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Abstract

Dense metric depth estimation has witnessed great developments in recent years.
While single-image-based methods have demonstrated commendable performance
in certain circumstances, they may encounter challenges regarding scale ambi-
guities and visual illusions in real world. Traditional depth-from-focus methods
are constrained by low sampling rates during data acquisition. In this paper, we
introduce a novel approach to enhance dense metric depth estimation by fusing
events with image foundation models via a prompting approach. Specifically,
we build Event-based Differential Focus Volumes (EDFV) using events triggered
through focus sweeping, which are subsequently transformed into sparse metric
depth maps. These maps are then utilized for prompting dense depth estimation
via our proposed Event-based Depth Prompting Network. We further construct
synthetic and real-captured datasets to facilitate the training and evaluation of
both frame-based and event-based methods. Quantitative and qualitative results,
including both in-domain and zero-shot experiments, demonstrate the superior
performance of our method compared to existing approaches. Code and data will
be available at https://github.com/liboyu02/EDFV/.

1 Introduction

Dense metric depth estimation is an important task to predict a dense map with absolute depth
values of valid pixels. It plays a significant role in downstream applications such as augmented
reality [25] and virtual reality [27]. Early single-image-based methods use hand-crafted features
[56] or simple regression networks [12]], but are limited by their robustness and generality. Recently,
Image Foundation Models (IFM) trained on large datasets for depth estimation [3| 67]] have been
proposed. They are good at producing shapes and relative layouts of objects, but may suffer from
scale ambiguities and visual illusions due to the lack of sufficient scene prior [33]]. Although several
studies [23| 48], |5]] have incorporated camera intrinsic parameters to mitigate ambiguities for metric
depth estimation, they may nonetheless encounter inaccuracies under certain conditions (Fig.[I] (c)).

For more accurate metric depth estimation, various cues have been utilized such as another view
(stereo) [34], LIDAR measurements [57, 45, 33]], and focus/defocus [40,[13]. Among them, stereo
matching may have difficulties in handling spatial misalignments between frames [63]. LiDAR needs
actively emitted laser pulses, and thus may pose problems to privacy and environment [44]. Depth
from focus/defocus (DFF/DFD) methods rely on the fact that during focus sweeping, there is an
optimal focusing timestamp for each point of the scene, where the Circle of Confusion (CoC) is the
smallest (Fig. [I] (d)) [40]. They do not require auxiliary movements or equipment, thus ensuring
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Figure 1: (a) We introduce a pipeline using both all-in-focus (AIF) images and focus sweeping
triggered events for depth estimation. The input data can be captured with an event-RGB hybrid
system. (b) Inputs of our method. (c) Comparison with other methods (single-image-based Metric3D
V2 [23] and DFF method DFF-DFV [64]). (d) The illustration of the pinhole camera imaging model
(top) and our proposed EDFV (bottom). Compared with frame-based FV and DFV, our method could
better find the optimal focusing timestamp, resulting in more accurate depth estimation.

minimal spatial misalignment and applicable in most scenarios [64]. Most of them use Focus Volumes
(FVs) and Differential Focus Volumes (DFVs) to assist depth estimation [59}162]. However, at least 4
frames are usually required to achieve desirable results [40]], increasing data acquisition difficulties,
especially the consumption of operation time.

Event cameras are neuromorphic sensors inspired by human retina [31} [11]. The high temporal
resolution enables them to record many temporal bins of the focus sweeping process in a short time.
They have been employed in image restoration tasks such as deblurring [69]], super-resolution [28]],
and all-in-focus (AIF) image reconstruction [38]]. Recently, they have also been leveraged for sparse
depth estimation [26]]. These methods utilize event cameras to get better results with a shorter capture
time. However, the sparsity of events makes it hard to get dense predictions. In contrast, DFF methods
could extract dense information from images. These complementary characteristics motivate us to
think: Can we fuse the advantages of both images and events for dense metric depth estimation?

There have been previous works achieving depth completion by prompting IFMs with sparse ob-
servations [45)133]]. However, utilizing event cameras for dense metric depth estimation still faces
several challenges: (1) To better use the focus information encoded in events, a more efficient
representation tailored for depth estimation is needed. (2) As events provide different sparse depth
patterns from other sensors such as LiDAR because they mainly trigger at boundaries or textures,
directly applying existing prompting strategies may fail to fully exploit their unique advantages and
thus yield suboptimal performance. (3) No public datasets with ground truth (GT) depth, image focal
stacks, and events are currently available.

In this paper, we propose a pipeline to combine events with images (Fig.[I](a) & (b)) for more accurate
dense metric depth estimation. We propose a new representation called Event-based Differential
Focus Volume (EDFV) to guide sparse depth estimation. As shown in Fig. [T](d), the high temporal
resolution of events enables us to find the optimal focusing timestamp more accurately. Then we
use EDFV to prompt the initial dense estimation results from IFM with our Event-based Depth
Prompting Network (EDPN) for the final prediction. To evaluate both frame-based and event-based
DFF methods in unified reliable datasets, we synthesize two datasets in two different ways, and also
capture datasets with real events. Above all, our contributions are as follows:

* We propose a novel representation EDFV constructed from events generated during focus sweeping
for event-based sparse depth estimation, which accounts for the event triggering mechanism and
enables more effective extraction of focus/defocus information.

* We design a prompting strategy to employ both EDFV and AIF images for dense metric depth
estimation. The pipeline first predicts sparse depth maps from EDFV, and then leverages them to
prompt dense depth estimation with [FMs through our prompting network.

* We construct two synthetic datasets including AIF images, focal stacks, events, and GT depth
for the training and evaluation of both frame-based and event-based DFF methods. Besides, a
semi-real dataset and a real dataset with challenging real-world scenarios are also captured for
evaluation only. These datasets will be made public to facilitate future research.

We achieve at most 29.1% improvement in root mean square error (RMSE) on our proposed dataset
compared with existing single-image-based and traditional DFF methods.



2 Related work

Single image depth estimation. Traditional methods [[20} 56] use hand-crafted operators to estimate
depth maps from single images. These methods usually fail to predict accurate depth in textureless
areas. The learning-based approach learns deep depth cues from training data, thereby reducing the
estimation error on similar test data [2, [70} [1]. However, they still struggle with zero-shot estimation
in unseen scenes. With the rise of foundation models, some methods [3} 67] have used massive
training data to achieve better single-image-based relative depth estimation results. To solve the scale
ambiguity problem, more recent methods [68} 23} 148,147, |16] take camera intrinsic parameters as
additional inputs. But they still face challenges in real world due to limited scene prior, as shown in
Fig.|l|(c). We seek to address the problem by prompting IFMs with information from focus/defocus.

Focus measures and depth from focus/defocus. The depth estimation methods based on fo-
cus/defocus take advantage of the lens effect that “the more the scene is away from the focus depth,
the blurred in the image becomes” to realize the task of depth estimation from images [40]]. Therefore,
the focus measure operators they use for evaluating the “in-focus” degree of each pixel have a
great influence on their performance [46]]. Early researchers employ hand-crafted operators, such as
gradient-based operators [[15]], wavelet-based operators [65]], and discrete-cosine-transform-based
operators [30] for the evaluation. Some methods estimate the depth map directly based on the blurred
degree of local patches [43}41]], but the foreground/background ambiguity and the influence of the
occlusion scene have an impact on the performance [55]].

Deep learning methods are introduced to replace hand-crafted operators and improve performance
[18,140,162]]. DFV [64] is proposed to better utilize information by computing the first-order derivative
on the stacked features. A more recent work [13]] improves zero-shot performance by considering
camera parameters in advance. Recently, HybridDepth [14] tries to incorporate both a pretrained
traditional DFF method and a pretrained IFM as a relative depth estimator. However, these methods
meet problems such as the dependence on focal stack numbers. We introduce events to record the
focus sweeping process and take advantage of high speed to break through the above bottleneck.

Event-guided depth estimation. Event-based depth estimation mainly falls into three categories:
monocular, stereo, and DFF. Early optimization-based monocular methods [29}51]] only output sparse
or semi-dense results. Learning-based methods [19] have shown promising dense results. Although
claimed as “monocular”, these methods need camera or object motion during capture process, thus
causing possible misalignment. Besides, the motion patterns may influence the quality of triggered
events, thus affecting the estimation accuracy [35]]. Stereo methods include event-based symmetric
stereo [611!42} 9] and event-intensity asymmetric stereo [[71,[7]. Recently, some works [} 37] employ
foundation models from image domain to improve the generality. For event-based DFF methods,
previous work [26]] only predicts sparse depth from pure events. A more recent work [22] leverages
existing grayscale video reconstruction approaches for depth estimation. Their method lacks the input
image modality, which could constrain their zero-shot performance. In contrast, we aim to predict
dense maps and improve zero-shot performance by fusing information from IFMs.

3 Preliminaries

In this section, we give a brief review of frame-based Focus Volume and Differential Focus Volume
in Sec.[3.1] and formulate event-based Differential Focus Volume in Sec. 3.2}

3.1 Frame-based Focus Volume

According to the pinhole camera imaging model shown in Fig.[I](d), objects away from the lens focus
depth F' will exhibit defocus blur in the image [43]. The defocused image can be modeled as the
result of the convolution operation between AIF image I and a spatial-variant Point Spread Function
(PSF). The shape and blur degree of PSF are relevant to 0, i.e., radius of CoC, which is derived as:
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where A is the diameter of the lens aperture, D(z, y) represents the depth of the scene corresponding
to pixel (z,y), and f is the focal length. According to Eq. (1), the closer F' to D(z, y), the smaller
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Figure 2: The pipeline of our method. Firstly, an image is fed into the IFM for an initial dense depth
map. Concurrently, events are fed into an encoder to build multi-scale EDFVs. The SAME strategy
is employed to extract spatial attention masks from images and events, which are multiplied with the
output of the EDFV decoder to generate a sparse depth map. The two maps are subsequently fed into
EDPN, where features are extracted from sparse and initial dense depth by SparseNet and DenseNet,
respectively. Finally, the features are fused with MCPM to output our depth. Lgparse is calculated for
depth consistency between sparse depth and masked GT (GT multiplied with the same spatial mask),
Ldense between final depth and GT, as well as Lp,¢ch for multi-scale local consistency.

6 will be. When F' = D(x,y), we have § = 0, which means the unique minimum point of 6
corresponds to the depth of the object.

Frame-based DFF methods take images at NV different focal depths F;(i = 1,...N), and find the
optimal focused depth of each object in the scene. A common method is to use FV to store the “in-
focus” degree of each pixel in each image. As discussed in Sec. [2] the focus measures can be divided
into hand-crafted operators and deep-learning methods. Traditional methods find the maximum focus
score among these FVs, while learning-based methods [[62, [13]] calculate the probability scores for
the actual depth falling into each of these depths, and multiply them with these depths to get the
result. Learning-based methods usually have better results. However, the feature magnitude of the
sharpest pixel may not be salient in some circumstances due to noises and imperfect measurements
[64]. Taking the single extremum into consideration, if taking the difference in the features, the
polarity of the difference should be reversed around the best focal depth, and the sharpest pixel will
be more significant to distinguish. This formulates the so-called DFV.

3.2 [Event-based Differential Focus Volume

Event cameras are bio-inspired sensors that record intensity changes in the scene in an asynchronous
manner. If the log-scale intensity of a pixel I(x, y, t) change exceeds a preset threshold e at timestamp
t, an event e = (x,y,t,p) will be triggered, where p € {+1,—1} denotes the polarity indicating
whether increasing or decreasing. This process can be formulated as:

{1, log(I(z,y, ) — log(X(z,y, t — AB) > €, ,
= =1 log(I(z, y, ) — log(I(z,y, t — A)) < — @

Observation 1: Events triggered around the intensity-changing pixels at boundaries between objects
of an image may experience a polarity reversal before and after focusing.

Here, the “intensity-changing pixels" mean pixels where themselves and the surrounding pixels
do not have the same intensity. We assume a simple scene where there are only two objects, one
in the foreground and one in the background, both with uniform intensity and depth. During the
focus sweeping process, the intensity of a pixel (x, y) on the background at any timestamp ¢ can be
formulated as:

I((E, Y, t) = Ib + prf(t)7 (3)
where I, and Iy are intensities of the background and foreground, respectively, and P is the value of
the foreground PSF on pixel (z,y). Then the log-scale intensity change is:

B L, + 15Pe(t) Pr(t) — Pe(t — At)
Alog(I(w,y 1)) =log =5 5 7R T, + 1,7t — AD)

=log(1 +1; )- “
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From the above equation, we derive:

sign(Alog(I(z,y,t))) = sign(APs()), (5)
where sign(-) denotes the mathematical sign function.
Observation 2: The sign of the right side of Eq. (5) will change before and after focusing.

Observation 3: If the intensity-changing pixel is on the texture of a single object instead of an edge
separating two objects, the triggered events around it may also experience a polarity reversal.

The derivation of these two observations can be found in the Appendix Sec. [A] Based on the above
observations, focus-sweeping triggered events inherently encode differential “in-focus” information.
We exploit this characteristic to construct deep EDFV from events. Similar to DFV, EDFV may not
perform well in textureless regions lacking salient intensity changes during sweeping. Moreover, the
derivation shows that background events may reflect foreground intensity, differing from DFV. We
will show how to address these challenges in our pipeline.

4 Method

The pipeline of our method is shown in Fig.[2] We first estimate initial dense depth map from a frozen
IFM. Concurrently, we build EDFV with an encoder and predict a sparse metric depth map from
events. The final estimation is generated by feeding two maps into our prompting network EDPN.

4.1 Initial dense depth estimation

Recent IFMs for depth estimation [66} 67, 3] take a single image as input, and output a dense depth
map. Although maybe scale-ambiguous, they could preserve object boundaries and extract important
semantic information of the scene. Therefore, we feed the image to IFM to estimate an initial dense
depth map. In this work, we choose Depth Anything (DA) V2 [67] as our baseline model.

4.2 EDFYV construction

In order to use the depth information encoded in events, a simple way could involve directly processing
events with hand-crafted operators, such as the polarity changing timestamp for each pixel. However,
this approach suffers from high noise sensitivity and may not output satisfactory results. Similar
to deep frame-based FV and DFV discussed in Sec. [3.I] and the design of event-based neural
representations [60], we first stack the events into N temporal bins with their polarities, and then
transform them into EDFV with a multi-scale convolutional encoder.

Previous studies [62] show the frame number of discrete focal stacks /V influences the performance of
FV and DFV methods. But thanks to the high temporal resolution of events, when we sweep the focus
ring, they can record continuous intensity changes for each pixel. Therefore, we can theoretically
generate any number of event bins. Here we choose N = 32, and an ablation study of this number is
provided in Sec. [5.5] Besides, we select the central depth of each bin as the candidate depths.

4.3 Sparse depth estimation

To solve the challenge that EDFV of a pixel may reflect depth values of surrounding pixels, we adopt
a multi-scale decoder with residual convolution blocks to process the EDFV and efficiently estimate
the sparse depth map. However, as the network itself could not identify effective pixels, noises of
events in textureless areas may be scattered through these operations. To tackle this issue, we propose
a Spatial Attention Mask Extraction (SAME) strategy to force the network to concentrate on the
effective areas of events. Specifically, we use image gradients VI and event density p. to build a
spatial attention mask M, which is multiplied with the output of EDFV decoder to get a sparse depth
map. Besides, we add dilation operations to M to solve possible misalignments, which is:

N
M = Dilate((VI > €;) - (pe > €)),Ds = M- (> _S;(EDFV) - F), (6)

i=1

where € and €, are adjustable thresholds, S, is the normalized probability score, and Dy is the sparse
depth map. The choice of ¢; and €. would affect the effective regions of events, and thus affect
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our final predictions. In order to improve the robustness of our network for the non-uniform and
inconsistent event triggering thresholds and various noise levels in real world, we randomly set these
parameters during our training, and select a fixed set of them for evaluation.

To provide a flatter distribution, we use softplus instead of softmax to normalize the scores, which is:

S — J\l{n(l + exp(Si)) ’ @
> j—1 In(1 +exp(S;))

where S; is the non-normalized score. Compared with softmax, this normalization improves depth
estimation by interpolating among candidate depths [62]].

4.4 Event-based depth prompting

Our prompting network leverages scale cues from event-based sparse depth to prompt the initial dense
depth map for final results. Previous works [45],133] mainly focus on LiDAR prompting approach,
which differs in modality from event data sensitive to edges and textures. To bridge this gap, we
employ two U-Net-based [53]] networks, i.e., SparseNet and DenseNet, to project sparse and initial
dense depth maps into a unified feature embedding space. Considering their different characteristics,
we add max-pooling layers to SparseNet to better densify the sparse information. In contrast, we
add large kernel convolution layers to DenseNet for extracting more high-level features of the dense
depth map. We collect features from decoders of different scales of SparseNet and DenseNet.

In order to solve the prompting challenges between two modalities, we further design a Multi-scale
Cross-attention-guided Prompting Module (MCPM, as shown in Fig.[3). It consists of Cross Attention
Blocks (CAB) and Fusion Blocks (FB) working at different scales. CAB first uses convolution layers
to compute queries QQ from dense image features F';, K and V from sparse event features F.. In
order to handle the sparsity of events and possible misalignments between event and image features
caused by motion as well as the challenge discussed in Sec. [3.2] we employ deformable convolutions
[10] to generate K and V. Then CAB use attention map as the matching score of Q and K, and then
use V to fill the output result. The above process can be formulated as:

QK™
A
where D¢ ap is the output depth map of CAB, and A is a learnable scaling parameter.

Q = Conv(F;), K,V = DeformConv(F.), Dcap = Conv(Softmax(

WV)+Fr, (8

Furthermore, we refine the output of CABs in a multi-scale way using FB. FB consists of Residual
Convolution Units [32]], and progressively upsample the representation by a factor of two in each
fusion stage. The final output depth spatial resolution is the same as the input image.

4.5 Loss functions
We supervise our final results with a pixel-wise MSE loss between final output depth D and GT Dy;:

Laense = E[”D - DgtHQ]- ©

In order to constrain our predicted sparse depth map from events to be accurate, we multiply the GT
depth with M, and calculate an MSE loss with sparse depth D :



£sparse = ]E[HDS - Dgt : M”z] (10)

Besides, according to previous studies [47], a patch-level edge-guided scale-shift invariant loss could
help improve the local precision of models. Therefore, we adopt a multi-scale version formulated as:

Lpateh = ZﬂleeQ [V - Mg an

where L. = 3 corresponds to the level of MCPM, f; are weighting parameters, (2 is the set of selected
image patches, N, is the standardization operation over patch w, Dé‘ZB are the output of CAB at
level [ within w, and D;’t‘” are the corresponding downsampled GT. [ = 0 indicates original resolution.

The final loss function is the linear combination as:

L= Edense + a‘csparse + Vﬁpatcha (12)

where « and y are parameters for balancing the contribution of different terms.

S Experiments

5.1 Datasets

Blender-Syn. We follow DefocusNet [40] to use Blender [4]] to render our first synthetic dataset.
We put random objects in the scene, and wrap their surfaces with textures sampled from Poly Haven
[49] to add their reality. For each scene, we shuffle and rescale the objects, and sweep the focus depth
of the camera from 0.1 m to 30 m to generate a focus sweeping video of 500 frames, with an aperture
/1.4 and a focal length 100 mm. We select 150 scenes as training data and 60 scenes as test data,
containing AIF images, GT depth maps, events and focal stacks. For each focal stack, we render
500 frames with different focal depths, and use them to simulate events using V2E [24]. Besides, to
simulate possible motion in real data capturing, we add small position movements to each object.

Sintel-Dr. Bokeh. In order to overcome the limitation of object shapes and depth diversities in our
first dataset, we use another large-scale single image depth estimation dataset, i.e., Sintel [6]], and
generate focal stacks by adding synthetic blur to it. Our training set contains 130 scenes and test set
contains 30 scenes. We use the bokeh rendering model Dr. Bokeh [58] to synthetically bokeh render
these images at different focal depths. The blur strength parameter of Dr. Bokeh is set to 30 for more
salient defocus cues. The biggest lens kernel size is set to 71, and the gamma parameter is 2.2. The
event simulation process is the same as Blender-Syn.

4DLFD-Semi-Real. We further capture a semi-real dataset using 4D Light Field Dataset [21] as
the source. It consists of 24 realistic scenes with densely sampled light field data and GT depth. After
constructing focal stacks and AIF images from original data, we stack the frames into a video with
50 FPS to simulate a focus-sweeping process, and display it on the screen. Then we use a Prophesee
EVK4 event camera to capture real events by shooting the screen.

EDFV-Real. We further capture a real-world test dataset with AIF images, focal stacks and events
for frame-based and event-based methods. The hybrid camera system we use consists of a machine
vision camera (HIKVISION MV-CA050-12UC) and an event camera (Prophesee EVK4). The two
cameras are co-aligned with a beam splitter. Both cameras use one lens with a focal length of 16 mm
(HIKVISION MVL-MF1628M-8MP). Since this lens did not exhibit noticeable FoV breathing during
our observations, we did not account for this effect in data acquisition. Besides, we use checkboards
to calculate the homography matrix to ensure alignment between these two cameras. We capture AIF
images with aperture /16, focal stacks with f/8, and events with {/2.4.

5.2 Experimental settings

Metrics. The evaluated metrics include RMSE (root mean square error), RMSE log (root mean
square logarithmic error), AbsRel (absolute relative error: |d — d|/d), logl0 (absolute log10 error,



Table 1: Quantitative comparisons of in-domain metric depth estimation. 1 ({) indicates the higher
(lower), the better performance. The best performances are highlighted in bold, and the second best in
underline. Left numbers denote results on Blender-Syn, and right numbers denote Sintel-Dr. Bokeh.

M Blender-Syn Sintel-Dr. Bokeh
ethod Type
RMSE(]) AbsRel(}) loglO(l) 61(1) d2(1) (1) RMSE(l) AbsRel(]) loglO(l) d1(D) Sa(1)  da(T)
DefocusNet ~ DFF 0.243 0.372 0.107 0.734  0.818 0.861 0.209 0.728 0.192 0412 0.644 0.797
DFF-FV DFF 0.184 0.223 0.062 0.862 0.907 0.926 0.160 0.661 0.109 0.766  0.863  0.898
DFF-DFV DFF 0.186 0.250 0.062 0.871 0.906 0.923 0.134 0.569 0.104 0.738 0.861  0.907
DDFS DFF 0.244 0.387 0.109 0.723  0.804 0.849 0.282 1.072 0.282 0441  0.578 0.648
HybridDepth ~ DFF 0.089 0.123 0.051 0.823 0925 0.969 0.273 0.657 0.295 0.233  0.393  0.540
DA V2 Mono 0.063 0.089 0.035 0.865 0.956 0.989 0.297 0.482 0.361 0330 0419 0472
Metric3D V2 Mono 0.095 0.162 0.062 0.826 0.934 0.973 0.170 0.479 0.174 0452 0.561 0.754
DAC Mono 0.176 0.238 0.115 0.654 0.868 0.947 0.273 0.951 0.289 0.268 0409 0.573
Ours DFF 0.068 0.077 0.028 0919 0.972 0.987 0.095 0.141 0.072 0.806 0.901 0.945
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Figure 4: Qualitative in-domain experiment results on Blender-Syn (top 2 rows) and Sintel-Dr. Bokeh
(bottom 2 rows) with inputs. We compare with DefocusNet [40]], DFF-FV [64], DFF-DFV [64]],
DDFS [[13], HybridDepth [14] and DA V2 [67], Metric3D V2 [23]], and DAC [16].

|1g(d) — 1g(d)|), and &; (percentage of max(d/d,d/d) < 1.25',i = 1,2,3). For all the datasets,
we select 5 frames with uniformly split focal depths as the input of frame-based DFF methods for
training and evaluation, which is a common number used in these works.

Training details. We implement our method using the Pytorch framework and run on a single
NVIDIA GeForce RTX 4090 GPU. We use AdamW [36] optimizer in the training phrase. For each
dataset, we train for 700 epochs with initial learning rate 3 x 10~* and weight decay 1 x 107>, We
randomly crop the input images into 320 x 640 resolution with random flipping afterwards. For
loss functions, we set « = 0.1,89 = 1,81 = B2 = B3 = 0.1 in all our experiments, v = 5 for
Blender-Syn dataset and v = 1 for Sintel-Dr. Bokeh.

5.3 In-domain experiments

We report in-domain results on the first two datasets. For single-image-based methods, we compare
with finetuned DA V2 from pretrained HyperSIM [52] ViT-L checkpoint, Metric3D V2 from
pretrained ViT-L checkpoint, and Depth Any Camera (DAC) [16] from pretrained outdoor ResNet101
checkpoint. For DFF methods, we evaluate DefocusNet [40], DFF-DFV [64], DDFS [13]], and
HybridDepth [14]. DFF-DFV’s non-differentiable variant is denoted as DFF-FV. For fair comparison,
all methods except DDFS are trained for the same epochs with their official code on our dataset.
Since DDFS lacks public training code, we finetuned their released model using in-house code. Our
table results use the DA checkpoint pretrained on relative depth with a ViT-L encoder.

The quantitative results are shown in Table[T} where we denote DFF methods as “DFF” and monocular
methods as “Mono”. Our method achieves the best performance in almost all metrics. It should
be noted that DA V2 achieves commendable results on Blender-Syn, which may be attributed to



Table 2: Quantitative comparisons of zero-shot metric depth estimation.

M Blender-Syn Sintel-Dr. Bokeh
ethod Type

RMSE(l) RMSElog(l) 1logl0(l) d1(1) d2(1) ds(1) RMSE() RMSElog(l) loglO(l) (1) d2(1)  da(1)
DefocusNet DFF 0.425 0.783 0.292 0.135 0391  0.608 0.518 1.504 0.585 0.123  0.204 0.275
DFF-FV DFF 0.325 0.661 0.162 0.669 0.732  0.775 0.267 0.982 0.343 0.177 0.364 0518
DFF-DFV DFF 0.369 0.710 0.196 0.651 0.681 0.707 0.270 1.038 0.366 0.192  0.332 0495
DDFS DFF 0.495 1.120 0.377 0.287 0.361 0.448 0.706 1.852 0.726 0.203 0.231 0.251
HybridDepth ~ DFF 0.622 1.461 0.570 0.050 0.127 0.227 0.442 1.391 0.551 0.110 0.186  0.262
DA V2 Mono 0.725 1.913 0.783 0.018  0.057 0.108 0.337 1.048 0.396 0242 0.391 0.461
Metric3D V2 Mono 0.294 0.535 0.207 0343  0.625 0.777 0.322 1.174 0.469 0262 0.369 0.466
DAC Mono 0.652 1.488 0.594 0.075 0.142 0.198 0.515 1.474 0.581 0.144 0.228 0.285
Ours DFF 0.148 0.282 0.081 0.697 0.878 0.944 0.233 0.685 0.253 0.333 0466 0.560
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Figure 5: Qualitative zero-shot experiment results on EDFV-Real dataset. We visualize inverse depth
here. The first column is the scene overview, and the hand in the second row is just to indicate the
thin paper. The numbers label the objects in each row. We compare with DFF methods AiFDepthNet
(62], DFF-FV and DFF-DFV [64], and single-image-based DA V2 [67] and Metric3D V2 [23].

relatively simple shapes and scales. In contrast, Sintel-Dr. Bokeh contains more diverse scenes, so
DFF methods may perform better. But our method still outperforms the best DFF method (DFF-DFV)
in RMSE by over 29.1% on this dataset. Qualitative results are shown in Fig.[d All the depth maps
are clipped according to the depth range of focal stacks. It can be found that DFF methods are likely
to produce artifacts due to low sampling rate and limited model capacity. Meanwhile, IFMs are good
at predicting object boundaries but may fail to output accurate values due to scale ambiguity. Our
prompting approach exhibits fewer artifacts and more accurate values.

5.4 Zero-shot experiments

We compare the zero-shot performance on Blender-Syn dataset with the model trained or finetuned
on Sintel-Dr. Bokeh, and on Sintel-Dr. Bokeh with models trained on Blender-Syn. Quantitative
results are shown in Table[2] which verify our model’s superior zero-shot performance.

We further conduct zero-shot qualitative evaluations on 4DLFD-Semi-Real and EDFV-Real datasets.
One example from 4DLFD-Semi-Real is shown in Fig.[I] with more in the Appendix Sec. [D] Results
on EDFV-Real are in Fig.[5} As other methods trained on our data perform poorly on these datasets,
we use their official pretrained models. Our results use the Blender-Syn trained checkpoint. We
designed our dataset to challenge single-image-based methods primarily in three ways: (1) Warped
textures printed on thin paper to confuse singular and gradient depth. In the first and second rows,
object @ exemplifies such cases, where single-image-based methods incorrectly predict gradient
depths, while DFF-based and our method recover correct depth. Conversely, object @ in the first
row is a real object for which single-image-based and our methods predict gradient depths. (2) Scale
ambiguity via placement of similar-looking objects at varying depths. In the second row, objects @,
@, and @ differ in depth; only our method identifies them correctly. (3) Occlusion and overlap for
misleading absolute metric scales. In the third row, objects @ and @ are distant objects (carport and
building); traditional DFF methods fail due to complex textures. DA V2 estimates similar depths for
both, Metric3D V2 errs on the sky region (object @), while ours yields a plausible depth map.

5.5 Ablation studies

Results of ablation studies are in Table[3] All of the models are trained and tested on Blender-Syn.



Prompting an IFM. We show the effectiveness of prompting by the following experiments: removing
IFM and directly feeding the image to DenseNet for feature extraction (denoted as “w/o IFM”);
removing events or images from input (denoted as “w/o events” and “w/o image”, respectively). The
results show their performances drop as expected, among which “w/o image” has the most decline.

Prompting network design. The effectiveness of our proposed MCPM is proved by replacing it
with simple add and convolution operations for fusion (denoted as “w/o MCPM”). Furthermore, we
show the effectiveness of L,atcn by removing it from our loss functions (denoted as “w/o Lpatcn™).
Besides, we conduct an ablation study where we replace the event inputs in our method with 32-frame
focal stacks, denoted as “Ours-FS”. Although this brings minor improvements to some metrics, it
brings much more computational complexity to the whole pipeline (please refer to the Appendix Sec.
@, which is not desirable for resource-limited devices.

Temporal bin number. We conduct ablation

studies on the temporal bin number N. We de-  Taple 3: Quantitative results of ablation studies.
note our full model of bin number ¢ as “Full-

ibin” (+ = 4,8,16). As expected, the perfor-  Method RMSE(]) AbsRel(]) (1)
mance falls as IV decreases. Besides, the per-
formance gain shrinks as the temporal bin num- w/o IFM 0.122 0.177 0.828
ber increases, which is consistent with observa- ~ W/© events 0.106 0.21 0.741
tions in frame-based DFF methods. Notably, our ~ W/0 image 0.216 0.381 0.579
“Full-4bin” model still defeats some DFF meth- _ Ours-FS 0.067 0079 0.920
ods with 5 input frames in some metrics (referto  w/o MCPM 0.104 0.114 0.840
Table E]), demonstrating our method’s advantage.  w/o Lpatch 0.073 0.096 0.874
We choose N = 32 in our final model. -

Full-4bin 0.162 0.446 0.705
Alternative IFM checkpoints. As our method Full—8b1q 0.084 0.091 0.880
supports flexible deployment with other IFM al- it 0.071 0.083 0.909
ternatives, we further evaluate the impact of IFM  QOurs-DA-S 0.086 0.098 0.900
model checkpoint to our method. “Ours-DA-S”  Qurs-DA-B 0.076 0.086 0.905
and “Ours-DA-B” denote our model with the  Ours-M3D-S 0.122 0.143 0.813
DA V2 [67] checkpoint of ViT-Small encoder  Ours-M3D-L 0.077 0.096 0.872
and ViT-Base encoder [50], respectively. Inaddi-  Qurs-M3D-G 0.085 0.103 0.855
tion, “Ours-M3D-S”, “Ours-M3D-L” and “Ours-  w/o pretrain 0.126 0.223 0.864
M3D-G” denote our model with the Metric3AD  QOurs 0.068 0.077 0.919

V2 [23] checkpoint of ViT-Small, ViT-Large
and ViT-Giant backbones, respectively. Our fi-
nal version is based on DA V2 of ViT-Large backbone. Although the performance based on smaller
checkpoints may degrade slightly, they still defeat most of the other methods (refer to Table[T). We
also conduct an ablation study by excluding the influence of pretrained checkpoints, denoted as “w/o
pretrain”, where we train our method from scratch. The results show that even without any pretrained
checkpoint, our method still outperforms most existing DFF methods in most metrics.

6 Conclusion

We propose a pipeline using focus sweeping triggered events and images to generate dense metric
depth. Thanks to the high temporal resolution of events, we could build EDFV and get a sparse
depth map. Then we could get a more accurate dense estimation via prompting IFMs through our
prompting network. Experiments show great in-domain and zero-shot performance of our method.

Limitations. Although we have addressed potential minor misalignments and motion issues, we
intend to explore alternative strategies, such as employing liquid lenses [39] to adjust focus depth
in future research. Besides, while our method demonstrates excellent zero-shot performance with
current training datasets, scaling training data akin to IFMs could improve outcomes. Additionally,
in low-light or highly-smooth scenarios, our method may suffer from low-quality events providing
insufficient cues. Last but not least, when applying to high-speed scenarios, the synchronization of
sensors could be an important issue as we need the frame and events to capture the scene with similar
timing, and a specifically designed electronic system [72]] could be the solution. We aim to work on
enhancing the pipeline and generalizing our method further.

10



Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 62136001,
62088102, 62402014), Beijing Natural Science Foundation (Grant No. 1L233024), and Beijing
Municipal Science & Technology Commission, Administrative Commission of Zhongguancun
Science Park (Grant No. Z241100003524012). Peiqi Duan was also supported by China National
Postdoctoral Program for Innovative Talents (Grant No. BX20230010) and China Postdoctoral
Science Foundation (Grant No. 2023M740076). The authors thank https://openbayes. com/|for
providing computing resources.

References

[1] S.F. Bhat, I. Alhashim, and P. Wonka. AdaBins: Depth estimation using adaptive bins. In Proc.
of Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[2] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Miiller. ZoeDepth: Zero-shot transfer by
combining relative and metric depth. arXiv, abs/2302.12288, 2023.

[3] R. Birkl, D. Wofk, and M. Miiller. MiDaS v3.1 — a model zoo for robust monocular relative
depth estimation. arXiv preprint arXiv:2307.14460, 2023.

[4] Blender Foundation. The Blender project - free and open 3D creation software. Accessed:
2025-01-31.

[5] A.Bochkovskii, A. Delaunoy, H. Germain, M. Santos, Y. Zhou, S. R. Richter, and V. Koltun.
Depth Pro: Sharp monocular metric depth in less than a second. In International Conference on
Learning Representations (ICLR), 2025.

[6] D.J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for
optical flow evaluation. In Proc. of European Conference on Computer Vision (ECCV), 2012.

[7] X. Chen, W. Weng, Y. Zhang, and Z. Xiong. Depth from asymmetric frame-event stereo: A
divide-and-conquer approach. In Proc. of Winter Conference on Applications of Computer
Vision (WACV), pages 3045-3054, 2024.

[8] H. Cho, J. Cho, and K.-J. Yoon. Learning adaptive dense event stereo from the image domain.
In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[9] H. Cho, J.-Y. Kang, and K.-J. Yoon. Temporal event stereo via joint learning with stereoscopic
flow. European Conference on Computer Vision. (ECCV), 2024.

[10] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolutional networks.
In Proc. of International Conference on Computer Vision (ICCV), 2017.

[11] P. Duan, B. Li, Y. Yang, H. Lou, M. Teng, Y. Ma, and B. Shi. EventAid: Benchmarking
event-aided image/video enhancement algorithms with real-captured hybrid dataset. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 47(8):6959-6973, 2025.

[12] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-
scale deep network. Proc. of Advances in Neural Information Processing Systems (NeurIPS),
2014.

[13] Y. Fujimura, M. liyama, T. Funatomi, and Y. Mukaigawa. Deep depth from focal stack with
defocus model for camera-setting invariance. International Journal of Computer Vision, pages
1573-1405, 2023.

[14] A. Ganj, H. Su, and T. Guo. HybridDepth: Robust metric depth fusion by leveraging depth
from focus and single-image priors. In Proc. of Winter Conference on Applications of Computer
Vision (WACV), 2025.

[15] J.-M. Geusebroek, F. Cornelissen, A. W. Smeulders, and H. Geerts. Robust autofocusing in
microscopy. Cytometry, 39(1):1-9, 2000.

11


https://openbayes.com/

[16] Y. Guo, S. Garg, S. M. H. Miangoleh, X. Huang, and L. Ren. Depth Any Camera: Zero-shot
metric depth estimation from any camera. In Proc. of Conference on Computer Vision and
Pattern Recognition (CVPR), 2025.

[17] G. Haessig, X. Berthelon, S.-H. Ieng, and R. Benosman. A spiking neural network model of
depth from defocus for event-based neuromorphic vision. Scientific reports, 9(1):3744, 2019.

[18] C. Hazirbas, S. G. Soyer, M. C. Staab, L. Leal-Taixé, and D. Cremers. Deep depth from focus.
In Proc. of Asian Conference on Computer Vision (ACCV), 2018.

[19] J. Hidalgo-Carrid, D. Gehrig, and D. Scaramuzza. Learning monocular dense depth from events.
In Proc. of International Conference on 3D Vision (3DV), 2020.

[20] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image. International
Journal of Computer Vision, 75:151-172, 2007.

[21] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke. A dataset and evaluation
methodology for depth estimation on 4D light fields. In Proc. of Asian Conference on Computer
Vision (ACCV), 2017.

[22] K. Horikawa, M. Isogawa, H. Saito, and S. Mori. Dense depth from event focal stack. In Proc.
of Winter Conference on Applications of Computer Vision (WACV), 2025.

[23] M. Hu, W. Yin, C. Zhang, Z. Cai, X. Long, H. Chen, K. Wang, G. Yu, C. Shen, and S. Shen.
Metric3D V2: A versatile monocular geometric foundation model for zero-shot metric depth and
surface normal estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

[24] Y. Hu, S.-C. Liu, and T. Delbruck. V2E: From video frames to realistic dvs events. In Proc. of
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021.

[25] C.Jang, K. Bang, M. Chae, B. Lee, and D. Lanman. Waveguide holography for 3d augmented
reality glasses. Nature Communications, 15(1):66, 2024.

[26] C. Jiang, M. Lin, C. Zhang, Z. Wang, and L. Yu. Learning depth from focus with event focal
stack. IEEE Sensors Journal, pages 1-1, 2024.

[27] Y. Jiang, C. Yu, T. Xie, X. Li, Y. Feng, H. Wang, M. Li, H. Lau, F. Gao, Y. Yang, et al. VR-GS:
A physical dynamics-aware interactive gaussian splatting system in virtual reality. In Proc. of
ACM SIGGRAPH, 2024.

[28] D. Kai, J. Lu, Y. Zhang, and X. Sun. EvTexture: Event-driven texture enhancement for video
super-resolution. In Proc. of International Conference on Machine Learning (ICML), 2024.

[29] H. Kim, S. Leutenegger, and A. J. Davison. Real-time 3D reconstruction and 6-DoF tracking
with an event camera. In Proc. of European Conference on Computer Vision (ECCV), 2016.

[30] S.-Y. Lee, Y. Kumar, J.-M. Cho, S.-W. Lee, and S.-W. Kim. Enhanced autofocus algorithm
using robust focus measure and fuzzy reasoning. IEEE Transactions on Circuits and Systems
Jor Video Technology, 18(9):1237-1246, 2008.

[31] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128x128 120 db 15 us latency asynchronous
temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2), 2008.

[32] G. Lin, F. Liu, A. Milan, C. Shen, and I. Reid. RefineNet: Multi-path refinement networks for
dense prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(5):1228—
1242, 2020.

[33] H. Lin, S. Peng, J. Chen, S. Peng, J. Sun, M. Liu, H. Bao, J. Feng, X. Zhou, and B. Kang.
Prompting Depth Anything for 4K resolution accurate metric depth estimation. In Proc. of
Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

[34] C. Liu, S. Kumar, S. Gu, R. Timofte, Y. Yao, and L. Van Gool. Stereo risk: A continuous
modeling approach to stereo matching. In Proc. of International Conference on Machine
Learning (ICML), 2024.

12



[35] X. Liu, J. Li, J. Shi, X. Fan, Y. Tian, and D. Zhao. Event-based monocular depth estimation
with recurrent transformers. IEEE Transactions on Circuits and Systems for Video Technology,
2024.

[36] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proc. of International
Conference on Learning Representations (ICLR), 2019.

[37] H. Lou, J. Liang, M. Teng, B. Fan, Y. Xu, and B. Shi. Zero-shot event-intensity asymmetric
stereo via visual prompting from image domain. In Proc. of Advances in Neural Information
Processing Systems (NeurlPS), 2024.

[38] H. Lou, M. Teng, Y. Yang, and B. Shi. All-in-focus imaging from event focal stack. In Proc. of
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[39] C. A. Lépez and A. H. Hirsa. Fast focusing using a pinned-contact oscillating liquid lens.
Nature Photonics, 10(2):610-613, 208.

[40] M. Maximov, K. Galim, and L. Leal-Taixé. Focus on defocus: Bridging the synthetic to real
domain gap for depth estimation. In Proc. of Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[41] M. Moeller, M. Benning, C. Schonlieb, and D. Cremers. Variational depth from focus recon-
struction. IEEE Transactions on Image Processing, 24(12):5369-5378, 2015.

[42] M. Mostafavi, K.-J. Yoon, and J. Choi. Event-intensity stereo: Estimating depth by the best of
both worlds. In Proc. of International Conference on Computer Vision (ICCV), 2021.

[43] S. Nayar and Y. Nakagawa. Shape from focus. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(8):824-831, 1994.

[44] M. Ohno, R. Ukyo, T. Amano, H. Rizk, and H. Yamaguchi. Privacy-preserving pedestrian
tracking using distributed 3d lidars. In IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2023.

[45] J.-H. Park, C. Jeong, J. Lee, and H.-G. Jeon. Depth prompting for sensor-agnostic depth
estimation. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

[46] S.Pertuz, D. Puig, and M. A. Garcia. Analysis of focus measure operators for shape-from-focus.
Pattern Recognition, 46(5):1415-1432, 2013.

[47] L. Piccinelli, C. Sakaridis, Y.-H. Yang, M. Segu, S. Li, W. Abbeloos, and L. V. Gool.
UniDepthV2: Universal monocular metric depth estimation made simpler, 2025.

[48] L. Piccinelli, Y.-H. Yang, C. Sakaridis, M. Segu, S. Li, L. Van Gool, and F. Yu. UniDepth:
Universal monocular metric depth estimation. In Proc. of Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

[49] Poly Haven. Poly Haven - the public 3D asset library. Accessed: 2025-01-31.

[50] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense prediction. In Proc. of
International Conference on Computer Vision (ICCV), 2021.

[51] H. Rebecq, G. Gallego, E. Mueggler, and D. Scaramuzza. EMVS: Event-based multi-view
stereo—3D reconstruction with an event camera in real-time. International Journal of Computer
Vision, 126(12):1394-1414, 2018.

[52] M. Roberts, J. Ramapuram, A. Ranjan, A. Kumar, M. A. Bautista, N. Paczan, R. Webb, and J. M.
Susskind. Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding.
In Proc. of International Conference on Computer Vision (ICCV), 2021.

[53] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention(MICCAI),
pages 234-241, 2015.

13



[54] D. K. Samuylov, P. Purwar, G. Székely, and G. Paul. Modeling point spread function in
fluorescence microscopy with a sparse gaussian mixture: Tradeoff between accuracy and
efficiency. IEEE Transactions on Image Processing, 28(8):3688-3702, 2019.

[55] A. Saxena, S. Chung, and A. Ng. Learning depth from single monocular images. In Proc. of
Advances in Neural Information Processing Systems (NeurIPS), 2005.

[56] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D scene structure from a single still
image. IEEE transactions on pattern analysis and machine intelligence, 31(5):824-840, 2008.

[57] B. Schwarz. Lidar: Mapping the world in 3D. Nature Photonics, 4:429-430, 07 2010.

[58] Y. Sheng, Z. Yu, L. Ling, Z. Cao, X. Zhang, X. Lu, K. Xian, H. Lin, and B. Benes. Dr. Bokeh:
Differentiable occlusion-aware bokeh rendering. In Proc. of Conference on Computer Vision
and Pattern Recognition (CVPR), 2024.

[59] J. Surh, H.-G. Jeon, Y. Park, S. Im, H. Ha, and I. S. Kweon. Noise robust depth from focus using
a ring difference filter. In Proc. of Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[60] M. Teng, C. Zhou, H. Lou, and B. Shi. NEST: Neural event stack for event-based image
enhancement. In Proc. of European Conference on Computer Vision (ECCV), 2022.

[61] S. Tulyakov, F. Fleuret, M. Kiefel, P. Gehler, and M. Hirsch. Learning an event sequence
embedding for dense event-based deep stereo. In Proc. of International Conference on Computer
Vision (ICCV), 2019.

[62] N.-H. Wang, R. Wang, Y.-L. Liu, Y.-H. Huang, Y.-L. Chang, C.-P. Chen, and K. Jou. Bridg-
ing unsupervised and supervised depth from focus via all-in-focus supervision. In Proc. of
International Conference on Computer Vision (ICCV), 2021.

[63] Y. Wang, K. Li, L. Wang, J. Hu, D. Oliver Wu, and Y. Guo. ADStereo: Efficient stereo matching
with adaptive downsampling and disparity alignment. IEEE Transactions on Image Processing,
34:1204-1218, 2025.

[64] F. Yang, X. Huang, and Z. Zhou. Deep depth from focus with differential focus volume. In
Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[65] G. Yang and B. Nelson. Wavelet-based autofocusing and unsupervised segmentation of mi-
croscopic images. In Proc. of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2003.

[66] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao. Depth Anything: Unleashing the
power of large-scale unlabeled data. In Proc. of Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

[67] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao. Depth Anything V2. In
Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2024.

[68] W. Yin, C. Zhang, H. Chen, Z. Cai, G. Yu, K. Wang, X. Chen, and C. Shen. Metric3D: Towards
zero-shot metric 3D prediction from a single image. In Proc. of International Conference on
Computer Vision (ICCV), 2023.

[69] W. Yu, J. Li, S. Zhang, and X. Ji. Learning scale-aware spatio-temporal implicit representation
for event-based motion deblurring. In Proc. of International Conference on Machine Learning
(ICML), 2024.

[70] W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan. NeWCRFs: Neural window fully-connected
CRFs for monocular depth estimation. In Proc. of Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[71] D. Zhang, Q. Ding, P. Duan, C. Zhou, and B. Shi. Data association between event streams and
intensity frames under diverse baselines. In Proc. of European Conference on Computer Vision
(ECCV), 2022.

14



[72] Y. Zou, Y. Zheng, T. Takatani, and Y. Fu. Learning to reconstruct high speed and high dynamic
range videos from events. In Proc. of Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

15



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction parts reflect the main contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

16



Justification: The main observation of this paper made in Sec. [3.2]is attached with a brief
proof. More mathematical derivation will be included in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model framework and experiment settings are described in detail.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: Both the dataset and the codes will be released upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiments are presented in detail.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the type of GPU and training time in Sec. [5.2] The
computational efficiency will be discussed in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The authors are fully aware of the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper has no societal impact because depth estimation methods have
already been widely used in our society.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: They are cited clearly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Codes and the dataset will be released upon acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

Our Appendix is organized as follows: First of all, we give additional mathematical derivation in
Sec. |Al Dataset construction details are provided in Sec. |B} Computational efficiency comparison is
discussed in[C] Finally, we show more qualitative and quantitative results on our four datasets in Sec.

A Additional mathematical derivation

Observation 2: The sign of the right side of Eq. (5) in the main paper will change before and after
focusing.

Suppose the pixel (z,yo) is in the foreground, and let r = \/(x — )2 + (y — yo)? be the distance
of (zo, yo) to (z,y). When the radius of CoC, 6 < r, the pixel (z,y) will not be affected by bokeh
effects, so Py (z,y,t) = 0.

When 6 > r, according to previous studies [54} [17]], PSF function of (¢, yo) can be approximated as
a Gaussian function, which can be formulated as:

. 2 N2
T2 exp <_ (z —20)° + (¥ — %) ) >0, (13)

t) =
Py(,9.1) 2ro 202

where T is the amplitude, and o is the spread parameter proportional to 6, i.e., o = k6.

Combining Eq. (1) in the main paper and the above analysis, we have: When F' approaches from
a small distance to the foreground depth D, 6 will gradually transfer from a large value to r, and
Py(z,y,t) will decrease from a positive value to 0, i.e., A(Ps(x,y,t)) < 0. Similarly, when F
moves from D to a larger value, § will increase, and thus A(P¢(z,y,t)) > 0.

Observation 3: If the intensity-changing pixel is on the texture of a single object instead of an edge
separating two objects, the triggered events around it will also experience a polarity reversal before
and after focusing.

Suppose the texture splits the object into two parts with individual uniform intensity I; and I,
respectively. Then we derive the intensity of a pixel (x1,y;) in Part 1 can be formulated as:

I(z1,y1,1) = I + I P(¢), (14)
where P(t) is the PSF of the object. Then the log-scale intensity change can be derived as:

I, + LP(t) P(t) — P(t — At)

Alog(T =1
og(I(z1,y1,t)) = log I, + LP(t — At) I + LP(t - At)

= log(l —+ 12

). (19)

Therefore,

sign(Alog(I(z1,y1,t))) = sign(AP(1)). (16)
Similar to the above derivation, for a pixel (x2, y2) in Part 2, we have

sign(A log(I(zs, 42, 1)) = sign(AP(1)). (7)

So the intensity changes in both parts will undergo a polarity reversal before and after focusing. If
these changes trigger events, a polarity reversal will also occur.

B More dataset construction details

Blender-Syn. We first select geometric objects, and then rescale and rotate them randomly in the
scene. Then, the objects are put at different locations within depth range from 1m to 30m. After that,
we wrap them with textures sampled from Poly Haven [49]]. Finally, we sweep the focus depth of
our camera from 0.1m to 30m to generate a focus sweeping video of 500 frames, with an aperture
/1.4 and a focal length 100mm. For each frame, we add slight motion and rotation to each object in
the scene to simulate the shaking in real world. Besides, the AIF image is rendered using a small
aperture (f/1000). The scenes are rendered using Blender [4] Cycles engine with reflection turned on,
but with shadows off. Each image has a resolution 720 x 1280. Although the scene seems unrealistic
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Figure 6: Example patterns we use for capturing EDFV-Real dataset.

Table 4: V2E parameters we adjust for simulating realistic events.

Parameter Description Our value  Default value
shot-noise-rate-hz ~ Temporal noise rate of events in darkest parts of scene. 0.1 0.001
leak-rate-hz Leak event rate per pixel in Hz. 0.5 0.01

to some extent, our main purpose is to guide the models to learn focus/defocus cues instead of spatial
and shape cues.

In order to improve the input information integrity, we evenly split the rendered frame focal stacks
into 5 consecutive segments, and choose one frame from each segment as the input to frame-based
DFF methods. Besides, for our method, we use V2E [24] to simulate events from the focal stack
video. In order to add noises with reality, we manually adjust some parameters of V2E as shown in
Table ] The AIF image is used to be fed into single-image-based methods.

Sintel-Dr. Bokeh. Since the GT of test set for Sintel [6] dataset has not been released, we randomly
sample its training set as our dataset. Each image has a resolution 436 x 1024. We use their AIF
images and GT depths as input to the bokeh rendering method Dr. Bokeh [58]]. The blur strength
parameter of Dr. Bokeh is set to 30 for more salient defocus cues. The biggest lens kernel size is 71,
and the gamma parameter is 2.2. The focus depth is swept from 3.1m to 30m. After generating the
focus sweeping video, the post process for generating input to methods is the same as Blender-Syn.

4DLFD-Semi-Real. We follow AiFDepthNet [62] to generate AIF images and focal stacks from
the light field data of 4D Light Field Dataset [21]. Then we concatenate the focal stacks into a video
with 50 FPS, and play the video on a screen to simulate the focus sweeping process. A Prophesee
EVKA4 event camera is employed to record the process and generate real events for this semi-real
dataset, which is for zero-shot testing only. It should be noted that the original data resolution is
512 x 512, while our captured events have a resolution 742 x 720. When evaluating our method on
this dataset, we first interpolate the input images to the event resolution, and finally resize the output
depth to the original resolution for computing metrics.

EDFV-Real. In order to evaluate the performance of single-image-based, DFF and our methods in
real-world scenarios, we further capture a real dataset with our hybrid camera system. Our hybrid
camera system consists of a machine vision camera (HIKVISION MV-CA050-12UC) and an event
camera (Prophesee EVK4). The two cameras are co-aligned with a beam splitter. Both of them use a
16 mm lens (HIKVISION MVL-MF1628M-8MP). Since this lens did not exhibit noticeable FoV
breathing during our observations, we did not account for this effect in data acquisition. Besides,
we use checkboards to calculate the homography matrix to ensure alignments between these two
cameras before capturing.

During capture, we manually set scenes to “cheat” single-image-based methods. One way is to print
warped textures on a thin paper to confuse them with singular and gradient depths. Some patterns we
use are shown in Fig.[6] These patterns successfully mislead single-image-based methods (refer to
qualitative results), while they can be distinguished by our method.
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C Computational efficiency

We compare the number of parameters, Multiply-Accumulate Operations (MACs) and inference time
with other methods in Table[5] The MACs and inference times are calculated with a unified resolution
224 x 224, and all DFF methods use 5 frames as input. The runtimes are reported from a signle
NVIDIA RTX 4090 GPU. Note the statistics of HybridDepth and our method in the table has excluded
IFM. From the comparison, we can observe that our method introduces only 5.96 <+ 332.68 = 1.79%
additional parameters and 15.44 =+ 109.78 ~ 14.06% additional MACs compared with the original
DA V2. Besides, the runtime of our method is comparable to most other methods.

Additionally, we add the statistics of the ablation study of “Ours-FS” in Sec. [5.5] where we replace the
input event with 32-frame focal stacks. It can be observed that this could bring 20.41 + 5.96 ~ 3.42
times parameter numbers and 134.91 =+ 15.44 ~ 8.74 times MACs to the whole pipeline, which is
not desirable for resource-limited devices. Instead, our event-based method can achieve a balance
between accuracy and efficiency, and is more practical to deploy on resource-limited devices.

Table 5: Computational efficiency comparison with other methods.

Method Type Params(M) MACs(G) Time(ms)
DefocusNet DFF 3.72 29.57 13.69
DFF-FV DFF 18.40 20.54 27.35
DFF-DFV DFF 18.40 20.54 28.40
DDFS DFF 25.44 72.39 3.73
HybridDepth  DFF 34.97 24.11 32.96
DA V2 Mono 332.68 109.78 23.59
Metric3D V2 Mono 302.92 72.03 55.14
DAC Mono 47.75 14.16 42.37
Ours-FS DFF 20.41 134.91 28.40
Ours DFF 5.96 15.44 17.40

D More results

More qualitative results with reconstructed point clouds of in-domain experiments on Blender-Syn
dataset are in Fig. [7]and Fig.[§] and Sintel-Dr. Bokeh dataset are in Fig.[0] Qualitative results of
zero-shot experiments on Blender-Syn are shown in Fig. and Sintel-Dr. Bokeh are shown in
Fig.[T1] From the comparison, we can observe the more accurate prediction results of our method.

Zero-shot experiment quantitative results on 4DLFD-Semi-Real dataset are shown in Table[6] and
qualitative results in Fig.[T2] Note that although our method may predict less accurate results in
closer regions compared with Metric3D V2, possibly due to fewer textures, we achieve more accurate
predictions in farther regions.

Figure [I3] shows more qualitative results on EDFV-Real dataset. In the first scne, our method
successfully distinguishes the pattern printed on the paper (object @), while DA V2 and Metric3D
V2 predict a gradient depth. In the second scene, we place three ducks of different sizes (objects @,
@ and ®) at a unified depth from the camera view. DA V2 predicts different depths for them due to
scale ambiguities, while our method yields a reasonable result.
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Figure 7: More qualitative results of in-domain experiments on Blender-Syn dataset with the input
image and events (Part I). Each consecutive 4 rows corresponds to one test sample. Each odd row
shows the input RGB image/events and predicted depth maps. Each even row shows reconstructed
point clouds. We compare with DefocusNet [40], DFF-FV [64], DFF-DFV [64], DDFS [13],
HybridDepth [14], DA V2 [67]], Metric3D V2 [23]], and DAC [16]]. Please zoom in for more details.
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Figure 8: More qualitative results of in-domain experiments on Blender-Syn dataset with the input
image and events (Part II).
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Table 6: Quantitative comparisons of zero-shot metric depth estimation on 4DLFD-Semi-Real.

Method Type RMSE() RMSElog(}) 1loglO(}) d:(1) 02(D)  ds3(h)
DFF-FV DFF 1.979 0.198 0.070 0.680 0.888 0.949
DFF-DFV DFF 1.943 0.186 0.064 0.711 0902 0.953
DDFS DFF 1.680 0.167 0.060 0.772 0918 0.956
HybridDepth ~ DFF 1.573 0.135 0.048 0.818 0.940 0.957
DA V2 Mono 2.997 0.227 0.088 0.561 0.897 0.958
Metric3D V2 Mono 2972 0.221 0.085 0.594 0.892 0.953
DAC Mono 2915 0.229 0.087 0.590 0.889 0.953
Ours DFF 1.549 0.128 0.047 0.832 0.957 0.958

DefocusNet

B H HM

DA V2 Metric3D V2 Ours GT

Figure 9: More qualitative results of in-domain experiments on Sintel-Dr. Bokeh dataset with the
input image and events.
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Figure 10: Qualitative results of zero-shot experiments on Blender-Syn dataset with the input image
and events. We compare with DFF-FV [64], DFF-DFV [64], and Metric3D V2 [23].

Image/Events DFF-FV DFF-DFV Metric3D V2 Ours GT

Figure 11: Qualitative results of zero-shot experiments on Sintel-Dr. Bokeh dataset with the input
image and events.

Image Events AiFDepthNet ~ DFF-FV DFF DFV  HybridDepth Metric3D V2 Ours GT

Figure 12: Qualitative results of zero-shot experiments on 4DLFD-Semi-Real dataset with the input
image and events. We compare with DFF methods AiFDepthNet [62]], DFF-FV, DFF-DFV [64]],
HybridDepth [[14], and single-image-based Metric3D V2 [23].
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Figure 13: Qualitative results of zero-shot experiments on EDFV-Real dataset. Each pair of consecu-
tive rows corresponds to one test scene. The left side of the dashed line presents the scene overview,
with the cones representing camera views, while the right side displays the input along with the
outputs of various methods. Each number in the same scene (i.e., @, @ and @) corresponds to the
same object. Inverse depths are visualized here. Details are in the text.

30



	Introduction
	Related work
	Preliminaries
	Frame-based Focus Volume
	Event-based Differential Focus Volume

	Method
	Initial dense depth estimation
	EDFV construction
	Sparse depth estimation
	Event-based depth prompting
	Loss functions

	Experiments
	Datasets
	Experimental settings
	In-domain experiments
	Zero-shot experiments
	Ablation studies

	Conclusion
	Additional mathematical derivation
	More dataset construction details
	Computational efficiency
	More results

