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ABSTRACT

The existence of confounding bias presents one of the central challenges in policy
evaluation, since the target effects of actions are not identifiable (i.e., underdeter-
mined) from observational data. This paper investigates treatment/causal effect
evaluation over the continuous action-reward domain from confounded observa-
tions, while requiring only basic temporal ordering between the treatment and the
outcome, and Lebesgue integrability over the target treatment effect. We intro-
duce a novel family of causal canonical models that can effectively approximate
the observational and interventional distributions of any causal model consisting
of continuous action and reward variables. Building on this newfound universal
approximation property, we develop a novel family of generative models via a
mixture of Gaussian processes that allow one to derive posterior distributions over
unknown causal effects provided with confounded observations.

1 INTRODUCTION

Evaluating the causal effects of how a treatment affects a primary outcome is of interest across
many fields of science, including econometrics (Rosenbaum & Rubin, 1983), healthcare (Murphy,
2003), biostatistics (Wright, 1928), social sciences (Imbens & Rubin, 2015), and, recently, artificial
intelligence Bareinboim & Pearl (2016). For example, policymakers may want to assess the impact
of a training program on job employment; physicians often seek to understand the effectiveness of a
drug in treating a disease; engineers might investigate the relationship between ad placement and the
resulting click-through rates of consumers. When treatment is assigned randomly or the treatment
allocation policy generating observations is fully known, the target causal effects are recoverable from
the observed data in a straightforward fashion. On the other hand, in many practical applications, the
learner does not know or control the treatment assignment mechanism. This gives rise to confounding
bias in the offline data, resulting in spurious correlations during the treatment evaluation (Pearl, 1995).

To address the challenges of confounding bias, researchers and practitioners may exploit additional
theoretical assumptions about the underlying environment (Wright, 1928; Angrist et al., 1996). The
problem of identifying causal effects from the combination of observational data and assumptions
has been extensively studied under the rubrics of causal inference (Wright, 1928; Angrist et al., 1996;
Pearl, 2000; Spirtes et al., 2001). Particularly, qualitative causal knowledge about the environment
could be represented in the form of a directed acyclic causal diagram (Pearl, 2000, Ch. 1.2). Various
criteria and algorithms have been developed based on the causal diagram (Pearl, 2000; Spirtes et al.,
2001; Bareinboim & Pearl, 2016). This means the conditions under which the target effects are
identifiable from data have been understood. For example, a criterion called back-door (Pearl, 2000,
Ch. 3.2.2) allows one to identify causal effects by covariate adjustment. Efficient estimators were
developed based on the inverse propensity score weighting (Rosenbaum & Rubin, 1983; Bang &
Robins, 2005) and off-policy learning (Dudík et al., 2011; Li et al., 2015; Munos et al., 2016; Thomas
& Brunskill, 2016). Additionally, one may incorporate parametric assumptions about the forms of
underlying functions and distributions to facilitate identification. For example, algorithms exist to
identify causal effects from confounded observations, provided with the linearity assumption (Wright,
1934; Chen et al., 2017). For non-linear systems, parametric conditions have been proposed under
which the target effect is identifiable (Wang & Blei, 2019; Manski & Pepper, 1998; Maiti et al., 2025).
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However, in many practical applications, the combination of qualitative knowledge and observed data
does not always allow one to uniquely compute the target effect. Such challenging cases are referred
to as non-identifiable (Pearl, 2000, Def. 3.2.2). The following example illustrates such challenges.

Example 1. Consider a data-generating process concerning a system with an action X and a reward
Y , values of which are decided by functions X ← −U/2 and Y ← −X2 + U2, respectively; U is
an unobserved variable drawn from normal distributions with mean µ = 0 and variances σ2 = 1.
Fig. 1 shows the observed samples (highlighted in blue) generated by this system, summarized as the
observational distribution P (X,Y ). We also show samples (orange) collected by randomly assigning
action values over a real interval [−2, 2], summarized as an interventional distribution Px (Y ).
Interestingly, the observational distribution P (X,Y ) deviates significantly from the interventional
distribution Px (Y ). This is due to the unobserved confounder U , which introduces a spurious
correlation between treatment X and outcome Y , making some actions appear more effective.

It has been acknowledged in the literature that treatment effects Ex [Y ] are not identifiable in such
systems (Huang & Valtorta, 2006; Shpitser & Pearl, 2006). Particularly, one could construct an
alternative system with reward function Y ← 3/4 × U2 that generates the same observed data,
but gives a different evaluation on the treatment effects Ex [Y ]. To witness, we apply Gaussian
process regression to the observed samples. The learned function, shown in Fig. 1, perfectly fits the
conditional reward E[Y | x]. However, it fails to generalize to the actual treatment effect Ex [Y ]
when one actively intervenes in the system by setting the action X to a constant x ∈ [−2, 2]. ■

Figure 1: Samples drawn from
the observational P (X,Y ) (blue)
and interventional Px(Y ) (or-
ange) distributions.

More recently, there has been an increasing body of work study-
ing the approximation property of generative models (Zhang &
Bareinboim, 2021; Zhang et al., 2022; Xia et al., 2021; 2022;
Nasr-Esfahany et al., 2023) in evaluating causal effects, partic-
ularly in non-identifiable settings. These novel approximation
properties permit one to infer the parametric forms of the under-
lying functions and latent confounders (unknown and untestable)
from weak parametric knowledge about the observed domains
(valid and testable). For instance, for an unknown causal model
with discrete observed variables, (Zhang et al., 2022) showed that
the domain of latent confounders could be discretized without
loss of generality. Identifying unknown causal effects in this class
of discrete generative models is reducible to solving a series of polynomial programs (Zaffalon et al.,
2020), which could be further simplified to linear programs in specific settings (Balke & Pearl, 1997;
Joshi et al., 2024). However, challenges still exist in applying causal generative modeling to observed
data with complex and possibly continuous domains.

The goal of this paper is to address these challenges by proposing novel causal generative models that
can approximate observational and interventional distributions in any unknown causal model with
continuous treatment and outcome variables. This newfound approximation property enables us to
develop robust partial identification algorithms for inferring unknown causal effects from confounded
observational data in continuous domains. More specifically, our contributions are summarized as
follows. (1) We introduce a novel family of causal canonical models with discrete latent states and
continuous functional mapping among variables in the system. (2) We formally show that the proposed
model class could approximate the observational and interventional distributions in any causal model
with continuous treatment and outcome with arbitrary accuracy. (3) We reparameterize this canonical
representation into a novel family of generative models consisting of mixtures of Gaussian processes.
Inferencing in this generative model yields a posterior distribution over parameters of the target causal
effects. For the sake of the space constraints, all the proofs are provided in Sec. A; details about the
experimental setup are provided in Sec. B.

2 TREATMENT EVALUATION FROM CONFOUNDED OBSERVATIONS

This section introduces some basic notations and definitions that will be used throughout the paper. We
use capital letters to denote variables (X) and small letters for their values (x). For an arbitrary set X ,
let |X| be its cardinality. P (X) denote the probability distribution on variables X . We consistently
use P (x) as a shorthand for probability P (X = x); similarly, P (X) stands for probability P (X ∈ X)
of the event where X is contained in a collection X of possible realizations X = x.
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Structural Causal Models. We will focus on the structural causal models (Pearl, 2000; Barein-
boim et al., 2020) graphically described in Fig. 2a where X is is a treatment/action; Y is the
outcome/reward; and U are unobserved exogenous variables representing uncertainties in the en-
vironment. For an arbitrary causal model M, the values of action X are decided by a function
X ← fX(U); and the values of reward Y are decided by a function Y ← fY (X,U). The causal
mechanisms generating latent variables U are not explicitly described. Instead, values of U are drawn
from an exogenous distribution P (U) over the m-dimensional real space Rm. An agent passively
observes the environment and receives action-reward pairs (x, y). The probabilities of occurrence of
observed events are summarized as the observational distribution P (X, Y ) ≜ P (X, Y ;M).

X

U

Y

(a) M

X

U

Y

(b) Mx

Figure 2: Causal diagrams of (a) a ban-
dit model with a treatment/action X and
outcome/reward Y ; (b) the submodel in-
duced by intervention do(X ← x).

An intervention on action X , denoted by do(X ← x)
(for short, do(x)), is an operation where values of X are
set to constants x, replacing the function fX that would
normally determine the action. For a causal model M,
let Mx be a submodel of M induced by intervention
do(x). Given unit U = u, potential outcome Y to action
do(x), denoted as Yx(u), is the solution of outcome Y

in submodelMx, i.e., Yx(u) ≜ YMx(u). The interven-
tional distribution Px (Y ) induced by do(x) is defined
as the joint distribution over the potential outcome, i.e.,
Px (Y ) ≜ P (Yx;M). The treatment effect of action x is thus defined as the expected value Ex [Y ].

Treatment Evaluation Problem. In this paper, our goal is to infer the treatment effect Ex [Y ] for
all possible actions x (i.e., output) from the observed samples drawn from the distribution P (X, Y )
(i.e., input). We will also make the following assumptions. First, the treatment X is a vector
variable in an n-dimensional real space X ∈ Rn; the reward Y is a continuous variable taking a real
value in Y ∈ R. For any action x ∈ Rn, the treatment effect Ex [Y ] is Lebesgue-integrable. That
is, Ex [Y ] : Rn 7→ R is a Lebesgue-measurable function satisfying

∫
Rn |Ex [Y ]| dx < ∞, which

includes continuous functions and functions such as the sgn function. We will consistently use the L1

norm ∥x∥1 =
∑n

i=1 |xi| to measure approximation error.

3 APPROXIMATING STRUCTURAL CAUSAL MODELS

This section will introduce a canonical family of causal models that can effectively approximate the
observed data and treatment effects in any structural causal model compatible with Fig. 2a. We will
also provide tools and concepts explaining the intuitions behind the approximation procedure.

First, we will describe some necessary notation. We will consistently use U to denote a subset in
the exogenous domain Rm, and X stands for a subset contained in the action domain Rn. Fix an
arbitrary integer N ∈ N+. Let a sequence of constants x1, . . . ,xN in the action domain Rn, and let
U1, . . . ,UN be disjoint subsets in the exogenous domain Rm. Similarly, let y1, . . . , yN be a finite
sequence of constants in the reward domain R, and let X1, . . . ,XN be disjoint subsets in the action
domain Rn. Simple functions determining values of action X and reward Y are given by

f̂X(u) =

N∑
i=1

xi1Ui
(u), f̂Y (x,u) =

N∑
i=1

yi1Xi
(x)1Ui

(u), (1)

where 1U and 1X are the indicator functions of the subset Ui ⊆ Rm and Xi ⊆ Rn respectively. A
causal canonical model compatible with the qualitative assumptions of Fig. 2a is an SCM where
simple functions determine the values of its observed variables. Formally,
Definition 1. A causal canonical model (CCM)M is an SCM where its action X and reward Y are
decided by simple functions f̂X and f̂Y defined in Eq. (1).

Let M be the set of all SCMs compatible with the causal graph in Fig. 2a. Similarly, let N denote
the space of CCMs compatible with Fig. 2a. By the definition of CCMs in Def. 1, the canonical space
N must be strictly contained in the original space M . We want to identify a subspace of causal
models contained in M with the following causal approximation property, i.e.,
Definition 2 (Causal Approximation Property). Let M be the set of all SCMs described in Fig. 2a.
A subset N ⊂M is said to satisfy the causal approximation property if given any SCMM∈M
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and any ϵ > 0, there exists an alternative causal modelN ∈ N such that, for all bounded continuous
functions h : Rn+1 7→ R, the following conditions hold:

|E [h(X, Y );M]− E [h(X, Y );N ]| < ϵ, ∥Ex [Y ;M]− Ex [Y ;N ]∥1 < ϵ (2)

That is, the subset N is dense in the set of all SCMsM with regard to (w.r.t.) the L1 norm.

One may surmise that since the parametric forms of simple functions are restrictive (compared to an
arbitrary structural function), the family of causal canonical models is not sufficient in representing
all the observational distribution (i.e., data) and treatment effects (query) in an arbitrary causal model.
Our following result shows that this is not the case.

Theorem 1. The set of CCMs N is dense in the set of all SCMs M .

Thm. 1 says that for an arbitrary SCMM, there exists a causal canonical model N that converges
to M in the observational distribution P (X, Y ). For example, let h be the product of indicator
functions h(x, y) = 1x≤x′1y≤y′ for constants x′ ∈ Rn and y ∈ R. Among the equations above, the
first term ensures that the cumulative observational distribution P (X ≤ x′, Y ≤ y′) induced by the
canonical model N converges to the same distribution function in the causal model of ground truth
M. In addition, the second term ensures that the canonical modelN could approximate the treatment
effects Ex [Y ] for every action x ∈ Rn with arbitrary precision with respect to the L1 norm errors.

Discretizing Action Space. For the remainder of this section, we will introduce the necessary tools
to construct the causal canonical model. First, we will describe a simple function parametrization of
the treatment effect that allows us to partition the action space into finite equivalence classes.

Definition 3. (Simple Treatment effects) LetM be an SCM with action X and reward Y . The
simple treatment effect of action X on reward Y is a function Êx[Y ] : Rn 7→ R of the form
Êx[Y ] =

∑N
i=1 Exi [Y ]1Xi(x), where X1, . . . ,XN are disjoint subsets in Rn; and xi is a realization

in Xi for every i = 1, . . . , N .

The next proposition ensures that the simple treatment effect function in Def. 3 can effectively
approximate measurable treatment effects for all actions x ∈ Rn in an arbitrary causal model.

Proposition 1 (Equivalence Classes of Action). LetM be an SCM with action X and reward Y .
Then for every ϵ > 0, there exists a simple causal effect Êx[Y ] such that

∥∥∥Ex [Y ]− Êx [Y ]
∥∥∥
1
< ϵ.

Henceforth, we will consistently refer to the finite sequence of subsets X1, . . . ,Xk (or realizations
x1, . . . ,xk) associated with Êx[Y ] as equivalence classes of action.

Prop. 1 says that for any causal modelM, there must exist a simple treatment effect function that is
capable of approximating the original treatment effect inM with arbitrary precision. Moreover, the
simple treatment effect in Def. 3 only takes values of the original treatment effect at a finite set of
realized actions x1, . . . ,xN . For any other realization x, its treatment effect will be approximated
with that of the action xi such that both x and xi belong to the same equivalence class Xi. It is thus
sufficient to only model the treatment effects induced by finite interventions do(x1), . . . , do(xN ).

Example 2. Consider again the causal modelM described in Example 1. Evaluating the treatment
effect inM over actions x ∈ [−2, 2] gives Ex [Y ] = −x2 + 1. We will next introduce a simple
treatment effect Êx[Y ] to approximate the ground-truth function Ex [Y ]. The idea is that for each
integer k ∈ Z, we will decompose the action domain [−2, 2] into 2k+2 disjoint intervals. We define
Êx[Y ] to be the effect Exi

[Y ] associated with the action xi equal to the left endpoint of the subinterval
into which the input x falls. Specifically, let Xi(k) be a subinterval contained in [−2, 2] be defined as,

Xi(k) =

{
x ∈ [−2, 2] : −2 + i− 1

2k
≤ x < −2 + i

2k

}
, for i = 1, . . . , 2k+2 (3)

The function Êx[Y ] is a linear combination of indicator functions over subintervals Xi(k) given
by, Êx [Y ] = −

(
−2 + i−1

2k

)2
+ 1 for x ∈ Xi(k), i = 1, . . . , 2k+2. Fig. 3a shows a graphical

representation of this simple function Êx[Y ] for k = 2. It is verifiable that for any ϵ > 0, the L1

norm deviation
∥∥∥Êx[Y ]− Ex [Y ]

∥∥∥
1
≤ ϵ when k ≥ log(16/ϵ). ■
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(a) (b) (c) (d)

Figure 3: Simple variables to approximate the treatment effect Ex [Y ] (a), observed action X(u) (b)
and reward Y (u) (c), and potential outcomes Yx(u) (d) in the causal modelM of Example 1.

Discretizing Exogenous Domain. So far we have decomposed the action domain Rn and reduced
it to a finite set of equivalence classes x1, . . . ,xN . This means that to effectively approximate the
observational distribution and interventional effect in the ground-truth modelM, it suffices to model
a finite number of potential outcome variables X, Y and Yx1

, . . . , YxN
. 1 We will next introduce a

family of simple functions mapping from the exogenous domains Rm to the action Rn or the outcome
domain R to approximate this finite set of potential outcomes.
Definition 4. (Simple Potential Outcomes) LetM be an SCM with action X and reward Y . The
simple potential outcomes X̂, Ŷ and Ŷx are random variables ĝ : Rm 7→ R (or ĝ : Rm 7→ Rn) over
the exogenous distribution P (U) of the form ĝ(u) =

∑N
i=1 g(ui)1Ui(u), where U1, . . . ,UN are

disjoint subsets in Rm; and ui is a realization in Ui for every i = 1, . . . , N .

The following result ensures the effectiveness of simple functions in approximating potential outcomes
induced by a finite number of interventions in a ground-truth causal model.
Proposition 2 (Equivalence Classes of Exogenous). LetM be an SCM with action X and reward
Y . Let X be a finite set of realizations x ∈ Rn. Then for every ϵ, δ > 0, there exist simple potential
outcomes X̂, Ŷ and Ŷx, for all x ∈ X, that converge to their corresponding potential outcomes
X, Y and Yx, for all x ∈ X, almost everywhere. That is,

P

({
u ∈ Rm :

∣∣∣X̂(u)−X(u)
∣∣∣+ ∣∣∣Ŷ (u)− Y (u)

∣∣∣+∑
x∈X

∣∣∣Ŷx(u)− Yx(u)
∣∣∣ > ϵ

})
< δ, (4)

Henceforth, we will consistently refer to the finite sequence of subsets U1, . . . ,Uk associated with
X̂, Ŷ and Ŷx, for all x ∈ X, as equivalence classes of exogenous.

Prop. 2 implies that simple potential outcomes approximate their corresponding potential outcomes
in the original causal model almost everwhere. This means that even when realizations of exogenous
variables u exist such that g(u) ̸= ĝ(u), the probability assigned to such exogenous realizations
must be measure zero. Moreover, the simple potential outcomes only take values of the original
variables at a finite number of exogenous realizations u1, . . . ,uN . It thus suffices to partition the
original exogenous domains into a finite number of equivalence classes U1, . . . ,UN , and model the
causal mechanisms among observed variables within each equivalence class respectively. Our next
example demonstrates the construction of simple potential outcomes.
Example 3. Consider the causal model M described in Example 1. We will introduce simple
functions to approximate potential outcomes over a subinterval [−2, 2] in the exogenous domain. For
each integer k ∈ Z, we will decompose the action domain [−2, 2] into 2k+2 equally sized disjoint
intervals. We define X̂(u), Ŷ (u) and Ŷx(u) as the corresponding potential outcomes with unit ui

equal to the left endpoint of the subinterval into which the exogenous value u falls. Specifically, we
define Ui(k) as a subinterval contained in [−2, 2] given by,

Ui(k) =

{
x ∈ [−2, 2] : −2 + i− 1

2k
≤ u < −2 + i

2k

}
, for i = 1, . . . , 2k+2 (5)

Then simple functions X̂(u), Ŷ (u) and Ŷx(u) are defined as linear combinations of indicator function
of subinterval Ui(k). That is, for u ∈ Ui(k), i = 1, . . . , 2k+2, X̂(u) = 1

2

(
2− i−1

2k

)
, Ŷ (u) =

1We will refer to observed variables X, Y as potential outcomes of the natural intervention do(∅).
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3
4

(
−2 + i−1

2k

)2
, and Ŷx(u) = −x2 +

(
−2 + i−1

2k

)2
. Fig. 3 shows the graphical description of these

simple variables for k = 2. Fix an action x ∈ [−2, 2]. It is verifiable that for an arbitrary ϵ > 0, the
deviation

∣∣∣X̂(u)−X(u)
∣∣∣+ ∣∣∣Ŷ (u)− Y (u)

∣∣∣+ ∣∣∣Ŷx(u)− Yx(u)
∣∣∣ < ϵ when k ≥ log(9/ϵ). ■

Figure 4: A simple function
approximating the reward func-
tion fY (x, u) in the ground-truth
causal modelM of Example 1.

Constructing Canonical Models. We are now ready to put
things together and provide a formal justification for the approx-
imation property of canonical models. Specifically, given finite
equivalence classes over the action and exogenous domain, one
could obtain a canonical model N that approximates the treat-
ment effect Ex [Y ] in the original causal modelM with arbitrary
precision. This approximation is supported by Props. 1 and 2.

What remains is to ensure that the constructed modelN is consis-
tent with the ground-truth modelM in terms of the observational
distribution P (X, Y ). For every newly added action x̂i, we
set its simple potential outcome Ŷx̂′

i
(ui) as the observed out-

come Ŷ (ui) in the constructed model N ; for every unit such
that X̂(uj) ̸= x̂i, we will find the original action equivalence
class Xi such that x̂i ∈ Xi, and set the simple potential outcome
Ŷx̂′

i
(uj) = Ŷxi

(uj). Thanks to the construction of simple functions in Defs. 3 and 4, this adjust-
ment ensures the canonical model N ’s consistency on the observational distribution P (X, Y ) while
maintaining its consistency on the treatment effect Ex [Y ].
Example 4. Consider the causal modelM described in Example 1. We will construct a canonical
model N to approximate the observational distribution P (X,Y ) and treatment effects Ex [Y ], ∀x ∈
[−2, 2]. The idea of the construction is to define simple functions f̂X , f̂Y determining values of action
X and outcome Y over the subintervals described in Examples 2 and 3. We then add observed actions
to the equivalence class of the action domain to ensure both models are consistent in observational
distribution. Specifically, f̂X(u) = 1

2

(
2− i−1

2k

)
f , for u ∈ Ui(k), i = 1, . . . , 2k+2, and

f̂Y (x, u) =


3

4

(
−2 + j − 1

2k

)2

, if x = f̂X(u) and u ∈ Uj(k), j = 1, . . . , 2k+2

−
(
−2 + i− 1

2k

)2

+

(
−2 + j − 1

2k

)2

, if x ∈ Xi(k), u ∈ Uj(k), i, j = 1, . . . , 2k+2

Among the above equations, the first condition in f̂Y (x, u) ensures that the canonical model N
induces the simple outcome variable Ŷ (u) described in Example 3. It follows from the definition of
X̂(u), Ŷ (u) that they converge to observed variables X(u), Y (u) in probability. We show in Fig. 4
the graphical representation of the simple reward function f̂Y for k = 5; the ground-truth reward
function fY is shown in a blue surface. We also highlight the observed trajectories (X(u), Y (u)) in
the causal modelM and the canonical model N in blue and orange respectively. One could see by
inspection that the observational distribution P (X̂, Ŷ ) in the canonical model N must converge to
the observational distribution P (X,Y ) in the causal modelM as k increases. ■

4 GENERATIVE MODELING FOR CAUSAL INFERENCE

For a canonical model in Def. 1, the exogenous domain is discretized, and simple functions decide the
values of action and reward. Note that every simple function could be approximated by a continuous
function almost everywhere (Stein & Shakarchi, 2009, Ch. 1), leading to further simplification.
Definition 5. A causal generative model (CGM)M is an SCM where exogenous variables U = {U}
are drawn from a discrete distribution P (U) over a finite domain {1, . . . , d}. For every unit U = u,
values of X are drawn from a conditional distribution P (X | u) and values Y are decided by a
continuous function hu : Rn 7→ R mapping from the action domain Rn to reward domain R.

Let N̄ denote the family of all causal generative models compatible with Fig. 2a. It follows
immediately from Thm. 1 that the causal approximation property (Def. 2) also holds for CGMs.

6
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: (a) Stratified observed data based on the assigned functional types; (b, c) posteriors over
selected canonical functions learned over stratified observations; (d) the posterior over the treatment
effect conditioning on observed data; (e - h) alternative stratification over observed data and resulting
posteriors over canonical functions and target causal effect conditioning on confounded observations.

Proposition 3. The set of CGM N̄ is dense in the set of all SCMs M .

Def. 5 describes a novel family for mixture models capable of reproducing the confounded observa-
tions and treatment effects in any SCM. Specifically, the underlying population is stratified into a finite
number of unknown reward functional types hu mapping from the domain of X to reward Y . For
every unit/individual U = ui, the nature samples an observed action xi ∼ P (X | ui), assigns this ac-
tion to unit/individual ui, and receives a subsequent reward yi ← hui

(xi). Fix an action x ∈ Rn. The
treatment effect Ex [Y ] is obtained by averaging the set of all potential reward functions hui , weighted
by exogenous probabilities P (ui). Formally, Ex [Y ] = Eu∼P (U) [hu(x)] =

∑d
u=1 hu(x)P (u).

The following example demonstrates the generative process of CGMs, and how it enables one to
obtain a robust treatment effect evaluation from confounded observations.
Example 5. Consider the causal modelM described in Example 1. Let Ci(k) = Ui(k)∪U2k+2−i(k),
i = 1, . . . , 2k+1 where Ui(k) is defined in Eq. (5). It follows from the discretization described in
Example 4 that exogenous units u ∈ Ci(k) where share the same reward function, i.e., h(k)

i (x) =

−x2 +
(
−2 + i−1

2k

)2
, for u ∈ Ci(k), i = 1, . . . , 2k+1. Fig. 5a shows a partition of the observed data

according to the type of associated function h
(k)
i (x) for k = 2; samples generated by the same reward

function are highlighted in the same color.

We next apply standard Gaussian process regression to learn the canonical functions h(k)
i using the

corresponding observed data; Figs. 5b and 5c show selected posteriors learned from this process.
We also compute the posterior over the treatment effect Ex [Y ] by averaging the learned posteriors
over each canonical function h

(k)
i (x), weighted by probabilities P (U ∈ Ci(k)) assigned to each

partition. The simulation results show that (1) the learned function h
(k)
i (x) picks up behaviors of the

ground-truth reward function fY in the corresponding partition; (2) the learned posterior over Ex [Y ]
generalizes well to internveitonal data sampled from the ground-truth causal model. ■

In the above example, the membership to the same reward stratum Ci(k) is a sufficient statistic
satisfying the backdoor criterion (Pearl, 1995). This allows one to estimate the treatment effect
by adjustment on strata Ci(k). If the propensity score P (x|u) > 0 has full coverage, one could
eventually identify the ground-truth effect as the number of observed samples increases. On the other
hand, the canonical functional stratification Ci(k) is generally underdetermined by the confounded
observations. For example, Fig. 5e shows the alternative partitioning when one further descritizes
Ci(k) into subsets Ui(k) and U2k+2−i(k). In this case, Ui(k) forms a potential stratification that
could generate the observed data. Adjustment on this partitioning set leads to a posterior with higher
variance for actions x ∈ [−1, 1], as shown in Fig. 5h, but is still consistent with the actual effect.
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Finding Potential Stratifications. Given observational data, there generally exist multiple func-
tional partitionings compatible with observations, and each partitioning corresponds to one potential
evaluation of treatment effects. To obtain a robust posterior over the target effect, it is thus essential to
search over such potential partitionings and compute the treatment effects accordingly. The remainder
of this section will describe a Bayesian non-parametric method to carry out this process.

We assume the exogenous probabilities P (u) are drawn from a truncated Dirichlet process, determin-
ing the total number of reward functional types and their assigned weights. A mental image for such
a distribution follows a stick-breaking process (Sethuraman, 1994) which successively breaks pieces
off a unit-length stick with size proportional to random draws from a Beta distribution. Formally,
for all u = 1, . . . , d − 1, P (u) = ρu

∏u−1
i=1 (1 − ρi) where ρu ∼ Beta (αu, βu); hyperparameters

αu, βu > 0. Finally, we truncate this construction by setting ρu = 1.

Given any unit u, values of action X are drawn from a multivariate normal distribution P (X|u).
That is, x ∼ Normal (µu,Σu), for every u = 1, . . . , d, where µu ∈ Rn is a n-dimensional mean
vector and Σu ∈ Rn×n is a covariance matrix. As a result, the marginal distribution P (x) is defined
as a finite mixture of Gaussian distributions. Given any unit u, values of outcome Y are decided by
the function hu(x), the parameters of which are drawn from a Gaussian process. Formally,

∀u = 1, . . . , d, y ← hu(x), hu(x) ∼ GP (mu(x), ku(x,x
′)) , (6)

where mu(x) = E [hu(x)] is the expected function value given input x, and the covariance function
ku(x,x

′) represents the correlation between function values at different input points x and x′, i.e.,
ku(x,x

′) = E [(hu(x)−mu(x)) (hu(x)−mu(x))]. In practice, the prior mean function is often
set to mu(x) = 0 to avoid expensive posterior computations. The function ku is the kernel of the
Gaussian process (Micchelli et al., 2006). One very popular choice is the radial basis function kernel,
which is defined as ku(x,x′) = σ2

u exp
(
−∥x−x′∥2

2λ2
u

)
. The hyperparameters λu and σ2

u can be varied
to increase or reduce the correlations between points and the variability of the resulting function.

Based on this Bayesian non-parametric model described above, one could then draw samples from the
posterior over the target treatment effects Ex [Y ] given finite observational data D = {(xi, yi)}Ni=1.
There exist general Monte-Carlo Markov Chain algorithms to perform this task, including Hamiltonian
Monte Carlo (Duane et al., 1987) and the No-U-Turn Sampler (Hoffman et al., 2014).

5 SIMULATIONS AND EXPERIMENTS

We demonstrate our algorithms on synthetic causal models with various reward functions. Overall,
simulation results support our findings, and the proposed causal generative model allows us to
derive robust posteriors consistent with the actual treatment effects, conditioning on confounded
observations. See Sec. B for more details on the simulation setup and additional experiments.

1. Polynomial Function. Consider again the causal model described in Example 1 where the reward
function is a polynomial function Y ← −X2 + U2. We apply our proposed causal generative model
and Bayesian non-parametric method to derive posteriors over the treatment effects Ex [Y ] for latent
cardinalities d = 10, 20, 30 respectively. Simulation results, shown in Figs. 6a to 6c, indicate that our
proposed method is able to derive a posterior robust against the unobserved confounding bias. The
posterior generalizes better to the actual experimental data as the latent cardinality d increases.

Figure 7: Logistic Function.

2. Logistic Function. Consider a causal model where values of
action X and reward Y are given by X ← E×U and Y ← 1/(1+
e−X+E×U ) respectively; U is an unobserved variable drawn
from a standard normal distribution, and E is a uniformly drawn
over a binary domain {−1, 1}. Fig. 7 shows the observational
(blue) and experimental data (orange) generated by this model.
As expected, the standard Gaussian process regression perfectly
fits the confounded observations but fails to generalize to the
interventional data collected by randomized experiments.

We apply our causal method to derive posteriors over the treatment effects Ex [Y ] for latent cardi-
nalities d = 10, 20, 30 respectively. Results are shown in Figs. 6d to 6f. Our analysis reveals that
for d = 10, the derived posterior is relatively restrictive, only accounting for interventional data in
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Figure 6: Simulations comparing the derived posteriors over various reward functions using our
proposed causal generative model with latent cardinalities d = 10, 20, 30 respectively. These
functions include: (a - c) polynomial function; (d - f) logistic function; (g - i) phase function.

a single modal of the underlying distribution. As the cardinality d increases (to 30), the resulting
generative models can model more complex patterns in the observational and international dynamics,
thus leading to a smooth and robust posterior over the treatment effects.

Figure 8: Phase function.

3. Phase Function. Consider a causal model where values
of action X and reward Y are given by X ← U and Y ←
sin(X)2+cos(U)2−1 respectively; U is an unobserved variable
drawn from a standard normal distribution. We show in Fig. 7 the
observational (blue) and experimental data (orange) collected in
this model. Like in previous experiments, we applied standard
Gaussian process regression to the observational data. The fitted
function perfectly models patterns in the observed samples, but
fails to generalize to the interventional distribution.

We apply our causal generative model to derive posteriors over the treatment effects Ex [Y ] for latent
cardinalities d = 10, 20, 30 respectively, and show simulation results in Figs. 6g to 6i. Our proposed
method can derive a robust posterior consistent with the actual treatment effects with latent cardinality
d = 30. Lower cardinalities d = 10, 20 fail to generalize due to restricted generative models.

6 CONCLUSIONS

This paper addresses the challenge of evaluating causal effects from confounded observational data in
complex domains, focusing on the canonical bandit model with basic temporal ordering among action
and reward variables. We introduce a new family of causal generative models with a finite number of
latent states, which can accurately approximate the observational distribution and treatment effects in
any causal model. Using this framework, we present a Bayesian non-parametric method to identify
potential stratifications of the observed data, enabling the derivation of posterior distributions over
target causal effects despite confounding. Simulation results show that these posteriors generalize
well to actual treatment effects and are resilient to unmeasured confounding. Future work will aim to
develop models for time series data and integrate additional qualitative causal knowledge.
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REPRODUCIBILITY STATEMENT

The complete proof of all theoretical results presented in this paper, including Thm. 1 and Props. 1
to 3, can be found in Appendix A. Detailed descriptions of the experimental setup are provided
in Appendix B. All appendices are included as part of the supplementary material following the
"References" section. Please note that all experiments are synthetic and do not involve the introduction
of any new assets.
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A PROOFS

This section will provide proof of all the theoretical results in the paper. We will first introduce some
propositions that are necessary for the construction of causal canonical models (Props. 1 and 2). We
then put things together and formally show the causal approximation property of CCMs (Thm. 1).
Proposition 1 (Equivalence Classes of Action). LetM be an SCM with action X and reward Y .
Then for every ϵ > 0, there exists a simple causal effect Êx[Y ] such that

∥∥∥Ex [Y ]− Êx [Y ]
∥∥∥
1
< ϵ.

Henceforth, we will consistently refer to the finite sequence of subsets X1, . . . ,Xk (or realizations
x1, . . . ,xk) associated with Êx[Y ] as equivalence classes of action.

Proof. The proof follows from (Axler, 2020, Prop. 3.44). Specifically, let fix Ex [Y ]
+ and Ex [Y ]

−

denote the positive and negative parts of the treatment effects Ex [Y ], respectively. For any ϵ > 0

there exist simple functions Êx[Y ](1) and Êx[Y ](2) such that∥∥∥E+
x [Y ]− Ê(1)

x [Y ]
∥∥∥
1
<

ϵ

2
,

∥∥∥E−
x [Y ]− Ê(2)

x [Y ]
∥∥∥
1
<

ϵ

2
(7)

The existence of Êx[Y ](1) and Êx[Y ](2) follows from (Axler, 2020, Prop. 3.9). Let Êx[Y ] =

Êx[Y ](1) − Êx[Y ](2). Then Êx[Y ] is a simple function and∥∥∥Ex [Y ]− Êx [Y ]
∥∥∥
1
=
∥∥∥E+

x [Y ]− Ê(1)
x + E−

x [Y ]− Ê(2)
x [Y ]

∥∥∥
1

(8)

≤
∥∥∥Ex [Y ]

+ − Êx [Y ]
(1)
∥∥∥
1
+
∥∥∥Ex [Y ]

− − Êx [Y ]
(2)
∥∥∥
1

(9)

< ϵ (10)
This proves the statement.

Proposition 2 (Equivalence Classes of Exogenous). LetM be an SCM with action X and reward
Y . Let X be a finite set of realizations x ∈ Rn. Then for every ϵ, δ > 0, there exist simple potential
outcomes X̂, Ŷ and Ŷx, for all x ∈ X, that converge to their corresponding potential outcomes
X, Y and Yx, for all x ∈ X, almost everywhere. That is,

P

({
u ∈ Rm :

∣∣∣X̂(u)−X(u)
∣∣∣+ ∣∣∣Ŷ (u)− Y (u)

∣∣∣+∑
x∈X

∣∣∣Ŷx(u)− Yx(u)
∣∣∣ > ϵ

})
< δ, (4)

Henceforth, we will consistently refer to the finite sequence of subsets U1, . . . ,Uk associated with
X̂, Ŷ and Ŷx, for all x ∈ X, as equivalence classes of exogenous.

Proof. We first consider the approximation for a potential outcome variable Yx(u). This approxi-
mation procedure extends immediately for a combination of observed variables X(u), Y (u) and
multiple potential outcomes Yx1

(u), . . . , Yxk
(u).

The idea of the proof follows (Axler, 2020, Prop. 2.89). For each k ∈ Z+ and n ∈ Z, the interval
[n, n + 1) is divided into 2k equally sized half-open subintervals. If Yx(u) ∈ [0, k], we define
Ŷ

(k)
x (u) to be the left endpoint of the subinterval into which Yx(u) falls; if Yx(u) ∈ [−k, 0), we

define Ŷ (k)
x (u) to be the right endpoint of the subinterval into which Yx(u) falls; and if |Yx(u)| > k,

we define Ŷ
(k)
x (u) to be ±k. Specifically, let

Ŷ (k)
x (u) =



m

2k
if 0 ≤ Yx(u) ≤ k and m ∈ Z is such that Yx(u) ∈

[
m

2k
,
m+ 1

2k

)
m+ 1

2k
if −k ≤ Yx(u) ≤ 0 and m ∈ Z is such that Yx(u) ∈

[
m

2k
,
m+ 1

2k

)
k if Yx(u) > k

−k if Yx(u) < −k

(11)
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The definition of Ŷ (k)
x (u) implies that∣∣∣Ŷ (k)

x (u)− Yx(u)
∣∣∣ ≤ 1

2k
for all u ∈ Rm such that Yx(u) ∈ [−k, k]. (12)

Increase the value of k ∈ Z+ such that 1/2k < ϵ and P (Yx(U) ∈ [−k, k]) < δ, which proves the
statement for a potential outcome Yx(U). We could repeat the same discretization procedure for the
observed action X(u), observed reward Y (u), and every potential outcome Yx(U), x ∈ X. Taking
intersections of these partitionings over the exogenous domain U ∈ Rm completes the proof.

Theorem 1. The set of CCMs N is dense in the set of all SCMs M .

Proof. Given finite equivalence classes over the action and exogenous domain, one could obtain a
canonical model N that approximates the treatment effect Ex [Y ] in the original causal modelM
with arbitrary precision. Specifically, let Uc(k) be the set of exogenous values u defined in Prop. 2,
and let U(k) = Rm\Uc(k). The L1 error between the treatment effects defined in the SCMM and
the CCM N could be written as:

∥Ex [Y ;M]− Ex [Y ;N ]∥1 =

∫
U(k)
∥Ex [Y (u);M]− Ex [Y (u);N ]∥1 dP (u)︸ ︷︷ ︸

Term 1

(13)

+

∫
Uc(k)

∥Ex [Y (u);M]− Ex [Y (u);N ]∥1 dP (u)︸ ︷︷ ︸
Term 2

(14)

By the construction of set Uc(k), Term 2 in the above equation gets increasingly smaller as the
discretization granularity k ∈ Z+ increases. Similarly, one could minimize the L1 error with an
arbitrary accuracy by increasing the parameter k and the discretization granularity over the action
domain x ∈ Rn. These approximation properties are supported by Props. 1 and 2.

What remains is to ensure that the constructed modelN is consistent with the ground-truth modelM
in terms of the observational distribution P (X, Y ). We will achieve this property by enumerating
through the finite exogenous equivalence classes u1, . . . ,uN ; for every ui, add the approximate
observed action x̂i ← X̂(ui) to the equivalence classes of action X. For every newly added action
x̂i, we set its simple potential outcome Ŷx̂′

i
(ui) as the observed outcome Ŷ (ui) in the constructed

model N ; for every unit such that X̂(uj) ̸= x̂i, we will find the original action equivalence class Xi

such that x̂i ∈ Xi, and set the simple potential outcome Ŷx̂′
i
(uj) = Ŷxi

(uj). Since this construction
procedure only adds a finite number of points to the equivalence class of the action domain, these
points have Lebesgue measure zero and do not affect the L1 approximation error.

Proposition 3. The set of CGM N̄ is dense in the set of all SCMs M .

Proof. Thm. 1 implies that for any SCM M ∈ M , there exists a CCM N ∈ N such that N
approximates the observational distribution and treatment effects inM with arbitrary accuracy ϵ. It
suffices to construct a CGM N̄ ∈ N̄ approximating the CCM N with arbitrary accuracy ϵ.

By the definiton of CCM in Def. 1, given any unit u, the values of action is given by a constant xi,

f̂X(u)← xi, (15)

which could be trivially simulated using a conditional distribution P (X | u).
Given an unit u, values of reward Y in CCM N are given by a simple function mapping from action
domain Rn to reward domain R. That is,

f̂Y (x,u)←
N∑
i

yi1Xi
(x). (16)

One could immediately construct a continuous function hi : Rn 7→ R that approximate the above step
function with arbitrary accuracy. The construction follows the same step as (Axler, 2020, Prop. 3.48).
This completes the proof.
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Figure 9: Additional simulations comparing the derived posteriors over various reward functions
using the causal generative model with latent cardinalities d = 10, 20, 30 respectively. These include:
(a - c) linear function; (d - f) a function with interactions between action and latent confounder.

B EXPERIMENTAL SETUPS

In this section, we will provide details on the simulation setups. We also conduct additional ex-
periments on other SCM instances. For all experiments, we collect 100 observational samples and
use them to draw 1, 000 posterior samples of the treatment effects; each sampled treatment effect
function contains potential outcomes Yx valued at 100 different action assignments. All experiments
are performed on a Macbook pro laptop with Apple M1 8-core CPU and 32GB memory. We use
PyMC (Abril-Pla et al., 2023) as the basic framework for probabilistic programming and inference.

Figure 10: Linear Function.

For all experiments, exogenous probabilities P (u) are drawn from
a uniform Dirichlet prior Dirichlet (1, . . . , 1). For the treat-
ment assignment distribution P (X|u), the mean µu and variance
Σu are drawn from a standard normal distribution Normal(0, 1)
and a half normal Half-Normal(0, 0.05) respectively. As for
the prior distribution over the reward function hu(x), we use the
radial basis function kernel with length scale λu set at constant 1.

4. Linear Function. Consider a causal model where values
of action X and reward Y are given by X ← −U and Y ←
X + U + E respectively; U is an unobserved variable drawn from a standard normal distribution,
and E is an independent noise drawn from a normal distribution Normal(0, 0.5). Fig. 10 shows
the observational (blue) and experimental data (orange) generated by this model. As expected, the
Gaussian process regression perfectly fits the confounded observations but fails to generalize to the
interventional data collected by randomized experiments.

Figure 11: Interactive function.

We apply our causal method to derive posteriors over the treat-
ment effects Ex [Y ] for latent cardinalities d = 10, 20, 30 respec-
tively. Results are shown in Figs. 9a to 9c. Our proposed method
can derive a robust posterior consistent with the actual treatment
effects with latent cardinality d ≥ 10.

5. Interactive Function. Consider a causal model where values
of action X and reward Y are given by X ← U and Y ←
X × U + E respectively; here the reward function contains an
interactive term X × U between the action and the unobserved confounder. U is an unobserved
variable drawn from a standard normal distribution, and E is an independent noise drawn from a
normal distribution Normal(0, 0.5). We show in Fig. 11 the observational (blue) and experimental
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data (orange) collected in this model. As expected, standard Gaussian process regression perfectly
fits patterns in the observed samples, but fails to generalize to the interventional distribution.

We apply causal generative models to derive posteriors over the treatment effects Ex [Y ] for latent
cardinalities d = 10, 20, 30 respectively, and show simulation results in Figs. 9d to 9f. Our proposed
method obtains a robust posterior consistent with the actual treatment effects with d = 30.
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