
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE END OF MANUAL DECODING: TOWARDS TRULY
END-TO-END LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The “end-to-end” label for LLMs is a misnomer. In practice, they depend on a
non-differentiable decoding process that requires laborious, hand-tuning of hyper-
parameters like temperature and top-p. This paper introduces AutoDeco, a novel
architecture that enables truly “end-to-end” generation by learning to control its
own decoding strategy. We augment the standard transformer with lightweight
heads that, at each step, dynamically predict context-specific temperature and top-p
values alongside the next-token logits. This approach transforms decoding into a
parametric, token-level process, allowing the model to self-regulate its sampling
strategy within a single forward pass.
Through extensive experiments on eight benchmarks, we demonstrate that Au-
toDeco not only significantly outperforms default decoding strategies but also
achieves performance comparable to an oracle-tuned baseline derived from “hack-
ing the test set”—a practical upper bound for any static method. Besides, we
demonstrate an emergent capability for instruction-based decoding control: the
model learns to interpret natural language commands (e.g., “generate with low
randomness”) and adjusts its predicted temperature and top-p on a token-by-token
basis, which may open a new paradigm for steerable and interactive LLM decoding.

1 INTRODUCTION

LLMs have become the de-facto standard in NLP, yet the quality of their generated text hinges on a
surprisingly manual and heuristic process: the selection of decoding hyperparameters. Parameters
like temperature, top-p, and top-k must be carefully chosen through a task-dependent process of
manual sweeps and post-hoc filtering (Shi et al., 2024). This not only incurs significant computational
and human costs but also profoundly impacts the final output’s creativity, diversity, and factual
correctness, undermining the promise of a truly “end-to-end” system.

This reliance on static, hand-tuned parameters creates fundamental bottlenecks. Firstly, the search for
an optimal configuration is widely acknowledged as a laborious process because the ideal settings are
highly task-dependent; commercial API providers like DeepSeek, for instance, explicitly recommend
different temperature settings for distinct application scenarios1. However, this problem, runs even
deeper: a single static configuration is inherently suboptimal because the ideal level of stochasticity
varies dramatically within a single generation. For instance, a model might need high creativity to
explore initial reasoning paths but high precision to deliver the final answer. This on-the-fly control
is, by design, impossible for current LLMs to achieve natively. Consequently, the prevailing static
decoding paradigm is a solution as inefficient as it is ineffective, forcing a one-size-fits-all strategy
onto a problem that demands dynamic adaptation.

In this paper, we propose AutoDeco, a novel architecture that creates a truly “end-to-end” language
model capable of controlling its own decoding process. As illustrated in Figure 1, we augment the
standard transformer with lightweight, dedicated prediction heads. At each decoding step, these
AutoDeco heads leverage the model’s current hidden state to dynamically predict the optimal sampling
parameters for the next token. This seamlessly integrates hyperparameter selection into the model’s
forward pass, creating a self-regulating inference pipeline that adds nearly-zero latency.

1https://api-docs.deepseek.com/quick_start/parameter_settings

1

https://api-docs.deepseek.com/quick_start/parameter_settings

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of our proposed end-to-end decoding architecture compared to manual
decoding. Our method dynamically predicts temperature and top-p values from the model’s hidden
states for each generation step. In contrast, manual decoding (bottom) relies on a single set of static,
predefined hyperparameters for the entire sequence generation.

We validate our approach by integrating AutoDeco into major model families, including Qwen, Llama,
GPT, and DeepSeek, requiring only a brief fine-tuning process of 400 steps. Across eight distinct
benchmarks, the results are striking: AutoDeco not only consistently outperforms standard default
decoding settings but also matches or surpasses the performance of meticulously expert-guided
tuning (an oracle-tuned baseline derived from “hacking the test set”) hyperparameters. An impor-
tant secondary benefit of our architecture is the observed capacity for instruction-based decoding
control, which is learned unexpectedly during the end-to-end optimization. When prompted with a
meta-instruction like, “Please ensure that the diversity of your output is low,” the model immediately
responded by lowering its average predicted temperature and top-p values by 0.11 and 0.06, respec-
tively. This demonstrates that AutoDeco does not merely automate a tedious process; it endows the
model with a new, intuitive way to interpret and act on user intent.

Our contributions are four-fold: (i) We propose AutoDeco, a novel and lightweight architecture, along
with an efficient strategy to train its prediction heads, that makes LLM generation truly “end-to-end”
by dynamically predicting decoding parameters at each step. (ii) We demonstrate through extensive
experiments that AutoDeco consistently matches or exceeds the performance of expert-guided tuning,
static hyperparameters across eight benchmarks and multiple model families. (iii) We demonstrate for
the first time that an LLM’s decoding can be controlled by natural language. (iv) We release a set of
AutoDeco heads, trained on the most widely adopted open-source models, providing the community
with a streamlined, drop-in solution for immediate deployment.

2 AUTODECO

The foregoing discussion raises two fundamental questions that frame the core inquiry of this work:

First, how can we train the AutoDeco heads without any token-level “ground-truth” labels for the
optimal temperature and top-p values? Second, how can these predictions be integrated into inference
without adding computational latency? This section details our solutions to both.

In Section 2.1, we will introduce our training strategy and explain how we train both heads in an
“end-to-end” manner. Then, in Section 2.2, we will walk through our inference process. The AutoDeco
modifies the model’s final output probabilities internally—a design that adds absolutely no extra
latency. The result is a model that can be used almost exactly like a standard one, requiring only a
“1-line-change” in a user’s code to unlock its dynamic decoding capabilities.

2.1 TRAINING STRATEGY

The central challenge in training AutoDeco is the absence of token-level “ground-truth” labels for
sampling parameters. A natural approach would be to optimize the temperature and top-p heads
directly from the final cross-entropy loss of the generated tokens. However, this path is obstructed by
the standard top-p sampling algorithm. Its “hard cutoff”—retaining only the smallest set of tokens

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Top-p mask function. (b) An example of top-p sampling probability.

Figure 2: Comparison of the differentiable “soft” top-p sampling (decay steepness α = 30) with
the standard hard-cutoff method. (a) illustrates the standard hard-cutoff mask, which has a non-
differentiable step, against our proposed smooth and differentiable “soft” mask. (b) shows the effect
of applying both masks to an example original probability distribution, where the “soft” mask method
produces a differentiable probability distribution suitable for “end-to-end” training.

whose cumulative probability exceeds a threshold—is a non-differentiable operation, which severs
the gradient flow from the loss back to the top-p head.

To overcome this, we introduce a novel, differentiable “soft” top-p mechanism that is used during
training, enabling a fully “end-to-end” optimization strategy. Traditional top-p sampling methods
assign a probability of zero to all tokens beyond the top-p threshold, while our approach is different:
for tokens that fall outside the top-p threshold, we apply a differentiable weight scaling. The further a
token is from the threshold, the more its probability is scaled down, eventually approaching zero.

The following is the training data stream:

1. Temperature-Scaled Probabilities: First, we scale the predicted logits l to compute the initial
probability distribution p using the predicted temperature T̂ .

p = softmax
(

l

T̂

)
. (1)

2. Differentiable Mask Generation: After sorting the probabilities p and calculating their cumu-
lative sum c, we generate a “soft mask” m(sorted). This is done in a single step that combines the
thresholding and decay logic:

m(sorted) = exp
(
− α · ReLU(c− P̂)

)
, (2)

Here, α is a hyperparameter that controls the steepness of decay. As shown in Figure 2a, this
formulation ensures that for tokens inside the nucleus (where c < P̂), the ReLU term is zero,
resulting in a mask value of 1. For tokens outside, the mask value smoothly decays towards zero
as their cumulative probability further exceeds P̂ .

3. Final Probability Distribution: The “soft mask” m (unsorted to match the original vocabulary
order) is applied to the initial probabilities, and the result is re-normalized to form the final,
differentiable distribution p̃:

p̃ =
p⊙m∑

(p⊙m) + ϵ
, (3)

where ϵ is a small constant for numerical stability. In Figure 2b, we provide an example with a
vocabulary size of 50 to illustrate how the model’s predicted probability distribution changes
after the application of our “soft” top-p sampling. As the probability of the token exceeding P̂
decreases gradually and differentially, the “soft” top-p sampling becomes the final piece of the
puzzle for the AutoDeco’s “end-to-end” training.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Training. As the entire process is differentiable, gradients from the standard cross-entropy loss are
backpropagated to simultaneously update the parameters of both the temperature and top-p heads,
allowing the model to learn its own optimal, context-specific decoding strategy by directly optimizing
for the final task objective.

Theoretically, these two heads could be trained from the pre-training stage. However, in this paper,
we build upon a pre-trained LLM, freezing its base parameters and solely training the AutoDeco
heads. While training these heads on SFT data provides a strong baseline, we find that applying some
certain de-biasing operations to the data can further enhance model performance and robustness:

• Easy-Token Masking. For many tokens, the base model’s greedy prediction already matches
the ground-truth. These “easy” tokens often yield an optimal temperature T̂t

∗
near zero, biasing

the head to be overly conservative. To mitigate this, we randomly mask the training loss for a
large fraction (e.g., 60%) of these positions, forcing the model to learn from more challenging
and informative examples.

• Dynamic Fine-Tuning. Conversely, a naive fine-tuning approach can cause the temperature
head to predict unexpected large values for uncertain tokens. We incorporate Dynamic Fine-
Tuning (Wu et al., 2025), which re-weights the training loss to focus on tokens where the model
has a reasonable prior. This teaches the head to apply high temperatures more judiciously in
situations of calibrated uncertainty, rather than being skewed by outlier signals.

2.2 INFERENCE: DYNAMIC DECODING

At the heart of AutoDeco lies a design optimized for efficiency. By seamlessly integrating all dynamic
adjustments into the model’s standard forward pass, it avoids any separate, costly computational steps.
This architecture results in a negligible latency overhead, typically adding only 1-2% to the total
generation time. As illustrated in Figure 1, the process for each token generation step is as follows:

1. Compute Hidden State: The base LLM computes the final hidden state ht.
2. Predict Decoding Parameters: In parallel, the standard lm head computes the logits while

the AutoDeco heads predict the dynamic parameters. The temperature is predicted directly from
the hidden state. Crucially, the top-p head then uses both the hidden state and the just-predicted
temperature as input:

T̂t = temp head(ht), P̂t = top-p head(ht, T̂t). (4)
This micro-dependency, shown as a dashed arrow in Figure 1, allows for a more nuanced
interplay between the two parameters.

3. Internal Probability Modification: The model immediately uses the predicted T̂t and P̂t to
internally rescale and filter the logits, producing a final, dynamically-adjusted distribution.

Latency and Simplicity. The AutoDeco heads (simple 2-layer MLPs) add negligible computational
overhead compared to the massive transformer layers. This internal architecture results in only 1-2%
additional latency and makes usage incredibly simple, and ensures seamless integration, allowing an
AutoDeco-enabled model to serve as a drop-in replacement for its standard counterpart, requiring no
modifications to the user’s existing generation logic.

3 EXPERIMENTS

We conduct extensive experiments to validate AutoDeco, structuring our evaluation around its core
contributions to performance, efficiency, and a surprising capability that emerged as a byproduct.

• In Section 3.2.1, we demonstrate the superior performance of AutoDeco. It not only substantially
outperforms standard, non-expert decoding baselines (Greedy Search and Default Sampling)
but also matches or even slightly surpasses the performance of optimal static hyperparameters
found through an exhaustive expert-guided tuning.

• Following this, in Section 3.2.2, we analyze its practical efficiency and confirm that AutoDeco
introduces a minimal computational burden, with a marginal latency increase of 1-2% and a
negligible memory footprint.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• A noteworthy finding is presented in Section 3.3: the emergent capability of AutoDeco to
interpret natural language commands to dynamically steer its own generation style. This
development is a significant step towards more intuitive and controllable AI.

3.1 EXPERIMENTAL SETUP

Models. To demonstrate broad applicability, we select representative models from three of the most
popular open-source model families. All AutoDeco heads are trained on top of the official pre-trained
checkpoints of these models:

• Llama-3.1-Nemotron-Nano-8B-v1(Bercovich et al., 2025): A general-purpose model from the
widely-used Llama family, developed by Nvidia (hereinafter Llama-Nemotron-8B).

• R1-Distill-Qwen-7B(Guo et al., 2025): A distilled model from the Qwen family developed by
DeepSeek, known for its strong reasoning capabilities.

• Qwen3-30B-A3B-Instruct-2507(QwenTeam, 2025): An advanced MoE architecture instruct
(non-thinking) model from Qwen. (hereinafter Qwen3-30B-Instruct)

• Qwen3-235B-A22B-Thinking-2507(QwenTeam, 2025): An advanced MoE architecture Think-
ing model from Qwen. (hereinafter Qwen3-235B-Thinking)

• OpenAI-GPT-OSS-20B(Agarwal et al., 2025): A MoE model with 20B parameters released by
OpenAI. The reasoning effort is set to medium by default.

More models, including DeepSeek-V3.1-Terminus (with multi-token prediction) (DeepSeek-AI,
2024), and results can be found in the Appendix 9.

Datasets. The models are trained on a focused domain and evaluated on a wide range of tasks to
test for generalization.

• Training Data: The AutoDeco heads are trained on a specialized dataset of reject sampling
trajectories. These trajectories were generated by sampling solutions from our four base models
on problems from the DeepMath-103K dataset (He et al., 2025).

• Evaluation Benchmarks: We evaluate on a diverse suite of eight benchmarks, split into two
categories to assess both in-domain and out-of-domain performance:
– In-Domain (Math): AIME (24+25), BRUMO25, HMMT25 (Balunović et al., 2025), and

BeyondAIME (ByteDance-Seed, 2025).2

– Out-of-Domain (General Tasks): GPQA-Diamond (Rein et al., 2024) and MMLU-Pro
(Wang et al., 2024b) (QA) , LiveCodeBenchV6 (Jain et al., 2024) (Code), and IFEval (Zhou
et al., 2023) (Instruction Following).

Baselines and Evaluation. We evaluate AutoDeco against two standard, non-expert decoding
strategies: Greedy Search and Default Sampling (T̂ = 1.0, P̂ = 1.0). Furthermore, to establish a
practical upper bound, we also compare against an Expert-Guided Tuning. It is crucial to note that
this expert-tuned baseline is an oracle setting, as it involves finding the optimal static hyperparameters
by tuning on the test set—a process that is infeasible in real-world applications.

Our primary metric is Pass@1 accuracy, estimated via oversampling with 128 samples per problem
(with 8 random seeds, 16 samples per seed). The maximum generation length is set to 32768.

3.2 MAIN RESULTS

We present our main findings separately for mathematical reasoning and open-domain question
answering to provide a clear and detailed view of AutoDeco’s performance across different domains.

3.2.1 PERFORMANCE

In-Domain Performance. As shown in Table 1 AutoDeco consistently demonstrates a performance
boost compared to Greedy Search and Default Sampling. For instance, on Llama-Nemotron-8B, it

2We focus on these recent, hard benchmarks to mitigate the risk of data leakage issues in older datasets.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Pass@1 accuracy on mathematical reasoning benchmarks. AutoDeco consistently outper-
forms both Greedy Search and Default Sampling methods across various models.

Model Method AIME BRUMO25 HMMT25 BeyondAIME Average

Llama-Nemotron-8B
Greedy Search 51.67 56.67 26.67 35.00 42.50
Default Sampling 50.84±1.44 57.89±1.46 29.82±1.60 31.82±0.40 42.59
AutoDeco (Ours) 55.43±1.22 60.60±0.98 33.98±1.14 34.19±0.65 46.05

R1-Distill-Qwen-7B
Greedy Search 38.33 43.33 16.67 24.00 30.58
Default Sampling 43.49±1.38 49.01±1.10 22.32±0.83 24.21±0.79 34.76
AutoDeco (Ours) 47.03±1.12 51.64±1.05 24.14±0.39 26.65±0.49 37.37

Qwen3-30B-Instruct
Greedy Search 65.00 63.33 36.67 44.00 52.25
Default Sampling 67.92±1.36 66.02±1.11 43.88±1.28 46.38±0.47 56.05
AutoDeco (Ours) 68.46±0.76 67.21±0.87 43.73±1.26 46.75±0.18 56.54

Qwen3-235B-Thinking
Greedy Search 80.00 79.92 63.33 51.00 68.56
Default Sampling 80.76±0.43 79.32±0.79 61.95±0.94 49.15±0.33 67.80
AutoDeco (Ours) 82.79±0.72 80.96±1.05 64.17±0.91 51.19±0.47 69.78

OpenAI-GPT-OSS-20B
Greedy Search 56.67 66.67 46.67 36.00 51.50
Default Sampling 69.61±1.32 67.03±1.12 44.24±2.28 45.69±0.13 56.64
AutoDeco (Ours) 72.33±1.20 68.25±0.58 46.21±1.08 45.72±0.44 58.13

Table 2: Pass@1 accuracy on general-domain benchmarks. AutoDeco shows exciting generalization
performance across General QA, Code Generation, and Instruction Following tasks.

Model Method GPQA-Diamond MMLU-Pro LiveCodeBenchV6 IFEval Average

Llama-Nemotron-8B
Greedy Search 51.01 52.00 19.17 71.53 48.43
Default Sampling 44.93 54.00 21.22 65.25 46.35
AutoDeco (Ours) 50.52 55.64 21.68 71.02 49.72

R1-Distill-Qwen-7B
Greedy Search 37.87 47.20 49.13 32.90 39.32
Default Sampling 47.41 47.65 53.00 32.35 42.47
AutoDeco (Ours) 48.91 50.75 53.14 33.90 46.88

Qwen3-30B-Instruct
Greedy Search 65.86 78.00 47.75 83.73 68.84
Default Sampling 69.82 76.25 48.52 81.52 69.03
AutoDeco (Ours) 69.96 78.38 49.80 82.81 70.24

Qwen3-235B-Thinking
Greedy Search 77.78 81.00 77.25 31.98 67.00
Default Sampling 80.81 80.33 77.47 31.61 67.56
AutoDeco (Ours) 81.13 79.20 78.10 32.90 67.83

OpenAI-GPT-OSS-20B
Greedy Search 59.60 67.00 69.69 29.94 56.56
Default Sampling 65.67 68.00 70.15 30.68 58.63
AutoDeco (Ours) 66.48 69.12 71.25 30.84 59.42

achieves an average score of 46.05, a substantial improvement of nearly 3.5 absolute points over
Default Sampling and Greedy Search.

One may notice that the performance gain from AutoDeco is less pronounced on Qwen3-30B-A3B-
Instruct-2507 compared to other models. This may stem from Qwen3-30B-A3B-Instruct-2507,
as a non-thinking-model, produces answers that are significantly shorter than the other models.
Consequently, the sensitivity of task accuracy to variations in sampling parameters is substantially
lower, a trend that is further demonstrated by the results in Table 2.

Out-of-Domain Generalization. More strikingly, despite being trained exclusively on mathe-
matical reasoning, AutoDeco demonstrates powerful zero-shot generalization to a diverse set of
out-of-domain tasks (Table 2). It consistently secures the highest average scores across general QA,
code generation, and instruction following. This strong performance reveals two interesting patterns.

First, the magnitude of improvement is remarkably consistent across domains. For example, on
R1-Distill-Qwen-7B, AutoDeco improves the average score on general tasks by 4.4 points over
Default Sampling—a gain even surpassing that seen in the math domain. This suggests that the
benefits of dynamic decoding are fundamental and not tied to a specific task type.

Second, AutoDeco shows an ability to dynamically balance deterministic and stochastic strategies. On
general tasks, Default Sampling is not always better than Greedy Search (e.g., on Llama-Nemotron-
8B for GPQA-Diamond and IFEval). In these cases, AutoDeco learns to predict more deterministic,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Llama-Nemotron-8B with AutoDeco.

(b) R1-Distill-Qwen-7B with AutoDeco.

Figure 3: Expert-Guided Tuning Comparison with Search Interval of 0.1. Temperature is adjusted
first (setting top-p to 1.0), and the selection is made based on the best performance of temperature
to conduct the search for top-p. AutoDeco achieves competitive performance without requiring any
prior empirical tuning or domain-specific expert knowledge.

Table 3: Pass@64 accuracy on mathematical reasoning benchmarks. Comparing Default Sampling
with the AutoDeco method.

Model Method AIME BRUMO25 HMMT25 BeyondAIME Average

Llama-Nemotron-8B Default Sampling 83.31 88.70 88.70 88.70 87.35
AutoDeco (Ours) 87.72 90.42 90.42 90.42 89.75

R1-Distill-Qwen-7B Default Sampling 76.89 79.95 62.94 63.90 70.92
AutoDeco (Ours) 80.36 82.48 71.44 64.84 74.78

Qwen3-30B-Instruct Default Sampling 90.98 92.20 71.07 77.50 82.94
AutoDeco (Ours) 92.06 93.11 71.70 77.58 83.61

Qwen3-235B-Thiking Default Sampling 91.67 95.00 88.19 71.00 86.47
AutoDeco (Ours) 92.50 98.24 87.50 71.00 87.31

OpenAI-GPT-OSS-20B Default Sampling 93.96 94.99 84.54 85.24 89.68
AutoDeco (Ours) 95.17 96.67 90.36 84.00 91.55

low-temperature parameters, allowing it to match or exceed the performance of the stronger greedy
baseline. Conversely, when stochasticity is beneficial, it raises the temperature to outperform Default
Sampling.

The above findings suggest that AutoDeco is not simply learning “what” to generate, but rather the
fundamental “meta-skill of how” to generate text effectively. By training on a high-signal domain
like mathematics, it learns universal principles for balancing exploration and exploitation. We also
show that AutoDeco has the ability to adapt to different task requirements (Stability vs. Creativity) in
Appendix 9. We will further discuss this in Sec. 3.3, and this finding challenges the conventional
assumption that adaptive decoding requires broad, task-matched supervision, and instead points
toward a more efficient, modular paradigm for real “end-to-end” controllable generation.

Pass@k Performance. Some recent works (Yue et al., 2025; Chen et al., 2025) have highlighted
a potential trade-off in the training of reasoning models, where achieving superb pass@1 accuracy
can come at the expense of performance on pass@k (for k > 1). To investigate this, we present an
extended evaluation of our method on pass@k (k = 16, 32, 64) accuracies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

With encouraging results, we find that the absolute improvements delivered by AutoDeco at higher
k-values are consistent with, and at times even slightly greater than, those observed at pass@1. We
show pass@64 in Table 3, and for other results, please refer to the Appendix 9.

It is important to note that for any given model, pass@k accuracy is inherently much higher than
pass@1 accuracy. Consequently, it is obvious that securing absolute performance gains becomes
substantially more difficult, and a similar absolute improvement at pass@64 translates to a much
larger relative error reduction, compared to pass@1. For example, on the OpenAI-GPT-OSS-20B
model, we observe that the performance gains from AutoDeco are consistent across different k values
in pass@k evaluations. More importantly, this consistent absolute gain translates to a significantly
larger impact in higher-accuracy (when k is large) scenarios. The relative error reduction dramatically
increases from 3.5% at pass@1 to 18.1% at pass@64. This demonstrates that as the task becomes
easier for the baseline model (i.e., the error rate decreases at high k), the performance gains from our
method become even more significant.

Comparison with Expert-Guided Tuning. In real-world applications, developers often undertake
a laborious tuning process to find task-specific, optimal static hyperparameters. To assess how
AutoDeco compares to this best-case scenario, we simulate an expert with an unfair advantage: access
to a test-set oracle. As shown in Figure 3, we first perform a fine-grained search to find the optimal
static temperature on the test set, and then, using that temperature, find the optimal top-p. This
process represents the practical upper bound for any static decoding strategy.

The results are striking. AutoDeco’s single-pass performance is nearly identical to this oracle-tuned
baseline, with the performance gap consistently less than one point across all models and datasets.
Given that the Expert-Guided Tuning relies on “hacking the test set”, a process impossible in any
real-world scenario where the test data is unknown, we can confidently assert that AutoDeco is
effectively superior to any feasible expert-tuning strategy in practice.

Furthermore, the figure highlights the fundamental limitation of static decoding: the optimal hyper-
parameters are extremely task-dependent. For instance, Llama-Nemotron-8B requires drastically
different settings for BRUMO25 (T̂ = 0.8, P̂ = 0.9) versus GPQA-Diamond (T̂ = 0.3, P̂ = 0.6).
However, in real-world scenarios, a model developer has no way to switch hyperparameters based on
the user’s query type. AutoDeco elegantly solves this problem. By achieving near-oracle performance
automatically and on-the-fly for any task, it provides the optimal and, frankly, only practical solution
for developers seeking robust, high-performance generation across diverse user inputs.

Compatibility with Advanced Decoding Algorithms. In practice, using only the model for next-
token prediction might be inefficient. For industrial and production-level deployment and usage,
speculative decoding is a very common and advanced technique, such as multi-token prediction
(MTP) (DeepSeek-AI, 2024) that is widely used in the state-of-the-art models of various fami-
lies (QwenTeam, 2025). Our AutoDeco is fully compatible with speculative decoding mechanisms:

• Theoretically, speculative decoding (such as MTP, which is currently applied in production-level
models like DeepSeek-V3.1, Qwen3-Next) is fundamentally still of the form of autoregression.
Sampling parameters such as Temperature and Top-p are widely and continuously employed
within the speculative decoding framework to control the diversity and quality of the final
accepted tokens.

• To empirically confirm this seamless integration, we conducted a MTP experiment on the
advanced LLM DeepSeek-V3.1-Terminus. It shows that our method does not require any
specific adaptation and will not break the process of speculative decoding. (Please refer to
Appendix 9 for detailed results.)

Ablation Study. A natural question is what role the temperature and top-p heads play individually.
To isolate their effects, we evaluate on AIME using R1-Distill-Qwen-7B to conduct an ablation study,
with the results presented in Figure 4. The most striking finding is the remarkable effectiveness of
each component in isolation. Using either the temperature head or the top-p head alone achieves an
average performance gain of approximately 3-3.5 absolute points over the Default Sampling baseline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: FLOPs, Memory Usage and latency (1k tokens) across various prompt length for R1-Distill-
Qwen-7B with/without temp head and top-p head.

Metrics Method 1k 2k 4k 8k 16k 24k

FLOPs Default Sampling 2.89e+13 4.34e+13 7.23e+13 13.03e+13 24.61e+13 36.19e+13
AutoDeco (Ours) 2.89e+13 4.34e+13 7.24e+13 13.03e+13 24.62e+13 36.20e+13

Latency (s) Default Sampling 18.23 18.86 18.93 19.72 22.11 25.76
AutoDeco (Ours) 18.84 19.10 19.43 20.03 22.36 26.05

Memory (MB) Default Sampling 15546 16032 17130 19098 23182 27262
AutoDeco (Ours) 15550 16036 17134 19102 23183 27266

Figure 4: Ablation study on AutoDeco
architecture designs. Joint optimization
achieves the highest AIME Score.

This result is highly significant. It demonstrates that sub-
stantial improvements in decoding do not require a sophis-
ticated architecture. A single, lightweight prediction head
is sufficient to dramatically outperform standard static
decoding methods.

Of course, while each head is powerful on its own, our
results also confirm that the full AutoDeco model, with
both heads, yields the best performance. They provide
complementary benefits, allowing for even finer-grained
control over the generation process to achieve optimal
results.

3.2.2 EFFICIENCY

A critical advantage of AutoDeco is its computational efficiency. To quantify this, we evaluated its
overhead against Default Sampling across three key metrics, with results summarized in Table 4.

The analysis shows that the additional computational burden is minimal. The FLOPs are virtually
identical to the baseline, and the memory footprint increases by a mere 4 MB, an insignificant amount
for modern hardware. The impact on latency is also negligible. This overhead remains consistently
low regardless of prompt length, adding a consistent overhead of 0.29-0.6 s/k tokens, which translates
to an average relative increase of just 1.7%.

These results empirically validate that AutoDeco is a lightweight enhancement. When considering
the substantial performance gains and the convenience of automatic, task-agnostic hyperparameter
tuning demonstrated in Sec. 3.2.1, this minor computational cost becomes trivial. AutoDeco thus
presents a highly practical solution, offering significant benefits for a negligible price.

The analysis regarding training efficiency can be found in the Appendix 8.

3.3 EMERGENT CONTROL OF DECODING VIA NATURAL LANGUAGE

Beyond outperforming static methods, we observe that AutoDeco acquires a crucial capability: it
learns to map abstract, high-level commands (such as instructions for diversity or certainty) directly
to its internal decoding parameters. This learned instruction-based control enables the model to
dynamically respond to user intent regarding the desired generation style, marking a significant
step towards truly end-to-end and controllable generation. For this phenomenon, we conducted an
in-depth evaluation and discussion, which are detailed in the Appendix 7.

4 RELATED WORKS

The process of generating text from a language model, known as decoding, is a critical step that
significantly influences the quality of the output(Wang et al., 2025; Shi et al., 2024). One directly
related work is Adaptive Decoding (Dhuliawala et al., 2024), which also introduces a learned decoding
head. Their method focuses on predicting temperature and utilizes reinforcement learning (RL) for
training. Our work differs in two main aspects: 1) we learn to control both temperature and top-p,
and 2) we employ a fully differentiable pipeline that allows for direct end-to-end training from the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

next-token prediction loss, instead of RL. The Other Existing decoding strategies can be broadly
categorized into deterministic, stochastic sampling, and model-based approaches, most of which
traditionally rely on static, predefined configurations.

Deterministic Decoding. Deterministic methods produce a single, reproducible output for a given
input. The most fundamental of these is Greedy Search, which selects the token with the highest
probability at each step. Another classic one is beam search, which maintains a “beam” of k most
probable partial sequences to explore a larger search space (Sutskever et al., 2014; Graves, 2013).
However, both of them are known to favor dull, high-frequency phrases (Vijayakumar et al., 2016),
this results in their good performance on Machine Translation and QA tasks, but not suitable for
open-ended generation tasks. A more recent line of deterministic methods, Contrastive Search(Su &
Collier, 2022; Su et al., 2022), directly optimizes for open-ended generation quality by penalizing
tokens that are too similar to previous tokens, effectively mitigating the degeneration problem.

Stochastic Sampling. To inject diversity, stochastic sampling methods are essential. These methods
sample from the model’s output probability distribution, which is typically modulated by some
hyperparameters. However, unrestricted sampling can produce incoherent text. To counter this,
truncation methods were developed. Top-K sampling(Fan et al., 2018) restricts the sampling pool
to the k most likely tokens, while the more adaptive Nucleus Sampling (top-p)(Holtzman et al.)
selects the smallest set of tokens whose cumulative probability exceeds a threshold p. Despite their
power, as our introduction highlights, finding the optimal configuration for these hyperparameters is
a non-trivial, task-dependent manual process (Shi et al., 2024).

Model-Based Decoding. To gain more fine-grained control over generation, a third category
of methods modifies the model’s output distribution using external signals or auxiliary models.
Early examples include Plug-and-Play Language Models, which leverage attribute models to
steer generation towards desired topics (Dathathri et al.). More recently, Contrastive Decoding
uses a smaller “amateur” model to steer a larger “expert” model away from generic text (Li et al.,
2023; Chuang et al., 2023). Similarly, Speculative Decoding utilizes a faster “draft” model to
generate sequences of tokens that are then verified by the larger model, significantly accelerating
inference (Leviathan et al., 2023; Chen et al., 2023). There is also an art to verification methods (Liu
et al., 2025). While they are effective, they still operate under a fixed algorithmic framework: the
choice of the “guidance model” itself acts as another form of hyperparameter. For example, in
contrastive decoding and speculative decoding, the authors suggest that using a smaller LM of the
same architecture as the guidance model yields the best results.

Despite this rich landscape of research, a fundamental limitation persists: all these methods rely
on a static decoding strategy. Whether it’s a fixed algorithm (like Beam Search) or a fixed set of
hyperparameters, this “one-size-fits-all” approach is inherently suboptimal. In contrast, AutoDeco
proposes a paradigm shift. Instead of relying on fixed hyperparameters or predefined heuristics, we
empower the model to dynamically control its own stochasticity at each generation step.

5 CONCLUSION AND FUTURE WORK

In this work, we challenged that the “end-to-end” label for LLM is a misnomer. We introduced
AutoDeco, a truly “end-to-end” architecture that empowers models to dynamically control their
own decoding strategy. By learning to predict token-level temperature and top-p values, AutoDeco
transforms decoding from a manual, static process into a dynamic, self-regulating pipeline.

Our extensive experiments reveal three key contributions. First, AutoDeco demonstrates remark-
able generalization, consistently outperforming standard decoding methods across diverse models
and tasks, even matching oracle-tuned baselines without any task-specific tuning. Second, this
performance is achieved with negligible computational overhead, making it a practical, drop-in
enhancement for any transformer-based model. Additionally, we discovered an intriguing emergent
capability: AutoDeco learns to interpret natural language commands to steer its own generation style,
a foundational step towards more intuitive human-AI interaction.

Future Work. Our immediate future work involves jointly training the base model with AutoDeco. We
believe this will address current limitations like imprecise prompt-based control and data biases—both
likely consequences of a frozen backbone—thereby enabling more granular control over generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

STATEMENTS

ETHICS STATEMENT

The authors of this paper have read and agree to abide by the ICLR Code of Ethics. We believe that
this work does not raise any significant ethical concerns. Our research did not involve experiments
with human subjects, nor did it process sensitive personal data. All datasets used in our study are
publicly available. We foresee no direct negative societal impacts from the methods and potential
applications presented in this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. We have provided comprehensive
experimental details in the main paper and Appendix 6, including dataset preprocessing proce-
dures, model architecture specifications, full training details, and all hyperparameter configurations.
Furthermore, we will make our source code and model checkpoints publicly available.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949, 2025.

ByteDance-Seed. Beyondaime: Advancing math reasoning evaluation beyond high school olympiads.
https://huggingface.co/datasets/ByteDance-Seed/BeyondAIME, 2025.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass@k training for adaptively balancing exploration and exploitation of large reasoning models,
2025. URL https://arxiv.org/abs/2508.10751.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. In The Twelfth
International Conference on Learning Representations, 2023.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. In International Conference on Learning Representations.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar,
and Jack Lanchantin. Adaptive decoding via latent preference optimization. arXiv preprint
arXiv:2411.09661, 2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, 2018.

11

https://matharena.ai/
https://matharena.ai/
https://huggingface.co/datasets/ByteDance-Seed/BeyondAIME
https://arxiv.org/abs/2508.10751
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

Xiaoyuan Liu, Tian Liang, Zhiwei He, Jiahao Xu, Wenxuan Wang, Pinjia He, Zhaopeng Tu, Haitao
Mi, and Dong Yu. Trust, but verify: A self-verification approach to reinforcement learning with
verifiable rewards. 2025. URL https://arxiv.org/abs/2505.13445.

QwenTeam. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Yixuan Su and Nigel Collier. Contrastive search is what you need for neural text generation. arXiv
preprint arXiv:2210.14140, 2022.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. Advances in Neural Information Processing Systems, 35:
21548–21561, 2022.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence
models. arXiv preprint arXiv:1610.02424, 2016.

Haoran Wang, Xiongxiao Xu, Philip S Yu, and Kai Shu. Beyond tokens: A survey on de-
coding methods for large language models and large vision-language models. April 2025.
doi: 10.36227/techrxiv.174495300.03784996/v1. URL http://dx.doi.org/10.36227/
techrxiv.174495300.03784996/v1.

Noah Wang, Zy Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo,
Ruitong Gan, Zehao Ni, Jian Yang, et al. Rolellm: Benchmarking, eliciting, and enhancing
role-playing abilities of large language models. In Findings of the Association for Computational
Linguistics: ACL 2024, pp. 14743–14777, 2024a.

12

https://arxiv.org/abs/2505.13445
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
http://dx.doi.org/10.36227/techrxiv.174495300.03784996/v1
http://dx.doi.org/10.36227/techrxiv.174495300.03784996/v1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024b.

Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
perspective with reward rectification, 2025. URL https://arxiv.org/abs/2508.05629.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

13

https://arxiv.org/abs/2508.05629

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

CONTENTS OF THE PAPER

1 Introduction 1

2 AutoDeco 2
2.1 Training Strategy . 2
2.2 Inference: Dynamic Decoding . 4

3 Experiments 4
3.1 Experimental Setup . 5
3.2 Main Results . 5

3.2.1 Performance . 5
3.2.2 Efficiency . 9

3.3 Emergent Control of Decoding via Natural Language 9

4 Related Works 9

5 Conclusion and Future Work 10

6 Experimental Setup 14

7 In-depth discussion on Instruction-based decoding control 15

8 Supplementary Discussion of Efficiency 16

9 Supplementary Experimental Results 16

10 Declaration of LLM usage 18

6 EXPERIMENTAL SETUP

Training. For the training of all models with our AutoDeco framework, we employed a consistent
hyperparameter configuration to ensure fair comparison. To efficiently manage memory and scale our
experiments, we utilized the DeepSpeed library with the ZeRO Stage 3 optimization. The specific
training settings are detailed below:

• Training Framework: DeepSpeed (ZeRO Stage 3) for DeepSeek-R1-Distill-Qwen-7B and
Llama-3.1-Llama-Nemotron-8B-8B-Nano-v1. Megatron for the MoE model Qwen3-30B-A3B-
Instruct-2507, Qwen3-235B-A22B-Thinking-2507, OpenAI-GPT-Oss-20B-Oss-20B, OpenAI-
GPT-Oss-20B-Oss-120B, and DeepSeek-V3.1-Terminus.

• Hardware: 32 GPUs for DeepSeek-V3.1-Terminus, 8 GPUs for the others.
• Batch Size: A per-device batch size of 1 with 4 gradient accumulation steps, resulting in an

effective global batch size of 32.
• Optimizer: AdamW
• Learning Rate: 5× 10−6.
• Max Token Length: 16384.
• Decay Steepness α: 30.

For each task, we calculated the Pass@1 through oversampling (16 times). To ensure the results
are solid, we do 8 runs on each experiment with different seeds. For all the tasks, our maximum
generation length is 32768.

Datasets. Our experimental configuration is detailed as follows:

• MMLU-Pro: We used a comprehensive and evenly distributed “lite” subset 3 for evaluation to
ensure a balanced assessment across all subject areas.

3https://huggingface.co/datasets/koiwave/100MMLUpro

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt: Design a unique
drink for each emotion (joy,
anger, sadness, …

Prompt : … I hope the
answers can be more
innovative and diverse.

…crafted with the flavor , appearance , and sensory experience …

Prompt : … I hope the
answers can be as certain as
possible.

…crafted with the flavor , appearance , and sensory experience … …crafted with the flavor , appearance , and sensory experience …

Va
lu
e

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Va
lu
e

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Va
lu
e

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Figure 5: An Emergent Phenomenon. This figure shows the token-level T̂ /P̂ predictions for the
same prompt under three conditions, observed without any targeted training. (Left) Baseline: The
model’s default dynamic T̂ /P̂ values. (Middle) High-Diversity Command: The model sponta-
neously elevates its T̂ /P̂ predictions. (Right) Low-Diversity Command: The model spontaneously
suppresses its T̂ /P̂ predictions.

Table 5: Quantitative Impact of Diversity Commands on Predicted Decoding Parameters (N=100).

Command Avg. Temp. ∆ Temp. Consistency (T) Avg. top-p ∆ top-p Consistency (P)

Baseline (No Cmd) 0.59 - - 0.84 - -
Low Diversity 0.48 ↓ 0.11 99% 0.75 ↓ 0.09 99%
High Diversity 0.66 ↑ 0.07 90% 0.89 ↑ 0.05 96%

• LiveCodeBench: The V6 version of the dataset was used. The evaluation window for this
benchmark was initiated on September 1, 2023, and included all subsequent data.

• Others: All the others selected datasets were processed using their full sets.

7 IN-DEPTH DISCUSSION ON INSTRUCTION-BASED DECODING CONTROL

The instruction-based decoding control capability is indeed an unexpected yet interesting phenomenon
discovered during our experiments.

Figure 5 provides a qualitative demonstration of this capability. On the left, a creative prompt to
“Design a unique drink for each emotion” elicits a dynamic but baseline set of temperature and top-p
values (solid lines). In the middle panel, when we append the command, “I hope the answers can be
more innovative and diverse,” the model’s response is immediate and visible: the predicted T and P
values (dotted lines) are consistently elevated above the baseline, effectively “turning up” its own
creativity. Conversely, on the right, the command “I hope the answers can be as certain as possible”
causes the model to autonomously suppress its T and P predictions, “turning down” its randomness to
favor more deterministic outputs. To our knowledge, this is the first demonstration of an LLM directly
translating natural language intent for creativity and certainty into its internal sampling parameters on
a token-by-token basis.

To verify that this is not an anecdotal result, we conducted a large-scale quantitative analysis. We
prepended commands for “high” or “low” diversity to a set of 100 questions and aggregated the
results, presented in Table 5. The data confirms the effect is systematic and robust. The “low diversity”
command prompted a substantial drop in average temperature from 0.59 to 0.48 with remarkable
99% consistency across all questions. The “high diversity” command triggered a similarly consistent
increase in both temperature and top-p, proving that the model has learned a generalizable mapping
from abstract language to its internal generation mechanics.

However, we do not yet have a conclusive understanding of this phenomenon theoretically. We will
continue to advance this.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: AutoDeco’s training curves on all models. Training loss curve across models. The loss
converges effectively, indicating resource-friendly training of AutoDeco.

Table 6: Pass@16 accuracy on mathematical reasoning benchmarks. Comparing Default Sampling
with the AutoDeco method.

Model Method AIME BRUMO25 HMMT25 BeyondAIME Average

Llama-Nemotron-8B Default Sampling 77.47 82.46 82.46 82.46 81.21
AutoDeco (Ours) 80.31 84.18 84.18 84.18 83.21

R1-Distill-Qwen-7B Default Sampling 71.16 74.83 49.79 53.16 62.24
AutoDeco (Ours) 73.86 79.03 57.48 54.54 66.23

Qwen3-30B-Instruct Default Sampling 87.53 87.47 64.86 69.32 77.30
AutoDeco (Ours) 88.44 89.11 64.48 69.08 77.78

Qwen3-235B-Thinking Default Sampling 91.25 92.84 82.81 68.38 83.82
AutoDeco (Ours) 91.82 94.72 83.41 68.93 84.72

OpenAI-GPT-OSS-20B Default Sampling 91.42 92.27 74.91 77.02 83.91
AutoDeco (Ours) 91.48 92.82 81.91 75.60 85.45

8 SUPPLEMENTARY DISCUSSION OF EFFICIENCY

Training Efficiency. Given AutoDeco’s superior decoding performance and minimal deployment
overhead, a natural question arises: What is the cost of endowing a language model with this adaptive
decoding capability? Remarkably, the answer is negligible. AutoDeco is a resource-efficient, general-
purpose solution for adaptive decoding optimization. Our experiments reveal two key practical
advantages:

• Label-free supervision: AutoDeco eliminates the need to pre-compute or invoke any external
optimization modules to generate supervision signals (e.g., temperature or top-p labels) for
fine-tuning.

• Data efficiency: We show the training curves of all models in Figure 6, and AutoDeco achieves
strong performance within about only 6K training samples and 400 steps, making it effortlessly
be integrated into any pre-trained LLMs.

9 SUPPLEMENTARY EXPERIMENTAL RESULTS

Adaptability to Stability and Creativity. We selected the eight benchmarks in the main paper
primarily because they are widely recognized, standard benchmarks that are frequently featured in
the technical reports of leading LLMs. Furthermore, AutoDeco has proven effective in common
open-ended generation scenarios like role-playing, enabling us to eliminate manual decoding without
performance degradation. To demonstrate this, we also evaluated AutoDeco’s effectiveness on the
RoleLLM (Wang et al., 2024a) benchmark:

• Model: Qwen3-30B-A3B-Instruct-2507.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Pass@32 accuracy on mathematical reasoning benchmarks. Comparing Default Sampling
with the AutoDeco method.

Model Method AIME BRUMO25 HMMT25 BeyondAIME Average

Llama-Nemotron-8B Default Sampling 80.65 85.74 85.74 85.74 84.47
AutoDeco (Ours) 84.02 87.24 87.24 87.24 86.44

R1-Distill-Qwen-7B Default Sampling 73.69 77.57 57.74 58.44 66.86
AutoDeco (Ours) 76.89 81.03 65.58 59.65 70.79

Qwen3-30B-Instruct Default Sampling 89.07 89.96 68.41 73.65 80.27
AutoDeco (Ours) 90.00 91.68 66.09 73.02 80.20

Qwen3-235B-Thinking Default Sampling 91.65 94.04 86.09 70.02 85.45
AutoDeco (Ours) 92.08 96.66 85.45 70.67 86.22

OpenAI-GPT-OSS-20B Default Sampling 92.91 93.84 80.54 81.03 87.08
AutoDeco (Ours) 93.55 95.41 87.05 80.92 89.23

Table 8: The WinRate of AutoDeco / fixed decoding parameters on RoleLLM.

WinRate T = 0, T op− p = 0 T = 0.7, T op− p = 0.8 T = 0.8, T op− p = 0.95 T = 0.9, T op− p = 0.95

AutoDeco 54.65 / 45.35 54.32 / 45.68 53.82 / 46.18 52.21 / / 47.79

Table 9: The average predictions of AutoDeco in different tasks.

AIME Creative Tasks

AutoDeco T̂ = 0.61, P̂ = 0.93 T̂ = 1.18, P̂ = 0.88

• Evaluation: We employed the advanced Claude-Sonnet-3.7 to do LLM Judge to compare
generations using AutoDeco’s dynamic predictions against generations using several optimized
fixed-parameter settings.

As demonstrated in Table 8, AutoDeco consistently outperforms all optimized fixed-parameter settings
in these head-to-head comparisons.

We conducted an additional comparison on Qwen3-235B-A22B-Thinking-2507, between two distinct
generation regimes: Mathematical Reasoning (which favors relatively high consistency/stability) and
creative task (which benefits from higher variability/creativity).

• Math Results: Average results of AIME sampling.
• Creative Tasks: Average results of 20 distinct prompts. (e.g., ”Please write a story about a cat”

and ”Help me plan a trip to Europe.”)

The average predictions shown in Table 9 demonstrates the ability of AutoDeco to adapt to different
task requirements.

Pass@k Performance. With encouraging results, we find that the absolute improvements delivered
by AutoDeco at higher k-values are consistent with, and at times even slightly greater than, those
observed at pass@1.

It is important to note that for any given model, pass@k accuracy is inherently much higher than
pass@1 accuracy. Consequently, it is obvious that securing absolute performance gains becomes
substantially more difficult, and a similar absolute improvement at pass@64 translates to a much
larger relative error reduction, compared to pass@1. For example, on the OpenAI-GPT-OSS-20B
model, we observe that the performance gains from AutoDeco are consistent across different k values
in pass@k evaluations. More importantly, this consistent absolute gain translates to a significantly
larger impact in higher-accuracy (when k is large) scenarios. The relative error reduction dramatically
increases from 3.5% at pass@1 to 18.1% at pass@64. This demonstrates that as the task becomes
easier for the baseline model (i.e., the error rate decreases at high k), the performance gains from our
method become even more significant.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Pass@1 accuracy on Synthetic-100. AutoDeco consistently outperforms both Greedy
Search and Default Sampling methods

Model Greedy Search Default Sampling AutoDeco (Ours)
DeepSeek-671B 56.94 57.76 58.47
DeepSeek-685B (with MTP) 57.12 57.89 58.40

Table 11: Pass@1 accuracy on mathematical reasoning benchmarks. AutoDeco consistently outper-
forms both greedy Search and Default Sampling methods across various models.

Model Method AIME BRUMO25 HMMT25 BeyondAIME Average

Llama-Nemotron-8B
Greedy Search 51.67 56.67 26.67 35.00 42.50
Default Sampling 50.84±1.44 57.89±1.46 29.82±1.60 31.82±0.40 42.59
AutoDeco (Ours) 55.43±1.22 60.60±0.98 33.98±1.14 34.19±0.65 46.05

R1-Distill-Qwen-7B
Greedy Search 38.33 43.33 16.67 24.00 30.58
Default Sampling 43.49±1.38 49.01±1.10 22.32±0.83 24.21±0.79 34.76
AutoDeco (Ours) 47.03±1.12 51.64±1.05 24.14±0.39 26.65±0.49 37.37

Qwen3-30B-Instruct
Greedy Search 65.00 63.33 36.67 44.00 52.25
Default Sampling 67.92±1.36 66.02±1.11 43.88±1.28 46.38±0.47 56.05
AutoDeco (Ours) 68.46±0.76 67.21±0.87 43.73±1.26 46.75±0.18 56.54

Qwen3-235B-Thinking
Greedy Search 80.00 79.92 63.33 51.00 68.56
Default Sampling 80.76±0.43 79.32±0.79 61.95±0.94 49.15±0.33 67.80
AutoDeco (Ours) 82.79±0.72 80.96±1.05 64.17±0.91 51.19±0.47 69.78

OpenAI-GPT-OSS-20B
Greedy Search 56.67 66.67 46.67 36.00 51.50
Default Sampling 69.61±1.32 67.03±1.12 44.24±2.28 45.69±0.13 56.64
AutoDeco (Ours) 72.33±1.20 68.25±0.58 46.21±1.08 45.72±0.44 58.13

OpenAI-GPT-OSS-120B
Greedy Search 78.33 60.00 53.33 39.00 57.67
Default Sampling 78.33±0.72 62.72±0.45 53.45±0.28 44.12±0.14 59.66
AutoDeco (Ours) 78.52±0.50 63.49±0.47 52.58±0.55 44.43±0.20 59.76

DeepSeek-V3.1-Terminus. The performance gains achieved on production-level models are our
main focus. We have also conducted performance evaluations on industrial-grade SOTA large models
such as DeepSeek-V3.1-Terminus-671B (DeepSeek-AI, 2024).

Due to the deployment and sampling pressure of the ultra-large thinking model, we combined all the
evaluated benchmarks on an average basis and created a tiny synthetic benchmark consisting of 100
evaluation questions (named Synthetic-100) for evaluating AutoDeco.

Our method is fully compatible and integrates seamlessly with speculative decoding mechanisms.
Taking MTP as an example, it is fundamentally still of the form of autoregression. Sampling
parameters such as Temperature and Top-p are widely and continuously employed within it to control
the diversity and quality of the final accepted tokens.

To empirically confirm this seamless integration, we conducted a MTP experiment on the advanced
LLM DeepSeek-V3.1-Terminus and demonstrate the superiority of AutoDeco in Table 10. It proves
that using AutoDeco will not disrupt the MTP process of the model. Critically, we find that the
sampling parameters temperature and top-p are still of vital importance and do not diminish as the
size and capability of the model increase. AutoDeco can help users achieve the best performance with
the least effort.

10 DECLARATION OF LLM USAGE

The LLM is used only for writing, editing, or formatting purposes and does not impact the core
methodology, scientific rigorousness, or originality of the research.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Pass@1 accuracy on general-domain benchmarks. AutoDeco shows exciting generalization
performance across General QA, Code Generation, and Instruction Following tasks.

Model Method GPQA-Diamond MMLU-Pro LiveCodeBenchV6 IFEval Average

Llama-Nemotron-8B
Greedy Search 51.01 52.00 19.17 71.53 48.43
Default Sampling 44.93 54.00 21.22 65.25 46.35
AutoDeco (Ours) 50.52 55.64 21.68 71.02 49.72

R1-Distill-Qwen-7B
Greedy Search 37.87 47.20 49.13 32.90 39.32
Default Sampling 47.41 47.65 53.00 32.35 42.47
AutoDeco (Ours) 48.91 50.75 53.14 33.90 46.88

Qwen3-30B-A3B-Instruct-2507
Greedy Search 65.86 78.00 47.75 83.73 68.84
Default Sampling 69.82 76.25 48.52 81.52 69.03
AutoDeco (Ours) 69.96 78.38 49.80 82.81 70.24

Qwen3-235B-Thinking
Greedy Search 77.78 81.00 77.25 31.98 67.00
Default Sampling 80.81 80.33 77.47 31.61 67.56
AutoDeco (Ours) 81.13 79.20 78.10 32.90 67.83

OpenAI-GPT-OSS-20B
Greedy Search 59.60 67.00 69.69 29.94 56.56
Default Sampling 65.67 68.00 70.15 30.68 58.63
AutoDeco (Ours) 66.48 69.12 71.25 30.84 59.42

OpenAI-GPT-OSS-120B
Greedy Search 71.21 75.00 73.93 32.72 63.22
Default Sampling 70.20 76.00 74.19 32.53 63.23
AutoDeco (Ours) 70.24 76.50 74.30 32.90 63.49

19

	Introduction
	AutoDeco
	Training Strategy
	Inference: Dynamic Decoding

	Experiments
	Experimental Setup
	Main Results
	Performance
	Efficiency

	Emergent Control of Decoding via Natural Language

	Related Works
	Conclusion and Future Work
	Experimental Setup
	In-depth discussion on Instruction-based decoding control
	Supplementary Discussion of Efficiency
	Supplementary Experimental Results
	Declaration of LLM usage

