
Published in Transactions on Machine Learning Research (04/2024)

PopulAtion Parameter Averaging (PAPA)

Alexia Jolicoeur-Martineau alexia.j@samsung.com
Samsung - SAIT AI Lab, Montreal

Emy Gervais emy.gervais0@gmail.com
Independent

Kilian Fatras kilian.fatras@mila.quebec
Mila, McGill University

Yan Zhang y2.zhang@samsung.com
Samsung - SAIT AI Lab, Montreal

Simon Lacoste-Julien simon.lj@samsung.com
Mila, University of Montreal
Samsung - SAIT AI Lab, Montreal
Canada CIFAR AI Chair

Reviewed on OpenReview: https: // openreview. net/ forum? id= cPDVjsOytS

Abstract

Ensemble methods combine the predictions of multiple models to improve performance, but
they require significantly higher computation costs at inference time. To avoid these costs,
multiple neural networks can be combined into one by averaging their weights. However, this
usually performs significantly worse than ensembling. Weight averaging is only beneficial
when different enough to benefit from combining them, but similar enough to average well.
Based on this idea, we propose PopulAtion Parameter Averaging (PAPA): a method that
combines the generality of ensembling with the efficiency of weight averaging. PAPA
leverages a population of diverse models (trained on different data orders, augmentations,
and regularizations) while slowly pushing the weights of the networks toward the population
average of the weights. We also propose PAPA variants (PAPA-all, and PAPA-2) that average
weights rarely rather than continuously; all methods increase generalization, but PAPA tends
to perform best. PAPA reduces the performance gap between averaging and ensembling,
increasing the average accuracy of a population of models by up to 0.8% on CIFAR-10, 1.9%
on CIFAR-100, and 1.6% on ImageNet when compared to training independent (non-averaged)
models.

1 Introduction

Ensemble methods (Opitz and Maclin, 1999; Polikar, 2006; Rokach, 2010; Vanderheyden and Priestley,
2018) leverage multiple pre-trained models for improved performance by taking advantage of the different
representations learned by each model. The simplest form of ensembling is to average the predictions (or
logits) across all models. Although powerful, ensemble methods come at a high computational cost at
inference time for neural networks due to the need to store multiple models and run one forward pass through

1

https://openreview.net/forum?id=cPDVjsOytS

Published in Transactions on Machine Learning Research (04/2024)

every network. Ensembles are especially problematic on mobile devices where low latency is needed (Howard
et al., 2017) or when dealing with enormous networks such as GPT-3 (Brown et al., 2020).

An alternative way of leveraging multiple networks is to combine various models into one through weight
averaging (Wortsman et al., 2022). This method is much less expensive than ensembling. However, there is
usually no guarantee that weights of two neural networks average well by default (Ainsworth et al., 2023). It
is only possible to average the weights directly in special cases, such as when the multiple snapshots of the
same model are taken (Izmailov et al., 2018), or when a model is fine-tuned with similar data for a small
number of steps (Wortsman et al., 2022). In general, starting with the same weight initialization across
models is not enough to expect good performance after averaging (Frankle et al., 2020).

Permutation alignment techniques (Tatro et al., 2020; Singh and Jaggi, 2020; Entezari et al., 2022; Ainsworth
et al., 2023; Peña et al., 2022) were devised to minimize the decrease in performance after interpolating
between the weights of two networks. Other recently proposed techniques, such as REPAIR and greedy model
soups, also exist to improve performance after interpolation/averaging. REnormalizing Permuted Activations
for Interpolation Repair (REPAIR) (Jordan et al., 2023) mitigate the variance collapse through rescaling
the preactivations. Meanwhile, greedy model soups (Wortsman et al., 2022) and DiWA (Rame et al., 2022)
choose a subset of models so that averaging works well.

Given the recent developments of techniques to improve the performance of weight averaging, we explore the
idea of weight averaging to get the benefits of ensembling in a single model. With this goal in mind, we make
the following contributions:

1. We propose PopulAtion Parameter Averaging (PAPA) (Section 2) as a simple way of leveraging a
population of networks through averaging for better generalization. In PAPA, multiple models are
trained independently on slight variations of the data (random data orderings, augmentations, and
regularizations), and every few stochastic gradient descent (SGD) steps, the weights of each model
are pushed slightly toward the population average of the weights. We also return the model soups at
the end of training to obtain a single model.

2. We propose PAPA variants that are more amenable to parallelization, where the weights of each
model are rarely replaced every few epochs by i) the average weights of all models (PAPA-all) or ii)
the average weights of two randomly selected models (PAPA-2).

3. We demonstrate in Section 4 that PAPA and its variants lead to substantial performance gains when
training small network populations (2-10 networks) from scratch with low compute (1 GPU). Our
method increases the average accuracy of the population by up to 0.8% on CIFAR-10 (5-10 networks),
1.9% on CIFAR-100 (5-10 networks), and 1.6% on ImageNet (2-3 networks).

2 PopulAtion Parameter Averaging (PAPA)

In this section, we describe PopulAtion Parameter Averaging (PAPA), a simple and easy-to-use method to
leverage a population of models through averaging in order to gain the benefits of ensembling in a single
model. We then describe how to handle changes in learning rate. Afterwards, we discuss how to perform
efficient inference with the population of networks. Finally, we present two special cases of our method called
PAPA-all and PAPA-2. Figure 1 shows an illustration of PAPA and Algorithm 1 provides the full description
of PAPA and its variants (PAPA-all and PAPA-2). In the following, we elaborate on the details of PAPA.

2.1 Training a population of networks by pushing toward the average (PAPA)

As previously mentioned, the idea of averaging the weights of networks is simple but not always trivial to
perform. In particular, it usually requires model weights to be aligned in terms of weight permutations
(Ainsworth et al., 2023). Our solution is to move the weights far enough from each other to bring diversity,
but not too far apart so that they do not become too dissimilar (which leads to bad performance after
averaging); applying this idea during training is what constitutes PAPA.

2

Published in Transactions on Machine Learning Research (04/2024)

646425
6

646425
6

646425
6

646425
6

646425
6

Figure 1: Illustration of PAPA. Multiple networks (with weights θj) are trained on slight variations of the
dataset. Every few (10) iterations, the weights are pushed slightly toward the population average of the
weights θ̄ =

∑p
j=1 θj . After training, the weights are averaged to get a single network.

Algorithm 1: PAPA
Input: training dataset D, evaluation (or training) dataset D′, total epochs nepochs, learning rate (lr) γ, learning

rate schedule S, averaging frequency f (in number of SGD steps), EMA-rate for PAPA αpapa, population size p,
set of data augmentations and regularizations π = {πj}p

j=1, k REPAIR iterations, PAPA-2 = false, PAPA-all =
false (otherwise, PAPA is used);

Initialize population Θ← {θ1, · · · , θp};
Initialize training data D ← {shuffle(D), · · · , shuffle(D)};
ntotal ← 0;
γ0 ← γ; // initial learning rate
for n = 1 : nepochs do

for i = 1 : niterations do
for j = 1 : p do

Sample the i-th mini-batch of data from Dj ;
Data augment the data using πj (Optional);
Do a forward and backward pass;
Regularize the output using πj (Optional);
Update θj using the optimizer (SGD, Adam, etc.);

end
Update γ based on learning rate schedule S
ntotal ← ntotal + 1
if ntotal is divisible by f then
Θ̄← Averaging(Θ, m = 2 if PAPA-2 else p);
if PAPA-2 or PAPA-all then Θ̄← REPAIR(Θ̄, D, π, k) // optional
else 1− α′

papa ← γ
γ0

(1− αpapa); // scales proportionally to learning rate γ

for j = 1 : p do θj ← α′
papaθj + (1− α′

papa)θ̄j ;
ntotal ← 0

end
end
θ̄ ← 1

p

∑p

j=1 θj ; // average soup

θ̂ ← GreedySoup(Θ, D′); // greedy soup
return θ̄, θ̂;

To obtain a diverse and well-behaving set of weights, we start with a population of p models with random
initializations, each having its own data order, data augmentations, and regularizations. To keep the weights
close enough for good averaging, at every few stochastic gradient descent (SGD) optimizer steps, we slowly

3

Published in Transactions on Machine Learning Research (04/2024)

push the weights toward the population average of the weights using an exponential moving average (EMA)
as follows:

θ
(i)
j ← αpapaθ

(i)
j + (1− αpapa)θ̄(i), (1)

where αpapa is the EMA rate, θ
(i)
j the weight of the j-th network at the i-th optimization step, and θ̄(i) the

population average of the weights at the i-th optimization step.

We use a small enough EMA rate so that the models remain well-aligned but large enough so that the models
remain diverse. Since applying the EMA at every step would be costly, we apply it at every 10 steps to
amortize its cost (making its cost fully negligible). In our experiments, we use αpapa = 0.99 when training
from scratch and αpapa = 0.9995 when fine-tuning. See Table 17 for an ablation on the values of αpapa.

2.2 Special cases of PAPA when averaging rarely instead of frequently (PAPA-all & PAPA-2)

When αpapa = 0, instead of pushing the weights toward the population average, we are replacing the weights
with the population average. Furthermore, if we were to amortize the case where αpapa = 0.999 at every
iteration on a very large number of steps, this would effectively lead to αpapa ≈ 0 every few epochs; for
example, on CIFAR-10 (Krizhevsky et al., 2009), when averaging every 5 epochs using a mini-batch of 64, we
have that αpapa = .999(781 iterations×5 epochs) ≈ 0.02.

To explore the case where we replace the weights by the population average every few epochs, we consider
two ways of averaging the models: 1) averaging all models to make a single average model that replaces every
member of the population (PAPA-all), and 2) every member of the population is replaced by averages of
different random pairs of models (PAPA-2). The main advantage of these methods over PAPA is that they
are more amenable to parallelization; the overhead cost of communicating the weights between multiple GPUs
can be considerable, but this cost is amortized when averaging rarely. In practice, for small dataset (e.g.,
CIFAR-10, CIFAR-100), we found that averaging frequently (every 5-10 epochs) worked best when training
from scratch and more sparsely (every 20 epochs) when fine-tuning. For large dataset (e.g., ImageNet), we
averaged every epoch. See Table 15 for an ablation on the frequency of averaging.

Models that evolve separately for long periods may become wildly different, making averaging more difficult
(which we observe in the first epochs of training). Thus, as an optional step, we use REPAIR (Jordan et al.,
2023), a method that mitigates variance collapse after interpolating weights, to increase the performance of
the averaged model; this leads to a minor but consistent increase in performance. See Section A.2 for more
details.

2.3 Handling changes in learning rates

Standard training protocols for deep learning often use decreasing learning rate schedules. When the learning
rate changes over time, the trade-off between the SGD optimizer step and PAPA also changes. As the learning
rate γ goes down, exploration goes down, while the effect of pushing toward the average remains the same;
this makes it harder for the models to gain enough diversity to benefit from averaging. This can be observed
in the following definition:

Definition 2.1. Let L be the loss function, θj be the weights of the j-th neural network, αpapa be the update
PAPA parameter and γ be the learning rate. The update of our method PAPA reads

θj ← αpapaθj + γ
(
− αpapa∇θL(θj) + 1− αpapa

γ
θ̄
)

.

The quantity (1−αpapa)/γ is influenced by changes in learning rate during training. As γ decreases, the effect
of PAPA becomes disproportionately large compared to the SGD step. For this reason, we scale 1− αpapa
proportionally to the learning rate γ (see Algorithm 1). This ensures that the trade-off between the gradients
and PAPA remains the same when the learning rate changes.

4

Published in Transactions on Machine Learning Research (04/2024)

2.4 Inference with the population

During training, we push the models toward the average. However, we still end up with multiple models
when our goal is to have a single model. Knowing that we keep the models close to one another to make
them amenable to averaging, the simplest solution is to return the average weights of the population at the
end of training. A more intricate solution is to return the greedy model soup (Wortsman et al., 2022).

Algorithm 2: Averaging (m = p for PAPA
or PAPA-all, m = 2 for PAPA-2)
Input: Θ← {θ1, · · · , θp}, averaging from m
models;

for i = 1 : p do
{θ′

1, . . . , θ′
m} ← Randomly pick m models

without replacement
θ̂i ← 1

m

∑m
j=1 θ′

j ;
end
Θ̂← {θ̂1, . . . , θ̂p};
return Θ̂;

Algorithm 3: GreedySoup (Wortsman et al., 2022)
Input: Θ← {θ1, · · · , θp}, dataset D;
Sort Θ in decreasing order of accuracy on D;
n← 1;
θ̂ ← θ1;
for i = 2 : p do

θ̂new = n
n+1 θ̂ + 1

n+1 θi;
if accuracy(θ̂new, D) ≥ accuracy(θ̂, D) then

θ̂ = θ̂new;
n← n + 1

end
end
return θ̂;

Model soups model soups average the weights of multiple pre-trained networks in some fashion to produce
a single model (soup). Wortsman et al. (2022) propose two ways of constructing soups: 1) average soup
consists in averaging the weights of all networks, which is precisely our population weight averaging (in
Algorithm 2, the m = p case); 2) greedy soup consists of sorting the networks from lower loss to higher loss,
then, starting from the lowest-loss model, greedily adding the next model to the soup (through averaging the
weights of the chosen models equally) if it reduces the loss of the soup (see Algorithm 3).

In PAPA, we construct average and greedy soups at the end of training and show that they both work
similarly well in our specific setting to compress the population of trained models into a single network. For
non-PAPA models, greedy soups work much better than average soups since there is no guarantee that the
weights of all models are similar enough to be averaged without performance loss (in the worst case, greedy
soups just take the network with the best validation accuracy).

3 Related work

Concurrent work Diversify-aggregate-repeat training (DART) (Jain et al., 2023) is a concurrent work
that was accepted to CVPR 2023 and appeared on arXiv one month prior to our first arXiv submission and
for which we were made aware of afterwards.

Their approach, DART, uses almost the same setup as PAPA-all using average model soups with a similar
motivation. There are a few minor differences: 1) they do not use REPAIR, 2) they wait until mid-training
before averaging and average more rarely than us, 3) they apply one specific data augmentation per model
(e.g., model 1 uses only mixup, model 2 uses only label smoothing, etc.), which limits how much models
they can produce (while we randomly sample different hyperparameters from all data augmentations in each
model), 4) they use Pad-Crop, AutoAugment, Cutout, and Cutmix as data augmentations, while we use
Mixup, Label smoothing, CutMix, and Random Erasing, 5) they use a slightly different hyperparameters
(600 epochs, weight decay of 5e-4, EMA by default).

As can be seen from this list, the differences are very minor. Thus, one can consider PAPA-all to be effectively
the same algorithm as DART. The main difference between our work and DART is that we also propose
PAPA (our best method across all PAPA variations) and PAPA-2, which are not considered in DART. Of
note, DART also provides a nice theory for single-layer convolutional networks with some assumptions to
show that using diverse data augmentations can reduce the convergence time to learn robust features while

5

Published in Transactions on Machine Learning Research (04/2024)

averaging once in a while can increase the convergence time of noisy (non-meaningful) features (which is
good since we ideally would prefer not learning the noise features). This theory also applies to PAPA-all and
could potentially be extended to PAPA as future work.

In Section 4.5.2, we replicate DART and provide some comparisons between DART, PAPA-all, and PAPA.
We observe that the differences between PAPA-all and DART are fairly minor and that the DART-specific
design choices are not beneficial in terms of generalization.

Federated learning and averaging over different data partitions Federated learning (Konečnỳ
et al., 2016; McMahan et al., 2017) tackles the problem of learning when the data is scattered across
multiple servers where exchanges of communication are rare. A separate model is trained in each server,
and the goal is to combine those models into a single model in the central server. The main differences
between classic federated learning and our setting are that 1) our models have access to the full dataset
(with different data augmentations and regularizations) instead of partitions of the data, 2) we do not limit
exchanges of communication, and 3) while federated learning seeks convergence of the central server model
and generalization as close as possible to full-data training, we seek to generalize better than a single model
trained on the full dataset.

Wang et al. (2020) use weight averaging in a federated learning setting. Su and Chen (2015); Li et al. (2022)
also use weight averaging in partitioned-data setting, but with no limit to communication exchanges. Except
for Li et al. (2022), a natural language processing (NLP) specific approach trained on different domains, these
methods perform worse than a single model trained on the full training data since each model is trained only
on a subset of the data. In contrast, we train each model on the full dataset and gain more performance than
training a single model.

Distributed Consensus Optimization Consensus optimization seeks to minimize a loss function while
using different models per mini-batch and constraining their weights to be approximately equal (Xiao et al.,
2007; Boyd et al., 2011; Shi et al., 2015). Similarly to federated learning, but contrary to us, the dataset is
split across models. Consensus optimization algorithms are similar to PAPA because they push the weights
toward the population average in order to reach a consensus (i.e., make all weights equal). However, reaching
a consensus across all models is not the goal of PAPA. PAPA seeks to retain diversity between the models so
that each model can discover different features to propagate through the population average.

Genetic algorithms Genetic algorithms (GAs) (De Jong, 1975) seek to improve on a population of models
by emulating evolution, a process involving: reproduction (creating new models by combining multiple
models), random mutation (changing models randomly to explore the model space), and natural selection
(retaining only the well-performing models). GAs have been used to train neural networks (Miller et al., 1989;
Whitley et al., 1995; Such et al., 2017; Sehgal et al., 2019), but they are highly inefficient and computationally
expensive.

Averaging weights during training can be interpreted as a form of reproduction. In fact, evolutionary stochastic
gradient descent (ESGD) (Cui et al., 2018), a method that combines SGD with GAs, does reproduction
by averaging the weights of two parents. Although PAPA-2 also averages two parents, it does not use any
mutations nor natural selection, and we show that such components are actually harmful to generalization in
Table 16. We also show that PAPA variants generalize better than ESGD in Appendix A.9.

Averaging in optimization There is an extensive literature on averaging iterates (weights at each iteration)
to speed up convergence with stochastic gradient descent (SGD) (Rakhlin et al., 2011; Lacoste-Julien et al.,
2012; Shamir and Zhang, 2013; Jain et al., 2018). In the strongly convex setting, the convergence rate of SGD
can be improved from O(log T

T) to O(1
T) through averaging methods (Rakhlin et al., 2011; Lacoste-Julien

et al., 2012). In the context of deep learning, similar averaging methods exist to improve generalization,
such as exponential moving average (EMA) (Tarvainen and Valpola, 2017; Yazıcı et al., 2019) and stochastic
weight averaging (SWA) (Izmailov et al., 2018) to name a few.

Contrary to PAPA, these techniques average the iterates from a single SGD trajectory rather than multiple
models from different trajectories. Thus, these iterate averaging methods are orthogonal to PAPA and can

6

Published in Transactions on Machine Learning Research (04/2024)

be combined with our approach. We demonstrate this in Appendix A.11 by showing that PAPA variants
improve generalization when combined with SWA.

Permutation-matching and mode connectivity Freeman and Bruna (2017); Garipov et al. (2018);
Draxler et al. (2018) showed that pre-trained networks could be connected through paths where the loss does
not significantly decrease. However, for most networks, linear paths (interpolation between two or multiple
networks) lead to a significant rise in loss. To alleviate this problem, various permutation alignment techniques
have been devised. We tried some of these techniques (feature and weight matching from (Ainsworth et al.,
2023) and Sinkhorn weight matching from (Peña et al., 2022)) but did not observe improvements using our
algorithm.

Wortsman et al. (2022); Singh and Jaggi (2020); Matena and Raffel (2022) devise various strategies for
combining multiple fine-tuned models to improve generalization. Instead, we show the more general statement
that frequently pushing the models toward the average or occasionally averaging them during the whole
length of training improves generalization (see Appendix A.12).

4 Experiments

For the experiments, we compare PAPA variants to baseline models trained independently with no averaging
during training on two different tasks: image classification and satellite image segmentation. For image
classification, we train models from scratch on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), and ImageNet (Deng et al., 2009); we also fine-tune pre-trained models on CIFAR-100. For
image segmentation, we train models from scratch on ISPRS Vaihingen (Rottensteiner et al., 2012). On
image classification, we only have access to train and test data; thereby, we remove 2% of the training data
to use as evaluation data for the greedy soups.

We test different population sizes (p ∈ [2, 10]) with and without data augmentations and regularizations.

4.1 Choices of data augmentations and regularizations

Regarding the data augmentations and regularizations, we draw random hyperparameter choices for Mixup
(Zhang et al., 2017; Tokozume et al., 2018), Label smoothing (Szegedy et al., 2016), CutMix (Yun et al.,
2019), and Random Erasing (Zhong et al., 2020)).

Unless otherwise specified, we take a random draw from Mixup (α ∈ {0, 0.5, 1.0}), Label smoothing (α ∈
{0, 0.05, 0.10}), CutMix (λ ∈ {0, 0.5, 1.0}), and Random Erasing (probability of erasing a block of the image
∈ {0, 0.15, 0.35})).

As an exception, for ImageNet, we use a random draw from Mixup (α ∈ {0, 0.2}), Label smoothing
(α ∈ {0, 0.10}), CutMix (λ ∈ {0, 1.0}), and Random Erasing (probability of erasing a block of the image
∈ {0, 0.35})).

4.2 Training hyperparameters

With PAPA, we apply the EMA every 10 SGD steps. For most experiments, we use αpapa = 0.99 when
training from scratch and αpapa = 0.999 when fine-tuning. As exceptions, we use αpapa = 0.95 for the ESGD
experiments.

For training-from-scratch on CIFAR-10 and CIFAR-100, training is done over 300 epochs with a cosine
learning rate (1e-1 to 1e-4) (Loshchilov and Hutter, 2016) using SGD with a weight decay of 1e-4. Batch size
is 64 and REPAIR uses 5 forward-passes.

For training-from-scratch on ImageNet, training is done over 90 epochs with a cosine learning rate (1e-1 to
1e-4) (Loshchilov and Hutter, 2016) using SGD with a weight decay of 1e-4. Batch size is 256 and REPAIR
is not used.

7

Published in Transactions on Machine Learning Research (04/2024)

For fine-tuning, training is done over 150 epochs with a cosine learning rate (1e-4 to 1e-6) with and without
restarts (every 25 epochs) (Loshchilov and Hutter, 2016) using AdamW (Kingma and Ba, 2014; Loshchilov
and Hutter, 2017) with a weight decay of 1e-4. Since we use a pre-trained model, the final layer is changed to
fit the correct number of classes and re-initialized with random weights. As recommended by Kumar et al.
(2022), we freeze all layers except the final layer for the first 6 epochs of training (4% of the training time).
Batch size is 64 and REPAIR uses 5 forward-passes.

4.3 Presentation

For simplicity, only the results with the largest population size and with data augmentations are shown in
the main tables, while the rest is left in the Appendix. We report the test accuracies of the logit-average
ensemble (Ensemble) (Tassi et al., 2022) for all models. As mentioned before, average soups perform poorly
for baseline models, while average soups tend to perform better than greedy soups for PAPA variants. Thus,
for parsimony in the main result table, we only show the average soup (AvgSoup) for PAPA variants and
greedy soup (GreedySoup) for baseline models. Detailed results with both soups are found in the Appendix.

To increase the readability of the lengthy tables, we highlight the metrics of the best ensemble in green and
the best model soup in blue for each setting across all approaches and population sizes. When results are
written as “x (y)”, x is the mean accuracy, and y is the standard deviation across 3 independent runs (with
seeds 1, 2, 3); otherwise, it is the accuracy of a single run with seed=1.

For the models trained from scratch on CIFAR-10 and CIFAR-100, we tried to improve the model soups of
the baseline approach by using permutation alignment through feature matching (Ainsworth et al., 2023) on
the full training data; however, permutation-alignment is only implemented on specific architectures due to its
complexity of implementation, and since it did not improve greedy soups while average soups still performed
poorly (1-45% accuracy while regular models had 73-81 % accuracy), we did not use feature alignment for
soups in the other settings. Meanwhile, REPAIR was helpful to baseline soups, and its overhead cost was
negligible, so we used it to improve the baseline model soups. See Appendix A.4 for more details on the
permutation alignment.

For the full details on the datasets, neural network architectures, training hyperparameters, and data
augmentations and regularizations, please refer to Appendix A.1.

4.4 Main experiments

We show our main results (with varying augmentations at the largest population size we trained) in Table 1
and leave the detailed results (with and without augmentation, with various population sizes) in Appendix
A.7 and those on Vaihingen in Appendix A.8.

Table 1: Test accuracy from ensembles and soups with varying data augmentations and regularizations

Dataset / architecture Baseline PAPA PAPA-all PAPA-2
Ensemble GreedySoup1 Ensemble AvgSoup Ensemble AvgSoup Ensemble AvgSoup
p models 1 model p models 1 model p models 1 model p models 1 model

CIFAR-10 (nepochs = 300, p = 10)
VGG-11 95.2 (0.1) 94.0 (0.1) 94.9 (0.1) 94.8 (0.0) 94.1 (0.2) 94.1 (0.2) 94.5 (0.1) 94.4 (0.1)

ResNet-18 97.5 (0.0) 96.8 (0.2) 97.4 (0.1) 97.4 (0.1) 97.3 (0.1) 97.3 (0.1) 97.1 (0.0) 97.1 (0.1)
CIFAR-100 (nepochs = 300, p = 10)

VGG-16 82.2 (0.1) 77.8 (0.1) 79.6 (0.4) 79.4 (0.3) 79.0 (0.4) 78.9 (0.4) 79.0 (0.3) 78.9 (0.3)
ResNet-18 84.3 (0.3) 80.2 (0.6) 82.2 (0.1) 82.1 (0.2) 81.8 (0.0) 81.8 (0.0) 81.3 (0.3) 81.2 (0.3)

Imagenet (nepochs = 90, p = 3)
ResNet-50 78.7 76.8 78.4 78.4 77.7 77.7 77.8 77.8

Fine-tuning on CIFAR-100 (nepochs = 50, p = 2, 4, 5 respectively for EfficientNetV2, EVA-02, ConViT)
EffNetV2-S 91.7 (0.3) 91.3 (0.4) 91.6 (0.3) 91.4 (0.5) 91.4 (0.4) 91.1 (0.4) 91.3 (0.6) 91.3 (0.6)
EVA-02-Ti 90.6 (0.1) 90.4 (0.1) 90.7 (0.3) 90.6 (0.2) 90.7 (0.6) 90.7 (0.5) 90.5 (0.3) 90.4 (0.3)
ConViT-Ti 88.8 (0.2) 87.9 (0.2) 88.6 (0.2) 88.4 (0.2) 88.2 (0.2) 88.1 (0.1) 88.2 (0.2) 88.2 (0.3)

1Note that when training from scratch (the non-fine-tuning results), the greedy soup is just the best model (based on
validation accuracy) since the models are not amenable to averaging. See Section A.13 for details.

8

Published in Transactions on Machine Learning Research (04/2024)

In the table, we show the different approaches in the columns (Baseline, PAPA, PAPA-all, and PAPA-2)
using ensembles of p models or model soups (a single condensed model). In the rows, we show the different
architectures for different datasets.

From the experiments, we observe the following elements: PAPA tends to perform better than other PAPA
variants, while PAPA-all and PAPA-2 perform better than baseline models. Baseline ensembles have higher
accuracy than PAPA variants. For PAPA variants, average soups tend to generalize better than greedy soups.
Baseline greedy groups only used one model when pre-training but multiple models when fine-tuning (See
Appendix A.13); this shows that pre-trained models cannot be merged without a drop in performance when
not using PAPA variants. Increasing p tends to improve the test accuracy of PAPA variants. Varying data
augmentations and regularizations generally leads to the highest performance for ensembles and soups. Thus,
optimal performance is found with an ensemble of models; however, if one seeks to maximize performance for
single networks, PAPA is the way to go.

ImageNet PAPA obtains an accuracy of 78.36% on ImageNet. Previous results with similar accuracy were
obtained using large batch sizes (1024 for 300 epochs, 2048 for 100 epochs) or long training (384 for 600
epochs) (Wightman et al., 2021). Meanwhile, we use only a batch size of 256 for 90 epochs with 3 networks
(equivalent in compute to 270 epochs on a single GPU). We also observe that PAPA is better than its variants
PAPA-all and PAPA-2 by a safe margin of at least 0.6%.

Fine-tuning Greedy model soups have been shown to perform best in the context of fine-tuning from a
pre-training model (Wortsman et al., 2022). Nevertheless, we see an improvement in generalization from
using PAPA (with a very small αpapa = 0.9995), which shows that leveraging the population average during
fine-tuning is still beneficial.

4.5 Additional experiments

4.5.1 Comparing PAPA variants to baseline models trained for p times more epochs

Previously we compared PAPA variants to baseline models trained on the same amount of epochs. However,
one may argue that PAPA approaches have used p times more training samples due to the updates with the
population average of the weights. Furthermore, suppose one has access to a single GPU. In that case, one
may wonder whether they should train a single model for p times more epochs or use PAPA variants with p
networks since having a single GPU means they cannot leverage the parallelization benefits of our method.

Here we compare the accuracy of independent (baseline) models trained for 3000 epochs to PAPA variants
trained with p = 10 networks for 300 epochs. For the baseline models, we randomly select from the set of
augmentations and regularizations in each mini-batch to replicate the effect of training on all these data
variations.

Results are shown in Table 2. We find that all PAPA approaches (PAPA-all, PAPA, PAPA-2) generalize better
than baseline models trained 10 times longer, except in the case of ResNet-18 with no data augmentation,
where only PAPA-all generalize better than baseline models.

This demonstrates that PAPA variants can bring more performance gain than training models for more
epochs. This suggests that our approach could provide a better and more efficient way of training large
models on large data by parallelizing the training length over multiple networks trained with PAPA variants
for less time.

4.5.2 Comparing PAPA to DART

As mentioned in Section 3, DART (Jain et al., 2023) is a concurrent work, which is very similar to PAPA-
all. The main differences are the different data augmentations, lack of REPAIR, start of the averaging at
mid-training, and less frequent averaging. In this section, we try to replicate DART by using PAPA-all with
the DART-specific design choices and training hyperparameters. We also provide ablation to determine the
usefulness of each of the DART-specific design choices.

9

Published in Transactions on Machine Learning Research (04/2024)

Table 2: Training independent models for 300 × 10 epochs versus training p = 10 PAPA models for 300
epochs on CIFAR-100

Baseline PAPA PAPA-all PAPA-2
Mean AvgSoup AvgSoup AvgSoup

VGG-16: No data augmentations or regularization
74.15 (0.1) 76.04 75.13 75.10
VGG-16:With random data augmentations
77.44 (0.1) 79.36 (0.3) 78.89 (0.4) 78.91 (0.3)
ResNet-18: No data augmentations or regularization
78.23 (0.6) 78.11 78.59 77.90
ResNet-18:With random data augmentations
79.88 (0.5) 82.06 (0.2) 81.77 (0.0) 81.23 (0.3)

In Jain et al. (2023), they ran experiments on CIFAR-10/CIFAR-100 with a ResNet-18 network. Sadly, they
did not release the code for these experiments, and some hyperparameters are unclear. They use an exponential
moving average (EMA) of the weights but do not specify the EMA rate nor how they merge the EMA
networks. Furthermore, they use three networks, each with one specific data augmentation: AutoAugment,
Cutout, and Cutmix; however, they do not specify the hyperparameters of these transformations.

We try to replicate those experiments; however, keep in mind that we likely do not have the correct
hyperparameters for the EMA and the data augmentations.

We train ResNet-18 models on CIFAR-10 and CIFAR-100 with a population of p = 3 networks. The first
network uses AutoAugment from (Wightman et al., 2021) with m = 4, n = 1, p = 1.0, mstd = 1.0 (i.e., select
one transformation per image with magnitude 4). The second network uses Cutmix with λ = 0.5. The third
network uses Cutout (DeVries and Taylor, 2017) with one hole of length 8. Following their protocol, the
training is done over 600 epochs with a cosine learning rate (0.1) with weight decay (5e-4).

We try PAPA, PAPA-all, and DART. We also provide some ablation to determine the usefulness of the
DART-specific design choices, which are not in PAPA-all. Table 3 shows the results. We see that within
our replication, DART generalizes a little bit less than PAPA-all. The best generalization is obtained with
PAPA-all without REPAIR for CIFAR-10 and PAPA-all (with REPAIR) for CIFAR-100. This shows that
the design choices to start averaging at mid-training and average less frequently are not particularly useful.
In fact, Wightman et al. (2021) mention in their own ablation that the results are relatively insensitive to
these design choices.

The results of our replication are similar to those reported in Jain et al. (2023), except for slightly worse
performance on CIFAR-100. Keep in mind that we do not have the exact training details and cannot ensure
the exact same setup as them. Note that the results we obtain here are different from those of our main
results (Table 1) because we use 600 epochs instead of 300 and completely different data augmentations.

Overall, the small design differences between DART and PAPA-all are not that important, and ultimately,
the two methods are nearly the same.

Table 3: PAPA and PAPA-all average soups vs DART with ResNet-18 on a population of p = 3 networks

Method CIFAR-10 CIFAR-100
Original results by Jain et al. (2023)

ERM+EMA (Mixed - MT) 97.08 (0.05) 82.25 (0.29)
DART 97.14 (0.08) 82.89 (0.07)

PAPA, PAPA-all, and DART replication
PAPA-all 97.10 (0.15) 82.59 (0.24)
PAPA-all no-repair 97.20 (0.06) 82.29 (0.42)
PAPA-all no-repair, starts at 300 epochs 97.12 (0.09) 82.26 (0.18)
DART: PAPA-all no-repair, starts at 300 epochs, average every 40/50 epochs 97.12 (0.13) 82.30 (0.19)
PAPA 97.15 (0.09) 82.45 (0.16)

10

Published in Transactions on Machine Learning Research (04/2024)

4.5.3 Stochastic weight averaging (SWA)

We run experiments with stochastic weight averaging (SWA) on CIFAR-100 with p = 5 in Appendix A.11.
We find that using SWA increases the mean accuracy of baseline networks from 79.35% to 80.77% and that
further adding PAPA-all brings the mean accuracy to 81.88%. This demonstrates that SWA and PAPA
variants are orthogonal methods that work for different reasons and complement one another. Thus, for
optimal performance, we suggest combining PAPA with SWA.

4.5.4 Evolutionary stochastic gradient descent (ESGD)

We compare PAPA variants to evolutionary stochastic gradient descent (ESGD) (Cui et al., 2018), a method
that leverage a population of networks through a complicated genetic algorithm, on the same CIFAR-10
setting explored by (Cui et al., 2018). We show that PAPA-all and PAPA obtain similar or better results
with only 5 networks instead of 128. Results are shown in Appendix A.9.

4.5.5 Logistic regression (single-layer model)

We test a logistic regression setting to see how PAPA fares on single-layer models. Results are shown in
Appendix A.10. These results demonstrate that model soups can already work well without alignment in the
single-layer setting and that PAPA benefits are specific to deep neural networks.

4.5.6 Ablations

We provide an extremely detailed ablation study in Appendix A.12 showing the drop in performance from
removing/changing parts of the algorithm. We also investigate the effect of pushing toward the average or
replacing by the average solely during certain periods of training (e.g., beginning, middle, end) instead of
during the entire length of training. We observe that mean accuracy is highest when averaging during the
whole span of training time (as done in our method).

When αpapa = 0, we generally see that averaging at different frequencies, using the same initialization for
every model, removing REPAIR, using feature-matching permutation alignment (Ainsworth et al., 2023),
and adding elements of Genetic Algorithms decrease performance; the only exception is with PAPA-all where
averaging every 10 epochs (instead of 5) performs better.

When αpapa > 0, we show that applying an EMA of αpapa = 0.99 every 10 iterations work best.

4.6 Visualizations of the accuracy and its change after averaging

We also provide visualizations of how the accuracy changes over time in Figure 2. We observe that 1)
test accuracy is almost always higher with PAPA variants than with baseline models, 2) REPAIR prevents
significant loss in accuracy after averaging with PAPA-all in the first few epochs, but has little effect
afterwards, and 3) test accuracy is massively boosted immediately after averaging with PAPA-all, then it
drops significantly from the first few iterations of training, and then it slowly increases again until the next
averaging.

4.7 Why does averaging the weights of a population help so much?

We hypothesize that averaging is beneficial because we effectively combine features from one network with the
features of another, allowing the averaged model to learn unrealized features discovered by other networks.
We provide evidence for this hypothesis by showing that 1) PAPA models (and variants) share most of their
features at the end of training (showing feature mixing), and 2) performance immediately improves after
averaging (showing a benefit from mixing features).

To show feature mixing, we align the networks of a population (through feature matching permutation
alignment (Ainsworth et al., 2023) and REPAIR (Jordan et al., 2023)) and demonstrate that PAPA variants
have higher cosine similarities (See Appendix A.5 for the details): 88–99% between networks of the PAPA
variants, and 31–63% for independent models. To show the benefit of feature mixing, we look at the change

11

Published in Transactions on Machine Learning Research (04/2024)

Figure 2: Accuracy (and its change after averaging) at each epoch with PAPA variants on CIFAR-100.

in accuracy after averaging with PAPA-all and PAPA-2 in Figure 2, and we observe a massive increase in
accuracy (around 10% increase) immediately after averaging. These results demonstrate feature mixing and
that mixing these features significantly boosts performance.

5 Discussion

During pre-training, greedy model soups only used a single model and performed worse than PAPA variants.
During fine-tuning, greedy model soups used multiple models. In the case of training a single layer, our
experiments showed that PAPA performed worse than greedy soups. The conclusion from these experiments
is the following:

1. During pre-training, PAPA ensures that the models stay similar enough so that model averaging
provides equal or greater generalization. Meanwhile, model soups will only choose the best network
because the models are not amenable to averaging, and doing so would lead to a massive drop in
generalization.

2. During fine-tuning from a pre-trained model, models are amenable to averaging, and thus, PAPA is
unnecessary over model soups. We still found small benefits of PAPA over model soups in the case of
fine-tuning all parameters. However, this is because we fine-tuned all parameters. When training a
single layer (as is the case for linear probing), PAPA is unnecessary because averaging the weights of
a single linear layer already works since the permutations are perfectly aligned.

6 Conclusion

We present an algorithm called PopulAtion Parameter Averaging (PAPA), which trains a population of
p models and improves overall performance by pushing the weights toward the population average. We
also propose PAPA variants (PAPA-all, and PAPA-2) that rarely replace the weights with the population
average. In practice, we find that all methods increase generalization, but PAPA tends to perform better
than PAPA-all and PAPA-2. PAPA provides a simple way of leveraging a population of networks to improve
performance. Our method is easy to implement and use. Our experiments use a single GPU, demonstrating
that PAPA is worthwhile with small compute and could be scaled much further.

In practice, PAPA performed better than training a single model for p times more epochs. Thus, PAPA
could provide a better and more efficient way of training large models on extensive data by parallelizing the
training length over multiple PAPA networks trained for less time.

12

Published in Transactions on Machine Learning Research (04/2024)

Limitations PAPA is more expensive than training a single network. Also, ensembles perform better than
PAPA, though at a high inference costs. When training multiple networks with no computational or memory
constraint at inference, one is better off using ensembles; however, when such constraints exist, or one needs
a single model, one is better off using PAPA soups. The benefit of PAPA is significant for pre-training but
small for fine-tuning because the weights stay relatively well aligned.

Future work We only explored equal-weighted averaging, but different weightings may help emphasize
more generalizable features. To parallelize PAPA, one could test ideas such as asynchronous updates. Theory
from consensus optimization may help prove the generalization benefits of PAPA.

Acknowledgments

This research was enabled in part by compute resources provided by Mila (mila.quebec), Calcul Québec
(calculquebec.ca), the Digital Research Alliance of Canada (alliancecan.ca), and by support from the
Canada CIFAR AI Chair Program. KF is supported by NSERC Discovery grant (RGPIN-2019-06512) and
a Samsung grant. Simon Lacoste-Julien is a CIFAR Associate Fellow in the Learning Machines & Brains
program.

References
Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo

Permutation Symmetries. In International Conference on Learning Representations, 2023.

Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. Beyond RGB: Very high resolution urban remote
sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2017.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine learning, 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 2020.

Xiaodong Cui, Wei Zhang, Zoltán Tüske, and Michael Picheny. Evolutionary Stochastic Gradient Descent for
Optimization of Deep Neural Networks. In Advances in Neural Information Processing Systems, 2018.

Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive systems. University of
Michigan, 1975.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE conference on computer vision and pattern recognition, 2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in neural
network energy landscape. In International Conference on Machine Learning, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent Sagun. Convit:
Improving vision transformers with soft convolutional inductive biases. In International Conference on
Machine Learning, pages 2286–2296. PMLR, 2021.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The Role of Permutation Invariance in
Linear Mode Connectivity of Neural Networks. In International Conference on Learning Representations,
2022.

13

mila.quebec
calculquebec.ca
alliancecan.ca
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published in Transactions on Machine Learning Research (04/2024)

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A visual
representation for neon genesis. arXiv preprint arXiv:2303.11331, 2023.

Kilian Fatras, Bharath Bhushan Damodaran, Sylvain Lobry, Remi Flamary, Devis Tuia, and Nicolas Courty.
Wasserstein Adversarial Regularization for learning with label noise. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. In International Conference on Machine Learning, 2020.

C. Daniel Freeman and Joan Bruna. Topology and Geometry of Half-Rectified Network Optimization. In
International Conference on Learning Representations, 2017.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss Surfaces,
Mode Connectivity, and Fast Ensembling of DNNs. In Advances in Neural Information Processing Systems,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In Uncertainty in Artificial Intelligence, 2018.

Prateek Jain, Sham Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing stochastic
gradient descent for least squares regression: mini-batching, averaging, and model misspecification. Journal
of Machine Learning Research, 2018.

Samyak Jain, Sravanti Addepalli, Pawan Kumar Sahu, Priyam Dey, and R Venkatesh Babu. Dart: Diversify-
aggregate-repeat training improves generalization of neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16048–16059, 2023.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR: REnormalizing
permuted activations for interpolation repair. In International Conference on Learning Representations,
2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can distort
pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054, 2022.

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining an O(1/t)
convergence rate for the projected stochastic subgradient method. arXiv preprint arXiv:1212.2002, 2012.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models. arXiv
preprint arXiv:2208.03306, 2022.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent Learning: Do different
neural networks learn the same representations? In Proceedings of the 1st International Workshop on
Feature Extraction: Modern Questions and Challenges at NIPS 2015, 2015.

14

Published in Transactions on Machine Learning Research (04/2024)

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Michael S Matena and Colin Raffel. Merging models with Fisher-Weighted Averaging. In Advances in Neural
Information Processing Systems, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, 2017.

Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing Neural Networks Using Genetic Algorithms.
In ICGA, 1989.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of artificial
intelligence research, 1999.

Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric Granger, and
Marco Pedersoli. Re-basin via implicit Sinkhorn differentiation. arXiv preprint arXiv:2212.12042, 2022.

Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and systems magazine, 2006.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly
convex stochastic optimization. In International Conference on Machine Learning, 2011.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. arXiv preprint
arXiv:2205.09739, 2022.

Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 2010.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
In The International Conference on Medical image computing and computer-assisted intervention, 2015.

Franz Rottensteiner, Gunho Sohn, Jaewook Jung, Markus Gerke, Caroline Baillard, Sebastien Benitez, and
Uwe Breitkopf. The ISPRS benchmark on urban object classification and 3D building reconstruction.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012.

Adarsh Sehgal, Hung La, Sushil Louis, and Hai Nguyen. Deep reinforcement learning using genetic algorithm
for parameter optimization. In IEEE International Conference on Robotic Computing, 2019.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. In International Conference on Machine Learning, 2013.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 2020.

Hang Su and Haoyu Chen. Experiments on parallel training of deep neural network using model averaging.
arXiv preprint arXiv:1507.01239, 2015.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks
for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

15

Published in Transactions on Machine Learning Research (04/2024)

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International conference
on machine learning, pages 10096–10106. PMLR, 2021.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. Advances in neural information processing systems,
2017.

Cedrique Rovile Njieutcheu Tassi, Jakob Gawlikowski, Auliya Unnisa Fitri, and Rudolph Triebel. The impact
of averaging logits over probabilities on ensembles of neural networks. In Workshop on Artificial Intelligence
Safety, AISafety, 2022.

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Optimizing mode
connectivity via neuron alignment. Advances in Neural Information Processing Systems, 2020.

Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Between-class learning for image classification. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5486–5494, 2018.

Bob Vanderheyden and Jennifer Priestley. Logistic ensemble models. arXiv preprint arXiv:1806.04555, 2018.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated
Learning with Matched Averaging. In International Conference on Learning Representations, 2020.

Darrell Whitley et al. Genetic algorithms and neural networks. Genetic algorithms in engineering and
computer science, 1995.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training procedure in
timm. arXiv preprint arXiv:2110.00476, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model soups:
averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International Conference on Machine Learning, 2022.

Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-mean-square
deviation. Journal of parallel and distributed computing, 2007.

Yasin Yazıcı, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, and Vijay Chandrasekhar.
The Unusual Effectiveness of Averaging in GAN Training. In International Conference on Learning
Representations, 2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 13001–13008, 2020.

16

Published in Transactions on Machine Learning Research (04/2024)

A Appendix

A.1 Datasets and training details

A.1.1 Datasets

Table 4: Datasets

Dataset Image size Image size # of classes # of images License
(original) (after resizing) train test valid

CIFAR-10 32x32 32x32 10 50K 10K N/A N/A
CIFAR-100 32x32 32x32 100 50K 10K N/A N/A
ImageNet varies 224x224 1000 1.28M 50K N/A N/A
Vaihingen 2494x2064 256x256 6 11 17 5 N/A

Vaihingen has a validation set, but there is no validation set for the other datasets, in which case, we keep
2% of the training as held-out data to compute the validation accuracy for the greedy model soups.

A.1.2 GPUs

For all experiments, we use a single GPU: A-100 40Gb (for Imagenet) or V-100 16Gb (for all other experiments).

A.1.3 Vaihingen

For the Vaihingen dataset (Rottensteiner et al., 2012), we follow the training procedure and PyTorch
implementation from (Audebert et al., 2017). We use a UNet (Ronneberger et al., 2015) and the train,
validation, and test splits from (Fatras et al., 2021). We use 11 tiles for training, 5 tiles for validation,
and the remaining 17 tiles for testing our model. Furthermore, we only consider the RGB components of
the Vaihingen dataset (Rottensteiner et al., 2012). We train our models with augmented (flip and mirror)
256× 256 patches from training data. The size of an epoch is set to 10000 images, and we train our model
for 50 epochs. We use an initial learning rate of 0.01 and divide it by ten at 50% and 90% of training. For
validation and test datasets, we directly apply our model over the original tiles.

A.1.4 Network architectures

We use VGG-16 (Simonyan and Zisserman, 2014), ResNet-18, ResNet-20, ResNet-50 (He et al., 2016),
EfficientNetV2 (Tan and Le, 2021), EVA-02 (Fang et al., 2023), and ConViT (d’Ascoli et al., 2021), and UNet
(Ronneberger et al., 2015).

A.2 Techniques used or considered in PAPA-all and PAPA-2

REPAIR Jordan et al. (2023) observed that interpolating between two networks can lead to a collapse of
the variance of features after interpolation. REnormalizing Permuted Activations for Interpolation Repair
(REPAIR) is a technique to mitigate the variance collapse through rescaling the preactivations (i.e., the
convolution/linear layers arising before any activation function). The rescaling is done by reweighting the
bias and slope of the convolution (or linear) layers so that the preactivation features are such that:

E[Xα] = (1− α) · E[X1] + α · E[X2], (2)
std(Xα) = (1− α) · std(X1) + α · std(X2). (3)

where Xα, X1, X2 are the features of the interpolated, first, and second networks. This method enforces
the first and second moments of the features of the interpolated network to be equal to the interpolation of
these moments from the two original networks. REPAIR requires a few forward passes of the training data to
calculate approximations of the expectations and standard deviations.

We found REPAIR beneficial in reducing the performance loss from averaging, especially early in training,
and obtaining a slight but consistent improvement in performance. However, given the compute cost of

17

Published in Transactions on Machine Learning Research (04/2024)

REPAIR, we only used it on PAPA-all and PAPA-2. Note that we generalized REPAIR from two networks
to p networks on varying data augmentations and modified the algorithm to ensure that every moment of
the features uses the same data (except for data augmentations) to minimize the variance of the estimated
feature moments. The modified algorithm is described in Appendix A.3.

Permutation alignment Although we use it on its own, REPAIR was initially a method to improve on
the recent permutation alignments techniques (Ainsworth et al., 2023; Entezari et al., 2022; Peña et al., 2022),
a set of approaches that have shown great promise in improving the accuracy of models after interpolation.
These methods consist in permuting the layers of the first neural network to make the features or the weights
(depending on the technique) closest to those of the second network (before interpolating the two networks).
Permuting the layers is done in such a way that the output of the neural network is the same, but the
difference is that when interpolating between the two networks, their features/weights are now well aligned.

Since we average the weights of many networks, this direction seemed promising. However, we found
no benefits of permutation alignment before averaging; we attribute this to the fact that the models are
recombined often enough to keep them similar permutation-wise so that averaging them does not lead to
accuracy loss (in fact, we generally see a big improvement in accuracy from averaging).

A.3 REPAIR

We describe our slightly modified REPAIR algorithm, which we used in Algorithm 4. The main changes over
the original algorithm from Jordan et al. (2023) are that we generalized it from 2 networks to p networks,
used different data augmentations per network, and reused the same seed to ensure all networks go through
the same data (except for data augmentations) to minimize the variance of the estimated feature moments.
Note that although quite complicated, the algorithm is easy to use and can be directly applied to most
network architectures because of the batch-norm insertion trick.

18

Published in Transactions on Machine Learning Research (04/2024)

Algorithm 4: REPAIR (Jordan et al., 2023)
Input: Θ← {θ1, · · · , θp}, train (or evaluation; but not test) dataset D, set of data augmentations and
regularizations {πj}p

j=1, j is the current network being repaired, SEED=666, k = 5 iterations (forward
passes), w = (w1, · · · , wp) weights for the averaging (default is wi = 1

p∀i).
// Definitions
Let α, β, µ, σ be the bias, weight, running mean, and running standard deviations of a batch-norm layer
Let a, b be the bias, and weight of a pre-activation (linear or convolution) layer
// Set temporary batch norms to calculate features statistics
θ′ = θj ;
Add a temporary batch-norm layer after all pre-activation layers of θ′ and include the batch-norm in the
forward pass;

for i = 1 : p do
Add a temporary batch-norm layer after all pre-activation layers of θi, but ignore the batch-norm in
the forward pass;

// Rebuild the batch-norm statistics from scratch
ResetBatchNorm(D, πi, θi, SEED, k);

end
// Calculate weighted running mean and standard deviations
µ = [0, · · · , 0];
σ = [0, · · · , 0];
for i = 1 : p do

for temporary batch-norm layer l of θi do
Extract µ and σ from l;
µ(l) = µ(l) + wiµ

′;
σ(l) = σ(l) + wiσ

′;
end

end
// Replace preactivation weight and bias by weighted running mean and standard

deviation
for temporary batch-norm layer l of θ′ do

Set α = µ(l) and β = σ(l) in layer l;
end
// Reset the running mean and standard deviations
ResetBatchNorm(D, πj , θ′, SEED, k)
// Fuse the rescaling coefficients into the preactivation
for (preactivation layer l1 and subsequent temporary batch-norm l2) of θ’ do

Extract α, β, µ and σ from l2;
Extract a, b from l1;
Set b = β

σ b in layer l1;
Set a = α + β

σ (a− µ) in layer l1;
Remove the temporary batch-norm layer l2

end
return θ′;

19

Published in Transactions on Machine Learning Research (04/2024)

Algorithm 5: ResetBatchNorm
Input: train (or evaluation; but not test) dataset D, θ, π, SEED = 666, k = 5.
// Reset the batch-norm statistics to a running mean of 0 and standard-deviation of 1
Reset the running stats of all batch-norm layers in θ;
// Rebuild the batch-norm statistics from scratch
Set the random seed to SEED;
for i = 1 : k do

Sample data from D
Regularize data using π
Forward pass through θ;

end

A.4 Notes on the permutation alignments

As previous mentioned in Section 4, in the model soups of some non-PAPA models (the VGG and Resnet-18
models on CIFAR-10 and CIFAR-100) and some ablation experiments, we use permutation alignment methods
to align the different networks to obtain better averaging or model soups. We use the feature-matching
method by Ainsworth et al. (2023) for the permutation alignment of the paper. We want to acknowledge
that we also did preliminary experiments with weight matching (Ainsworth et al., 2023) and the Sinkhorn
implicit differentiation (Peña et al., 2022). However, we obtained noticeably worse alignments with these
methods than the feature-matching one. Thus, we stuck to the feature-matching method in this paper.

Below, we discuss some of the challenges with aligning multiple networks and how we addressed these
problems.

Although permutation alignment is well-defined for aligning two networks, the problem of aligning multiple
networks is ill-defined. Which criterion to optimize needs to be clarified and depends on how you want to use
these networks (e.g., simple averaging versus making model soups). One option is to simultaneously learn all
permutations and minimize the average distance in weight space between any pair of networks. However, this
approach is memory-expensive and may not be optimal if the goal is to make, for example, greedy soups.
Below, we discuss how we chose to align multiple networks.

For the permutation alignment with PAPA-all (which we only use in the ablation of Appendix A.12), we
merely align every network to the first network of the population; this may not be perfect, but given the poor
results we obtained, it did not feel worthwhile to pursue other ways of aligning the networks.

For aligning the baseline models to make (average or greedy) model soups, we take advantage of how the
greedy soup is built to align the models better. We sort the models in decreasing order of train/validation
accuracy (as done in greedy soups). Then, before adding the next considered model into the soup, we
permute-align this network with respect to the current soup. This ensures that the considered model is well
aligned with the soup before being added.

Extra notes about the code The code (from Ainsworth et al. (2023)) we use for permutation alignment
is very specific to VGG and ResNet18 architectures. Generalizing this code to handle arbitrary networks,
especially those with many residual layers and submodules, is highly non-trivial. In contrast, the code of
REPAIR (Jordan et al., 2023) generalizes to nearly every modern neural network architecture.

A.5 Similarity between features learned from PAPA variants

To test the hypothesis that features are mixed while using PAPA variants, we analyze the cosine similarity of
the networks’ features at the end of training after doing feature-matching (Ainsworth et al., 2023) on full
training data and REPAIR (Jordan et al., 2023) with five iterations. The feature-matching and REPAIR
used with the Baseline approach are needed to align the features between the networks to ensure that we
don’t compare apples to oranges; this is similar to what is done in Li et al. (2015) to analyze how much

20

Published in Transactions on Machine Learning Research (04/2024)

features are shared between networks. We used the setting with CIFAR-100 data and ResNet-18 with p = 5,
which is the same setting as in the Ablation of Appendix A.12.

We observe that independently trained models have cosine similarities varying between 30.87% and 63.13%,
while models trained with PAPA variants, which were not averaged for the last five epochs, have cosine
similarities between 87.79% and 99.80%. This shows that averaging indeed ensures good mixing of the
features.

Interestingly, networks of PAPA have slightly lower similarity than those of PAPA variants; this can be
explained by the slow push toward the average. This also explains why PAPA tends to generalize better than
other PAPA variants since it enables good averaging while retaining more diversity in the models.

Table 5: Cosine similarity at different hidden layers for CIFAR-100 with ResNet-18

Layer 1 2 3 4
Baseline

Between two networks 48.07 48.78 36.76 30.71
Between one network and AvgSoup 63.13 55.13 41.80 50.15
PAPA

Between two networks 98.49 96.88 94.04 87.79
Between one network and AvgSoup 99.31 98.68 97.61 94.29
PAPA-all

Between two networks 99.61 99.12 98.73 97.12
Between one network and AvgSoup 99.80 99.60 99.41 98.39
PAPA-2

Between two networks 99.41 98.58 97.81 95.56
Between one network and AvgSoup 99.76 99.37 99.07 97.61

A.6 Why adding aspects of Genetic Algorithms (GAs) to PAPA variants is harmful

As discussed in Section 3 and shown in Appendix A.12, incorporating elements of GAs worsens the performance
gain obtained from averaging. There is a clear explanation for why incorporating aspects of Genetic algorithms
(GAs) with PAPA variants is detrimental.

First, adding random white noise to weights (mutations) is a very noisy way of exploring the data; thus, it is
unsurprising that adding mutations without natural selection is harmful. We produce diversity in a more
reliable way through random data ordering, augmentations, and regularizations.

Second, natural selection (an elaborate way to say: selecting which subset of models will be used for
reproduction/averaging, which includes greedy soups) prevents us from using the entire population. Remember
that the key to averaging is to bring the weights close enough to the average or average often enough so that
the weights are not too dissimilar (which leads to poor averaging). During one epoch, assume that model
1 is not selected, or maybe selected only to be averaged with model 2 but not the rest of the population;
the end result is that you will end up with specific clusters of models that are averaged together (or a few
single models never averaged) because the longer two models are not averaged together, the more dissimilar
these models will become. When using any model selection in our ablation (greedy soups included), we see
the result of this behavior: the average soup performs badly at the end of training. This suggests that good
performance with GAs would require a substantial population size to ensure that the largest cluster of similar
(easy-to-average) models contains enough models at the end of training.

A.7 Detailed results

We show the detailed results on CIFAR-10, CIFAR-100, and Imagenet below.

21

Published in Transactions on Machine Learning Research (04/2024)

Table 6: Test accuracy (Ensemble, Average and Greedy soups) on CIFAR-100 with VGG-16

Baseline PAPA PAPA-all PAPA-2
Soups Soups Soups Soups

Ens Avg Greed Ens Avg Greed Ens Avg Greed Ens Avg Greed
of models p 1 1 p 1 1 p 1 1 p 1 1
No data augmentation or regularization

p = 3 77.72 41.18 74.00 74.93 74.90 74.84 74.41 74.43 74.39 75.28 75.29 75.16
p = 5 78.63 4.58 74.20 75.97 76.01 76.07 74.99 75.00 75.06 75.25 75.26 75.29
p = 10 79.24 1.00 73.77 76.03 76.04 76.17 75.12 75.13 75.06 75.11 75.10 75.21

With random data augmentations
p = 3 80.42 29.41 77.65 78.9 78.72 78.54 78.89 78.74 78.66 78.56 78.64 78.62
p = 5 80.98 3.24 77.26 79.23 79.06 78.72 78.71 78.68 78.28 78.52 78.50 78.09
p = 10 82.03 0.97 77.72 79.88 79.65 79.08 78.71 78.60 78.50 79.22 79.14 78.79

Table 7: Test accuracy (Ensemble, Average and Greedy soups) on CIFAR-100 with ResNet-18

Baseline PAPA PAPA-all PAPA-2
Soups Soups Soups Soups

Ens Avg Greed Ens Avg Greed Ens Avg Greed Ens Avg Greed
of models p 1 1 p 1 1 p 1 1 p 1 1
No data augmentation or regularization

p = 3 79.36 27.99 76.49 77.87 77.89 77.86 77.48 77.48 77.50 77.18 77.19 77.38
p = 5 79.96 7.10 77.02 77.67 77.69 77.71 77.99 78.01 78.02 77.71 77.71 77.8
p = 10 80.54 1.50 76.78 78.15 78.11 78.06 78.56 78.59 78.40 77.85 77.90 77.90

With random data augmentations
p = 3 82.89 24.69 80.86 81.99 81.73 81.46 81.24 81.29 81.30 81.77 81.74 81.74
p = 5 83.08 8.68 80.69 81.67 81.52 80.88 81.19 81.03 81.50 81.62 81.59 81.68
p = 10 84.38 1.00 79.94 82.28 82.08 81.76 81.73 81.81 81.60 81.51 81.47 81.05

Table 8: Test accuracy (Ensemble, Average and Greedy soups) on CIFAR-10 with VGG-11

Baseline PAPA PAPA-all PAPA-2
Soups Soups Soups Soups

Ens Avg Greed Ens Avg Greed Ens Avg Greed Ens Avg Greed
of models p 1 1 p 1 1 p 1 1 p 1 1
No data augmentation or regularization

p = 3 93.32 86.90 92.10 92.55 92.55 92.59 92.97 92.98 93.03 92.85 92.86 92.85
p = 5 93.67 82.94 92.47 93.06 93.07 93.09 92.90 92.90 92.96 92.89 92.91 92.91
p = 10 93.80 53.34 92.11 93.24 93.26 93.21 92.80 92.81 92.86 92.86 92.85 92.78

With random data augmentations
p = 3 94.52 85.94 93.69 94.61 94.45 94.45 94.32 94.35 94.33 94.15 94.13 94.10
p = 5 94.96 81.75 93.98 94.62 94.78 94.69 94.51 94.49 94.27 94.69 94.64 94.50
p = 10 95.22 9.49 94.11 94.95 94.82 94.61 94.37 94.35 94.48 94.61 94.47 94.48

Table 9: Test accuracy (Ensemble, Average and Greedy soups) on CIFAR-10 with ResNet-18

Baseline PAPA PAPA-all PAPA-2
Soups Soups Soups Soups

Ens Avg Greed Ens Avg Greed Ens Avg Greed Ens Avg Greed
of models p 1 1 p 1 1 p 1 1 p 1 1
No data augmentation or regularization

p = 3 96.00 76.11 95.47 95.97 95.97 95.96 95.75 95.76 95.70 95.72 95.72 95.73
p = 5 96.30 30.98 95.59 96.16 96.17 96.14 95.88 95.88 95.86 95.85 95.83 95.86
p = 10 96.41 10.00 95.28 95.91 95.90 95.87 95.74 95.73 95.78 96.04 96.04 96.00

With random data augmentations
p = 3 97.32 59.91 97.05 97.31 97.30 97.16 97.04 96.98 96.94 97.14 97.12 97.17
p = 5 97.44 37.87 97.02 97.46 97.37 97.29 97.17 97.17 97.09 97.18 97.15 97.09
p = 10 97.52 11.20 96.96 97.45 97.48 97.14 97.29 97.32 97.22 97.12 97.18 97.23

22

Published in Transactions on Machine Learning Research (04/2024)

A.8 Image segmentation results

The results for image segmentation on Vaihingen are shown below. We see that for most classes and the
average, the F1-score is slightly higher with PAPA variants. However for cars, PAPA variants do slightly
worse.

Table 10: Test Accuracy and F1-scores on Vaihingen image segmentation without data augmentation or
regularization

F1-score
Roads Buildings Vegetation Trees Cars Clutter Average F1

Baseline (p = 8)
Population mean 88.80 91.27 80.53 87.85 79.72 29.15 76.22

AvgSoup 43.32 0.00 0.00 0.00 0.00 0.00 7.22
GreedySoup 89.21 91.75 80.95 87.84 78.79 29.01 76.25

PAPA-all (p = 8)
Population mean 88.58 91.05 80.64 87.82 79.28 29.89 76.21

AvgSoup 88.57 91.05 80.70 87.85 79.29 29.90 76.23
GreedySoup 88.64 91.07 80.75 87.85 79.43 29.87 76.27

PAPA-2 (p = 8)
Population mean 89.34 91.91 80.73 87.89 79.14 29.50 76.41

AvgSoup 89.36 91.93 80.79 87.92 79.17 29.51 76.45
GreedySoup 89.40 92.03 80.83 87.90 79.12 29.37 76.44

Table 11: Test Accuracy and F1-scores on Vaihingen image segmentation with a random draw from: Mixup
α ∈ {0, 0.2, 0.4}, Label smoothing α ∈ {0, 0.05, 0.1}

F1-score
Roads Buildings Vegetation Trees Cars Clutter Average F1

Baseline (p = 8)
Population mean 88.74 91.43 80.72 87.93 80.46 25.48 75.79

AvgSoup 43.32 0.00 0.00 0.00 0.00 0.00 7.22
GreedySoup 43.32 0.00 0.00 0.00 0.00 0.00 7.22

PAPA-all (p = 8)
Population mean 88.71 91.34 80.85 87.92 79.36 26.63 75.80

AvgSoup 88.72 91.33 80.89 87.94 79.44 29.14 76.24
GreedySoup 88.83 91.58 80.94 87.96 79.53 22.90 75.29

PAPA-2 (p = 8)
Population mean 88.79 91.30 80.73 87.97 77.87 27.12 75.63

AvgSoup 88.78 91.33 80.83 88.02 77.95 27.59 75.75
GreedySoup 88.68 91.29 80.93 88.03 77.89 28.66 75.91

23

Published in Transactions on Machine Learning Research (04/2024)

A.9 Comparing PAPA variants to ESGD

Table 12: Comparing PAPA variants to ESGD on CIFAR-10

Method p mean [min, max]
Baseline population (reported in Cui et al. (2018)) 128 91.76 [91.31, 92.10]

ESGD (reported in Cui et al. (2018)) 128 92.48 [91.90, 92.57]
Baseline population (our re-implementation) 3 91.55 [91.48, 91.67]
Baseline population (our re-implementation) 5 91.61 [91.24, 91.83]
Baseline population (our re-implementation) 10 91.42 [91.04, 91.82]

PAPA 3 92.57 [92.22, 92.99]
PAPA-all 3 92.72 [92.45, 93.19]
PAPA-2 3 92.47 [92.25, 92.87]
PAPA 5 92.91 [92.40, 93.36]

PAPA-all 5 92.48 [91.98, 92.95]
PAPA-2 5 92.01 [91.71, 92.46]
PAPA 10 93.00 [92.65, 93.31]

PAPA-all 10 92.36 [92.05, 92.78]
PAPA-2 10 92.07 [91.73, 92.58]

evolutionary stochastic gradient descent (ESGD) (Cui et al., 2018) is a method that leverages a population of
networks through a complicated genetic algorithm. In this section, we compare PAPA variants to ESGD. Since
ESGD did not release their code as open source, direct comparison is difficult. Rather than re-implementing
ESGD from scratch, we replicate the same image recognition experiment used by Cui et al. (2018) and
compare PAPA approaches to ESGD in this setting. From the paper, the experiments were done with
CIFAR-10, using the same data processing as our main experiments using a different schedule (160 epochs,
learning starts at 0.1 and is decayed by a scaling of 0.1 at 81 epochs and again at 122 epochs). The authors
do not mention what batch size they used, but having tried 32, 64, and 128, 128 gives us numbers closest to
the one from their paper; thus, we use a batch size of 128. We do not report soups since we can only compare
the results with respect to the mean, min, and max since these were the metrics reported in Cui et al. (2018).
The architecture used is the same ResNet-20 that they used. Note that we used αpapa = 0.95 in this setting.

The results are shown in the table below. Our baseline population replication has similar test accuracy to the
one reported by Cui et al. (2018). PAPA variants attain higher mean accuracy than ESGD using 3-10 models
instead of 128.

A.10 Logistic regression (single-layer)

This section compares baseline to PAPA variants when doing simple logistic regression on the Optical
Handwritten Digits Dataset (Dua and Graff, 2017). We use SGD with batch-size 1, a constant learning
rate of 0.1 for 10 epochs. PAPA-all averages at every epoch. We return the average model soup and mean
accuracy at the end of training. We use p = 10 and average the results over 10 random runs.

For the baseline, we obtain a mean accuracy of 92.76% and average soup accuracy of 93.62%. As can be
seen, the average soup works very well. This suggests that alignment or PAPA variants are unneeded in
the single-layer setting. For PAPA-all, we obtain a mean accuracy of 91.34% and average soup accuracy of
90.37%. Thus PAPA-all performs worse than the baseline in this scenario.

These results suggest that model soups can already work well without alignment in the single-layer setting
and that PAPA benefits are specific to deep neural networks.

A.11 Combining PAPA variants and SWA

This section shows results with stochastic weight averaging (SWA) (Izmailov et al., 2018) to demonstrate
that averaging over different models (PAPA avariants) provides additional benefits that averaging over a
single trajectory (SWA) does not provide.

We train ResNet-18 models on CIFAR-100 with a population of p = 5 networks. We use a multistep
learning rate schedule (start at 0.1, decay by 10 at 150 and 225 epochs) and varying data augmentations and

24

Published in Transactions on Machine Learning Research (04/2024)

regularizations (random draw from Mixup α ∈ [0, 1] and Label smoothing α ∈ [0, 0.1]). For SWA, we follow
the training protocol of Izmailov et al. (2018), which consists of training for 75% of the regular training time
without SWA (225 epochs) followed by an extra 75% of the regular training time with SWA (for a total
of 550 epochs). We show results on different choices of learning rate schedules. We compared the baseline,
PAPA-all only applied before SWA starts (first 75% of regular training), and PAPA-all applied during the
whole training process. Results are shown in Table 13.

Table 7 shows that the mean accuracy for baseline models is 79.35%. Using SWA, baseline networks attain a
mean accuracy of 80.77%, thus 1.42% higher. Table 7 shows that the mean accuracy for PAPA-all models is
80.21%. By using SWA, PAPA-all networks attain a mean accuracy of 81.88%, thus 1.67% higher. Hence,
PAPA-all networks with SWA have a mean accuracy that is 1.11% higher than baseline models with SWA.

Consequently, SWA is highly beneficial, and PAPA-all provides significant additional benefits beyond those
made by SWA. This demonstrates that SWA and PAPA variants are different methods that can complement
one another.

Table 13: Test accuracy (Ensemble, Average and Greedy soups) on CIFAR-100 with ResNet-18 using SWA
on a population of p = 5 networks with varying data augmentations and regularizations

Baseline (SWA) PAPA-all PAPA-all
Averaging before SWA ✓ ✓
Averaging during SWA ✓

Population Soups Population Soups Population Soups
p models 1 model p models 1 model p models 1 model

Schedule learning rate Mean Avg Greed Mean Avg Greed Mean Avg Greed
Linear 0.05 80.62 14.21 71.44 81.08 79.16 70.96 81.54 80.53 71.66
Cosine 0.05 80.56 15.04 71.98 81.21 79.81 70.62 81.88 80.41 71.02
Linear 0.01 80.70 8.17 76.72 81.16 81.19 76.87 81.86 81.25 76.94
Cosine 0.01 80.77 12.22 76.72 81.62 81.87 77.73 81.80 81.30 79.98

A.12 Ablation

We conduct an ablation with p = 5, multistep learning rate schedule (start at 0.1, decay by 10 at 150 and 225
epochs) and varying data augmentations and regularizations (random draw from Mixup α ∈ [0, 1] and Label
smoothing α ∈ [0, 0.1]) on CIFAR-100.

We test various options: changing the averaging method, using the same initializations, using no REPAIR,
using permutation alignment, only averaging during some training periods, adding aspects of Genetic
Algorithms (GAs) from ESGD (Cui et al., 2018), such as random mutations (N (0, (0.01

g)2), where g is the
number of generations passed), tournament selection, elitist selection (making 6p children, selecting the top
60% of the population and randomly selecting the rest). For PAPA, we test different choices of αpapa.

We observe that averaging two models (PAPA-2) is the best strategy, followed closely by averaging the weights
of all models (PAPA-all).

We generally see that averaging at different frequencies, using the same initialization for every model, removing
REPAIR, using feature-matching permutation alignment (Ainsworth et al., 2023), and adding evolutionary
elements decrease performance; the only exception is with PAPA-all where averaging every ten epochs
performs better.

We investigate averaging only during certain epochs instead through the whole training. We observe that
mean accuracy decreases the more we reduce the averaging time-period. Interestingly, average soups (but
not greedy soups) are better when averaging only for the first half of training; however, that difference is
insignificant for PAPA-all.

Regarding PAPA, we test it on slightly different choices of αpapa while using it after every SGD step; we see
that αpapa = 0.999 is optimal. We arbitrarily chose to amortize it over 10 steps (αpapa = 0.99910 ≈ 0.99) to
minimize the slowdown from having to calculate the population average of the weights; performance is better
with this choice. We did not explore any other settings.

25

Published in Transactions on Machine Learning Research (04/2024)

Table 14: Ablation (multistep schedule with Mixup and Label smoothing) between different averaging methods

Method mean [min, max] AvgSoup GreedySoup
[PAPA-all] average (wi = 1

p
∀i) 80.21 [80.05, 80.46] 80.52 80.24

[PAPA-2] pair-half (w1 = w2 = 1
2 , wi = 0 ∀i ≥ 3) 80.31 [80.12, 80.59] 80.57 80.56

pair-75 (w1 = 3
4 , w2 = 1

4 , wi = 0 ∀i ≥ 3) 79.58 [79.32, 80.02] 79.84 79.32
many-half (w1 = 1

2 , wi = 1
2(p−1) ∀i ≥ 2) 79.92 [79.64, 80.05] 80.12 79.94

many-75 (w1 = 3
4 , wi = 1

4(p−1) ∀i ≥ 2) 68.62 [68.14, 69.22] 29.70 69.22
GreedySoup 79.95 [79.61, 80.23] 80.24 79.99

[Baseline] no averaging 79.35 [78.97, 79.73] 9.26 79.73

Table 15: Ablation (multistep schedule with Mixup and Label smoothing) when using all-models averaging
(PAPA-all)

Method mean [min, max] AvgSoup GreedySoup
PAPA-all 80.21 [80.05, 80.46] 80.52 80.24

averaging every k = 1 epochs 79.90 [79.72, 80.28] 80.16 79.76
averaging every k = 10 epochs 80.44 [79.98, 80.67] 80.90 80.72

same initialization 79.96 [79.57, 80.20] 80.32 80.04
REPAIR 1-iter 79.98 [79.57, 80.40] 80.38 80.40

no-REPAIR 79.56 [79.29, 79.79] 79.71 79.69
feature-matching permutation alignment 79.30 [78.93, 79.48] 79.31 79.35

mutations 80.20 [79.84, 80.53] 80.41 80.41
average only from epochs 0 to 75 79.55 [79.06, 80.07] 79.80 79.89
average only from epochs 0 to 150 79.63 [79.14, 80.03] 80.99 79.60
average only from epochs 0 to 225 79.80 [79.30, 80.15] 80.53 80.35

average only from epochs 225 to 300 64.90 [64.31, 65.26] 66.32 66.06
average only from epochs 150 to 300 74.73 [74.48, 74.97] 74.98 74.96
average only from epochs 75 to 300 79.91 [79.63, 80.20] 80.25 79.98

Table 16: Ablation (multistep schedule with Mixup and Label smoothing) when using two-models averaging
(PAPA-2)

Method mean [min, max] AvgSoup GreedySoup

PAPA-2 80.31 [80.12, 80.59] 80.57 80.56
averaging every k = 1 epochs 79.72 [79.48, 79.79] 79.87 79.74
averaging every k = 10 epochs 79.93 [79.59, 80.19] 80.18 80.08

same initialization 79.92 [79.78, 80.09] 80.19 80.16
REPAIR 1-iter 80.23 [79.89, 80.49] 80.38 80.27

no-REPAIR 80.02 [79.73, 80.45] 80.49 79.73
feature-matching permutation alignment 79.83 [79.41, 80.17] 80.27 79.52

mutations 80.00 [79.76, 80.29] 80.14 80.29
pair-half with tournament selection 79.71 [79.54, 80.00] 80.01 79.95

pair-half, tournament, elitist 79.39 [79.12, 79.59] 1.0 79.59
pair-half, tournament, elitist, mutations 79.49 [78.59, 80.01] 1.0 80.01

tournament, elitist, mutations, no-REPAIR 79.44 [78.83, 79.91] 1.0 79.30
average only from epochs 0 to 75 79.57 [79.18, 79.82] 79.50 79.62
average only from epochs 0 to 150 79.64 [79.25, 80.11] 81.17 80.04
average only from epochs 0 to 225 79.78 [79.29, 80.32] 80.36 80.32

average only from epochs 225 to 300 76.12 [75.86, 76.40] 76.43 76.33
average only from epochs 150 to 300 78.03 [77.80, 78.32] 78.01 78.05
average only from epochs 75 to 300 80.20 [79.85, 80.36] 80.46 80.54

26

Published in Transactions on Machine Learning Research (04/2024)

Table 17: Ablation (multistep schedule with Mixup and Label smoothing) when using PAPA

Method mean [min, max] AvgSoup GreedySoup
PAPA 79.85 [78.71, 80.46] 80.30 80.20

same initialization 79.81 [78.63, 80.33] 80.37 80.57
feature-matching permutation alignment 79.12 [78.17, 79.59] 79.78 79.82

mutations 79.70 [78.43, 80.26] 80.40 79.84
average only from epochs 0 to 75 78.51 [77.73, 78.78] 79.28 78.78
average only from epochs 0 to 150 78.91 [77.98, 79.41] 80.20 79.92
average only from epochs 0 to 225 79.36 [77.98, 79.89] 80.16 79.66

average only from epochs 225 to 300 77.61 [76.51, 78.47] 1.00 78.47
average only from epochs 150 to 300 76.22 [75.58, 76.69] 1.06 76.57
average only from epochs 75 to 300 78.99 [77.84, 79.52] 79.59 79.63

every 1 SGD steps with αpapa = 0.9999 78.43 [77.56, 79.08] 1.00 78.58
every 1 SGD steps with αpapa = 0.9995 79.11 [78.10, 79.59] 79.76 79.59
every 1 SGD steps with αpapa = 0.999 79.22 [77.61, 80.02] 79.82 79.95
every 1 SGD steps with αpapa = 0.995 78.97 [77.60, 79.43] 79.67 79.70
every 1 SGD steps with αpapa = 0.99 78.07 [76.77, 78.66] 78.53 78.46
every 1 SGD steps with αpapa = 0.95 78.57 [77.37, 79.01] 78.92 79.12
every 1 SGD steps with αpapa = 0.9 78.87 [77.86, 79.21] 79.23 79.35
every 1 SGD steps with αpapa = 0.5 78.34 [77.82, 78.62] 78.61 78.32
every 1 SGD steps with αpapa = 0.1 78.35 [77.86, 78.69] 78.53 78.59

every 10 SGD steps with αpapa = 0.999 78.12 [76.96, 78.73] 1.00 78.45
every 10 SGD steps with αpapa = 0.995 79.36 [77.87, 79.97] 80.20 80.13
every 10 SGD steps with αpapa = 0.99 79.39 [78.38, 80.09] 79.99 80.28
every 10 SGD steps with αpapa = 0.95 78.72 [77.75, 79.43] 79.18 79.48
every 10 SGD steps with αpapa = 0.9 78.47 [77.39, 78.92] 78.83 78.77
every 10 SGD steps with αpapa = 0.5 78.71 [77.47, 79.17] 79.15 79.13
every 10 SGD steps with αpapa = 0.1 78.27 [77.13, 78.71] 78.63 78.24

every 50 SGD steps with αpapa = 0.995 78.38 [77.65, 79.09] 1.09 79.09
every 50 SGD steps with αpapa = 0.99 78.05 [77.01, 78.51] 71.12 78.15
every 50 SGD steps with αpapa = 0.95 79.12 [77.74, 79.67] 79.57 78.88
every 50 SGD steps with αpapa = 0.9 79.48 [78.42, 79.96] 79.94 79.96
every 50 SGD steps with αpapa = 0.5 78.29 [76.81, 78.80] 78.83 79.03
every 50 SGD steps with αpapa = 0.1 78.67 [77.41, 79.15] 79.03 79.03

27

Published in Transactions on Machine Learning Research (04/2024)

A.13 Greedy soups

We provide the number of models included in the baseline greedy soups. As can be seen, with pre-training,
models are not amenable to averaging, and thus only the best model is used. Meanwhile, for fine-tuning,
models are more amenable to averaging since they do not move too far from the common initialization, and
thus multiple models are combined.

Table 18: Number of models included in the greedy soups of the main experiments (Table 1)

Baseline
GreedySoup

CIFAR-10 (nepochs = 300, p = 10)
VGG-11 1 (out of 10)

ResNet-18 1 (out of 10)
CIFAR-100 (nepochs = 300, p = 10)

VGG-16 1 (out of 10)
ResNet-18 1 (out of 10)
Imagenet (nepochs = 90, p = 3)
ResNet-50 1 (out of 3)
Fine-tuning on CIFAR-100
EffNetV2-S 2 (out of 2)
EVA-02-Ti 3 (out of 4)
ConViT-Ti 3 (out of 5)

28

	Introduction
	PopulAtion Parameter Averaging (PAPA)
	Training a population of networks by pushing toward the average (PAPA)
	Special cases of PAPA when averaging rarely instead of frequently (PAPA-all & PAPA-2)
	Handling changes in learning rates
	Inference with the population

	Related work
	Experiments
	Choices of data augmentations and regularizations
	Training hyperparameters
	Presentation
	Main experiments
	Additional experiments
	Comparing PAPA variants to baseline models trained for p times more epochs
	Comparing PAPA to DART
	Stochastic weight averaging (SWA)
	Evolutionary stochastic gradient descent (ESGD)
	Logistic regression (single-layer model)
	Ablations

	Visualizations of the accuracy and its change after averaging
	Why does averaging the weights of a population help so much?

	Discussion
	Conclusion
	Appendix
	Datasets and training details
	Datasets
	GPUs
	Vaihingen
	Network architectures

	Techniques used or considered in PAPA-all and PAPA-2
	REPAIR
	Notes on the permutation alignments
	Similarity between features learned from PAPA variants
	Why adding aspects of Genetic Algorithms (GAs) to PAPA variants is harmful
	Detailed results
	Image segmentation results
	Comparing PAPA variants to ESGD
	Logistic regression (single-layer)
	Combining PAPA variants and SWA
	Ablation
	Greedy soups

