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ABSTRACT

Deep Neural Networks (DNNs) have demonstrated remarkable success across var-
ious applications, yet some studies reveal their vulnerability to backdoor attacks,
where attackers manipulate models under specific conditions using triggers. It
significantly compromise the model integrity. Addressing this critical security is-
sue requires robust defence mechanisms to ensure the reliability of DNN models.
However, most existing defence mechanisms heavily rely on specialized defence
datasets, which are often difficult to obtain due to data privacy and security con-
cerns. This highlights the urgent need for effective data-free defence strategies.
In this work, we propose Lipschitzness Precise Pruning (LPP), a novel data-free
backdoor defence algorithm that leverages the properties of Lipschitz function to
detect and mitigate backdoor vulnerabilities by pruning neurons with strong back-
door correlations while fine-tuning unaffected neurons. Our approach optimizes
the computation of the Lipschitz constant using dot product properties, allowing
for efficient and precise identification of compromised neurons without the need
of clean defence data. This method addresses the limitations of existing data-free
defences and extends the scope of backdoor mitigation to include fully connected
layers, ensuring comprehensive protection of DNN models. As our approach
does not require data exchange, it can be implemented efficiently and effectively
in diverse environments. Extensive experiments demonstrate that LPP outper-
forms state-of-the-art defence approaches without the need for additional defence
datasets. We release our code at: https://anonymous.4open.science/r/LPP-CD3C.

1 INTRODUCTION

Deep Neural Networks (DNNs) have recently achieved impressive advancements in computer vision
(Dhanya et al., 2022; Mahadevkar et al., 2022). For instance, DNNs outperform traditional methods
on benchmark datasets for image classification tasks (He et al., 2016a; Huang et al., 2017; Sandler
et al., 2018; Li, 2022; Gulzar, 2023). However, recent studies suggest that the training process of
DNNs models is vulnerable to backdoor attacks (Gu et al., 2017; Chen et al., 2017). Specifically,
during training, attackers can embed malicious features into the network, effectively poisoning des-
ignated neurons and creating a backdoor. When such models are subsequently used for inference on
data containing stealthy implanted features, the performance will dramatically deteriorate, leading
to erroneous classifications. It severely compromise the trustworthiness of DNN models. It is thus
imperative to investigate robust defence mechanisms to mitigate such backdoor attacks in DNNs.

Defence against backdoor attacks can be approached from two perspectives: passive and active.
Passive defence does not involve optimization of the current model but instead relies on detecting
potential attack samples to provide protection, as seen in various backdoor detection methods (Dong
et al., 2021; Chen et al., 2018; Liu et al., 2022). On the other hand, active defence proactively adjusts
the parameters of the model to enhance its robustness and reduce the likelihood of successful attacks.
Due to the significant limitations of passive defence, such as its reliance on detection algorithms and
lack of real-time responsiveness, our work primarily focus on active defence mechanisms.

Active defence strategies against backdoor attacks can be categorized based on whether additional
defence data is required. Both data-based and data-free methods aim to identify and either remove
or modify compromised neurons. Currently, most defence mechanisms are data-based (Hinton et al.,
2015; Liu et al., 2018; Li et al., 2021a; Wu & Wang, 2021; Li et al., 2023). However, these defences
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rely on clean, uncontaminated samples to achieve effective performance. While such reliable data
is unavailable, the effectiveness of these methods is largely reduced. To address this limitation,
recent research presents data-free defence strategies, which avoid the need for clean sample during
the defence process (Zheng et al., 2022a). Despite this, existing data-free methods suffer from
limitations such as inappropriate matrix mappings and ineffective neuron pruning technique, leading
to poor defence outcomes. Moreover, these methods are typically limited to modifying neurons in
convolutional layers, neglecting potential backdoor behaviors in neurons within fully connected
layers. Therefore, we introduce the concept of precise pruning to bridge these research gaps.

In this work, we introduce a novel data-free backdoor defence algorithm termed Lipschitzness Pre-
cise Pruning (LPP), as illustrated in Figure. 1. It shows the parameters which may have impacts
on the decision boundary for the backdoor attacks in the models for different layers. Following the
conceptual idea of CLP (Zheng et al., 2022a), we reevaluate the properties of Lipschitz Function
and uncover a strong correlation between Lipschitzness and backdoor activation, which can be cat-
egorized into strong and weak correlations. By selectively removing neurons strongly associated
with backdoor behaviour and fine-tuning those weakly related, LPP effectively eliminates backdoor
attacks while maintaining high model performance. Additionally, we optimize the computation of
Lipschitz constant using the properties of dot products, allowing for a more efficient and precise
identification of backdoor neurons. This approach enables accurate detection of contaminated neu-
rons without the need of defence data samples.

-3σ           -2σ          -1σ             0             1σ           2σ           3σ

Parameters need to remove

Parameters need to scale

64646464 64646464

conv1conv1conv1conv1

64 64

conv1

64646464 64646464

conv2conv2conv2conv2

64 64

conv2

256256256256 256256256256 256256256256

conv3conv3conv3conv3

256 256 256

conv3

512512512512 512512512512 512512512512

conv4conv4conv4conv4

512 512 512

conv4

512512512512 512512512512 512512512512

conv5conv5conv5conv5

512 512 512

conv5

4096409640964096 4096409640964096

fctoconvfctoconvfctoconvfctoconv

4096 4096

fctoconv

KKKK

fc8toconvfc8toconvfc8toconvfc8toconv

K

fc8toconv

KKKK

DeconvDeconvDeconvDeconv

K

Deconv

KKKK

softmaxsoftmaxsoftmaxsoftmax

K

softmax

64 64

conv1

64 64

conv2

256 256 256

conv3

512 512 512

conv4

512 512 512

conv5

4096 4096

fctoconv

K

fc8toconv

K

Deconv

K

softmax

64 64

conv1

64 64

conv2

256 256 256

conv3

512 512 512

conv4

512 512 512

conv5

4096 4096

fctoconv

K

fc8toconv

K

Deconv

K

softmaxLayer with parameters

LC

Sorted layer ID

Decision Boundary

Health parameters

Set to zero by Eq. 7 Set to zero by Eq. 7

Scale close to mean 

by Eq. 8 and Eq.9

Figure 1: An illustrative diagram of LPP algorithm. We compute the corresponding Lipschitz Con-
stants (LC) for different channels in each neural network layer, and observe the positioning of LC
values within their respective distributions. Parameters exhibiting significant deviations (highlighted
by purple arrows) are removed using Eq. 7, as they contribute to anomalies along the decision bound-
ary (red arrows). Parameters with less obvious deviations (yellow arrows) are scaled using Eq. 8 and
Eq. 9 to align closer to the mean, resulting in behavior similar to areas with less pronounced anoma-
lies (blue arrows). Similar operations are also applied to the fully connected layers of the model.

We have conducted a large-scale experiment on different datasets to validate the effectiveness of
our algorithm, and the results demonstrate that our approach achieves superior performance for
data-free backdoor defences. Notably, compared with the state-of-the-art methods, our proposed
LPP method achieves a significant performance improvement of 24.24% on average, highlighting
its robust defence and generalisation capabilities without relying on clean data samples.
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In summary, the contributions of this paper are as follows:

• We revisit the properties of Lipschitz functions and their equivalence with L2 norm, lever-
aging this relationship in a novel data-free defence algorithm, named Lipschitzness Precise
Pruning (LPP).

• The proposed LPP method enhance the ability to precisely identify contaminated neurons
based on their strong and weak correlations with backdoor behaviour.

• We conduct extensive experiments to validate the effectiveness of our approach, demon-
strating 24.24% defence performance improvement in comparison to other state-of-the-art
data-free defence methods.

• We release the replication package for LPP to facilitate peer review and promote future
researches.

2 RELATED WORK

2.1 BACKDOOR ATTACK AND DETECTION

Backdoor attack denotes a strategy where an adversary could embed specific triggers as adversarial
samples during the training of DNNs, which results in the manipulation of model behaviour. Early
adversarial methods, such as BadNets (Gu et al., 2017) and Blended Attack method (Chen et al.,
2017), involve introducing malicious features into the training data to implant the backdoor. Other
methods, i.e., the Input-Aware Backdoor Attack (Nguyen & Tran, 2020) method, alternatively se-
lects a set of data with specific patterns, characteristics, or attributes to implant a more concealed
backdoor, rendering it less conspicuous. Furthermore, altering the data via specific transformations,
such as translation, rotation, scaling, noise addition, color alteration and so on in Warping-based
Backdoor Attack method (Nguyen & Tran, 2021), make the backdoor activation dependent on ma-
nipulated distorted data, thus enhancing the secrecy of the attack. Another approach is the SIG
method (Barni et al., 2019), which targets backdoor attacks on specific labels by injecting triggers
into samples of the target label. During testing, if the input sample contains the trigger, the model is
misled into classifying it as the designated label.

Unlike previous attack methods that require backdoor labeling for a set of data, the Sample Specific
Backdoor Attack (Li et al., 2021b) only use a single sample, rendering the backdoor even more
challenging to detect. Additionally, the BPP Attack (Wang et al., 2022) employs a multi-step process
that first quantizes and perturbs images to generate backdoor triggers. It then employs contrastive
learning and adversarial training to contaminate the DNN model, thereby enhancing both the stealth
and effectiveness of the attack.

To counter these evolving threats, detection mechanisms like Black-box Backdoor Detection
(B3D) (Dong et al., 2021) offer a strategy that works under black-box conditions, requiring neither
internal model access nor tainted data. By employing a gradient-free optimization approach, B3D
refines potential trigger characteristics, identifying backdoors through output discrepancies. Activa-
tion Clustering (AC) (Liu et al., 2022) focuses on detecting uniform activation patterns triggered by
backdoors, using hidden layers to identify poisoned inputs. Similarly, EX-RAY (Liu et al., 2022)
scrutinizes feature maps for backdoor-related anomalies by detecting irregularities in symmetry.
However, these passive defense methods are limited by their dependence on detection algorithms,
significant computational overhead, and inability to proactively prevent attacks. They mitigate im-
pacts post-attack but struggle with novel or complex backdoor methods, making proactive solutions
essential for robust defense.

2.2 DATA-BASED BACKDOOR DEFENCE

To address the growing threat of backdoor attacks, numerous defence strategies have been proposed
in two categories: data-based and data-free methods. A significant portion of the research focuses on
data-based approaches, starting with fine-tuning (FT) (Hinton et al., 2015), which adjusts parameters
in a pre-trained model to reduce or eliminate the effects of backdoor triggers. Expanding on this,
Fine-Pruning (FP) (Liu et al., 2018) combines network pruning and fine-tuning to remove redundant
structures and weaken backdoor influences. Neural Attention Distillation (NAD) (Li et al., 2021a)
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further enhances fine-tuning by incorporating knowledge distillation, guiding a contaminated model
using a clean teacher model to align its intermediate layer attention.

Several pruning-based defences have also emerged, such as Adversarial Neuron Pruning (ANP) (Wu
& Wang, 2021), which exploits the sensitivity of backdoor-affected neurons by pruning those linked
to adversarial triggers, effectively neutralizing the backdoor while preserving model performance.
BN statistics-based pruning (BNP) (Zheng et al., 2022b) relies on discrepancies in Batch Normaliza-
tion statistics to identify and prune contaminated neurons. Similarly, Reconstructive Neuron Pruning
(RNP) (Li et al., 2023) uses a forgetting-recovery process to retrain a backdoored model by identi-
fying and removing compromised neurons. Another one, Implicit Backdoor Adversarial Unlearning
(I-BAU) (Zeng et al., 2021), minimizes backdoor effects by jointly optimizing contaminated and
clean models, using implicit gradients to enhance robustness.

These defence mechanisms, particularly those involving pruning and fine-tuning, demonstrate an
evolving effort to mitigate backdoor attacks, focusing on improving detection and eliminating com-
promised components from DNNs without significantly degrading performance.

2.3 DATA-FREE BACKDOOR DEFENCE

In contrast to the extensive research on data-based backdoor defence methods, data-free backdoor
defence is still in its early stages. Despite this, data-free approaches hold significant potential in
addressing practical challenges, such as the difficulty in obtaining large amounts of clean data
due to cost, security, and privacy concerns. One recent method is Lipschitzness-based Pruning
(CLP) (Zheng et al., 2022a), which assesses the contribution of each channel in the neural network
by calculating the Lipschitz constant and removes channels with values below a certain threshold.
Since the Lipschitz constant can be computed directly from model parameters, CLP eliminates the
need for clean data during defence. However, this channel-level pruning lacks precision in targeting
contaminated neurons.

To improve the granularity of this approach, we introduce the concept of precise pruning, offering
a more accurate means of trimming compromised neurons while maintaining the model’s perfor-
mance. Precise pruning provides finer control over which neurons are targeted, enhancing the effec-
tiveness of backdoor defences by addressing contamination without the need for clean datasets, thus
offering a valuable solution to the limitations of current data-free strategies.

3 METHOD

3.1 PRELIMINARIES

3.1.1 PROBLEM DEFINITION

In Equation. 1, it represents the definition of a backdoor attack. Here, θ denotes the model param-
eters, E represents the expectation operator, L denotes the loss function, and f signifies the model.
xc and yc denote clean data and their respective labels, while xb and yb represent backdoor data
and their corresponding labels. Notably, f(xc, yc; θ) pertains to the clean task, while f(xb, yb; θ)
pertains to the backdoor task.

min
θ

E(xc,yc)∈Dc
(xb,yb)∈Db

L(f(xc, yc; θ))︸ ︷︷ ︸
Clean Task

+L(f(xb, yb; θ))︸ ︷︷ ︸
Backdoor Task


 (1)

The entire optimization process of the backdoor attack aims to concurrently identify the model
parameters θ in order to achieve outstanding performance on both the clean and backdoor tasks.
Conversely, the objective of backdoor defence is to find the model parameters θ such that, without
compromising the performance of the clean task, the performance of the backdoor task is minimised
to the greatest extent possible.
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3.1.2 BATCH NORMALIZATION

(
xl
j

)′
= γj

 xl
j − µl

j√
(σl

j)
2 + ϵ

+ βj (2)

where xl
j represents the input features of layer l, µl

j , σl
j , γj , and βj denote the mean, standard

deviation, scale parameter, and bias parameter of j-th channel and l-th layer, respectively.

3.2 RETHINKING LIPSCHITZ FUNCTION

||f(x1)− f(x2)||p ≤ C||x1 − x2||p (3)

As depicted in Equation. 3, a function that satisfies the condition for all x1 and x2, where C is
a constant independent of x1 and x2, is commonly referred to a Lipschitz function (LF) (Armijo,
1966). If we interpret ||f(x1)− f(x2)||p as ∆y and consider ||x1 − x2||p as ∆x, we can perceive
C as the maximum gradient value ∆y/∆x. The magnitude of C directly reflects the degree of
abruptness in the function’s variation. A larger value of C indicates a greater upper bound on the
gradient of the function, which in turn implies that the function f is more unstable under worst-case
scenarios.

f (l)(x) =

{
wlx+ b(l)

σ(x)
(4)

We consider the neural network in numerous layers, and here we denote the transformation function
of the l-th layer of the neural network as represented in Equation. 4, where wl and bl denote the
model parameters of the l-th layer, x represents the input features and σ represents the activation
function. Since the activation function lacks trainable parameters, it falls outside the focus of the
pruning methods we are exploring. However, it’s important to note that convolution functions can
be viewed as sparsely connected fully connected neural networks with shared weights and can be
expressed using the same mathematical formulas as fully connected networks. In the following
discussion, we employ ||f l||lip to denote the Lipschitz constant (LC) of the function.

F (x) =
(
f (l) ◦ f (l−1) ◦ · · · ◦ f (1)

)
(x) (5)

∥F∥lip =
∥∥∥f (l) ◦ f (l−1) ◦ · · · ◦ f (1)

∥∥∥
lip

≤
∥∥∥f (l)

∥∥∥
lip

·
∥∥∥f (l−1)

∥∥∥
lip

· · ·
∥∥∥f (1)

∥∥∥
lip

(6)

As illustrated in Equation. 5, we conceive the neural network as a parallel composition of multi-
ple functions and employ the Lipschitz Function to monitor the operational process of the neural
network. Given that the LC characterizes the maximum extent of change a layer can induce in its
variables, the overall model’s variation must be bounded by the cumulative product of the LCs of
each layer. This relationship is formally expressed as per Equation 6.

{k

{k
C2

{k

{k
C2

{k

{k
C2

{k

{k
C2

=

(features) (kernel)

Figure 2: Illustration of dot products

Inspired by CLP, our approach to neuron prun-
ing is grounded in the utilization of Lips-
chitz Functions. In CLP, Zheng et al. (Zheng
et al., 2022a) employ Lipschitz Functions to
assess the importance of different channels
within convolutional kernels, thereby reducing
the model’s backdoor behavior by pruning spe-
cific channels of the kernels. We define the in-
put dimension of layer f as c2, and the out-
put dimension as c1. CLP leverages Lipschitz
Functions by treating the convolutional kernel
W ∈ Rc1∗k∗k∗c2 , as a collection of c1 kernels
Wj ∈ Rk∗k∗c2 , and j ∈ {0, 1, 2, · · · , c1}. Ad-
ditionally, each kernel is reshaped into a doubly
block-Toeplitz (DBT) form in the matrix space
Rc2×(k∗k). Through singular value decomposition (SVD) of this matrix and observation of the dis-
tribution of the largest eigenvalues among all c1 kernels, if they exceed u, the hyperparameter of
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LPP, standard deviations from the mean of these kernels, the entire channel is removed. However,
CLP presents two issues. Issue 1: as it necessitates the removal of entire channels, it is not appli-
cable to fully connected neural network layers lacking channels, which also leads to the inability
to precisely locate neurons for removal. Issue 2: The convolutional kernel of each channel can be
regarded as a transformation matrix, which maps features from a dimension of k*k to c2. How-
ever, in actual convolutional kernel operations, the functionality of the kernel can be viewed as a
transformation matrix that maps features from dimensions k ∗ k ∗ c2 to dimension 1, resulting in
a discrepancy between the eigenvalues obtained from singular value decomposition and the actual
functionality of the transformation matrix.

Based on our prior discussion on the correct functionality of convolutional kernels, we can view it
as a dot product relationship like Figure 2 between the kernel Wi ∈ Rk∗k∗c2 and the input vector x
in Rk∗k∗c2 , denoted as fj(x⃗) =< x⃗ ·Wj >= |x⃗| · |Wj | ·cos θ. This allows us to utilize the properties
of dot products to estimate the Lipschitz Constant (LC) of Wj . Under the Data-free constraint,
the magnitudes of x⃗ and cos θ remain unknown in fj(x⃗), and the rate of function variation is solely
dependent on Wj . LC can be assessed using the norm of vector Wj . Therefore, we can employ Wj to
evaluate the convolutional kernels across different channels. Now, we can calculate |Wj | to compute
the LC value for the j-th channel of the l-th layer, denoted as LCl

j .This approach helps circumvent
Issue 2 encountered in CLP. It is noteworthy that squaring does not alter the relative magnitude
relationships of the Lipschitz Constants (LCs). Therefore, we can simplify the computation using
||Wj ||2. This is because, in the mapping process, the functional role of the convolutional kernel as a
transformation matrix remains unchanged, and consequently, the corresponding mapped space also
remains unaltered. Additionally, as we utilize Wj to assess the LC, the computation process of each
neuron’s parameters is independent, allowing for the individual evaluation of each neuron’s impact
on the LC, thereby mitigating Issue 1 observed in CLP.

3.3 LIPSCHITZNESS PRECISE PRUNING

0.25 0.00 0.25 0.50 0.75 1.00
Correlation between Backdoor Behaviors and LC

0

10

20

30

40

50

60

70

Th
e 

N
um

be
r o

f N
eu

ro
ns

Figure 3: Correlation between the output differ-
ence with and without a backdoor trigger and the
Lipschitz Constant (LC). Two distinct peaks are
visible—indicating weak correlation on the left
and strong correlation on the right. Neurons with
strong correlation are pruned, while weakly corre-
lated ones are scaled to reduce the Lipschitz con-
stants.

As shown in Figure. 3, we observe a clear pos-
itive correlation between the Lipschitz constant
(LC) and the incidence of backdoor triggers.
Therefore, LC can serve as a basis for pruning
neuron parameters to mitigate backdoor behav-
ior. Our experimental design is based on 100
clean samples from the Tiny ImageNet dataset
and their corresponding backdoor samples gen-
erated by the BPP attack method. The applied
model is ResNet18, and no specific defense
mechanisms were applied within the model to
ensure that the results were not affected by ad-
ditional variables. Figure 3 illustrates the cor-
relation between the differences in the feature
map outputs of these clean samples and their
corresponding backdoor samples, and the Lip-
schitz constants (LC). We chose to use the cor-
relation obtained through np.corrcoef be-
tween the difference in the output of features of
the neurons before and after adding backdoor
features and the LC calculated for that neuron.
It was found that there are two peaks in the cor-
relation between LC and backdoor behavior.

Before proceeding with precise pruning, we
firstly analyse the properties of the dot product.
The dot product can be seen as the element-
wise multiplication followed by summation of corresponding values in the vectors x⃗ and u⃗. Fur-
thermore, in the Lipschitz Function (LF), the representation of the upper bound of the LC is solely
related to Wj . We can consider dimensions in the Wj vector with higher values as potential locations
where backdoor neurons may exist. This is because, once the corresponding value of x⃗ increases

6
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in a dimension, the result of the dot product will sharply rise, thereby meeting the trigger condi-
tion for the backdoor behavior. Hence, it is likely that backdoor neurons reside in dimensions of
Wj with larger values. Additionally, concerning the specific scenario immediately preceding the
Batch Normalization (BN) layer, the value of LC can be adjusted by BN layer parameters as follows:

LCl
j =

LCl
j

rlj
· σl

j . This adjustment stems from the interpretation of the BN and the transformation in
the preceding layer as a composite function.

Our LPP algorithm consists of two components: the removal of severely biased parameter channels
and the application of scaling to parameters exhibiting bias.

Pidx = {{l, j} : LCl
j > µl + u ∗ sl} ∪ {{l, j} : LCl

j < µl − u ∗ sl} (7)

Where µl denotes the mean of the LC across all channels in the l-th layer, and sl represents the
standard deviation of the LC across all channels in the same layer. As illustrated in Equation 7, we
identify channels with significantly large deviations in LC values and subsequently set all output
values of these channels to zero. The blue portion in Figure 2 corresponds to these severely biased
parameters.

Sidx = {{l, j} : LCl
j > µl + (u− b) ∗ sl} ∩ {{l, j} : LCl

j < µl + u ∗ sl} (8)

W l
j = W l

j ×
µl

LCj
{l, j} ∈ Sidx (9)

Subsequently, as per Equation. 8, b represents the bias rate, we identify channels exhibiting bias,
following we apply an adjustment to selected channels using Equation 9 to bring them closer to an
unbiased state.

4 EXPERIMENT

In this section, we discuss our comprehensive evaluation, including the setup, metrics, and key re-
sults. We begin by presenting our results based on the experimental design from CLP to facilitate
a fair comparison. Additional experiments, such as extended model evaluations and detailed per-
formance analysis, computational efficiency assessments, and an ablation study, are included in the
Appendix C.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

To ensure a fair comparison, we utilized the same dataset as CLP. We conducted experiments on
CIFAR-10 (Krizhevsky et al., 2009) and Tiny ImageNet (Le & Yang, 2015). Additionally, we intro-
duced the German Traffic Sign Recognition Benchmark (GTSRB) (Houben et al., 2013) for further
comparison, thus validating the effectiveness of our approach. We employed 1% of the training data
as benign data for the Data-based defence algorithm.

4.1.2 MODEL TRAINING SETUP

We trained the aforementioned datasets on the ResNet-18 (He et al., 2016b) model. For both training
CIFAR-10, Tiny ImageNet and GTSRB, the batch size was set to 128, momentum was set at 0.9,
and the base optimizer used was SGD. There were slight variations in the learning rate, epoch, and
adjust the learning rate strategy. Specifically, the learning rate for CIFAR-10 was set at 0.001, while
for Tiny ImageNet and GTSRB, it was set at 0.01. The epochs were 100 for CIFAR-10, 50 for Tiny
ImageNet, and 200 for GTSRB. CIFAR-10 and Tiny ImageNet employed the Cosine scheduler,
whereas GTSRB utilized the Reduce learning rate scheduler.

4.1.3 BACKDOOR ATTACK SETUP

In this experiment, we employed four representative Backdoor attack algorithms, namely Bad-
Net (Gu et al., 2017), BPP (Wang et al., 2022), Inputaware (Nguyen & Tran, 2020), and
WaNet (Nguyen & Tran, 2021). To maintain experimental fairness, all Backdoor attack methods

7
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in this study followed the settings of our primary competing algorithm CLP (Zheng et al., 2022a).
Specifically, the training approach for the attack categories utilized the All-to-One strategy, wherein
all samples of the attacked data were labeled as the same category. All attack methods set the first
label as the contamination label. The contamination rates on CIFAR-10 and GTSRB were set at
10% and 1%, respectively, while on Tiny ImageNet, it was set at 10%. The Trigger size across all
datasets was uniformly set at 3x3.

We establish the comparative methods against the state-of-the-art approaches including data-based
and data-free backdoor defence methods, including FT, FP (Liu et al., 2018), NAD (Li et al.,
2021a), ANP (Wu & Wang, 2021), I-BAU (Zeng et al., 2021), the SOTA neuron pruning strat-
egy BNP (Zheng et al., 2022b), and the SOTA data-free method CLP (Zheng et al., 2022a). Due to
the page limit, the full results can be obtained in the replication package. In following sections, we
focus on the discussion among the results from the methods of BNP, I-BAU, NAD and CLP.

4.2 EVALUATION METRIC

In this experimental study, we adhered to the evaluation metrics proposed by CLP (Zheng et al.,
2022a), employing both Accuracy on Clean data (ACC) and Attack Success Rate (ASR) to assess
the performance of Backdoor defence algorithms. ACC represents the accuracy achieved on normal,
uncontaminated data, while ASR quantifies the proportion of successfully attacked instances among
the contaminated data. Consequently, a higher ACC coupled with a lower ASR signifies enhanced
defence performance of the algorithm.

4.3 EXPERIMENTAL RESULTS

Table 1: Performance Comparison of Defence Methods on CIFAR-10 Dataset. The greater the
disparity between ACC and ASR, the more effectively the defence method has accomplished its
purpose, namely, to maintain high ACC while reducing ASR. Therefore, we have highlighted in
bold the data with the maximum disparity between ACC and ASR.

Data-based Defence Data-free Defence

Poison
Data Rate

Attack
Method

No
Defence BNP I-BAU NAD CLP LPP

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

10%

BadNet 88.79 94.96 88.3 95.29 14.8 4.63 30.97 64.31 84.82 3.97 85.51 2.81
BPP 90.34 99.48 90.07 3.37 14.5 99.77 78.05 10.33 90.31 2.86 90.32 2.791

Inputaware 89.66 97.61 90.08 3.52 89.52 67.93 91.81 93.66 89.62 2.2 90.27 0.68
WaNet 86.06 99.25 57.65 97.41 25.93 2.56 81.76 1.88 68.97 96.22 87.64 44.57

1%

BadNet 93.56 77.14 93.59 76 74.12 9.98 93.63 69.71 91.24 9.04 92.1 4.23
BPP 91.45 85.95 88.12 1.77 90.72 91.61 92.79 98.19 67.31 91.42 91.17 3.225

Inputaware 89.7 79.92 91.54 86.61 87.47 69.18 92.14 91.6 90.83 0.97 91.21 0.6
WaNet 91.06 51.66 56.83 88.84 88.92 3.96 92.63 19.57 90.2 0.88 90.02 0.82

4.3.1 EFFECTIVENESS ANALYSIS

In this experiment, our LPP method demonstrated superior performance in most cases. As illus-
trated in Table. 1, when considering ACC and ASR jointly on the CIFAR-10 dataset, our approach
exhibited improvements for almost all attack methods. It can largely maintain the model prediction
performance as for the No Defence scenario while minimising the ASR values.

Experimental results on the CIFAR-10 dataset revealed a significant advantage of the LPP method
over other defence approaches in terms of reducing the ASR. Overall, in comparison to the absence
of defence, the LPP method experienced a mere 0.238% reduction in ACC, while achieving an
average increase of approximately 62.62%, with a maximum improvement of up to 96.69% in ASR.
This signifies a notable advantage of the LPP method in diminishing the success rate of backdoor
attacks.

Relative to data-based methodologies, the LPP method exhibited an average increase in ACC of
11.96%, with a maximum improvement of 75.82%. Regarding ASR, our method demonstrated an
average reduction of 35.75%, with a maximum decrease of 96.98%. In comparison to our primary
competitor, the Data-free CLP method, the LPP method demonstrated an average increase of 4.49%
in ACC, and in terms of ASR, it exhibited an average increase of 14.78%.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance Comparison of Defence Methods on GTSRB Dataset. The greater the dispar-
ity between ACC and ASR, the more effectively the defence method has accomplished its purpose,
namely, to maintain high ACC while reducing ASR. Therefore, we have highlighted in bold the data
with the maximum disparity between ACC and ASR.

Data-based Defence Data-free Defence

Poison
Data Rate

Attack
Method

No
Defence BNP I-BAU NAD CLP LPP

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

10%

BadNet 96.87 95.02 97.04 94.51 78.73 10.64 97.97 82.83 96.81 58.87 96.42 1.51
BPP 97.95 99.95 97.97 85.82 87.16 0 98.31 1.15 97.82 6.07 98.09 0.02

Inputaware 98.03 92.21 98.17 0.2 93.04 2.72 98.37 99.62 98.05 59.45 95.57 8.41
WaNet 97.84 97.65 6.14 100 94.96 33.79 98.92 44.34 44.09 99.96 98.53 13.31

1%

BadNet 98.25 89.37 98.02 88.99 8.71 0 98.37 86.87 98.18 86.91 95.51 7.91
BPP 98.02 59.21 97.93 0.16 95.38 0.33 98.5 74.72 98.04 12.25 98.27 0.02

Inputaware 98.32 27.35 98.41 17.03 92.86 6.02 98.81 20.91 98.55 0.61 97.89 0.02
WaNet 97.97 35.96 97.22 33.52 96.34 25.21 98.91 31.46 97.75 31.53 96.62 7.12

Table 3: Performance Comparison of Defence Methods on Tiny ImageNet Dataset. The greater
the disparity between ACC and ASR, the more effectively the defence method has accomplished
its purpose, namely, to maintain high ACC while reducing ASR. Therefore, we have highlighted in
bold the data with the maximum disparity between ACC and ASR.

Data-based Defence Data-free Defence

Benign
Data Rate

Attack
Method

No
Defence BNP I-BAU NAD CLP LPP

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

5%

BadNet 59.48 99.91 59.48 99.9 53.87 92.43 50.69 0.97 59.36 90.84 58.4 0.75
BPP 61.25 100 61.01 99.98 56.75 1.43 49.39 0.31 60.6 0.21 60.88 0.07

Inputaware 61.37 99.61 32.16 96.67 56.83 6.15 51.42 0.11 61.21 15.97 60.95 1.5
WaNet 61.13 99.93 60.88 99.89 55.12 93.54 48.8 1.19 61.25 18.54 59.62 0.29

1%

BadNet 59.48 99.91 59.48 99.91 49.08 87.02 57.07 97.77 59.36 90.84 58.4 0.75
BPP 61.25 100 61.01 99.99 48.3 76.67 59.18 0.54 60.6 0.21 60.88 0.07

Inputaware 61.37 99.61 32.16 96.67 49.16 18.61 60.67 39.42 61.21 15.97 60.95 1.5
WaNet 61.13 99.93 60.88 99.9 50.47 98.24 57.88 0.92 61.25 18.54 59.62 0.29

On the GTSRB dataset, in the majority of attack scenarios, our LPP method has demonstrated more
reasonable levels of both ACC and ASR compared to other defence techniques. This signifies the
endeavor to maintain high ACC while minimizing ASR under the precondition of achieving the
lowest possible ASR. For instance, as shown in Table 2, in the case of a BadNet attack, although
the NAD defence method achieved the highest ACC, its ASR reached as high as 82.83%, indicat-
ing a fundamental inadequacy in thwarting attacks from backdoor samples. In contrast, relative to
NAD, our approach successfully reduced ASR by 81.32% with a modest loss of only 1.55% in ACC.
Furthermore, we observed that Data-based Defence methods exhibited significant performance fluc-
tuations when the Poison Data Rate was low, whereas Data-free defence methods displayed greater
stability. When attackers employ a strategy involving minimal data contamination, this more covert
form of attack is better suited for defence using Data-free methods.

For the more complicated Tiny ImageNet dataset, as shown in Tabel 3, our LPP method demon-
strated the most advanced performance. Overall, in comparison to scenarios without any defensive
measures, LPP exhibited a modest average reduction of 0.68% in ACC, while achieving a substan-
tial improvement in ASR, with an average increase of 79.37%. In the meantime, we also observed
that certain defence mechanisms exhibited diminished defensive efficacy on complex datasets. For
example, BNP faltered in its defensive capabilities against all attack methods, and CLP also lost its
defence effectiveness against certain attack methods. In contrast, LPP exhibited robust defensive
performance across all attack scenarios.

5 CONCLUSION

In this paper, we address the critical issue of backdoor attacks on DNNs. We propose a novel data-
free defence mechanism, named Lipschitzness Precise Pruning (LPP), which improves the back-
door defence of DNN models without the need of clean defence datasets and extensive computa-
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tional resources such as GPU. By rethinking the Lipschitzness continuous property and devising a
precise pruning approach, we efficiently eliminate the tainted channels and precisely identify the
neurons contributing to backdoor attacks. Our extensive experiments validate the state-of-the-art
performance of LPP method, demonstrating substantially improved results on different datasets. We
anticipate our work can contribute a practical and efficient defence mechanism against backdoor
attacks, while simultaneously addressing the limitations of existing defence methods, especially in
situations where access to clean data is limited. We believe that LPP method has great potential for
safeguarding the trustworthiness of deep neural networks in real-world applications.
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A VARIABLES AND SYMBOLS

Symbol Meaning

θ Model parameters
E Expectation operator
L Loss function
f Model function
xc, yc Clean data and their corresponding labels
xb, yb Backdoor data and their corresponding labels
Dc,Db Clean dataset and backdoor dataset
xl
j Input features for the lth layer

µl
j , σ

l
j Mean and standard deviation for the jth channel and lth layer

γj , βj Scale and bias parameters for the jth channel
C Constant, independent of x1 and x2

∆y,∆x Change in the function value
wl, bl Model parameters for the lth layer
σ Activation function
F (x) Composition of multi-layered functions
∥F∥lip Lipschitz constant of the model
LCl

j Lipschitz constant for the jth channel of the lth layer
Pidx Indices of severely biased parameter channels that need to be removed
Sidx Indices of biased parameter channels that need adjustment
u, b Hyperparameters for determining the bounds of the Lipschitz constant
µl, sl Mean and standard deviation of Lipschitz constants for the lth layer

B PSEUDOCODE

Algorithm 1 Lipschitzness Precise Pruning
Input: Parameter Matrix W , The Degree of Bias u, The Extreme Parameter Number k, The Bias Rate b
Output: W
1: Initial: b = 1.5 (Fixed parameters)
2: for l = 0, 1, · · · , L− 1 do
3: if layer is convolutional layer then
4: for j = 0, 1, · · · , c− 1 do
5: LCl

j = ||W l
j ||2

6: end for
7: µl = 1

c

∑c−1
j=0 LC

l
j

8: sl =
√

1
c

∑c−1
j=0(LC

l
j − µl)2

9: Pidx = {{l, j} : LCl
j > µl + u ∗ sl} ∪ {{l, j} : LCl

j < µl − u ∗ sl}
10: pruning W l by Pidx

11: Sidx = {{l, j} : LCl
j > µl + (u− b) ∗ sl} ∩ {{l, j} : LCl

j < µl + u ∗ sl}
12: Scaled W l by Sidx with Equation 9
13: end if
14: if layer is convolutional layer then
15: maxId = argmax

i
mean(W [i, :])

16: Tidx = topk(W [maxId, :]−mean(W [i ̸= maxId, :], 0))
17: remove topk parameters in W l

18: end if
19: end for
20: return W

C ADDITIONAL EXPERIMENTAL RESULT

C.1 EXPERIMENTAL RESULT ON VGG19

We have added experiments using the VGG19 model in the CIFAR-10 dataset, with the benign data
rate set to 10%. The experimental results are shown in the table below. It can be observed that our
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LPP method outperforms the CLP defense mechanism, which is also Data-free, in terms of both
ACC (Accuracy) and ASR (Attack Success Rate). Moreover, compared to other data-based defense
mechanisms, our approach demonstrates superior results.

BadNet BPP Inputaware WaNet

ACC ASR ACC ASR ACC ASR ACC ASR

No Defence 90.40% 94.71% 95.49% 4.28% 93.49% 5.51% 96.48% 3.17%

BNP 89.80% 95.01% 89.63% 96.24% 89.41% 2.52% 54.55% 98.31%
I-BAU 81.91% 0.68% 88.57% 76.27% 87.55% 52.84% 89.16% 1.48%
NAD 83.24% 51.91% 89.18% 3.02% 89.61% 28.68% 90.33% 38.12%
CLP 85.93% 8.41% 89.30% 3.23% 89.78% 9.29% 79.25% 3.48%
LPP 87.53% 6.90% 89.41% 1.83% 89.57% 2.04% 84.44% 3.47%

C.2 IMPACT OF LPP DEFENSE ON CLEAN MODELS

We conducted additional evaluations on the clean ResNet18 model to assess the potential impact
of our LPP defense method on the classification accuracy of clean models. After applying our
LPP defense strategy, the average accuracy loss on the CIFAR-10, GTSRB, and Tiny ImageNet
datasets for the ResNet18 model was minimal, with an average drop of only 1.29% in Table 4. This
result demonstrates that, despite the scaling and pruning operations involved in our method, the
impact on the performance of clean models is negligible, ensuring that the model maintains strong
classification performance while defending against backdoor attacks.

Table 4: The impact of LPP defense on the classification accuracy of clean models.

Dataset Without LPP With LPP Gap

CIFAR-10 90.85% 88.93% 1.92%
GTSRB 98.56% 97.56% 1.00%

Tiny ImageNet 60.69% 59.74% 0.95%

C.2.1 COMPUTATIONAL EFFICIENCY ANALYSIS

Table 5 shows that LPP markedly outperforms other methods in speed across all datasets, with de-
fence times as low as 0.178 seconds for CIFAR-10. Data-based defences like BNP, I-BAU, and
NAD show much higher times, particularly I-BAU, with times exceeding 1500 seconds on the Tiny
dataset. This stark contrast in performance underscores LPP’s computational efficiency and effec-
tiveness in swiftly mitigating backdoor attacks, positioning it as a highly viable option for real-world
applications where rapid response is crucial. In our method, the calculation of the Lipschitz func-
tion only requires traversing all network parameters once. Assuming the total number of network
parameters is m, the time complexity of this computation process is O(m). After calculating the
Lipschitz values, performing remove and scale operations, as well as positioning operations, also
only involves simple multiplication, hence the time complexity of this part is also O(m). Taking
everything into account, the overall time complexity of our algorithm is O(m). We have added this
part of time complexity analysis in our new version.

Table 5: Efficiency comparison of various defence mechanisms against backdoor attacks, highlight-
ing the exceptional speed of Lipschitzness Precise Pruning (LPP) across multiple datasets.

Dataset Data-based Defence Data-free Defence

BNP I-BAU NAD CLP LPP

Tiny 38.137 1594.2295 708.4023 0.4179 0.2066
GTSRB 4.304 164.2905 122.0288 0.3361 0.1814

CIFAR-10 4.2444 177.694 134.6839 0.3633 0.178
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Figure 4: Performance Variations under Different Lower Bias Limits u1
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Figure 5: Performance Variations under Different Upper Bias Limits u2

C.3 ABLATION STUDY

In this section, we primarily investigate the effects of the upper and lower limits of the degree of
bias parameter u in LPP on defence performance, where u1 represents the lower bias limit, and u2

denotes the upper bias limit.

Performance Variations under Different Lower Bias Limits u1: we keep the value of u2 constant
and investigate how changes in the lower bias limit u1 affect defence performance. As shown in
Figure. 4, it can be observed that with an increase in the lower bias limit, the ACC of models
employing the LPP defence method experiences a sharp decline when u1 approaches -1. However,
when u1 ∈ [−4,−2], the model maintains a relatively high and stable ACC. Moreover, within this
interval, a relatively balanced point can be identified, resulting in a generally low ASR for the model.

Performance Variations under Different Upper Bias Limits u2: in this section, we maintain the value
of u1 constant and investigate the impact of varying the upper bias limit u2 on the defensive perfor-
mance of LPP. As depicted in Figure. 5, a similar overall trend is evident. With an increase in the
upper bias limit u2, the ACC after applying the LPP defence method gradually increases. Specifi-
cally, when u2 ∈ [0, 2], ACC experiences rapid growth with the augmentation of u2. Subsequently,
within the range u2 ∈ [2, 10], ACC stabilizes. In terms of ASR, when u2 ∈ [0, 3], it remains at a
relatively low level, indicating the robust defensive performance of LPP. However, considering the
performance of ACC, when u2 ∈ [2, 3], LPP can achieve a high ACC while still having a good level
of defence capability.
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