
Riemann Tensor Neural Networks: Learning Conservative Systems with
Physics-Constrained Networks

Anas Jnini 1 Lorenzo Breschi 1 Flavio Vella 1

Abstract

Divergence-free symmetric tensors (DFSTs) are
fundamental in continuum mechanics, encoding
conservation laws such as mass and momentum
conservation. We introduce Riemann Tensor Neu-
ral Networks (RTNNs), a novel neural architec-
ture that inherently satisfies the DFST condition
to machine precision, providing a strong induc-
tive bias for enforcing these conservation laws.
We prove that RTNNs can approximate any suffi-
ciently smooth DFST with arbitrary precision and
demonstrate their effectiveness as surrogates for
conservative PDEs, achieving improved accuracy
across benchmarks. This work is the first to use
DFSTs as an inductive bias in neural PDE surro-
gates and to explicitly enforce the conservation
of both mass and momentum within a physics-
constrained neural architecture.

1. Introduction
Partial Differential Equations (PDEs) Partial Differen-
tial Equations (PDEs) are central to the mathematical model-
ing of complex physical systems, including fluid dynamics,
thermodynamics, and material sciences. Traditional nu-
merical methods, such as finite element and spectral meth-
ods, often require fine discretization of the physical domain
to achieve high accuracy. These approaches can become
computationally expensive, particularly in engineering ap-
plications where systems must be solved repeatedly under
varying parameters or initial conditions. Recent advances in
machine learning (ML) have shown promise in addressing
these challenges by leveraging neural networks (NNs) as po-
tential alternatives or enhancements to traditional numerical
solvers (Kovachki et al., 2021; Li et al., 2020).

1 Department of Information Engineering and Computer Sci-
ence, University of Trento, Trento, Italy. Correspondence to: Anas
Jnini <anas.jnini@unitn.it>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Physical Inductive Biases in Machine Learning. A cen-
tral limitation of generic neural models is their lack of built-
in physical intuition. While convolutional or attention-based
layers successfully exploit certain data symmetries (e.g.,
translation invariance), they do not automatically enforce
fundamental physics, such as mass conservation or energy
preservation. Physics-Informed Neural Networks (PINNs)
(Lagaris et al., 1998; Raissi et al., 2019b; Cai et al., 2021;
Haghighat et al., 2021; Hu et al., 2023) address this gap by
adding PDE residuals and boundary conditions as soft con-
straints in the loss function. PINNs have been successfully
deployed on many PDE problems (Karniadakis et al., 2021;
Jnini et al., 2024b), but the “soft penalty” approach can lead
to suboptimal enforcement of conservation laws and stiff
optimization (Wang et al., 2021). Consequently, there is
growing interest in hard or explicit constraints that guar-
antee PDE structure a priori (Richter-Powell et al., 2022;
Greydanus et al., 2019b; Cranmer et al., 2020; Jnini et al.,
2024a; Liu et al., 2024).

Divergence-Free Symmetric Tensors in Physics and
Mathematics. Divergence-free symmetric tensors (DF-
STs) are a special class of tensor fields characterized by
vanishing row-wise divergence and inherent symmetry in
their indices. In an (n + 1)-dimensional space-time do-
main, where n represents the spatial dimensions and the
additional dimension accounts for time, these tensors fre-
quently arise as stress or momentum flux tensors in various
fields, including fluid dynamics, elasticity, kinetic theory,
and relativistic hydrodynamics (Serre, 2018). For instance,
the Navier–Stokes stress tensor or the compressible flux
matrix can be represented as an (n+ 1)× (n+ 1) tensor S
satisfying ∇ · S = 0. This formulation unifies the conserva-
tion of mass and momentum under a single flux-divergence
constraint. Despite their natural alignment with PDE-based
conservation laws, existing studies have not explored lever-
aging DFST structures directly as a neural inductive bias
within neural network architectures.

Our Contributions. In this work, we present a novel
approach to embedding fundamental conservation laws di-
rectly into neural network architectures through DFSTs .
Our primary contributions are as follows:

1



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

1. Architectural Design of Riemann Tensor Neural
Networks (RTNNs) : We introduce RTNNs , a class
of neural architectures specifically designed to gener-
ate DFST fields. RTNNs are tailored for approximating
individual DFSTs, ensuring the divergence-free condi-
tion, ∇ · S = 0, is satisfied to machine precision.

2. Theoretical Guarantees for RTNNs: We establish
theoretical foundations for RTNNs by proving their uni-
versal approximation capabilities for any sufficiently
smooth DFST.

3. Empirical Validation and Comparative Analysis:
We reformulate several benchmark problems within
the DFST framework and conduct numerical experi-
ments that demonstrate RTNNs consistently improve
performance of PINNs in accuracy when used as sur-
rogate models for conservative PDEs.

In the following sections, we review DFST-based PDE for-
mulations, describe the proposed neural architectures, and
present experimental validations on benchmark problems.

1.1. Related works

Divergence-Free Symmetric Tensors in Mathematical
Physics. A large body of work by (Serre, 1997; 2018;
2019; 2021) has established the fundamental importance of
DFSTs in continuum mechanics and kinetic theory. These
tensors encode conservation principles for mass and mo-
mentum (in classical fluid dynamics) or energy–momentum
(in relativistic hydrodynamics), and are present in models
ranging from Euler or Boltzmann equations to mean-field
(Vlasov–Poisson) descriptions of plasmas and galaxies. Al-
though DFSTs have been investigated in PDE theory, prior
investigations have largely focused on analytic or qualitative
properties . To the best of our knowledge, no existing work
leverages DFSTs explicitly as a numerical method or as an
architectural inductive bias in machine learning frameworks.

Hard-Constraints in Scientific Machine Learning. Be-
yond the classical physics-informed approach of adding
PDE residuals as soft constraints in the loss (Raissi et al.,
2019a; Karniadakis et al., 2021), there is growing inter-
est in incorporating hard constraints or specialized struc-
tures into neural networks. For instance, (Hendriks et al.,
2020) investigate linearly constrained networks, (Richter-
Powell et al., 2022) impose continuity-equation constraints
via divergence-free vector fields, and several recent meth-
ods aim to preserve energy or momentum (Greydanus et al.,
2019a; Cranmer et al., 2020). These efforts reflect a broader
push in machine learning to embed domain-specific priors,
thereby improving stability and generalization (LeCun et al.,
1998; Giles & Maxwell, 1987). Our work similarly encodes
the PDE structure “at the network level” via DFST, which

ensures strict conservation and symmetry. To the best of our
knowledge, this work is the first to use enforce the conserva-
tion of both mass and momentum at the architectural level
for surrogate modeling.

2. Background and Theory
Notation (Preliminaries) Let n denote the spatial dimen-
sion and Ω ⊂ Rn the spatial domain. The space-time do-
main is ΩT = [0, T ] × Ω ⊂ Rn+1, where t ∈ [0, T ] and
x ∈ Ω. For a function f(t,x), the augmented gradient is
∇f = (∂tf, ∂x1f, . . . , ∂xnf), and the spatial gradient is
∇̃f = (∂x1

f, . . . , ∂xn
f).

Divergence-Free Symmetric Tensors in Continuum Me-
chanics. We begin by introducing the class of divergence-
free symmetric tensors, which encode either the conser-
vation of mass and momentum in classical mechanics or
energy and momentum in special relativity. A tensor field

S : ΩT → R(n+1)×(n+1)

is said to be symmetric if S = S⊤, and divergence-free if it
satisfies

Divt,x(S)i := ∂tsi0 +

n∑
j=1

∂xjsij = 0, ∀i ∈ {0, . . . , n}.

Many classical PDE systems, including compressible or in-
compressible fluid flow, elasticity, and shallow-water mod-
els, can be expressed in this flux-divergence form by suitably
choosing S. A canonical representation in fluid mechanics
is:

S =

 ρ m⊤

m
m⊗m

ρ
+ σ

 , (1)

where ρ : ΩT → R denotes the mass density, m : ΩT →
Rn the linear momentum field, and σ : ΩT → Rn×n the
stress tensor. Enforcing Divt,x(S) = 0 then unifies mass
and momentum conservation, while additional constraints
(e.g., constitutive laws or energy equations) can further spec-
ify σ or couple ρ and m.

Motivation for Neural Parametrization. Although one
can penalize the residuals of the condition Divt,x(S) = 0 in
a soft-constraint manner (e.g., through terms in the loss func-
tion), this approach does not guarantee the satisfaction of
the divergence-free condition, especially when optimization
is challenging or regularization terms are underweighted;
this is often the case in the non-linear regime that we are
considering, as described in (Bonfanti et al., 2024).

Instead, we propose embedding the divergence-free prop-
erty directly into the neural network architecture. A pri-
mary motivation for this architectural choice, beyond the

2



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

immediate benefit of ensuring strict conservation, is to more
fundamentally address how coupled physical quantities are
represented. In many physical systems, such as those in fluid
dynamics, variables like density, velocity, and pressure are
not independent but are deeply interrelated. Conventional
neural network models that treat these as separate output
channels can struggle to capture these intrinsic physical and
geometric correlations—for instance, the interdependence
between velocity components or the unified response of
density and velocity to pressure gradients. By designing our
network to output a DFST, we aim to inherently model these
quantities as components of a single, unified field, linked
directly by the underlying conservation laws. Consequently,
such a hard-coded constraint ensures strict conservation
(e.g., of mass and momentum) to machine precision, while
also providing better physical consistency and a stronger
inductive bias.

Proposed Approach. The following sections introduce a
neural-network-based construction that guarantee the output
is a divergence-free symmetric tensor. We prove that our
approach can approximate any sufficiently smooth DFST to
arbitrary accuracy, thus offering a robust way to integrate
conservation principles into neural PDE solvers.

2.1. Constructing Divergence-Free Symmetric Tensors
on a Flat Manifold (DFSTs)

Theorem 2.1 (Representation of Divergence-Free Symmet-
ric Tensors on a Flat Manifold). Let V be an n-dimensional
real vector space with a fixed basis {ea}na=1, and let
{e∗a}na=1 denote the corresponding dual basis of V ∗. Let
Λ2V ∗ denote the space of 2-forms on V . Consider the
space of all (0, 4)-tensors Kabcd defined on a flat manifold
equipped with a Levi-Civita connection ∇, satisfying the
following symmetries:

1. Antisymmetry within index pairs:

K(ab)cd = 0, (2)
Kab(cd) = 0, (3)

2. Symmetry between pairs:

Kabcd = Kcdab. (4)

Let {ω1, . . . , ωm} be a fixed basis of Λ2V ∗, where m =
n(n−1)

2 . Define the tensors:

T
(i,j)
abcd := ωi(e

∗
a ∧ e∗b)ωj(e

∗
c ∧ e∗d) + ωj(e

∗
a ∧ e∗b)ωi(e

∗
c ∧ e∗d),

(5)

where e∗a∧e∗b is the wedge product of the dual basis elements
e∗a and e∗b .

The space of divergence-free symmetric tensors Sab on the
flat manifold is the image of the map:

Sab = ∇c∇dKacbd, (6)

where Kabcd is any (0, 4)-tensor satisfying the symmetries
(2)–(4). Any Sab can be expressed as:

Sab =
∑

1≤i≤j≤m

T
(i,j)
acbd∇

c∇dcij , (7)

where cij are smooth scalar functions.

Proof. The proof is presented in Appendix A.

2.2. Riemann Tensor Neural Network

In the setting where we wish to approximate a divergence-
free symmetric tensor field

S : Ω → Rn×n, (8)

we define a Riemann Tensor Neural Network as follows.

Definition 2.2 (Riemann Tensor Neural Network1). Sup-
pose:

• Ω ⊂ Rn is a flat domain (manifold without boundary
or with suitable BCs),

• {T (i,j)
abcd} is a finite non-trainable basis of Riemann-like

(0, 4)-tensors as defined in Theorem 2.1,

• NNθ : Rk → R
m(m+1)

2 is a multilayer perceptron
(MLP) with twice-differentiable activations, whose in-
put x ∈ Rk indexes points in Ω.

Then an RTNN for the single-field case is constructed by:

1. Scalar coefficients {cij(x; θ)}: The MLP NNθ out-
puts m(m+1)

2 scalar functions { cij(x; θ)}1≤i≤j≤m.

2. Hessian Computation: For each cij(x; θ), compute
the Hessian components ∂c∂d cij(x; θ) via automatic
differentiation.

3. Tensor Field Construction: Define the (0,2)-tensor
field

Sθ(x) =
∑

1≤i≤j ≤m

T
(i,j)
acbd ∂

c∂d cij(x; θ). (9)

By design, Sθ(x) is row-wise divergence-free and sym-
metric for all x ∈ Ω.

We call Sθ a Riemann Tensor Neural Network. It provides
a parametric approximation Sθ ≈ S to a single DFST on Ω.

3



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Remark 2.3. Although the network outputs scale as m(m−
1), the problem setup is generally overparameterized. De-
pending on the application, certain scalar functions can be
set to zero without violating the DSFT condition, provided
that the number of basis functions exceeds the degrees of
freedom.

2.3. Universal Approximation Theorem for RTNN

Theorem 2.4 (Universal Approximation for RTNN). Let
Ω ⊂ Rn be a bounded (hence compact) domain, and sup-
pose S : Ω → Rn×n is a C2-smooth, divergence-free, sym-
metric tensor field on Ω. Then for any ε > 0, there exists a
Riemann Tensor Neural Network Sθ such that

sup
x∈Ω

∥S(x)− Sθ(x)∥Fro < ε, (10)

where ∥ · ∥Fro denotes the Frobenius norm on Rn×n. In
particular, Sθ also remains divergence-free and symmetric
on Ω.

Proof. We present the proof in Appendix A.3

3. Methodology and Applications
The preceding sections established the theoretical foun-
dation of divergence-free symmetric tensors DFSTs and
RTNNs as a rigorous approach to enforcing conservation
laws within neural architectures. In the following sec-
tion, we move from theory to application, showcasing how
RTNNs can be employed to model various conservative sys-
tems, including the Euler and Navier-Stokes equations, and
Magneto-Hydrodynamics(MHD).

3.1. Efficient Implementation and Practical
Considerations

Automatic Differentiation We employ Taylor-Mode Au-
tomatic Differentiation, which propagates Taylor coeffi-
cients through the network by treating the computational
graph as an augmented network with weight sharing. This
approach effectively reduces redundant computations as-
sociated with higher-order derivatives, significantly accel-
erating the training process of RTNNs. Additionally, for
Magneto-Hydrodynamics in Section 3.4, we utilize Separa-
ble Physics-Informed Neural Networks (SPINNs). SPINNs
decompose PDE residuals into per-axis evaluations, facili-
tating efficient differential operations on large-scale regular
grids (Cho et al., 2023).

Optimization and Stability Our method models densi-
ties and momenta instead of velocity fields, velocity recov-

1So named because the underlying (0, 4)-tensors share index
symmetries with the Riemann curvature tensor in differential ge-
ometry.

ery involves dividing by ρ, leading to instability when ρ
is initialized around a small value (Richter-Powell et al.,
2022). To address this, we add an identity matrix to Sθ,
ensuring ρ is initialized near 1 without violating DFST con-
straints. Throughout the experiments in this paper, we use
the Least-memory BFGS (Nocedal & Wright, 1999) opti-
mizer due to the highly non-linear nature of our problems.
Additionally, LBFGS efficiently approximates second-order
curvature information, facilitating effective optimization in
the complex, non-linear loss landscapes encountered in our
experiments. The challenges of optimizing in such regimes
and the importance of second-order optimizers have been
well documented in the literature (Jnini et al., 2024b; Müller
& Zeinhofer, 2024; Bonfanti et al., 2024).

Code implementation and public repository Our code
has been implemented using the JAX library (Bradbury
et al., 2018). Our implementation is publicly available
at https://github.com/HicrestLaboratory/
Riemann-Tensor-Neural-Networks.

3.2. Pedagogic Example: 2D Isentropic Euler Vortex

For this pedagogic example, we simulate a 2D isentropic
Euler vortex—a smooth, rotational flow solution to the Euler
equations that accurately captures vortex dynamics and is
commonly used as a standard benchmark for evaluating
the accuracy of numerical solvers—over a spatial domain
Ω = [0, Lx]× [0, Ly] and a time interval [0, T ]. We employ
well-defined analytical initial and boundary conditions that
are detailed in Appendix B.1.

Let ρ > 0 denote the density, (u, v) the velocity field, and p
the pressure. For isentropic flow with γ > 1, the pressure is
given by p(ρ) = κργ . The governing equations, including
the energy equation, are:

Governing Equations The 2D compressible Euler equa-
tions are:

∂tρ+ ∇̃ · (ρu, ρv) = 0, (11)

∂t(ρu) + ∇̃ ·
(
ρu2, ρuv

)
= −∂xp, (12)

∂t(ρv) + ∇̃ ·
(
ρuv, ρv2

)
= −∂yp, (13)

∂tE + ∇̃ ·
(
(E + p)u, (E + p)v

)
= 0, (14)

where E = p
γ−1 + 1

2ρ(u
2 + v2) is the total energy.

DFST Formulation and Decomposition of σ. Rewriting
(11)–(13) in flux-divergence form, we express the system
as:

∇t,x,y · S = 0, where

S =

 ρ ρu ρv

ρu (ρu)2

ρ + σxx
(ρu)(ρv)

ρ

ρv (ρv)(ρu)
ρ

(ρv)2

ρ + σyy

 .

4

https://github.com/HicrestLaboratory/Riemann-Tensor-Neural-Networks
https://github.com/HicrestLaboratory/Riemann-Tensor-Neural-Networks


Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Here, the stress tensor σ is:

σ = pI+ 0︸︷︷︸
deviatoric part

,

where p = p(ρ) represents the isotropic pressure contri-
bution. The absence of a deviatoric term reflects the as-
sumption of inviscid flow. The divergence-free condition
∇ · S = 0 enforces:

• mass conservation, and

• momentum conservation in x- and y-directions.

Additionally, the energy equation is given separately as:

∂tE + ∇̃ ·
(
(E + p)u, (E + p)v

)
= 0,

where the total energy E is:

E =
p

γ − 1
+

1

2
ρ(u2 + v2).

RTNN Parametrization. To approximate solutions of
(11)–(14), we define a family of tensors Sθ using RTNNs .
The parametrization proceeds as follows:

1. RTNN Parametrization of Sθ: Let Sθ denote an
RTNN as described in Section 2.2. By construction,
Sθ is divergence-free and symmetric in ΩT .

2. Extracting Physical Fields: We can interpret Sθ in
block form. From it, we read off::

ρθ = (Sθ)0,0, (ρθuθ, ρθvθ) = (Sθ)1:2,0,

σθ = (Sθ)1:2,1:2 −
(ρθuθ, ρθvθ)⊗ (ρθuθ, ρθvθ)

ρθ
.

3. Zero-Deviatoric Constraint and Energy
Parametrization: We can parametrize the pres-
sure by decomposing the stress tensor into isotropic
and deviatoric parts:

σθ = pθI+ σdev
θ ,

where:

pθ =
1

2
tr(σθ), σdev

θ = σθ − pθI. (15)

Additionally, we parametrize the energy as:

Eθ =
pθ

γ − 1
+

1

2
ρθ(u

2
θ + v2θ).

For an inviscid isentropic vortex, we enforce the con-
straint σdev

θ = 0 during training.

While the parametrized fields exactly satisfy the DSFT con-
straints, they are only solutions to the momentum equations
if the stress tensor satisfies the zero deviatoric constraints,
which we can penalize in the loss function in addition to the
boundary and initial terms.

We clarify the equivalence of the zero deviatoric constraint
with the momentum residual in Appendix Section A.4.

Loss Function. To train the RTNN and ensure that the
modeled tensor Sθ adheres to the governing equations and
boundary conditions, we define an objective function:

L(θ) = LBC + LIC + Lσ + LE ,

where LBC penalizes deviations from the prescribed bound-
ary conditions while LIC enforces consistency with initial
conditions. The term Lσ ensures that the stress tensor re-
mains purely isotropic by penalizing the magnitude of the
deviatoric component, ∥σdev

θ ∥2, it’s inclusion is equivalent
to penalizing the momentum equation residual as shown in
in A.4. Finally, LE minimizes the residual of the energy
equation, measured as ∥∂tEθ + ∇̃ · ((Eθ + pθ)(uθ, vθ))∥2,
ensuring that the total energy is properly conserved within
the system. All loss terms are formulated in the least squares
sense.

Experimental Setup. For the neural network training, we
sample 500 interior collocation points within Ω× [0, T ] to
enforce the residual constraints of the governing PDE. Ad-
ditionally, 100 boundary and initial condition points are
sampled to impose the prescribed constraints. Our RTNN
model is parameterized by a Multilayer Perceptron (MLP)
with 4 hidden layers, each containing 50 neurons. Train-
ing is performed entirely without labeled data,the model
is validated against the analytical solution of the isentropic
Euler vortex to evaluate accuracy.

We benchmark RTNN against two methods: (1) the standard
PINN approach and (2) Neural Conservation Laws (NCL)
that enforces exact mass conservation(Richter-Powell et al.,
2022). Both methods use similar MLP architectures for
fairness. Performance is evaluated in terms of median av-
erage relative L2 error on all fields and simulation time.
We train all three methods using 200,000 iterations of the
L-BFGS optimizer. We follow the loss scheme presented in
this section, while training both PINN and NCL using PDE
residuals penalized in the loss.

Results and Discussion. Table 1 summarizes the results,
while Figure 1 presents the evolution of the relative L2 error
over simulation time. Our RTNN significantly outperforms
both PINN and NCL, achieving a median relative L2 er-
ror that is two orders of magnitude lower than PINN and
four orders of magnitude lower than NCL. Furthermore,

5



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Method Relative L2 Error Wall Time (s)
RTNN 9.92e-05 596.34
NCL 3.87e-01 2008.57
PINN 3.82e-02 365.67

Table 1. Comparison of methods for the Euler experiment, report-
ing the median relative L2 error and median wall time across five
independent training runs with different random seeds.

Figure 1. Comparison of training dynamics and error fields for
RTNN, NCL, and PINN for the Euler experiment. Top: relative
L2 error evolution over simulation time, showing median (lines)
and IQR (shaded). Bottom: Error fields for RTNN (left) and PINN
(right) at t = 0.5

RTNN demonstrates stable convergence while maintaining
competitive training times.

3.3. Incompressible Navier-Stokes Equation

We next consider the incompressible Navier-Stokes equa-
tions, which include additional viscous forces compared to
inviscid Euler flows.

Governing Equations. The incompressible Navier-
Stokes system in the n-dimensional case is given by:

∇̃ · u = 0, (16)

∂tu+ (u · ∇̃)u = −∇̃p+ ν∆u, (17)

where u = (u, v, w) represents the velocity field, p denotes
the pressure field, and ν > 0 is the kinematic viscosity.
Equation (16) enforces the incompressibility condition, en-
suring that the divergence of the velocity field is zero. Mean-

while, equation (17) balances the convective, pressure, and
viscous forces within the fluid. The term ν∆u specifically
models the internal fluid friction due to viscosity.

DFST Formulation and Stress Decomposition. These
equations can be expressed in a divergence-free symmetric
tensor (DFST) form. We define a tensor

S =

(
1 u⊤

u u⊗ u+ σ

)
,

such that

∇ · S = 0.

Here, the term u⊗ u represents the convective flux, while
σ is the total stress tensor decomposed as

σ = pI+ σdev,

where the deviatoric part σdev captures viscous stresses via

σdev = ν
(
∇̃u+ (∇̃u)⊤

)
.

Exact incompressibility. To enforce exact incompress-
ibility (i.e., S00 = 1), observe that any contributions to S00

come specifically from basis 2-forms containing e∗0. Con-
sequently, by choosing the corresponding coefficients cij
to vanish whenever the wedge product includes e∗0 in Tabcd,
we ensure that S00 consists only of the identity term we
added for stability, thus achieving exact incompressibility.

RTNN Parametrization. Following Section 3.2, we em-
ploy an RTNN Sθ to represent the solution. From its block
structure, we extract the physical fields as:

ρθ = 1, (uθ, vθ, wθ) = (Sθ)1:n,0,

σθ = (Sθ)1:n,1:n − (uθ, vθ, wθ)⊗ (uθ, vθ, wθ).

Here, ρθ represents the density field, while (uθ, vθ, wθ) cor-
respond to the velocity components. The viscous stress
tensor Dθ can be computed via automatic differentiation
applied directly to the velocity field. Instead, we define:

Ddev
θ = ν

(
∇̃uθ + (∇̃uθ)

⊤
)
.

Although this introduces additional computational complex-
ity, it can be mitigated using Taylor-mode automatic dif-
ferentiation. The stress tensor can be decomposed into an
isotropic part and a deviatoric part:

σθ = pθI+ σdev
θ , pθ =

1

n
tr(σθ).

6



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Figure 2. Qualitative comparison of predicted velocity fields for the unsteady Cylinder Wake flow at Re = 100 and a representative
time instance t = 7.0. Left: Reference solution showing the reference velocity magnitude ∥|u∥|. Middle: Absolute error of the RTNN
prediction, e = ∥uRef − uRTNN∥2. Right: Absolute error of the NCL prediction, e = ∥uRef − uNCL∥2. This visualization clearly
demonstrates RTNN’s superior accuracy in capturing the complex vortex shedding structures with significantly lower error compared to
NCL.

Viscous Residual and Loss Function. To enforce mo-
mentum balance, we focus on matching the RTNN-derived
deviatoric stress σdev

θ with the velocity-based viscous stress
ν(∇uθ + (∇uθ)

⊤). Define:

Rσ,viscous = σdev
θ −Dθ

Because pressure can act as a scalar offset in this formu-
lation, ensuring correct deviatoric stresses is sufficient to
satisfy the momentum equation. Consequently, our training
objective can be written:

L(θ) =
∥∥Rσ,viscous

∥∥2
ΩT

+ LBC + LIC + Ldata,

where LBC and LIC enforce boundary and initial conditions,
and Ldata penalizes any available labeled measurements.
All loss terms are formulated in the least squares sense.

Experimental Setups. We validate our approach on three
representative incompressible Navier–Stokes scenarios:

• 3D Beltrami Flow We consider the three-dimensional
Beltrami flow at a Reynolds number of Re = 1 to
verify the accuracy of our RTNN framework. The
computational domain is discretized using 2,601 inte-
rior collocation points to enforce the PDE residuals,
supplemented by 961 boundary and initial condi-
tion points to impose the necessary constraints. An
MLP with 4 hidden layers and 50 neurons per layer
employing Tanh activation functions is utilized. The
model is trained using 100,000 iterations of the L-
BFGS optimizer without any labeled data. Validation
is performed against 26,000 interior points sampled
within the domain to assess the model’s performance.
Detailed setup information and error plots are provided
in Appendix B.2.

• Steady Flow around a NACA Airfoil This experi-
ment investigates the steady laminar flow at Re = 1000

around a NACA 0012 airfoil. The steady-state problem
is addressed by treating time as a dummy dimension
set to zero in the forward pass. The computational
domain is discretized with 40,000 collocation points
to enforce PDE residuals and boundary conditions,
alongside 2,000 labeled data points obtained from an
in-house Reynolds-Averaged Navier-Stokes (RANS)
solver to supervise the training. An MLP consisting of
4 hidden layers and 50 neurons per layer with Tanh
activation functions is employed. The model undergoes
50,000 iterations of the L-BFGS optimizer. Validation
is conducted on the 14,000 collocation points to eval-
uate accuracy. Further setup details and visual results
are provided in Appendix B.4.

• Cylinder Wake We simulate a two-dimensional un-
steady vortex-shedding flow at Re = 100 around a cir-
cular cylinder centered at (0, 0). The computational do-
main is defined as [1, 8]× [−2, 2] with the time interval
[0, 7], discretized in increments of ∆t = 0.1. The do-
main is discretized using 40,000 interior collocation
points to enforce the PDE residuals and 5,000 bound-
ary and initial condition points to apply the necessary
constraints. A 4-layer, 50-neuron MLP with Tanh ac-
tivation functions is trained using 50,000 iterations
of the L-BFGS optimizer without any labeled data.
Validation is performed using Direct Numerical Simu-
lation (DNS) data from Raissi et al. (2019a) to assess
the model’s performance. Comprehensive setup details
and error analyses are presented in Appendix B.3.

Results and Discussion. Table 3.3 summarize the perfor-
mance of our RTNN formulation compared to NCL and
standard PINNs by showing median average relative L2 er-
ror across all fields and wall times, while Figures 4 and 6
summarize the training dynamics for these experiments and
Figure 5 provides a qualitative comparison for the cylinder
wake. As observed in the table, our ansatz delivers improved

7



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Cylinder Airfoil Beltrami
Method rL2 Error Time (s) rL2 Error Time (s) rL2 Error Time (s)
RTNN 5.70e-03 1.21e+03 1.44e-02 1.10e+03 4.28e-04 2.97e+02
NCL 2.54e-02 2.46e+03 1.53e-01 2.39e+03 1.73e-03 1.00e+03
PINN 2.99e-02 3.12e+02 2.48e-01 1.06e+03 1.41e-03 1.82e+02

Table 2. Comparison of RTNN, NCL, and PINN across three In-
compressible Navier-Stokes experiments (Cylinder, Airfoil, Bel-
trami). We report median relative L2 (rL2) error and median wall
times accross 5 different seeds.

accuracy while achieving comparable training times. Across
all three test cases, the RTNN approach consistently yields
lower relative errors, indicating its potential for robust, data-
efficient modeling of incompressible Navier–Stokes flows
for both self-supervised learning in the PINN manner and
in in scarce-data scenarios. Furthermore, for the cylinder
wake, Figure 5 visually demonstrates RTNN’s superior ca-
pability in capturing the intricate vortex shedding structures.
While the relative L2 error provides a global measure of
accuracy, the qualitative results in the figure highlight that
RTNN yields solutions that are particularly effective in the
complex wake region, where capturing fine details is crucial,
an aspect that can be averaged out in global error metrics.

3.4. Magnetohydrodynamics (MHD)

We next consider the incompressible resistive magnetohy-
drodynamics (MHD) equations, which couple fluid velocity
and pressure to a magnetic field. The governing PDEs on a
domain Ω× [0, T ] are:

∂tu+ (u · ∇̃)u = −∇̃
(
p+ |B|2

2

)
+ (B · ∇̃)B+ ν ∇̃2u,

(18)

∂tB+ (u · ∇̃)B = (B · ∇̃)u+ η ∇̃2B, (19)

∇̃ · u = 0, ∇̃ ·B = 0, (20)

where u = (u, v) is the velocity field (2D case), p is the
pressure, B = (Bx, By) is the magnetic-field vector, ν is
the kinematic viscosity, η is the magnetic diffusivity, and
|B|2 = B2

x +B2
y .

Vector-Potential Formulation of the Magnetic Field. To
enforce ∇̃ ·B = 0 exactly, we parametrize B via a vector
potential A:

B = ∇̃ ×A.

In 2D, we may simply take A = (0, 0, ψ(x, y)), so that
B =

(
∂yψ, −∂xψ

)
automatically satisfies ∇̃ ·B = 0. The

induction equation (19) then becomes an evolution for ψ:

∂tψ + (u · ∇̃a)ψ = η ∇̃2ψ.

Divergence-Free Symmetric Tensor (DFST) for Momen-
tum. Similar to the Navier–Stokes case, we unify incom-

pressibility and momentum conservation in the DSFT Form:

S =

(
1 u⊤

u T

)
, (21)

where u ∈ R2 is:

T = p I + u⊗ u − ν
(
∇̃u+ (∇̃u)⊤

)
+ Mdev,

with Mdev the the Maxwell magnetic stress.

Mdev = 1
2 |B|2 I −

(
B⊗B

)
,

for magnetic field B.

RTNN Parametrization for 2D Incompressible MHD
Let Sθ be a (2+1)×(2+1) RTNN. From its block structure,
we extract the physical fields as:

(uθ, vθ) = (Sθ)1:2, 0

We parametrize the magnetic field Bθ via a separate network
outputting a scalar potential ψθ:

Bθ = ∇̃× (0, 0, ψθ) =
(
∂yψθ, − ∂xψθ

)
, ∇̃·Bθ = 0.

Define the Maxwell stress (including its isotropic part):

Mθ = 1
2 |Bθ|2 I −

(
Bθ ⊗Bθ

)
.

We then let

σθ = (Sθ)1:2, 1:2 −
(
uθ, vθ

)
⊗

(
uθ, vθ

)
− Mθ,

so σθ is the purely fluid portion of the stress once advection
and magnetic terms have been subtracted. We then proceed
in the same manner as section 3.3.

σθ = pθ I + σdev
θ , pθ = 1

2 tr
(
σθ

)
,

and define the viscous stress term

Dθ = ν
(
∇̃uθ + (∇̃uθ)

⊤).
Training Objective. Enforcing momentum balance then
requires σdev

θ ≈ Ddev
θ . We form a residual

Rσ,visc = σdev
θ − Dθ,

penalized in the loss. In addition, we include the induction
equation residual

Rinduction = ∂tBθ + (uθ·∇̃)Bθ − (Bθ·∇̃)uθ − η ∇̃2Bθ,

Leading to the final training objective:

L(θ) = ∥Rσ,visc∥2ΩT
+ ∥Rinduction∥2ΩT

+ LBC + LIC +

Ldata.

The first two terms penalize violations of momentum con-
servation (viscous + magnetic) and induction equations,
respectively. LBC and LIC enforce boundary and initial
conditions, and Ldata integrates available labeled observa-
tions. All loss terms are formulated in the least squares
sense.

8



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Figure 3. Qualitative comparison of predicted velocity fields for the 2D periodic incompressible MHD experiment (Re = 1000, ReM =
1000) at time t = 0.55. Left: Reference solution showing the velocity magnitude ∥|u∥|. Middle: Absolute error of the RTNN prediction,
calculated as e = ∥uRef − uRTNN∥2. Right: Absolute error of the SPINN baseline prediction, calculated as e = ∥uRef − uSPINN∥2. This
visualization highlights RTNN’s enhanced accuracy in capturing the complex magneto-fluid dynamic structures compared to the SPINN
baseline at the specified time.

Method rL2 Error (Velocity) rL2 Error (B) Wall Time (s)
RTNN 2.34e-02 1.04e-01 2340.41
Curl-SPINN 1.61e-01 1.55e-01 1191.67
SPINN 1.82e-01 2.93e-01 414.73

Table 3. Comparison of methods for the MHD experiment, report-
ing the median relative L2 error for velocity and magnetic fields (B
in the table), and median wall time across five independent training
runs with different random seeds.

Experimental setup We train and validate our method
on a three-dimensional periodic incompressible MHD flow
in [0, L]2 with Reynolds numbers Re = 1000 and ReM =
1000. The simulation covers the time interval t ∈ [0, 0.5]
for training and tests at t = 0.55. Training data is generated
using a spectral solver, with initial velocity u0 and magnetic
field B0 sampled from Gaussian random fields. Periodic
boundary conditions are strictly enforced in all cases using
the approach described in (Dong & Ni, 2021). We employ a
Separable Physics-Informed Neural Network (SPINN) (Cho
et al., 2023) comprising 5 hidden layers and 500 neurons
per layer to handle the structured 3D grid, discretized into
101 × 128 × 128 points. The model is trained using 50,000
iterations of the L-BFGS optimizer. Validation at t = 0.55
utilizes spectral solver data to evaluate performance. We
compare three approaches: (i) our RTNN-based method,
(ii) a SPINN baseline with penalized residuals, and (iii)
a Curl-SPINN parametrizing velocity and magnetic fields
as the curl of a scalar potential. Additional details and
performance plots are provided in Appendix B.5.

Results and Discussion Table 3.4 reports the relative L2

errors for both velocity and magnetic fields and Figure 7
shows the error evolution through training accross seeds. A

qualitative comparison of the predicted velocity fields is pre-
sented in Figure 3, which visually underscores the enhanced
accuracy of RTNN in capturing the complex magneto-fluid
dynamic structures compared to the Curl-SPINN baseline.
Our RTNN significantly improves velocity accuracy com-
pared to the baselines and also enhances the accuracy of
magnetic field predictions. Additionally, we demonstrated
that RTNN can be incorporated into coupled systems for
more complex problems.

4. Discussion and Conclusion
We introduced Riemann Tensor Neural Networks (RTNNs),
a new class of neural architectures tailored for encoding
divergence-free symmetric tensors (DFSTs). By construc-
tion, RTNNs exactly satisfy the DSFT conditions that en-
codes conservation of mass and momentum. Our theoretical
results confirm that RTNNs are universal approximators of
DFSTs, and our numerical benchmarks illustrate that they
consistently improve accuracy compared to baselines such
as standard PINNs and methods enforcing only part of the
conservation (e.g., mass alone).

Limitations and Future Work While our experiments
focus on fluid dynamics applications using MLPs, RTNNs
have the potential to extend to diverse systems like Eu-
ler–Fourier, relativistic Euler, Boltzmann, to name but a few.
Future work includes enhancing algorithm performance,
extending RTNNs to operator learning frameworks, and re-
ducing computational costs by developing architectures with
more efficient differential operators. Additionally, exploring
function space optimization techniques (Jnini et al., 2024b;
Jnini & Vella, 2025) could further improve the accuracy of
RTNNs.

9



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Acknowledgments
A.J. acknowledges support from a fellowship provided by
Leonardo S.p.A. This work was partially funded under the
NRRP, Mission 4 Component 2 Investment 1.4, by the Euro-
pean Union – NextGenerationEU (proj. nr. CN 00000013).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bonfanti, A., Bruno, G., and Cipriani, C. The challenges

of the nonlinear regime for physics-informed neural net-
works. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=FY6vPtITtE.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E.
Physics-informed neural networks (PINNs) for fluid me-
chanics: A review. Acta Mechanica Sinica, 37(12):1727–
1738, 2021.

Cho, J., Nam, S., Yang, H., Yun, S.-B., Hong, Y., and Park,
E. Separable physics-informed neural networks, 2023.
URL https://arxiv.org/abs/2306.15969.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,
Spergel, D., and Ho, S. Lagrangian neural networks, 2020.
URL https://arxiv.org/abs/2003.04630.

Dong, S. and Ni, N. A method for representing periodic
functions and enforcing exactly periodic boundary con-
ditions with deep neural networks. Journal of Compu-
tational Physics, 435:110242, June 2021. ISSN 0021-
9991. doi: 10.1016/j.jcp.2021.110242. URL http://
dx.doi.org/10.1016/j.jcp.2021.110242.

Ethier, C. R. and Steinman, D. A. Exact fully 3d
navier–stokes solutions for benchmarking. International
Journal for Numerical Methods in Fluids, 19:369–375,
1994. URL https://api.semanticscholar.
org/CorpusID:62789476.

Giles, C. L. and Maxwell, T. Learning, invariance, and
generalization in high-order neural networks. Applied
optics, 26(23):4972–4978, 1987.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019a.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks, 2019b. URL https://arxiv.org/
abs/1906.01563.

Griffiths, D. J. Introduction to electrodynamics. Cambridge
University Press, 2023.

Haghighat, E., Raissi, M., Moure, A., Gomez, H., and
Juanes, R. A physics-informed deep learning framework
for inversion and surrogate modeling in solid mechanics.
Computer Methods in Applied Mechanics and Engineer-
ing, 379:113741, 2021.

Hendriks, J., Jidling, C., Wills, A., and Schön, T. Lin-
early constrained neural networks. arXiv preprint
arXiv:2002.01600, 2020.

Hu, Z., Shukla, K., Karniadakis, G. E., and Kawaguchi,
K. Tackling the curse of dimensionality with
physics-informed neural networks. arXiv preprint
arXiv:2307.12306, 2023.

Jnini, A. and Vella, F. Dual Natural Gradient Descent for
Scalable Training of Physics-Informed Neural Networks.
arXiv preprint arXiv:2505.21404, 2025.

Jnini, A., Goordoyal, H., Dave, S., Korobenko, A., Vella, F.,
and Fraser, K. Physics-constrained deepONet for surro-
gate CFD models: a curved backward-facing step case.
In ICLR 2024 Workshop on AI4DifferentialEquations In
Science, 2024a. URL https://openreview.net/
forum?id=zRef200Ucc.

Jnini, A., Vella, F., and Zeinhofer, M. Gauss-Newton Nat-
ural Gradient Descent for Physics-Informed Computa-
tional Fluid Dynamics. arXiv preprint arXiv:2402.10680,
2024b.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kidger, P. and Lyons, T. Universal approximation with deep
narrow networks, 2020. URL https://arxiv.org/
abs/1905.08539.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. Artificial neu-
ral networks for solving ordinary and partial differential
equations. IEEE transactions on neural networks, 9(5):
987–1000, 1998.

10

https://openreview.net/forum?id=FY6vPtITtE
https://openreview.net/forum?id=FY6vPtITtE
http://github.com/google/jax
https://arxiv.org/abs/2306.15969
https://arxiv.org/abs/2003.04630
http://dx.doi.org/10.1016/j.jcp.2021.110242
http://dx.doi.org/10.1016/j.jcp.2021.110242
https://api.semanticscholar.org/CorpusID:62789476
https://api.semanticscholar.org/CorpusID:62789476
https://arxiv.org/abs/1906.01563
https://arxiv.org/abs/1906.01563
https://openreview.net/forum?id=zRef200Ucc
https://openreview.net/forum?id=zRef200Ucc
https://arxiv.org/abs/1905.08539
https://arxiv.org/abs/1905.08539


Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Liu, N., Fan, Y., Zeng, X., Klöwer, M., Zhang, L., and
Yu, Y. Harnessing the power of neural operators with
automatically encoded conservation laws, 2024. URL
https://arxiv.org/abs/2312.11176.

Müller, J. and Zeinhofer, M. Position: Optimization in sciml
should employ the function space geometry, 2024. URL
https://arxiv.org/abs/2402.07318.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019a.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019b.

Richter-Powell, J., Lipman, Y., and Chen, R. T. Neural
conservation laws: A divergence-free perspective. Ad-
vances in Neural Information Processing Systems, 35:
38075–38088, 2022.

Serre, D. Solutions classiques globales des équations
d’euler pour un fluide parfait incompressible. Annales
de l’Institut Fourier, 47(1):139–153, 1997. URL
https://www.numdam.org/articles/10.
5802/aif.1563/.

Serre, D. Divergence-free positive symmetric tensors and
fluid dynamics. Annales de l’Institut Henri Poincaré
(Analyse Non Linéaire), 35(5):1209–1234, 2018. URL
https://arxiv.org/abs/1705.00331.

Serre, D. Compensated integrability. applications to the
vlasov–poisson equation and other models of mathemat-
ical physics. Journal de Mathématiques Pures et Ap-
pliquées, 127:67–88, 2019.

Serre, D. Hard spheres dynamics: Weak vs strong collisions.
Archive for Rational Mechanics and Analysis, 240(1):
243–264, 2021.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

11

https://arxiv.org/abs/2312.11176
https://arxiv.org/abs/2402.07318
https://www.numdam.org/articles/10.5802/aif.1563/
https://www.numdam.org/articles/10.5802/aif.1563/
https://arxiv.org/abs/1705.00331


Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

A. Proofs
A.1. Proof of Theorem 2.1

In this section, we prove the main result on the representation of divergence-free symmetric tensors (Theorem A.1), which
states that {Sab } (symmetric and divergence-free) exactly coincides with the image of the map Kacbd 7→ ∇c∇dKacbd,
where Kacbd satisfies Riemann-like symmetries.

We first recall the classification of Riemann-like (0, 4)-tensors (Lemma A.2), and then prove the surjectivity of the map
Φ: Kacbd 7→ ∇c∇dKacbd (Lemma A.4). Combining these two ingredients completes the proof of Theorem A.1.

A.1.1. MAIN THEOREM: REPRESENTATION OF DIVERGENCE-FREE SYMMETRIC TENSORS

Theorem A.1 (Representation of Divergence-Free Symmetric Tensors on a Flat Manifold). Let V be an n-dimensional real
vector space with a fixed basis {ea}na=1, and let {e∗a}na=1 denote the corresponding dual basis of V ∗. Let Λ2V ∗ denote the
space of 2-forms on V . Consider the space of all (0, 4)-tensors Kabcd defined on a flat manifold equipped with a Levi-Civita
connection ∇, satisfying the following symmetries:

1. Antisymmetry within index pairs:
K(ab)cd = 0, Kab(cd) = 0,

2. Symmetry between pairs:
Kabcd = Kcdab.

Let {ω1, . . . , ωm} be a fixed basis of Λ2V ∗, where m = n(n−1)
2 . Define the tensors:

T
(i,j)
abcd := ωi(e

∗
a ∧ e∗b)ωj(e

∗
c ∧ e∗d) + ωj(e

∗
a ∧ e∗b)ωi(e

∗
c ∧ e∗d).

Then:

1. The space of divergence-free, symmetric (0, 2)-tensors Sab on the flat manifold is exactly the image of the map

Kacbd 7−→ Sab = ∇c∇dKacbd.

2. Moreover, any such Sab can be expressed as

Sab =
∑

1≤i≤j≤m

T
(i,j)
acbd ∇c∇d cij ,

where cij are smooth scalar functions.

Proof Outline. By Lemma A.2, every Kacbd with the above symmetries can be expanded in the basis {T (i,j)}. Hence
∇c∇dKacbd can be written in the claimed form. We also check that ∇c∇dKacbd is symmetric and divergence-free using
flatness (commuting covariant derivatives) plus the antisymmetries. Finally, Lemma A.4 shows that any symmetric,
divergence-free Sab arises from some Kacbd, establishing that the image of the map is the space of such Sab.

A.1.2. CLASSIFICATION OF RIEMANN-LIKE TENSORS

Lemma A.2 (Classification of Riemann-like (0, 4)-Tensors). Let V be an n-dimensional real vector space, and let Λ2V ∗

be the space of 2-forms on V . Denote

m = dim(Λ2V ∗) =
n(n− 1)

2
.

Consider the vector space {
Tabcd | Tabcd = −Tbacd, Tabcd = −Tabdc, Tabcd = Tcdab

}
.

12



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

There is a canonical vector-space isomorphism between this space and Sym2(Λ2V ∗). In particular, its dimension is

m(m+ 1)

2
=

n(n−1)
2

(
n(n−1)

2 + 1
)

2
.

Moreover, if {ω1, . . . , ωm} is a basis for Λ2V ∗, then a corresponding basis in the space of such (0, 4)-tensors is given by

T
(i,j)
abcd =

(
ωi ⊗ ωj + ωj ⊗ ωi

)(
e∗a ∧ e∗b , e∗c ∧ e∗d

)
, 1 ≤ i ≤ j ≤ m.

Proof of Lemma A.2. Step 1: From T to a symmetric bilinear form. Given Tabcd with the stated symmetries, define for
α, β ∈ Λ2V ∗:

α = αab e∗a ∧ e∗b , β = βcd e∗c ∧ e∗d,

T̃ (α, β) = Tabcd α
ab βcd.

Since αab and βcd are antisymmetric in their respective index pairs, and Tabcd is antisymmetric in (a, b) and (c, d),
this is well-defined. The symmetry Tabcd = Tcdab implies that T̃ is symmetric as a bilinear form on Λ2V ∗. Hence
T̃ ∈ Sym2(Λ2V ∗).

Step 2: From a symmetric bilinear form back to T . Conversely, given T̃ ∈ Sym2(Λ2V ∗), define

Tabcd = T̃
(
e∗a ∧ e∗b , e∗c ∧ e∗d

)
.

A straightforward check shows that Tabcd inherits antisymmetry in (a, b), antisymmetry in (c, d), and the pair-exchange
symmetry (a, b) ↔ (c, d).

Step 3: Isomorphism and basis. These two constructions are linear inverses of each other, yielding a vector-space
isomorphism between our (0, 4)-tensors and Sym2(Λ2V ∗). The dimension follows from standard linear algebra. If
{ω1, . . . , ωm} is a basis of Λ2V ∗, then {ωi ⊗ ωj + ωj ⊗ ωi : 1 ≤ i ≤ j ≤ m} forms a basis for Sym2(Λ2V ∗). Mapping
these to (0, 4)-tensors via the above correspondence yields the stated basis {T (i,j)}.

A.1.3. SURJECTIVITY OF THE MAP Φ: K 7→ ∇c∇dK

As discussed, the second key ingredient for Theorem A.1 is showing that every divergence-free, symmetric (0, 2)-tensor Sab

can be obtained from some Riemann-like (0, 4)-tensor Kacbd. Equivalently, the map

Φ : Kacbd 7→ Sab = ∇c∇dKacbd

is surjective.

Lemma A.3 (Surjectivity of Φ). Let Kacbd be any Riemann-like (0, 4)-tensor (i.e. satisfying the symmetries of Lemma A.2).
Define Sab = ∇c∇dKacbd. Then Sab is automatically symmetric and divergence-free. Moreover, Φ is onto: for any given
symmetric, divergence-free (0, 2)-tensor Sab, there exists a Riemann-like Kacbd such that Sab = ∇c∇dKacbd.

Proof. Part 1: We first verify that if Sab = ∇c∇dKacbd, then Sab is symmetric and divergence-free.

- Symmetry: Using Kacbd = Kbdac, we get

Sab = ∇c∇dKacbd = ∇c∇dKbdac = Sba.

- Divergence-free: In flat space, covariant derivatives commute, so

∇aSab = ∇a∇c∇dKacbd = ∇c∇d∇aKacbd.

Because Kacbd is antisymmetric in (a, c), one shows that ∇aKacbd = 0. Hence ∇aSab = 0.

Part 2 (Surjectivity): We now show that given any symmetric, divergence-free Sab, we can solve Sab = ∇c∇dKacbd for
some Riemann-like Kacbd.

13



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

A.2. Surjectivity of the map

Theorem A.4 (Surjectivity of the Φ). We will now prove that the following map Φ is surjective:

Φ : K 7→ S (22)

Sab = Φ(Kacbd) = ∇c∇dKacbd (23)

where Kacbd is a Riemann-like (0, 4) tensor and Sab is a symmetric divergence-free (0, 2) tensor.

Proof. This is equivalent to showing that for any given Sab, there exists a Kacbd such that Sab = Φ(Kacbd). As in the
previous sections, we assume we are working on a flat manifold.

Let’s define a Poisson’s equation (Griffiths, 2023) for each index of the tensor Sab, with appropriate boundary conditions as
desired:

∆Lab = Sab (24)

These Poisson’s equations can be solved by the well-known method of Green’s function (Griffiths, 2023).

By solving the previous equations, we obtain a tensor Lab with the following properties:

Lab = Lba (25a)
∇aLab = 0 (25b)

Sab = ∆Lab (25c)

It’s easy to show that:

• Eq. 25a follows from the fact that the Laplacian operator ∆ in Eq. 24 is meant componentwise and Sab is symmetric.

• Eq. 25b follows from the fact that the derivatives commute on a flat manifold.

• Eq. 25c follows form definition 24.

We can now easily define a tensor Kacbd with the desired properties from Lab. Just let:

Kacbd = 2
(
δa[bLd]c − δc[bLd]a

)
(26)

= δabLdc − δadLbc − δcbLda + δcdLba

We now verify the Riemann-like properties of K:

K(ac)bd = 4
(
δa[bLd]c − δc[bLd]a + δc[bLd]a − δa[bLd]c

)
= 0 (27)

Kac(bd) = 4
(
δa[bLd]c − δc[bLd]a + δa[dLb]c − δc[dLb]a

)
= 0 (28)

Kacbd = 2
(
δa[bLd]c − δc[bLd]a

)
(29)

= δabLdc − δadLbc − δcbLda + δcdLba

= δbaLcd − δdaLcb − δbcLad + δdcLab

= δbaLcd − δbcLad − δdaLcb + δdcLab

= 2
(
δb[aLc]d − δd[aLd]c

)
= Kbdac

∇c∇dKacbd = 2∇c∇d
(
δa[bLd]c − δc[bLd]a

)
(30)

= ∇c∇d (δabLdc)−∇c∇d (δadLbc)−∇c∇d (δcbLda) +∇c∇d (δcdLba)

= δab∇c∇dLdc − δad∇c∇dLbc − δcb∇c∇dLda + δcd∇c∇dLba

= 0− 0− 0 +∇c∇cLba

= ∆Lab

= Sab

14



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

So, since we can build an inverse for every Sab, the map Φ : Kacbd 7→ Sab is surjective.

A.2.1. COMBINING THE LEMMAS TO PROVE THEOREM A.1

Proof of Theorem A.1. (1) Symmetry and divergence-free for ∇c∇dKacbd. By Lemma A.4 (Part 1), the tensor
∇c∇dKacbd is always symmetric and divergence-free if Kacbd is Riemann-like.

(2) Surjectivity: Every symmetric, divergence-free Sab arises from some Kacbd. By Lemma A.4 (Part 2), the map
Φ: K 7→ ∇c∇dK is onto the space of such Sab.

(3) Basis and explicit representation. From Lemma A.2, any Riemann-like Kacbd can be expanded in the basis {T (i,j)}.
Consequently,

∇c∇dKacbd =
∑

1≤i≤j≤m

T
(i,j)
acbd ∇c∇dcij

for some scalar functions {cij}. This shows that every Sab can indeed be written in the claimed form.

Hence all parts of the statement hold, and the proof is complete.

A.3. Proof of theorem A.5

Theorem A.5 (Universal Approximation for RTNN). Let Ω ⊂ R3 be a compact domain, and let S ∈ C(Ω;R3×3) be any
divergence-free symmetric tensor field on Ω. For any ϵ > 0, there exists a Riemann Tensor Neural Network Sθ with a fixed
narrow width and arbitrary depth, such that

sup
x∈Ω

∥S(x)− Sθ(x)∥ < ϵ, (31)

where ∥ · ∥ denotes the Frobenius norm.

Proof. To prove Theorem A.5, we proceed in two main steps:

1. Surjectivity of the Map from K to S: By Theorem A.4, the map

Φ : K 7→ S, (32)

defined by

Sab = ∇c∇dKacbd, (33)

is surjective. This implies that for any divergence-free symmetric tensor field S ∈ C(Ω;Rm×m), there exists a tensor
K with Riemann-like symmetries such that

S = Φ(K). (34)

2. Approximation of TensorK Using Neural Networks: SinceK is a linear combination of scalar functions, specifically

Kacbd =
∑
i,j

cij(x)T
(i,j)
acbd , (35)

where T (i,j)
acbd are fixed basis tensors and cij(x) are scalar coefficient functions, we can approximate each cij(x) using

deep narrow neural networks.

By the Universal Approximation Theorem for deep narrow neural networks (Kidger & Lyons, 2020), for each scalar
function cij(x) and for any ϵ > 0, there exists a neural network NNθij such that

sup
x∈Ω

∣∣cij(x)− cNN
ij (x; θij)

∣∣ < ϵ

C
, (36)

15



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

where C is a constant dependent on the norms of the basis tensors T (i,j) and the chosen tensor norm ∥ · ∥.

Construct the approximated tensor Kθ as

Kθ(x) =
∑
i,j

cNN
ij (x; θij)T

(i,j)
acbd . (37)

Applying the map Φ to Kθ, we obtain the approximated tensor Sθ:

Sθ(x) = Φ(Kθ)(x) = ∇c∇dKθ(x). (38)

Error Propagation:
The approximation error in each cij(x) propagates linearly to Sθ(x). Specifically, we have

∥S(x)− Sθ(x)∥ = (39)
= ∥Φ(K)(x)− Φ(Kθ)(x)∥
=

∥∥∇c∇d(K −Kθ)(x)
∥∥

=

∥∥∥∥∥∥∇c∇d

∑
i,j

(cij(x)− cNN
ij (x; θij))T

(i,j)
acbd

∥∥∥∥∥∥
≤

∑
i,j

∥T (i,j)∥ sup
x∈Ω

∣∣∇c∇d
(
cij(x)− cNN

ij (x; θij)
)∣∣

≤
∑
i,j

∥T (i,j)∥ sup
x∈Ω

∣∣cij(x)− cNN
ij (x; θij)

∣∣ · Cij

<
∑
i,j

∥T (i,j)∥ · ϵ
C

= ϵ,

where Cij accounts for the bounds on the second-order partial derivatives ∇c∇dcij(x) over the compact domain Ω,
and the final equality holds by the choice of C.

Therefore, by appropriately choosing the neural networks NNθij to approximate each scalar coefficient cij(x) within
ϵ/C, we ensure that the approximated tensor Sθ(x) satisfies

sup
x∈Ω

∥S(x)− Sθ(x)∥ < ϵ. (40)

A.4. Equivalence of Explicit Momentum Residual and Isotropic Loss Term

Consider the compressible Euler momentum equation (neglecting viscous terms):

∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

where ρ is the density, u is the velocity field, and p is the pressure.

In our RTNN parametrization, the network outputs a flux tensor S defined as:

S =

(
ρ (ρu)T

ρu ρu⊗ u+ σ

)
,

with ρ = S0,0 and ρu = S1,0. The stress tensor is then defined by:

σ = S1:2,1:2 − ρ u⊗ u.

16



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

We impose a zero-deviatoric constraint on σ, meaning its deviatoric part vanishes:

σdev ≜ σ − 1

n
tr(σ) I = 0.

This forces:
σ =

1

n
tr(σ) I ≜ pI,

With the pressure defined as:

p =
1

n
tr(σ).

Substituting σ = pI back into the flux tensor, we get:

S =

(
ρ (ρu)T

ρu ρu⊗ u+ pI

)
.

Our architecture enforces that S is divergence-free:

∇ · S =

(
∂tρ+∇ · (ρu)

∂t(ρu) +∇ · (ρu⊗ u+ pI)

)
= 0.

The first row yields the continuity equation, which vanishes:

∂tρ+∇ · (ρu) = 0.

The second row yields:
∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,

which, when expanded, yield the following equations:

∂tρ+∇ · (ρu, ρv) = 0 (41)

∂t(ρu) +∇ · (ρu2, ρuv) = −∂xp (42)

∂t(ρv) +∇ · (ρuv, ρv2) = −∂yp (43)

This is exactly the system in (11)–(13).

In other words, the condition on the stress tensor is numerically equivalent to having the momentum residual vanish. A
similar reasoning can be applied when adding viscous terms (or magnetic-terms), for instance.

Furthermore, to prove our mathematical derivation numerically, we conducted an experiment in which the velocity and
pressure fields extracted from a single RTNN were trained using the classical momentum equation rather than the simplified
condition on the stress tensor. In this setting, the only difference among the experiments is the underlying architecture.
Although this process is more computationally expensive, owing to the necessity of computing a fourth-order derivative,
the RTNN-trained fields still demonstrate similarly superior accuracy compared to those obtained with PINN and NCL.
We summarize the obtained results below for the two unsteady Navier–Stokes problems: flow around a cylinder and the
Beltrami flow (see Table 4).

PINN and NCL were both trained using the full system (11)–(14), which includes the conservation of mass, momentum, and
energy equations. For NCL, the mass conservation equation is satisfied by construction and cancels up to machine precision;
similarly, for RTNN, conservation of mass is similarly enforced structurally and cancels out. The energy equation (14) is
also included in the loss, similarly to the other methods.

The only apparent difference is that RTNN replaces the explicit momentum residual with an isotropic loss term. However,
this isotropic loss term naturally emerges when substituting the RTNN-predicted fields into the flux-form momentum
equation. Imposing the zero-deviatoric condition on the stress tensor is numerically equivalent to enforcing the momentum
equation directly in its expanded form.

17



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Method
Beltrami Cylinder

L2 Median L2 IQR L2 Median L2 IQR
RTNN (extended momentum equation) 4.55e-04 8.1e-05 5.13e-03 4.2e-04
RTNN (stress tensor) 4.28e-04 5.9e-05 5.70e-03 4.3e-04
NCL 1.74e-03 8.5e-05 2.54e-02 1.9e-03
PINN 1.41e-03 3.1e-04 2.99e-02 7.9e-04

Table 4. Comparison of methods across Beltrami and Cylinder tasks. Reported: median and IQR of relative L2 error.

B. Additional resources for Experiments
B.1. Euler Equation

The simulation of the 2D isentropic Euler vortex is based on analytical solutions, ensuring precise modeling of vortex
dynamics. Below, we provide detailed initial and boundary conditions, as well as a summary of the experimental setup
parameters and hyperparameters.

Table 5. Setup and Hyperparameters for the Euler Vortex Experiment

Parameter Value

Optimizers BFGS

Architecture 4-layer Multilayer Perceptron, width 50

Activation Function Tanh

Domain Ω = [0, Lx]× [0, Ly]

Time Interval [0, T ]

Collocation Points (Interior) 1,000

Collocation Points (Boundary) 200

Validation Points 10,000

Evaluation Metric Relative L2 Error

Initial Conditions: The initial density, velocity components, and temperature distributions are defined based on the
analytical solution of the Euler vortex:

ρ(x, y, 0) = ρ∞

(
T (x, y)

T∞

)1/(γ−1)

, (44)

u(x, y, 0) = u∞ − β

2π
(y − yc) exp

[
1− r2(x, y)

]
, (45)

v(x, y, 0) = v∞ +
β

2π
(x− xc) exp

[
1− r2(x, y)

]
, (46)

T (x, y) = T∞ − (γ − 1)β2

8π2
exp

[
2(1− r2(x, y))

]
, (47)

where r2(x, y) = (x− xc)
2 + (y − yc)

2 represents the radial distance from the vortex center (xc, yc).

Boundary Conditions: On the boundaries of the spatial domain ∂Ω, we impose fixed values for density, velocity, and
pressure:

ρ|∂Ω = ρ∞, (u, v)|∂Ω = (u∞, v∞), p|∂Ω = κργ∞.

18



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

B.2. Beltrami Flow

Table 6. Setup and Hyperparameters for the Beltrami Flow Experiment

Parameter Value

Optimizers BFGS

Architecture 4-layer Multilayer Perceptron, width 50

Activation Function Tanh

Domain Ω = [−1, 1]× [−1, 1]× [−1, 1]

Time Interval [0, 1]

Collocation Points (Interior) 10,000

Collocation Points (Boundary) 961 per face

Validation Points 10,000

Evaluation Metric Relative L2 Error

We consider the unsteady three-dimensional Beltrami flow originally described by Ethier & Steinman (1994) at Re = 1.
The spatial domain is Ω = [−1, 1]3 and time ranges over [0, 1]. The exact solutions are:

u(x, y, z, t) = −ex sin(y + z) + ez cos(x+ y) e−t,

v(x, y, z, t) = −ey sin(z + x) + ex cos(y + z) e−t,

w(x, y, z, t) = −ez sin(x+ y) + ey cos(z + x) e−t,

and

p(x, y, z, t) = − 1
2

[
e2x + e2y + e2z + 2 sin(x+ y) cos(z + x) ey+z

+ 2 sin(y + z) cos(x+ y) ez+x + 2 sin(z + x) cos(y + z) ex+y
]
e−2t.

These expressions satisfy the incompressible Navier–Stokes equations exactly, making the Beltrami flow an ideal test for
verifying numerical methods. We use 10,000 interior collocation points to enforce the PDE residual and 961 boundary/initial
points per face for constraints; an additional 10,000 points in the interior serve as a validation set. We report the training
dynamics in Figure B.2.

19



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Figure 4. Comparison of training relative L2 error over simulation time for the 3d Beltrami experiment across all methods. The solid lines
represent the median relative L2 error, while the shaded regions indicate the interquartile range (IQR). RTNN achieves the lowest L2
error, followed by PINN and NCL. The x-axis represents the simulation time (in seconds), while the y-axis shows the relative L2 error on
a logarithmic scale.

B.3. Cylinder Wake

Table 7. Setup and Hyperparameters for the Cylinder Wake Experiment

Parameter Value

Optimizers BFGS

Architecture 4-layer Multilayer Perceptron, width 50

Activation Function Tanh

Domain Ω = [1, 8]× [−2, 2]

Time Interval [0, 7], ∆t = 0.1

Interior Collocation Points 40,000

Boundary/Initial Points 5,000

Evaluation Metric Relative L2 Error

For the two-dimensional cylinder wake at Re = 100, we consider a circular cylinder centered at (0, 0). The downstream
domain is Ω = [1, 8]× [−2, 2] in space, with the simulation time interval [0, 7] discretized in increments of ∆t = 0.1. We
train a 4-layer MLP (width 50, Tanh activations) on 40,000 interior collocation points and 5,000 boundary/initial points,
without using labeled data. We validate the solution against direct numerical simulation (DNS) from Raissi et al. (2019a).
We report the training dynamics in Figure 5

20



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Figure 5. Comparison of training relative L2 error over simulation time for the Cylinder wake experiment across all methods. The solid
lines represent the median relative L2 error, while the shaded regions indicate the interquartile range (IQR). RTNN achieves the lowest
L2 error, followed by NCL and pinn . The x-axis represents the number of iterations, while the y-axis shows the relative L2 error on a
logarithmic scale.

B.4. NACA Airfoil

Table 8. Setup and Hyperparameters for the NACA Airfoil Experiment

Parameter Value

Optimizers BFGS

Architecture 4-layer Multilayer Perceptron, width 50

Activation Function Tanh

Evaluation Metric Relative L2 Error

We investigate the steady laminar flow at Re = 1000 around a NACA 0012 airfoil. This problem is recast as a steady
Navier–Stokes system by treating time as a dummy dimension. An MLP with 4 hidden layers (width 50, Tanh activations) is
trained with labeled data from our in-house RANS solver with 2’000 data points and 40’000 collocation points for PDE
residuals. We use 12’000 data points to validate the recovered fields. We report the training dynamics in Figure 6

B.5. MHD

We train and validate our method on a three-dimensional periodic incompressible Magnetohydrodynamics (MHD) flow
within the domain [0, L]3, with Reynolds numbers Re = 1000 and ReM = 1000. The simulation covers the time interval
t ∈ [0, 0.5] for training and tests at t = 0.55. Training data is generated using a spectral solver, ensuring high accuracy, with
initial velocity u0 and magnetic field B0 sampled from Gaussian random fields. Periodic boundary conditions are strictly
enforced to maintain physical consistency across the domain. We employ a Separable Physics-Informed Neural Network
(SPINN) (Cho et al., 2023) with 5 hidden layers and 500 neurons per layer to handle the structured 3D grid, discretized
into 101 × 128 × 128 points along each respective dimension. The model is trained using 50,000 iterations of the L-BFGS
optimizer to effectively minimize the loss function. Validation at t = 0.55 utilizes spectral solver data to assess performance
and ensure accurate replication of MHD flow characteristics. We compare three approaches: (i) our RTNN-based method,

21



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Figure 6. Comparison of training relative L2 error over simulation time for the NACA Airfoil experiment across all methods. The solid
lines represent the median relative L2 error, while the shaded regions indicate the interquartile range (IQR). RTNN achieves the lowest L2
error, followed by PINN and NCL. The x-axis represents the simulation time (in seconds), while the y-axis shows the relative L2 error on
a logarithmic scale.

(ii) a SPINN baseline with penalized residuals, and (iii) a Curl-SPINN parametrizing velocity and magnetic fields as the curl
of a scalar potential. Additional details and performance plots are provided below.

Table 9. Setup and Hyperparameters for the MHD Experiment

Parameter Value

Optimizer L-BFGS

Architecture Separable Physics-Informed Neural Network (SPINN)

Hidden Layers 5

Neurons per Layer 500

Activation Function Tanh

Domain [0, L]3

Time Interval Training: t ∈ [0, 0.5], Testing: t = 0.55

Grid Discretization 101× 128× 128 points

Reynolds Number Re = 1000

Magnetic Reynolds Number ReM = 1000

Training Iterations 50,000

Validation Data Spectral solver data at t = 0.55

Evaluation Metric Relative L2 Error

22



Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Figure 7. Comparison of training relative L2 error over iterations for the MHD experiment across all methods. The left subplot represents
the velocity relative L2 error, while the right subplot represents the magnetic potential relative L2 error. The solid lines indicate the
median relative L2 error, and the shaded regions depict the interquartile range (IQR). RTNN achieves the lowest L2 error in both velocity
and magnetic potential, followed by PINN and NCL. The x-axis represents the iterations, while the y-axis shows the relative L2 error on a
logarithmic scale.

23


