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ABSTRACT

The “end-to-end” label for LLMs is a misnomer. In practice, they depend on a
non-differentiable decoding process that requires laborious, hand-tuning of hyper-
parameters like temperature and top-p. This paper introduces AutoDeco, a novel
architecture that enables truly “end-to-end” generation by learning to control its
own decoding strategy. We augment the standard transformer with lightweight
heads that, at each step, dynamically predict context-specific temperature and top-p
values alongside the next-token logits. This approach transforms decoding into a
parametric, token-level process, allowing the model to self-regulate its sampling
strategy within a single forward pass.
Through extensive experiments on eight benchmarks, we demonstrate that Au-
toDeco not only significantly outperforms default decoding strategies but also
achieves performance comparable to an oracle-tuned baseline derived from “hack-
ing the test set”—a practical upper bound for any static method. Crucially, we
uncover an emergent capability for instruction-based control: the model learns to
interpret natural language commands (e.g., “generate with low randomness”) and
adjusts its predicted temperature and top-p on a token-by-token basis, opening a
new paradigm for steerable and interactive LLM decoding.

1 INTRODUCTION

LLMs have become the de-facto standard in NLP, yet the quality of their generated text hinges on a
surprisingly manual and heuristic process: the selection of decoding hyperparameters. Parameters
like temperature, top-p, and top-k must be carefully chosen through a task-dependent process of
manual sweeps and post-hoc filtering (Shi et al., 2024). This not only incurs significant computational
and human costs but also profoundly impacts the final output’s creativity, diversity, and factual
correctness, undermining the promise of a truly “end-to-end” system.

This reliance on static, hand-tuned parameters creates fundamental bottlenecks. Firstly, the search for
an optimal configuration is widely acknowledged as a laborious process because the ideal settings are
highly task-dependent; commercial API providers like Deepseek, for instance, explicitly recommend
different temperature settings for distinct application scenarios1. However, this problem, runs even
deeper: a single static configuration is inherently suboptimal because the ideal level of stochasticity
varies dramatically within a single generation. For instance, a model might need high creativity to
explore initial reasoning paths but high precision to deliver the final answer. This on-the-fly control
is, by design, impossible for current LLMs to achieve natively. Consequently, the prevailing static
decoding paradigm is a solution as inefficient as it is ineffective, forcing a one-size-fits-all strategy
onto a problem that demands dynamic adaptation.

In this paper, we propose AutoDeco, a novel architecture that creates a truly “end-to-end” language
model capable of controlling its own decoding process. As illustrated in Figure 1, we augment
the standard transformer with lightweight, dedicated prediction heads. At each decoding step,
these AutoDeco Heads leverage the model’s current hidden state to dynamically predict the optimal
sampling parameters for the very next token. This seamlessly integrates hyperparameter selection into
the model’s forward pass, creating a self-regulating inference pipeline that adds nearly-zero latency.

1https://api-docs.deepseek.com/quick_start/parameter_settings
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Figure 1: An overview of our proposed end-to-end decoding architecture compared to manual
decoding. Our method dynamically predicts temperature and top-p values from the model’s hidden
states for each generation step. In contrast, manual decoding (bottom) relies on a single set of static,
predefined hyperparameters for the entire sequence generation.

We validate our approach by integrating AutoDeco into major model families, including Qwen,
Llama, and GPT, requiring only a brief fine-tuning process of 400 steps. Across eight distinct
benchmarks, the results are striking: AutoDeco not only consistently outperforms standard default
decoding settings but also matches or surpasses the performance of meticulously expert-guided
tuning (an oracle-tuned baseline derived from “hacking the test set”) hyperparameters. Perhaps
most excitingly, we uncovered an emergent capability for instruction-based decoding control. When
prompted with a meta-instruction like, “Please ensure that the diversity of your output is low,” the
model immediately responded by lowering its average predicted temperature and top-p values by 0.11
and 0.08, respectively. This demonstrates that AutoDeco does not merely automate a tedious process;
it endows the model with a new, intuitive way to interpret and act on user intent.

Our contributions are three-fold: (i) We propose AutoDeco, a novel and lightweight architecture, along
with an efficient strategy to train its prediction heads, that makes LLM generation truly “end-to-end”
by dynamically predicting decoding parameters at each step. (ii) We demonstrate through extensive
experiments that AutoDeco consistently matches or exceeds the performance of expert-guided tuning,
static hyperparameters across eight benchmarks and multiple model families. (iii) We demonstrate
through extensive experiments that AutoDeco consistently matches or exceeds the performance of
expert-guided tuning, static hyperparameters across eight benchmarks and multiple model families.

2 AUDODECO

The foregoing discussion raises two fundamental questions that frame the core inquiry of this work:

First, how can we train the AutoDeco heads without any token-level “ground-truth” labels for the
optimal temperature and top-p values? Second, how can these predictions be integrated into inference
without adding computational latency? This section details our solutions to both. In Section 2.1, we
will introduce our training strategy and explain how we create a special set of training targets for each
token, allowing the model to learn from data even without true labels.

Then, in Section 2.2, we will walk through our inference process. The AutoDeco modifies the model’s
final output probabilities internally—a design that adds absolutely no extra latency. The result is
a model that can be used almost exactly like a standard one, requiring only a “1-line-change” in a
user’s code to unlock its dynamic decoding capabilities.

2.1 TRAINING STRATEGY

The central challenge in training AutoDeco is the absence of token-level ground-truth labels for
sampling parameters. We overcome this by proposing a two-step strategy: we first generate pseudo-
labels directly from a text corpus, and then use these labels to train the AutoDeco heads.
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Step 1: Pseudo-Label Generation Our pseudo-labeling strategy is guided by an intuitive principle:
the optimal parameters for a given token are those that would have made the ground-truth token the
most likely and efficient choice. We formalize this by working backward from the model’s raw logits
for each ground-truth token y∗t and solving two optimization problems:

• For Temperature (T ∗
t ): We find the temperature that maximizes the softmax probability of the

ground-truth token y∗t in the whole vocabulary V . 2

T ∗
t = argmax

T>0

exp(logits(y∗t )/T )∑
v∈V exp(logits(v)/T )

(1)

• For top-p (P ∗
t ): Using the distribution shaped by T ∗

t , we find the smallest cumulative proba-
bility (P ) that defines a nucleus VP still containing the ground-truth token y∗t .

P ∗
t = min{P ∈ [0, 1] | y∗t ∈ VP } (2)

In essence, for each ground-truth token, we ask: “What temperature would have maximized this
token’s probability?” and “What is the tightest top-p nucleus that would have included it?” The
answers become our training targets.

Step 2: Training With a complete set of pseudo-labels (T ∗
t , P ∗

t ), training the AutoDeco heads
on a frozen base LLM becomes a standard supervised task. While jointly training both heads on
these labels provides a strong baseline, we introduce a series of advanced techniques to consistently
improve performance and robustness.

CASCADED TRAINING. First, we adopt a cascaded training schedule that mirrors the dependency
in our pseudo-label generation. Since P ∗

t is derived from the temperature-scaled distribution, we first
train the temperature head to convergence. Only then do we freeze it and train the top-p head. This
staged approach provides a more stable and logically sound training signal.

ADDRESSING DATA BIAS. Next, we address two opposing biases in the pseudo-label data: over-
confidence on “easy” tokens and extreme uncertainty on “hard” ones.

• Easy-Token Masking. For many tokens, the base model’s greedy prediction already matches
the ground-truth. These “easy” tokens often yield an optimal temperature T ∗

t near zero, biasing
the head to be overly conservative. To mitigate this, we randomly mask the training loss for a
large fraction (e.g., 60%) of these positions, forcing the model to learn from more challenging
and informative examples.

• Dynamic Fine-Tuning (DFT). Conversely, a naive fine-tuning approach can cause the tem-
perature head to predict extremely large values for uncertain tokens. We incorporate Dynamic
Fine-Tuning (DFT) Wu et al. (2025), which re-weights the training loss to focus on tokens
where the model has a reasonable prior. This teaches the head to apply high temperatures more
judiciously in situations of calibrated uncertainty, rather than being skewed by outlier signals.

2.2 INFERENCE: DYNAMIC DECODING

At the heart of AutoDeco lies a design optimized for efficiency. By seamlessly integrating all dynamic
adjustments into the model’s standard forward pass, it avoids any separate, costly computational steps.
This architecture results in a negligible latency overhead, typically adding only 1-2% to the total
generation time. As illustrated in Figure 1, the process for each token generation step is as follows:

1. Compute Hidden State: The base LLM computes the final hidden state ht.

2. Predict Decoding Parameters: In parallel, the standard lm head computes the logits while
the AutoDeco heads predict the dynamic parameters. The temperature is predicted directly from the
hidden state. Crucially, mirroring our cascaded training, the top-p head then uses both the hidden
state and the just-predicted temperature as input:

Tt = temp head(ht), Pt = top-p head(ht, Tt) (3)

2The optimization process can also be done without any pesudo-label. Details can be found at Appendix 6.
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This micro-dependency, shown as a dashed arrow in Figure 1, allows for a more nuanced interplay
between the two parameters.

3. Internal Probability Modification: The model immediately uses the predicted Tt and Pt to
internally rescale and filter the logits, producing a final, dynamically-adjusted probability distribution.

Latency and Simplicity. The AutoDeco heads (simple 2-layer MLPs) add negligible computational
overhead compared to the massive transformer layers. This internal architecture results in only 1-2%
additional latency and makes usage incredibly simple. This internal architecture ensures seamless
integration, allowing an AutoDeco-enabled model to serve as a drop-in replacement for its standard
counterpart, requiring no modifications to the user’s existing generation logic.

3 EXPERIMENTS

We conduct extensive experiments to validate AutoDeco, structuring our evaluation around its core
contributions to performance, efficiency, and a surprising capability that emerged as a byproduct.

• In Section 3.2.1, we demonstrate the superior performance of AutoDeco. It not only
substantially outperforms standard, non-expert decoding baselines (Greedy Search and
Default Sampling) but also matches or even slightly surpasses the performance of optimal
static hyperparameters found through an exhaustive expert-guided tuning.

• Following this, in Section 3.2.2, we analyze its practical efficiency and confirm that AutoDeco
introduces a minimal computational burden, with a marginal latency increase of 1-2% and a
negligible memory footprint.

• We present our most striking finding in Section 3.3: the emergent capability of AutoDeco to
interpret natural language commands to dynamically steer its own generation style, a crucial
step towards more intuitive and controllable AI.

3.1 EXPERIMENTAL SETUP

Models To demonstrate broad applicability, we select a representative model from three of the most
popular open-source model families. All AutoDeco heads are trained on top of the official pre-trained
checkpoints of these models:

• Llama-3.1-Nemotron-Nano-8B-v13(Bercovich et al., 2025): A general-purpose model from the
widely-used Llama family, developed by Nvidia (hereinafter Llama-Nemotron-8B).

• R1-Distill-Qwen-7B4(Guo et al., 2025): A distilled model from the Qwen family developed by
DeepSeek, known for its strong reasoning capabilities.

• GPT-Oss-20B5(Agarwal et al., 2025): A MoE model with 20B parameters released by OpenAI.

Datasets The models are trained on a focused domain and evaluate on a wide range of tasks to test
for generalization.

• Training Data: The AutoDeco heads are trained on a specialized dataset of 10,000 correct reasoning
trajectories. These trajectories were generated by sampling solutions from our three base models
on problems from the DeepMath-103K dataset (He et al., 2025)6.

• Evaluation Benchmarks: We evaluate on a diverse suite of eight benchmarks, split into two
categories to assess both in-domain and out-of-domain performance:
– In-Domain (Math): AIME (24+25), BRUMO25, HMMT25 (Balunović et al., 2025), and

BeyondAIME (ByteDance-Seed, 2025).7

– Out-of-Domain (General Tasks): GPQA-Diamond (Rein et al., 2024) and MMLU-Pro (Wang
et al., 2024) (QA) , LiveCodeBenchV6 (Naman Jain, 2024) (Code), and IFEval (Zhou et al.,
2023)(Instruction Following).

3https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1
4https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
5https://huggingface.co/openai/gpt-oss-20b
6https://huggingface.co/datasets/zwhe99/DeepMath-103K
7We focus on these recent, hard benchmarks to mitigate the risk of data leakage issues in older datasets.
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Table 1: Pass@1 accuracy on mathematical reasoning benchmarks. AutoDeco consistently outper-
forms both greedy Search and Default Sampling methods across various models.

Model Method AIME BRUMO25 HMMT25 BeyondAIME Average

Llama-Nemotron-8B
Greedy Search 51.67 56.67 26.67 35.00 42.50
Default Sampling 50.84±1.44 57.89±1.46 29.82±1.60 31.82±0.40 42.59
AutoDeco (Ours) 56.30±1.08 60.49±1.17 34.56±1.06 34.38±0.54 46.43

R1-distill-Qwen-7B
Greedy Search 38.33 43.33 16.67 24.00 30.58
Default Sampling 43.49±1.38 49.01±1.10 22.32±0.83 24.21±0.79 34.76
AutoDeco (Ours) 47.37±0.92 52.10±0.92 24.06±0.41 25.98±0.73 37.38

GPT-Oss-20B
Greedy Search 56.67 66.67 46.67 36.00 51.50
Default Sampling 69.61±1.32 67.03±1.12 44.24±2.28 45.69±0.13 56.64
AutoDeco (Ours) 72.18±1.13 68.12±0.66 46.05±1.42 45.38±0.57 57.93

Table 2: Pass@1 accuracy on general-domain benchmarks. AutoDeco shows exciting generalization
performance across General QA, Code Generation, and Instruction Following tasks.

Model Method GPQA-Diamond MMLU-Pro LiveCodeBenchV6 IFEval Average

Llama-Nemotron-8B
Greedy Search 51.01 52.00 19.17 71.53 48.43
Default Sampling 44.93 54.00 21.22 65.25 46.35
AutoDeco (Ours) 50.57 55.85 21.64 70.98 49.76

R1-distill-Qwen-7B
Greedy Search 37.87 47.20 49.13 32.90 39.32
Default Sampling 47.41 47.65 53.00 32.35 42.47
AutoDeco (Ours) 48.79 50.50 53.29 34.01 44.43

GPT-Oss-20B
Greedy Search 59.60 67.00 69.69 29.94 56.56
Default Sampling 65.67 68.00 70.15 30.68 58.63
AutoDeco (Ours) 66.40 69.37 71.32 30.77 59.47

Baselines and Evaluation We evaluate AutoDeco against two standard, non-expert decoding
strategies: Greedy Search and Default Sampling (temperature=1.0, top-p=1.0). Furthermore, to
establish a practical upper bound, we also compare against an Expert-Guided Tuning. It is crucial
to note that this expert-tuned baseline is an oracle setting, as it involves finding the optimal static
hyperparameters by tuning on the test set—a process that is infeasible in real-world applications.

Our primary metric is Pass@1 accuracy, estimated via oversampling with 128 samples per problem
(with 8 random seeds, 16 samples per seed).

3.2 MAIN RESULTS

We present our main findings separately for mathematical reasoning and open-domain question
answering to provide a clear and detailed view of AutoDeco’s performance across different domains..

3.2.1 PERFORMANCE

In-Domain Performance. As shown in Table 1 AutoDeco consistently demonstrates a performance
boost compared to Greedy Search and Default Sampling. For instance, on Llama-Nemotron-8B,
it achieves an average score of 46.43, a substantial improvement of nearly 4 absolute points over
Default Sampling and Greedy Search.

Out-of-Domain Generalization. More strikingly, despite being trained exclusively on mathe-
matical reasoning, AutoDeco demonstrates powerful zero-shot generalization to a diverse set of
out-of-domain tasks (Table 2). It consistently secures the highest average scores across general QA,
code generation, and instruction following. This strong performance reveals two interesting patterns.

First, the magnitude of improvement is remarkably consistent across domains. For example, on
Llama-Nemotron-8B, AutoDeco improves the average score on general tasks by 3.4 points over
Default Sampling—a gain nearly identical to that seen in the math domain. This suggests that the
benefits of dynamic decoding are fundamental and not tied to a specific task type.
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(a) Llama-Nemotron-8B with AutoDeco.

(b) R1-Distill-Qwen-7B with AutoDeco.

Figure 2: Expert-Guided Tuning Comparison with Search Interval of 0.1. Temperature is adjusted
first (setting top-p to 1.0), and the selection is made based on the best performance of temperature
to conduct the search for top-p. AutoDeco achieves competitive performance without requiring any
prior empirical tuning or domain-specific expert knowledge.

Second, AutoDeco shows an ability to dynamically arbitrate between deterministic and stochastic
strategies. On general tasks, Default Sampling is not always better than Greedy Search (e.g., on
Llama-Nemotron-8B for GPQA-Diamond and IFEval). In these cases, AutoDeco learns to predict
more deterministic, low-temperature parameters, allowing it to match or exceed the performance of
the stronger greedy baseline. Conversely, when stochasticity is beneficial, it raises the temperature to
outperform Default Sampling.

The above findings suggest that AutoDeco is not simply learning “what” to generate, but rather the
fundamental “meta-skill of how” to generate text effectively. By training on a high-signal domain
like mathematics, it learns universal principles for balancing exploration and exploitation. We will
further discuss this in Sec. 3.3, and this finding challenges the conventional assumption that adaptive
decoding requires broad, task-matched supervision, and instead points toward a more efficient,
modular paradigm for real “end-to-end” controllable generation.

Comparison with Expert-Guided Tuning. In real-world applications, developers often undertake
a laborious tuning process to find task-specific, optimal static hyperparameters. To assess how
AutoDeco compares to this best-case scenario, we simulate an expert with an unfair advantage: access
to a test-set oracle. As shown in Figure 2, we first perform a fine-grained search to find the optimal
static temperature on the test set, and then, using that temperature, find the optimal top-p. This
process represents the practical upper bound for any static decoding strategy.

The results are striking. AutoDeco’s single-pass performance is nearly identical to this oracle-tuned
baseline, with the performance gap consistently less than one point across all models and datasets.
Given that the Expert-Guided Tuning relies on “hacking the test set”, a process impossible in any
real-world scenario where the test data is unknown, we can confidently assert that AutoDeco is
effectively superior to any feasible expert-tuning strategy in practice.

Furthermore, the figure highlights the fundamental limitation of static decoding: the optimal hyper-
parameters are extremely task-dependent. For instance, Llama-Nemotron-8B requires drastically
different settings for BRUMO25 (T = 0.8, P = 0.9) versus GPQA-Diamond (T = 0.3, P = 0.6).
However, in real-world scenarios, a model developer has no way to switch hyperparameters based on
a user’s query type. AutoDeco elegantly solves this problem. By achieving near-oracle performance
automatically and on-the-fly for any task, it provides the optimal and, frankly, only practical solution
for developers seeking robust, high-performance generation across diverse user inputs.
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Table 3: FLOPs, Memory Usage and latency (1k tokens) across various prompt length for R1-Distill-
Qwen-7B with/without temp head and top-p head.

Metrics Method 1k 2k 4k 8k 16k 24k

FLOPs Default Sampling 2.89e+13 4.34e+13 7.23e+13 13.03e+13 24.61e+13 36.19e+13
AutoDeco (Ours) 2.89e+13 4.34e+13 7.24e+13 13.03e+13 24.62e+13 36.20e+13

Latency (s) Default Sampling 18.23 18.86 18.93 19.72 22.11 25.76
AutoDeco (Ours) 18.84 19.10 19.43 20.03 22.36 26.05

Memory (MB) Default Sampling 15546 16032 17130 19098 23182 27262
AutoDeco (Ours) 15550 16036 17134 19102 23183 27266

Figure 3: Ablation study on AutoDeco
architecture designs. Joint optimization
achieves the highest AIME Score.

Ablation Study. A natural question is what role the
temperature and top-p heads play individually. To isolate
their effects, we conduct an ablation study, with the results
presented in Figure 3. The most striking finding is the
remarkable effectiveness of each component in isolation.
Using either the temperature head or the top-p head alone
achieves an average performance gain of approximately
3-3.5 absolute points over the Default Sampling baseline.

This result is highly significant. It demonstrates that sub-
stantial improvements in decoding do not require a sophis-
ticated architecture. A single, lightweight prediction head
is sufficient to dramatically outperform standard static
decoding methods.

Of course, while each head is powerful on its own, our
results also confirm that the full AutoDeco model, with both heads, yields the best performance. They
provide complementary benefits, allowing for even finer-grained control over the generation process
to achieve optimal results.

3.2.2 EFFICIENCY

A critical advantage of AutoDeco is its computational efficiency. To quantify this, we evaluated its
overhead against Default Sampling across three key metrics, with results summarized in Table 3.

The analysis shows that the additional computational burden is minimal. The FLOPs are virtually
identical to the baseline, and the memory footprint increases by a mere 4 MB, an insignificant amount
for modern hardware. The impact on latency is also negligible. This overhead remains consistently
low regardless of prompt length, adding a consistent overhead of 0.29-0.6 s/k tokens, which translates
to an average relative increase of just 1.7%.

These results empirically validate that AutoDeco is a lightweight enhancement. When considering
the substantial performance gains and the convenience of automatic, task-agnostic hyperparameter
tuning demonstrated in Sec. 3.2.1, this minor computational cost becomes trivial. AutoDeco thus
presents a highly practical solution, offering significant benefits for a negligible price.

The analysis regarding training efficiency can be found in the Appendix 8.

3.3 EMERGENT CONTROL OF DECODING VIA NATURAL LANGUAGE

Beyond outperforming static methods, our most significant finding is a remarkable emergent capabil-
ity: AutoDeco learns to interpret abstract, meta-level commands to guide its own decoding behavior.
This transforms the model from a passive generator into an active participant that can respond to user
intent about the desired generation style, a foundational step towards truly end-to-end generation.

Figure 4 provides a striking qualitative demonstration of this capability. On the left, a creative prompt
to “Design a unique drink for each emotion” elicits a dynamic but baseline set of temperature and
top-p values (solid lines). In the middle panel, when we append the command, “I hope the answers
can be more innovative and diverse,” the model’s response is immediate and visible: the predicted

7
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Prompt: Design a unique 

drink for each emotion (joy, 

anger, sadness, …

Prompt : … I hope the 

answers can be more

innovative and diverse.

…crafted with the flavor , appearance , and sensory experience …

Prompt : … I hope the 

answers can be as certain as 

possible.

…crafted with the flavor , appearance , and sensory experience … …crafted with the flavor , appearance , and sensory experience …

Figure 4: AutoDeco with Diversity Commands. This figure shows the token-level T/P predictions
for the same prompt under three conditions. (Left) Baseline: The model’s default dynamic T/P values
(solid lines). (Middle) High-Diversity Command: When asked to be “more innovative and diverse,”
the model elevates its T/P predictions (dotted lines) above the baseline. (Right) Low-Diversity
Command: When asked to be “as certain as possible,” the model suppresses its T/P predictions.

Table 4: Quantitative Impact of Diversity Commands on Predicted Decoding Parameters (N=100).

Command Avg. Temp. ∆ Temp. Consistency (T) Avg. top-p ∆ top-p Consistency (P)

Baseline (No Cmd) 0.59 - - 0.84 - -
Low Diversity 0.48 ↓ 0.11 99% 0.75 ↓ 0.09 99%
High Diversity 0.66 ↑ 0.07 90% 0.89 ↑ 0.05 96%

T and P values (dotted lines) are consistently elevated above the baseline, effectively “turning up”
its own creativity. Conversely, on the right, the command “I hope the answers can be as certain as
possible” causes the model to autonomously suppress its T and P predictions, “turning down” its
randomness to favor more deterministic outputs. To our knowledge, this is the first demonstration
of an LLM directly translating natural language intent for creativity and certainty into its internal
sampling parameters on a token-by-token basis.

To verify that this is not an anecdotal result, we conducted a large-scale quantitative analysis. We
prepended commands for “high” or “low” diversity to a set of 100 questions and aggregated the
results, presented in Table 4. The data confirms the effect is systematic and robust. The “low diversity”
command prompted a substantial drop in average temperature from 0.59 to 0.48 with remarkable
99% consistency across all questions. The “high diversity” command triggered a similarly consistent
increase in both temperature and top-p, proving that the model has learned a generalizable mapping
from abstract language to its internal generation mechanics.

This result provides strong evidence of a learned semantic mapping. However, this emergent capability
is still nascent, as the model was not explicitly fine-tuned on such instructions. For instance, when
prompted to “ensure your generation has no randomness,” we observed a modest but directionally
correct drop in the average predicted temperature of 0.15, rather than the ideal of zero. This
highlights a clear path forward: with targeted instruction-following fine-tuning, AutoDeco could
enable a new paradigm where users achieve fine-grained control over creativity and determinism
simply by describing their intent within the prompt, transforming decoding from a hidden technical
setting into an intuitive, conversational command.

4 RELATED WORKS

The process of generating text from a language model, known as decoding, is a critical step that
significantly influences the quality of the output Wang et al. (2025); Shi et al. (2024). Existing
decoding strategies can be broadly categorized into deterministic, stochastic sampling, and model-
based approaches, most of which traditionally rely on static, predefined configurations.

8
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Deterministic Decoding Deterministic methods produce a single, reproducible output for a given
input. The most fundamental of these is Greedy Search, which selects the token with the highest
probability at each step. Another classic one is beam search, which maintains a “beam” of k most
probable partial sequences to explore a larger search space (Sutskever et al., 2014; Graves, 2013).
However, both of them are known to favor dull, high-frequency phrases Vijayakumar et al. (2016),
this results in their good performance on Machine Translation and QA tasks, but not suitable for
open-ended generation tasks. A more recent line of deterministic methods, Contrastive Search(Su &
Collier, 2022; Su et al., 2022), directly optimizes for open-ended generation quality by penalizing
tokens that are too similar to previous tokens, effectively mitigating the degeneration problem.

Stochastic Sampling To inject diversity, stochastic sampling methods are essential. These methods
sample from the model’s output probability distribution, which is typically modulated by some
hyperparameters. However, unrestricted sampling can produce incoherent text. To counter this,
truncation methods were developed. Top-K sampling(Fan et al., 2018) restricts the sampling pool
to the k most likely tokens, while the more adaptive Nucleus Sampling (top-p)(Holtzman et al.)
selects the smallest set of tokens whose cumulative probability exceeds a threshold p. Despite their
power, as our introduction highlights, finding the optimal configuration for these hyperparameters is
a non-trivial, task-dependent manual process (Shi et al., 2024).

Model-Based Decoding To gain more fine-grained control over generation, a third category of
methods modifies the model’s output distribution using external signals or auxiliary models. Early
examples include Plug-and-Play Language Models, which leverage attribute models to steer
generation towards desired topics (Dathathri et al.). More recently, Contrastive Decoding uses
a smaller “amateur” model to steer a larger “expert” model away from generic text (Li et al.,
2023; Chuang et al., 2023). Similarly, Speculative Decoding utilizes a faster “draft” model to
generate sequences of tokens that are then verified by the larger model, significantly accelerating
inference (Leviathan et al., 2023; Chen et al., 2023). While they are effective, they still operate under
a fixed algorithmic framework: the choice of the “guidance model” itself acts as another form of
hyperparameter. For example, in contrastive decoding and speculative decoding, the authors suggest
that using a smaller LM of the same architecture as the guidance model yields the best results.

Despite this rich landscape of research, a fundamental limitation persists: all these methods rely
on a static decoding strategy. Whether it’s a fixed algorithm (like Beam Search) or a fixed set of
hyperparameters, this “one-size-fits-all” approach is inherently suboptimal. In contrast, AutoDeco
proposes a paradigm shift. Instead of relying on fixed hyperparameters or predefined heuristics, we
empower the model to dynamically control its own stochasticity at each generation step.

5 CONCLUSION AND FUTURE WORK

In this work, we challenged that the “end-to-end” label for LLM is a misnomer. We introduced
AutoDeco, a truly “end-to-end” architecture that empowers models to dynamically control their
own decoding strategy. By learning to predict token-level temperature and top-p values, AutoDeco
transforms decoding from a manual, static process into a dynamic, self-regulating pipeline.

Our extensive experiments reveal three key contributions. First, AutoDeco demonstrates remark-
able generalization, consistently outperforming standard decoding methods across diverse models
and tasks, even matching oracle-tuned baselines without any task-specific tuning. Second, this
performance is achieved with negligible computational overhead, making it a practical, drop-in
enhancement for any transformer-based model. Most significantly, we discovered a remarkable emer-
gent capability: AutoDeco learns to interpret natural language commands to steer its own generation
style, a foundational step towards more intuitive human-AI interaction.

Future Work. The emergent control we observed is a promising but nascent capability. Our immediate
future work will focus on explicitly fine-tuning AutoDeco with instruction-based data to achieve more
precise and granular control over generation. This path leads toward a new paradigm where users can
conversationally specify not just what they want, but how they want it, transforming LLMs into truly
collaborative and controllable partners.

9
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6 ONLINE OPTIMIZATION NATURE OF AutoDeco

Recall that we formalize two optimization problems to update the temperature head and the top-p
head:

• For Temperature (T ∗
t ): We find the temperature that maximizes the softmax probability of

the ground-truth token y∗t .

T ∗
t = argmax

T>0

exp(logits(y∗t )/T )∑
v∈V exp(logits(v)/T )

(4)

• For Top-p (p∗t ): Using the distribution shaped by T ∗
t , we find the smallest cumulative

probability (p) that defines a nucleus Vp still containing the ground-truth token y∗t .

p∗t = min{p ∈ [0, 1] | y∗t ∈ Vp} (5)

We will show here that the optimization process can be done directly in the normal fine-tuning training
with no need for any advance label calculation.
Proposition 1 (Equivalence of Temperature Optimization Paradigms). Let {logits(v)}v∈V denote
the logits over the vocabulary V , and let y∗ ∈ V be the ground-truth token. Define the temperature-
scaled softmax probability of the ground-truth token as:

p(y∗ | T ) = exp(logits(y∗)/T )∑
v∈V exp(logits(v)/T )

, T > 0.

Then, the optimal temperature T ∗ that maximizes p(y∗ | T ) is equivalent to the temperature that
minimizes the cross-entropy loss, LCE(T ) = − log p(y∗ | T ). That is,

argmax
T>0

p(y∗ | T ) ≡ argmin
T>0

LCE(T ),

and both optimization procedures yield the same solution T ∗.

Proof. We will demonstrate that the first-order optimality condition is identical for both optimization
objectives.
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1. Optimization via Cross-Entropy Loss Minimization The objective is to find T ∗ =
argmin

T>0
LCE(T ). The cross-entropy loss is defined as:

LCE(T ) = − log p(y∗ | T ) = − log

(
exp(logits(y∗)/T )∑
v∈V exp(logits(v)/T )

)
This can be rewritten as:

LCE(T ) = − logits(y∗)

T
+ log

(∑
v∈V

exp

(
logits(v)

T

))
To find the minimum, we take the partial derivative of LCE with respect to T and set it to zero.

∂LCE

∂T
=

∂

∂T

(
− logits(y∗)

T
+ log

(∑
v∈V

exp

(
logits(v)

T

)))

=
logits(y∗)

T 2
+

1∑
v∈V exp(logits(v)/T )

·
∑
v∈V

(
exp

(
logits(v)

T

)
·
(
− logits(v)

T 2

))
=

logits(y∗)

T 2
− 1

T 2

∑
v∈V logits(v) exp(logits(v)/T )∑

u∈V exp(logits(u)/T )

=
1

T 2

(
logits(y∗)−

∑
v∈V

logits(v)
exp(logits(v)/T )∑

u∈V exp(logits(u)/T )

)
Let p(v | T ) be the softmax probability of a token v at temperature T . Let Ev∼p(·|T )[logits] =∑

v∈V logits(v)p(v | T ) denote the expected value of the logits under the softmax distribution. The
derivative then becomes:

∂LCE

∂T
=

1

T 2

(
logits(y∗)− Ev∼p(·|T )[logits]

)
Setting the derivative to zero yields the optimality condition:

logits(y∗) = Ev∼p(·|T )[logits]

2. Optimization via Probability Maximization The objective is to find T ∗ = argmax
T>0

p(y∗ | T ).

The probability of the ground-truth token is:

p(y∗ | T ) = exp(logits(y∗)/T )∑
v∈V exp(logits(v)/T )

To find the maximum, we take the partial derivative of p(y∗ | T ) with respect to T and set it to zero.
Using the quotient rule:

∂p(y∗ | T )
∂T

= − 1

T 2
· exp(logits(y∗)/T )∑

v∈V exp(logits(v)/T )

[
logits(y∗)−

∑
v∈V logits(v) exp(logits(v)/T )∑

u∈V exp(logits(u)/T )

]
= −p(y∗ | T )

T 2

(
logits(y∗)−

∑
v∈V

logits(v)p(v | T )

)
This simplifies to:

∂p(y∗ | T )
∂T

= −p(y∗ | T )
T 2

(
logits(y∗)− Ev∼p(·|T )[logits]

)
Setting the derivative to zero, and knowing that p(y∗ | T ) > 0 and T 2 > 0, we arrive at the same
optimality condition:

logits(y∗) = Ev∼p(·|T )[logits]
Since both optimization objectives lead to the identical first-order optimality condition, the optimal
temperature T ∗ that minimizes the cross-entropy loss is the same as the one that maximizes the
softmax probability of the ground-truth token.
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7 EXPERIMENTAL SETUP

Training. For the training of all models with our AutoDeco framework, we employed a consistent
hyperparameter configuration to ensure fair comparison. To efficiently manage memory and scale our
experiments, we utilized the DeepSpeed library with the ZeRO Stage 3 optimization. The specific
training settings are detailed below:

• Training Framework: DeepSpeed (ZeRO Stage 3) for DeepSeek-R1-Distill-Qwen-7B
and Llama-3.1-Nemotron-8B-Nano-v1. DeepSpeed (ZeRO Stage 2) for the MoE model
GPT-Oss-20B.

• Hardware: 8 GPUs
• Batch Size: A per-device batch size of 1 with 4 gradient accumulation steps, resulting in an

effective global batch size of 32.
• Optimizer: AdamW
• Learning Rate: 5× 10−6.
• Max Token Length: 16384.

For each task, we calculated the Pass@1 through oversampling (16 times). To ensure the results are
solid, we do 8 runs on each experiment with different seeds.

Datasets. Our experimental configuration is detailed as follows:

• MMLU-Pro: We used a comprehensive and evenly distributed “lite” subset 8 for evaluation
to ensure a balanced assessment across all subject areas.

• LiveCodeBench: The V6 version of the dataset was used. The evaluation window for this
benchmark was initiated on September 1, 2023, and included all subsequent data.

• Others: All the others selected datasets were processed using their full sets.

8 SUPPLEMENTARY DISCUSSION OF EFFICIENCY

Training Efficiency. Given AutoDeco’s superior decoding performance and minimal deployment
overhead, a natural question arises: What is the cost of endowing a language model with this adaptive
decoding capability? Remarkably, the answer is negligible. AutoDeco is a resource-efficient, general-
purpose solution for adaptive decoding optimization. Our experiments reveal two key practical
advantages:

• Label-free supervision: AutoDeco eliminates the need to pre-compute or invoke any external
optimization modules to generate supervision signals (e.g., temperature or top-p labels) for fine-
tuning. In Proposition 1, we formally demonstrate that the temperature head can be implicitly
updated by simply scaling the model’s predicted logits by the inverse of its own output.

• Data efficiency: We show the training curves of all models in Figure 5, and AutoDeco achieves
strong performance within about only 6K training samples and 400 steps, making it effortlessly
be integrated into any pre-trained LLMs.

9 DECLARATION OF LLM USAGE

The LLM is used only for writing, editing, or formatting purposes and does not impact the core
methodology, scientific rigorousness, or originality of the research.

8https://huggingface.co/datasets/koiwave/100MMLUpro
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Figure 5: AutoDeco’s training curves on all models. Training loss curve across models. The loss
converges effectively, indicating resource-friendly training of AutoDeco.
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