning offers an approach to enabling Langnuage Models (LMs) to better understand user-
provided concepts, and improves the alignments between generated images and the input prompts
when applied to text-to-image generative models (Wen et al., 2023; Gal et al., 2022). Inspired by
these findings, we apply prompt tuning atop InstructBLIP to optimize an instruction that can more
accurately describe the idea of differentiating real and fake images, resulting in better performance.

3 ANTIFAKEPROMPT

3.1 PROBLEM FORMULATION

In order to take advantage of the vision-language model, we formulate the deepfake detection prob-
lem as a visual question answering (VQA) problem. In this framework, the input consists of a query
image I that needs to be classified as real or fake and a question prompt q. The prompt can be either
a preset question (e.g., "Is this photo real?") or a tunable question that includes the pseudo-word S∗.
The output of this framework corresponds to the answer texts y. While y in principle can be any
texts, we constrain it to two options: “Yes” and “No” during testing, aligning with the answer ground
truth to the original binary classification problem. We choose the option with a higher probability
from the VLM as the answer, where the model capability is evaluated by classification accuracy.

In summary, the deepfake detection task can be formulate as a VQA task, which is defined as:

M(I, q) 7→ y (1)

where M is an VLM and we adopt InstructBLIP (the recent state-of-the-art) for building our method,
and the text output y ∈ {“Yes”, “No”} corresponds to the binary results of deepfake detection.

3.2 PROMPT TUNING ON INSTRUCTBLIP

As discussed in (Dai et al., 2023), the prompt plays an essential role in VQA problem, and asking the
preset question leads to ineffective performance on unseen data. Therefore, we employ soft prompt
tuning on InstructBLIP (Dai et al., 2023) following the procedure below.

Within InstructBLIP, two components receive the prompt as input: Q-Former and the Large Lan-
guage Model (LLM). As shown in Figure 1, the prompt first gets tokenized and embedded, and then
is fed into Q-Former and the LLM in parallel. We introduce a pseudo-word S∗ into the prompt,
which serves as the target for soft prompt tuning. Specifically, we adopt the question template, “Is
this photo real?” and append the pseudo-word to the end of the prompt, resulting in the modified
prompt q∗: “Is this photo real S∗?”. As the prompt has been decided, we give the output label ŷ =
“Yes” for real images and ŷ =“No” for fake images in order to perform soft prompt tuning.

We freeze all parts of the model except for the word embedding v of the pseudo-word S∗, which is
randomly initialized. Then we optimize the word embedding v∗ of the pseudo-word over a training
set of triplet {I, q∗, ŷ} with respect to the language modeling loss, expecting the VLM output y to
be the label ŷ. Hence, our optimization goal can be defined as:

S̃∗ = argmin
S∗

E(I,ŷ)L(M(I, “Is this image real S∗”), ŷ) (2)

where L is the language modeling loss function. Since we actually optimize the embedding v∗ for
the pseudo-word S∗, with noting the concatenation of embeddings for the original prompt (i.e. “’Is

4



Under review as a conference paper at ICLR 2024

Figure 1: Prompt tuning on InstructBLIP (Dai et al., 2023) for deepfake detector training. An
instruction containing a pseudo-word S∗ is first converted into tokens. These tokens are converted to
continuous vector representations (the “embeddings”, v). Then, the embedding vectors are fed into
Q-former and LLM with the image features extracted by the image encoder. Finally, the embedding
vectors v∗1 and v∗2 are optimized using language modeling loss, expecting the output to be “Yes”
for real images and “No” for fake images.

this photo real”) to be vp, the equation can be rewritten as:

ṽ∗ = argmin
v∗

E(I,ŷ)L(M(I, [vp, v∗]), ŷ) (3)

As Figure 1 shows, it is crucial to highlight that the pseudo-word embedding fed into Q-Former v∗1
differs from that fed into the LLM v∗2, and we optimize these two embeddings independently. The
dimensions of v∗1 and v∗2 are 768 and 4096 respectively, so the number of trainable parameters
is 4864 in total. Compared to 23 million trainable parameters from ResNet-50 (He et al., 2016)
of (Wang et al., 2020) and 11 million trainable parameters from ResNet-18 (He et al., 2016) of
DE-FAKE (Sha et al., 2022), our method demonstrates superior cost-efficiency.

Implementation details. We use the LAVIS library4 for implementation, training, and evaluation.
To avoid the out-of-memory issue on small GPUs, we choose Vicuna-7B (Chiang et al., 2023), a
decoder-only Transformer instruction-tuned from LLaMA (Touvron et al., 2023), as our LLM. Dur-
ing prompt tuning, we initialize the model from instruction-tuned checkpoint provided by LAVIS,
and only finetune the word embedding of the pseudo-word while keeping all the other parts of
the model frozen. All models are prompt-tuned with a maximum of 10 epochs. We use AdamW
(Loshchilov & Hutter, 2017) optimizer with β1 = 0.9 and β2 = 0.999, batch size 6 and a weight
decay 0.05. We initially set the learning rate to 10−8, and apply a cosine decay with a minimum
learning rate of 0. All models are trained utilizing 4 NVIDIA RTX 3090 GPUs and completed within
10 hours. In terms of image preprocessing, all images are initially resized to have a length of 224
pixels on the shorter side while maintaining their original aspect ratio. During the training phase,
random cropping is applied to achieve a final size of 224 × 224 pixels, while images are center
cropped to a final size of 224 × 224 pixels in the testing phase.

4 EXPERIMENTS

4.1 SETUP

Datasets We use Microsoft COCO (MS COCO) (Lin et al., 2014) dataset and Flickr30k (Young
et al., 2014) dataset. Being widely utilized as benchmarks of object detection and captioning task,

4https://github.com/salesforce/LAVIS
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Table 1: Held-in and held-out deepfake detection accuracies. Experiments are conducted on 2
real and 19 fake datasets, including 3 attacked ones. The accuracies of real and fake out-of-domain
datasets are highlighted in green and red , respectively, and average accuracies are highlighted

in blue . The accuracies of real and fake in-domain datasets are in grey with lighter green and

lighter red background color. The best performances are denoted in bold. We mark the training
set of InstructBLIP to be “-” to indicate that we use the pretrained model (Dai et al., 2023) without
additional training set.

Methods Training set No. of param. MS COCO Flickr SD2 SDXL IF DALLE-2 SGXL

Wang 2020 ImageNet vs. ProGAN 23.51M 96.87 96.67 0.17 0.17 19.17 3.40 79.30
DE-FAKE MS COCO vs. SD2 308.02M 85.97 90.67 97.10 90.50 99.20 68.97 56.90
DIRE LSUN B. vs. ADM 23.51M 81.77 77.53 3.83 18.17 6.93 2.13 45.27
LASTED LSUN, Danbooru vs. ProGAN, SD1.5 625.63M 75.47 76.33 58.69 51.33 57.99 57.96 64.39
J. Ricker 2022 LSUN B. vs. 5 GANs, 5 DMs 23.51M 95.60 95.80 81.10 99.70 92.65 52.10 100.00
QAD 7 face swapping datasets 2.56K 65.93 65.47 37.93 45.60 35.30 39.47 30.23
InstructBLIP - 188.84M 98.93 99.63 40.27 23.07 20.63 41.77 69.53
InstructBLIP + LoRA MS COCO vs. SD2 4.19M 95.73 91.83 98.03 96.33 86.60 99.57 97.67

MS COCO vs. SD2 4.86K 95.37 91.00 97.83 97.27 89.73 99.57 99.97AntifakePrompt MS COCO vs. SD2+LaMa 4.86K 90.83 81.04 97.10 97.10 88.37 99.07 99.93

InpaintingMethods Training set No. of param. GLIDE ControlNet Deeper-
Forensics DFDC FaceForensics++ LaMa SD2

Wang 2020 ImageNet vs. ProGAN 23.51M 17.23 11.43 0.30 0.00 5.23 7.53 0.17
DE-FAKE MS COCO vs. SD2 308.02M 76.50 63.97 86.97 56.13 78.90 13.03 16.00
DIRE LSUN B. vs. ADM 23.51M 4.63 9.90 0.27 60.13 25.50 13.23 11.37
LASTED LSUN, Danbooru vs. ProGAN, SD1.5 625.63M 54.46 50.70 86.38 70.19 70.69 60.53 56.96
J. Ricker 2022 LSUN B. vs. 5 GANs, 5 DMs 23.51M 83.80 75.50 14.20 46.90 20.30 64.30 59.10
QAD 7 face swapping datasets 2.56K 55.80 36.37 63.20 77.20 93.93 36.83 34.27
InstructBLIP - 188.84M 37.97 33.97 13.83 14.07 44.20 10.90 44.23
InstructBLIP + LoRA MS COCO vs. SD2 4.19M 95.90 92.87 98.80 90.03 94.70 59.50 93.03

MS COCO vs. SD2 4.86K 99.17 91.47 97.90 100.00 97.43 39.03 85.20AntifakePrompt MS COCO vs. SD2+LaMa 4.86K 99.73 93.27 97.77 100.00 98.30 58.53 90.70

Super Res. AttackMethods Training set No. of param. LTE SD2 Adver. Backdoor Data Poisoning Average

Wang 2020 ImageNet vs. ProGAN 23.51M 15.27 1.40 4.93 15.50 0.97 19.77
DE-FAKE MS COCO vs. SD2 308.02M 9.97 29.70 60.40 22.23 55.87 61.00
DIRE LSUN B. vs. ADM 23.51M 12.53 2.77 1.60 1.93 1.00 20.03
LASTED LSUN, Danbooru vs. ProGAN, SD1.5 625.63M 71.89 59.59 59.03 52.63 52.43 62.51
J. Ricker 2022 LSUN B. vs. 5 GANs, 5 DMs 23.51M 30.60 73.90 8.50 34.50 6.90 59.76
QAD 7 face swapping datasets 2.56K 38.30 32.47 31.87 33.80 35.43 46.81
InstructBLIP - 188.84M 97.23 69.10 5.50 3.17 1.60 40.51
InstructBLIP + LoRA MS COCO vs. SD2 4.19M 99.53 99.97 64.30 53.40 50.87 87.30

MS COCO vs. SD2 4.86K 99.90 99.93 96.70 93.00 91.57 92.74AntifakePrompt MS COCO vs. SD2+LaMa 4.86K 100.00 99.97 97.20 97.10 93.63 93.67

these datasets offer a diverse collection of images depicting people or objects engaged in everyday
scenarios, and each of the images is associated with informative caption ground truth. In our work,
we selected 90K images, with shorter sides greater than 224, from MS COCO dataset to train our
deepfake detector. Moreover, to assess the generalizability of our method over various real images,
we additionally select 3K images from Flickr30k dataset to form a held-out testing dataset, adhering
to the same criterion of image size.

Generation tasks and generative models In order to evaluate the generalizability and robustness
of our model to fake images from emerging and unseen generators, our testing datasets include fake
images from 16 different generative models / datasets and 3 distinct attack scenarios , and each of
the testing datasets comprises 3K images. We can mainly divide these images into six categories,
namely text-to-image generation, Image stylization, image inpainting, super resolution, face swap,
and image attacks. The detailed explanation of each category can be found at Appendix B.

It is important to note that for the fake images in the training dataset, we only include images gen-
erated by SD2 and SD2IP. Empirical evidence demonstrates that AntifakePrompt, trained solely on
these two fake datasets and the real images from MS COCO dataset, exhibits excellent performance
on all the other datasets generated by held-out generative models.

Baseline We compare AntifakePrompt to eight recent baseline models, Wang-2020 (Wang et al.,
2020), DE-FAKE (Sha et al., 2022), DIRE (Wang et al., 2023), LASTED (Wu et al., 2023), J.
Ricker 2022 (Ricker et al., 2022), QAD (Le & Woo, 2023), InstructBLIP (Dai et al., 2023) and
InstructBLIP with LoRA tuning (Hu et al., 2021). For the detail explanation of the checkpoints
we use for every baseline model, please refer to Appendix C.
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4.2 COMPARISONS

AntifakePrompt vs. InstructBLIP without prompt tuning. As depicted in the third and forth
rows of Table 1, our detector, trained only on images generated by SD2 and those from MS COCO
dataset, exhibits excellent (>85%) performance on most held-in and held-out datasets. In contrast,
InstructBLIP without prompt tuning demonstrates generally lower accuracies on most of the testing
datasets except for MS COCO, Flickr30k, and LTE. This implies that with the help of prompt tuning,
our detector can better understand the deepfake detection task. Thus, our detector is capable of
collecting more useful visual features from the input image, resulting in making more accurate
decisions on distinguishing real images from fake ones.

AntifakePrompt vs. Baselines. As shown in the first row of Table 1, in contrast to our detector,
Wang 2020 (Wang et al., 2020), trained on images generated by ProGAN (Karras et al., 2017b)
and ImageNet (Deng et al., 2009), exhibits satisfactory performance on StyleGAN-XL and yields
excellent accuracies on MS COCO and Flickr30k. However, we observe notable decreases in ac-
curacy when it is tested on other held-out datasets. Since they consist of images generated by non-
GAN-based models and these images do not share the same artifacts as those in ProGAN-generated
images, the detector proposed by (Wang et al., 2020) is unable to differentiate such images by the
traits learned from ProGAN-generated images. Regarding DE-FAKE (Sha et al., 2022), trained on
images generated by SD and MS COCO, it demonstrates impressive performance on real images and
3 diffusion-based models (i.e. SD2, SDXL, and IF) and Deeperforensics, as shown in the second
row of Table 1 . However, it struggles to achieve accuracies above 70% on other heldout datasets.
Because the detector proposed in (Sha et al., 2022) uses a similar backbone as that in (Wang et al.,
2020), it suffers from similar accuracy drops when applying to images generated by unseen genera-
tive models. Even though it takes the corresponding prompts into consideration, which allows it to
detect unusual scenarios of fake images, it still fails to improve its performance on held-out datasets,
since most of them are generated by natural prompts from MS COCO dataset.

As for DIRE (Wang et al., 2023), the results are not as excllent as they demostrated in their paper.
The possible reason is that our testing dataset (e.g. SD2) comprises images generated by more ad-
vanced models than ADM, implying that the distribution of these images is closer to that of real
images. Thus, the reconstruction errors of such images are smaller than those of the images gener-
ated by ADM, making DIRE harder to differentiate them from real images. Regarding LASTED
(Wu et al., 2023), we observe performance drops on almost every datasets except for SGXL and 3
face swapping datasets. Since they all employ GAN-based models or models with encoder/decoder
structure during their generating process, LASTED can demonstrate relatively high accuracies due
to the learned GAN-related artifacts from its training sets. For J. Ricker 2022 (Ricker et al., 2022),
which use the same backbone as that used in (Wang et al., 2020) but trained on more datasets, demon-
strates acceptable or even excellent performance on some of the testing datasets, namely diffusion-
or GAN-generated datasets. However, similar to what happened to (Wang et al., 2020), it fails to
maintain its performance on images generated by unseen models. Lastly, although QAD (Le &
Woo, 2023) indeed exhibits its excellent performance on 3 face swapping datasets, we observe that
it shows relatively low accuracies when testing on other datasets. This indicates that QAD, trained
only on 7 face swapping datasets, might not be able to generalize its detection ability to other types
of fake images.

Therefore, we can conclude that methods using different strategies or frameworks other than VLM
generally demonstrate relatively low accuracies on almost every datasets comprising images gen-
erated by unseen models, implying their lacks of generalizability. In contrast, AntifakePrompt can
maintain its excellent performance on images generated by unseen models. To discuss the reason,
the notable generalizability of LLM, brought by its large training corpus, gives the strong zero-shot
ability of VLM, and thus enables AntifakePrompt to show its outstanding generalizability on unseen
data.

Also, AntifakePropmt consistently outperforms the other 6 datasets on attacked datasets generated
by 3 different attacking strategies. We conclude that our model is more sensitive to the slight and
malicious pixel perturbations than its opponents.

Additionally, to address the relatively lower performance observed on LaMa testing dataset, we con-
duct an experiment to include additional images generated by LaMa into our training dataset. Under
this modified setting, as depicted in the forth and fifth rows of Table 1, our detector gives generally
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Table 2: Ablation study: Position of S∗ in the tuned prompt (i.e. “prefix”, “postfix”, or “re-
place”). The accuracies of real and fake out-of-domain datasets are highlighted in green and red ,

respectively, and average accuracies are highlighted in blue . The best performances are in bold.

Methods Variant MS COCO Flickr SD2 SDXL IF DALLE-2 SGXL ControlNet Deeper-
Forensics

Replace 95.13 86.20 95.80 93.60 87.33 99.17 98.37 99.70 93.03
Prefix 95.80 89.57 97.27 96.47 88.77 97.90 99.87 89.43 94.17AntifakePrompt
Postfix 95.37 91.00 97.83 97.27 89.73 99.57 99.97 91.47 97.90

Inpainting Super Res. AttackMethods Variant LaMa SD2 LTE SD2 Adver. Backdoor Data Poisoning Average

Replace 33.40 78.63 99.97 99.70 90.43 86.00 86.63 88.94
Prefix 40.33 84.67 99.97 99.87 93.53 93.13 87.43 90.51AntifakePrompt
Postfix 39.03 85.20 99.90 99.93 96.70 93.00 91.57 91.59

Table 3: Ablation study: Prompt tuning for Q-former, LLM or both. The accuracies of real and
fake out-of-domain datasets are highlighted in green and red , respectively, and average accuracies

are highlighted in blue . The best performances are in bold.

Methods Prompt tuning
for MS COCO Flickr SD2 SDXL IF DALLE-2 SGXL ControlNet Deeper-

Forensics
Only Q-former 93.50 92.27 97.93 98.17 88.47 99.53 94.80 89.33 100.00

Only LLM 95.10 85.57 95.77 91.73 85.23 98.73 97.80 84.90 93.30AntifakePrompt
Both 95.37 91.00 97.83 97.27 89.73 99.57 99.97 91.47 97.90

Inpainting Super Res. AttackMethods Prompt tuning
for LaMa SD2 LTE SD2 Adver. Backdoor Data Poisoning Average

Only Q-former 37.67 77.50 99.93 99.67 97.53 97.97 95.23 91.22
Only LLM 31.37 77.77 99.87 99.40 86.03 83.47 83.50 86.85AntifakePrompt

Both 39.03 85.20 99.90 99.93 96.70 93.00 91.57 91.59

comparable or even higher accuracies on almost every fake dataset compared to the original setting
(the detector trained on 150K training dataset). However, these accuracy enhancements come at the
cost of decreased accuracies on real datasets since our detector must now generalize to the inclusion
of additional LaMa images in our training set.

4.3 ABLATION STUDY

Position of S∗ in the tuned prompt. Comparing the accuracies between InstructBLIP and An-
tifakePrompt, we empirically show how we ask questions can drastically affect the results. Here, we
further investigate how the positioning of pseudo-word S∗ in the the tuned prompt can influence our
detector. Specifically, we compare 3 different positions of placing pseudo-word: replacing the word
”real” in the prompt with pseudo-word, positioning the pseudo-word in the beginning of the prompt,
or placing it at the end of the prompt. For simplicity, we refer to them as ”replace”, ”prefix” and
”postfix”, respectively. As presented in Table 2, although they all yield overall high accuracies, the
”postfix” position exhibits a slight advantage over the other alternatives. This suggests placing the
pseudoword at the end of the prompt makes the best efforts among 3 different positions to enable
deepfake detection, although the performance difference is not sensitive.

Prompt tuning for the Q-former, LLM or both? We extend our study to the impact of prompt
tuning by comparing the results of applying prompt tuning exclusively to Q-former, LLM or both
modules. In Table 3, we observe that prompt tuning for both Q-former and LLM outperforms other
two alternatives in average accuracy. This implies that prompt tuning for both modules are benefical:
tuned prompts to Q-former allow it to extract visual features from input image embeddings that are
more conducive to differentiating between real and fake images. Tuned prompts to LLM can more
precisely describe the idea of fake image detection for LLM, and thus, LLM is able to make more
accurate decisions on differentiating real and fake images. Due to the improved visual features and
improved instruction, the application of prompt tuning for both Q-former and LLM yields better
performance.

Number of training images. We first study the effect of the number of real images in the training
dataset. While fixing the number of fake images in training dataset to 60K, we gradually increase
the number of real images from 30K to 120K in the step of 30K, resulting in the total size of our
training dataset ranging from 90K to 180K. As shown in Row 1 to 4 in Table 4, while the accuracies
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Table 4: Ablation study: Number of training datasets, where either the number of the real images
or that of both real and fake images in the training dataset is reduced. The accuracies of real and fake
out-of-domain datasets are highlighted in green and red , respectively, and average accuracies are

highlighted in blue . The best performances are in bold.

Methods No.
Data MS COCO Flickr SD2 SDXL IF DALLE-2 SGXL ControlNet Deeper-

Forensics
90K 89.90 80.37 98.33 98.20 92.87 98.90 99.93 94.60 99.27

120K 94.30 89.10 97.53 96.60 89.20 98.27 99.90 91.03 95.13
150K 95.37 91.00 97.83 97.27 89.73 99.57 99.97 91.47 97.90
180K 96.53 92.23 97.37 96.67 88.43 99.63 99.93 90.43 94.63

15K 92.60 92.03 92.17 90.20 75.80 97.27 97.97 81.27 91.93
1.5K 92.83 94.10 75.67 68.20 58.17 79.77 90.63 67.50 67.53

AntifakePrompt

0.15K 99.07 99.73 33.17 16.73 16.30 36.93 56.73 26.17 24.20

Inpainting Super Res. AttackMethods No.
Data LaMa SD2 LTE SD2 Adver. Backdoor Data Poisoning Average

90K 49.80 89.63 100.00 99.93 98.40 96.40 94.97 92.59
120K 41.03 85.13 99.97 99.87 97.87 96.00 95.37 91.64
150K 39.03 85.20 99.90 99.93 96.70 93.00 91.57 91.59
180K 36.87 84.27 99.73 99.93 94.83 91.50 90.57 90.85

15K 34.73 73.93 100.00 98.43 84.07 82.57 74.53 84.97
1.5K 30.80 67.57 99.87 90.00 29.57 25.93 11.87 65.63

AntifakePrompt

0.15K 8.90 40.53 95.23 63.53 3.97 2.40 1.43 39.06

on testing datasets of real images increase along with the increments of real images in training
dataset, our detector suffers from a decrease in accuracies on fake testing datasets. Therefore, we
designate the detector trained on 150K training dataset as our optimal model, achieving balanced
accuracies on real and fake images.

To explore the limit of few-shot learning ability of our detector, we gradually reduce the numbers
of both real images and fake images in training dataset to one tenth at each step until only 150
images remain in total. As shown in Row 5 to 7 in Table 4, we found out that our detector still
outperforms DE-FAKE in almost every testing datasets (except for SD2, SDXL and IF) when there
are as few as 15K training samples, almost a quarter of DE-FAKE. Additionally, when we reduce our
training dataset to only 1.5K images, only 0.2% of (Wang et al., 2020) training dataset, our detector
outperforms (Wang et al., 2020) on every fake dataset, exhibiting only slightly lower accuracies on
real datasets. These findings underscore the data effiency of our detector in terms of training data
size compared to eight baseline models.

Finetuning InstructBLIP with LoRA. Furthermore, we conduct extended experiments to compare
between our prompt tuning and LoRA-based (Hu et al., 2021) InstructBLIP parameter finetuning.
The results, as shown Row 4 and 5 in Table 1 corresponding to “AntifakePrompt” with training
set “MS COCO vs. SD2” for our model performance to make comparison, reveal that while the
detector finetuned with LoRA achieves comparable results in certain testing datasets, our detector
consistently outperforms it in the three attack datasets. This underscores the sensitivity of our de-
tector to such attack scenarios. Since additional LoRA matrices introduce relatively more learnable
parameters into LLM (around 4M) than those introduced by prompt tuning (around 4K), it is more
likely for LoRA-tuned InstructBLIP to overfit to artifacts of training datasets, resulting in accuracy
drops when applied to fake datasets with different traits, namely three attack datasets.

5 CONCLUSION

In this paper, we propose a solution to deepfake detection problem utilizing vision-language model
to address the limitations of traditional deepfake detection methods when being applied on held-out
dataset. We formulate the deepfake detection problem as a visual question answering problem, and
apply soft prompt tuning on InstructBLIP. Empirical results demonstrate improved performance of
our detector over both held-in and held-out testing datasets, which is trained solely on generated
images using Stable Diffusion 2 and real images from MS COCO datasets. Furthermore, in contrast
to prior studies which require to finetune/learn millions of parameters, our model only needs to tune
4864 trainable parameters, thus striking a better balance between the training cost and the effec-
tiveness. Consequently, our detector provides a potent defense against the potential risks associated
with the misuse of generative models, all while demanding fewer training resources.
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REPRODUCIBILITY STATEMENT

In accordance with the principles of reproducibility and to foster further research explorations, we
provide open access (Appendix A) to all resources related to our study as part of the supplemen-
tary materials, including a complete and documented codebase with all models, scripts, configs,
checkpoints, preprocessing, training and evaluation codes that can reproduce the results shown in
the paper. Furthermore, we promise to maintain these resources and offer the necessary support for
any clarification or query associated with the public available resources.
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A LINKS TO RESOURCES

• Link to codes, chechpoints of AntifakePrompt (anonymous GitHub): https://
anonymous.4open.science/r/LAVIS-C8E1/README.md

• Link to checkpoints of AntifakePromt (Google Drive): https://drive.google.
com/drive/folders/1JgMJie4wDt7dNeHkT25VVuzG9CdnA9mQ?usp=
drive_link

B GENERATION OF TESTING DATASETS

1. Text-to-images generation: We collected 3K prompts, half of which are sampled from
the MS COCO ground truth captions and the other half from Flickr30k captions. These
prompts are then input into five different generative models, i.e. SD2 (Rombach et al.,
2022), SDXL (Podell et al., 2023), DeepFloyd IF (StabilityAI, 2023), DALLE-2 (Ramesh
et al., 2022), SGXL (Sauer et al., 2022a) , and GLIDE (Nichol et al., 2021), to generate the
corresponding images.

2. Image stylization: We begin by extracting Canny edge features from the 3000 test images
in MS COCO dataset mentioned in the previous paragraph. Subsequently, we pass these
Canny edge feature images, along with the corresponding prompts, into ControlNet (Zhang
& Agrawala, 2023) to generate stylized images.

3. Image inpainting: We employ the same 3000 test images and resize them to make the
shorter side of each image be 224, which matches the input size of InstructBLIP. Then, we
randomly generate masks of three distinct thickness levels for these resized images using
the scripts from the LaMa (Suvorov et al., 2022) GitHub5. With original images and the
corresponding masks prepared, we utilize two different models, SD2-Inpainting (SD2IP)
and LaMa, to inpaint images, respectively. The resizing step ensures that most of artifacts
created during the inpainting process will be retained before being inputted to the detector.

4. Super Resolution: Out of the same reason in the inpainting, we apply the same resiz-
ing process to the same 3000 test images before downsizing them to one-forth of their
original size. These low-resolution images are then passed into two different models, SD2-
SuperResolution (SD2SR) and LTE (Lee & Jin, 2022), to upsize back. A scaling factor of
four is chosen, as only the ×4-upscaling weights for SD2 are publicly available.

5. Face Swap: Since face swapping is also one of the common means to generate fake images,
we employ three large-scale face swapping video datasets, namely Deeperforensics (Jiang
et al., 2020), DFDC (Dolhansky et al., 2019) and FaceForensics++ (Rossler et al., 2019).
From each of these datasets, we randomly extract frames from 1000 randomly selected
videos. Following (Wang et al., 2020), we then apply Faced (Itzcovich, 2018) to crop out
3000 faces from the extracted frames of each dataset to ensure that complete facial features
are present in every image.

6. Image attacks: We apply three common types of attacks to edit images and target at a
traditional ResNet-50 classifier. The attack types include adversarial attack (Kim, 2020),
backdoor attack (Li et al., 2021) and data poisoning attack (Geiping et al., 2020). Default
settings are employed for each attack. By testing our detector on these attacks, we can have
a better understanding of its sensitivity against these slight and malicious image editing.

C CHECKPOINTS OF EACH BASELINE

This section lists the checkpoint details of all the baseline mentioned in 1.

1. Wang-2020: We use the detector checkpoint that is trained on dataset with images that are
possibly Gaussian blurr- and JPEG-augmented, each with 10% probability.

2. DE-FAKE: We use the checkpoint of the hybrid detector, which considers both the image
and the corresponding prompts during detection.

5https://github.com/advimman/lama/blob/main/bin/gen_mask_dataset.py
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3. DIRE: We use the checkpoint of detector trained on images from LSUN-Bedroom (LSUN
B.) (Yu et al., 2015) and those generated by ADM.

4. LASTED: We use the checkpoint of the detector trained on images from LSUN (Yu et al.,
2015) and Danbooru (Dan, 2021), and those generated by ProGAN (Karras et al., 2017a)
and SD1.5 (SD1).

5. J. Ricker 2022: We use the checkpoint that trained on images generated by 5 GANs and
5 DMs (i.e. ProGAN, StyleGAN, ProjectedGAN (Sauer et al., 2021), Diff-StyleGAN2
(Wang et al., 2022), Diff-ProjectedGAN (Wang et al., 2022), DDPM, IDDPM, ADM ,
PNDM (Liu et al., 2022) and LDM).

6. QAD: We use the checkpoint of detector trained on 7 face swapping datasets (i.e. Neural-
Textures (Thies et al., 2019), Deepfakes, Face2Face (Thies et al., 2016), FaceSwap (Thies
et al., 2016), FaceShifter (Li et al., 2019), CelebDFv2 (Li et al., 2020) and FaceForensic-
sIntheWild).

7. InstructBLIP: We use the pretrained weight provided by LAVIS and preset question
prompt without prompt tuning.

8. InstructBLIP with LoRA: We also use the pretrained weight provided by LAVIS and the
preset question prompt, but apply LoRA tuning on LLM of InstructBLIP instead of prompt
tuning.

D SAMPLES FOR EACH DATASETS

MS-COCO

Correct
(95.37%)

Incorrect
(4.63%)

Figure 2: Samples for each datasets. 95.37% of images are correctly classified as real.
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Flickr30k

Correct
(91%)

Incorrect
(9%)

SD2

Correct
(97.83%)

Incorrect
(2.17%)

Figure 3: Samples for each datasets (Continue). 91% / 97.83% of images in Flickr30k / generated
by SD2 are correctly classified as real / fake.
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Correct
(97.27%)

Incorrect
(2.73%)

SDXL

IF

Correct
(89.73%)

Incorrect
(10.27%)

Figure 4: Samples for each datasets (Continue). 97.27% / 89.73% of images generated by SDXL
/ IF are correctly classified as fake.
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DALLE-2

Correct
(99.57%)

Incorrect
(0.43%)

SGXL

Correct
(99.97%)

Incorrect
(0.03%)

Figure 5: Samples for each datasets (Continue). 99.57% / 99.97% of images generated by
DALLE-2 / SGXL are correctly classified as fake.
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ControlNet

Correct
(91.47%)

Incorrect
(8.53%)

Deeperforensics

Correct
(97.9%)

Incorrect
(2.1%)

Figure 6: Samples for each datasets (Continue). 91.47% / 97.9% of images generated by Control-
Net / in Deeperforensics are correctly classified as fake.
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LaMa

Correct
(39.03%)

Incorrect
(60.97%)

SD2IP

Correct
(85.2%)

Incorrect
(14.8%)

Figure 7: Samples for each datasets (Continue). 39.03% / 85.2% of images generated by LaMa /
SD2IP are correctly classified as fake.
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LTE

Correct
(99.9%)

Incorrect
(0.1%)

SD2SR

Correct
(99.93%)

Incorrect
(0.07%)

Figure 8: Samples for each datasets (Continue). 99.9% / 99.93% of images generated by LTE /
SD2ISR are correctly classified as fake.
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Adversarial Attack

Correct
(96.7%)

Incorrect
(3.3%)

Correct
(93%)

Incorrect
(7%)

Backdoor Attack

Figure 9: Samples for each datasets (Continue). 96.7% / 93% of images generated under adver-
sarial / backdoor attack are correctly classified as fake.
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Correct
(91.57%)

Incorrect
(8.43%)

Data Poison Attack

Figure 10: Samples for each datasets (Continue). 91.57% of images generated under data poison-
ing attack are correctly classified as fake.
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