
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

THE END OF MANUAL DECODING: TOWARDS TRULY
END-TO-END LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The “end-to-end” label for LLMs is a misnomer. In practice, they depend on a
non-differentiable decoding process that requires laborious, hand-tuning of hyper-
parameters like temperature and top-p. This paper introduces AutoDeco, a novel
architecture that enables truly “end-to-end” generation by learning to control its
own decoding strategy. We augment the standard transformer with lightweight
heads that, at each step, dynamically predict context-specific temperature and top-p
values alongside the next-token logits. This approach transforms decoding into a
parametric, token-level process, allowing the model to self-regulate its sampling
strategy within a single forward pass.
Through extensive experiments on eight benchmarks, we demonstrate that Au-
toDeco not only significantly outperforms default decoding strategies but also
achieves performance comparable to an oracle-tuned baseline derived from “hack-
ing the test set”—a practical upper bound for any static method. Crucially, we
uncover an emergent capability for instruction-based control: the model learns to
interpret natural language commands (e.g., “generate with low randomness”) and
adjusts its predicted temperature and top-p on a token-by-token basis, opening a
new paradigm for steerable and interactive LLM decoding.

1 INTRODUCTION

LLMs have become the de-facto standard in NLP, yet the quality of their generated text hinges on a
surprisingly manual and heuristic process: the selection of decoding hyperparameters. Parameters
like temperature, top-p, and top-k must be carefully chosen through a task-dependent process of
manual sweeps and post-hoc filtering (Shi et al., 2024). This not only incurs significant computational
and human costs but also profoundly impacts the final output’s creativity, diversity, and factual
correctness, undermining the promise of a truly “end-to-end” system.

This reliance on static, hand-tuned parameters creates fundamental bottlenecks. Firstly, the search for
an optimal configuration is widely acknowledged as a laborious process because the ideal settings are
highly task-dependent; commercial API providers like Deepseek, for instance, explicitly recommend
different temperature settings for distinct application scenarios1. However, this problem, runs even
deeper: a single static configuration is inherently suboptimal because the ideal level of stochasticity
varies dramatically within a single generation. For instance, a model might need high creativity to
explore initial reasoning paths but high precision to deliver the final answer. This on-the-fly control
is, by design, impossible for current LLMs to achieve natively. Consequently, the prevailing static
decoding paradigm is a solution as inefficient as it is ineffective, forcing a one-size-fits-all strategy
onto a problem that demands dynamic adaptation.

In this paper, we propose AutoDeco, a novel architecture that creates a truly “end-to-end” language
model capable of controlling its own decoding process. As illustrated in Figure 1, we augment
the standard transformer with lightweight, dedicated prediction heads. At each decoding step,
these AutoDeco Heads leverage the model’s current hidden state to dynamically predict the optimal
sampling parameters for the very next token. This seamlessly integrates hyperparameter selection into
the model’s forward pass, creating a self-regulating inference pipeline that adds nearly-zero latency.

1https://api-docs.deepseek.com/quick_start/parameter_settings

1

https://api-docs.deepseek.com/quick_start/parameter_settings

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: An overview of our proposed end-to-end decoding architecture compared to manual
decoding. Our method dynamically predicts temperature and top-p values from the model’s hidden
states for each generation step. In contrast, manual decoding (bottom) relies on a single set of static,
predefined hyperparameters for the entire sequence generation.

We validate our approach by integrating AutoDeco into major model families, including Qwen,
Llama, and GPT, requiring only a brief fine-tuning process of 400 steps. Across eight distinct
benchmarks, the results are striking: AutoDeco not only consistently outperforms standard default
decoding settings but also matches or surpasses the performance of meticulously expert-guided
tuning (an oracle-tuned baseline derived from “hacking the test set”) hyperparameters. Perhaps
most excitingly, we uncovered an emergent capability for instruction-based decoding control. When
prompted with a meta-instruction like, “Please ensure that the diversity of your output is low,” the
model immediately responded by lowering its average predicted temperature and top-p values by 0.11
and 0.08, respectively. This demonstrates that AutoDeco does not merely automate a tedious process;
it endows the model with a new, intuitive way to interpret and act on user intent.

Our contributions are three-fold: (i) We propose AutoDeco, a novel and lightweight architecture, along
with an efficient strategy to train its prediction heads, that makes LLM generation truly “end-to-end”
by dynamically predicting decoding parameters at each step. (ii) We demonstrate through extensive
experiments that AutoDeco consistently matches or exceeds the performance of expert-guided tuning,
static hyperparameters across eight benchmarks and multiple model families. (iii) We demonstrate
through extensive experiments that AutoDeco consistently matches or exceeds the performance of
expert-guided tuning, static hyperparameters across eight benchmarks and multiple model families.

2 AUDODECO

The foregoing discussion raises two fundamental questions that frame the core inquiry of this work:

First, how can we train the AutoDeco heads without any token-level “ground-truth” labels for the
optimal temperature and top-p values? Second, how can these predictions be integrated into inference
without adding computational latency? This section details our solutions to both. In Section 2.1, we
will introduce our training strategy and explain how we create a special set of training targets for each
token, allowing the model to learn from data even without true labels.

Then, in Section 2.2, we will walk through our inference process. The AutoDeco modifies the model’s
final output probabilities internally—a design that adds absolutely no extra latency. The result is
a model that can be used almost exactly like a standard one, requiring only a “1-line-change” in a
user’s code to unlock its dynamic decoding capabilities.

2.1 TRAINING STRATEGY

The central challenge in training AutoDeco is the absence of token-level ground-truth labels for
sampling parameters. We overcome this by proposing a two-step strategy: we first generate pseudo-
labels directly from a text corpus, and then use these labels to train the AutoDeco heads.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Step 1: Pseudo-Label Generation Our pseudo-labeling strategy is guided by an intuitive principle:
the optimal parameters for a given token are those that would have made the ground-truth token the
most likely and efficient choice. We formalize this by working backward from the model’s raw logits
for each ground-truth token y∗t and solving two optimization problems:

• For Temperature (T ∗
t): We find the temperature that maximizes the softmax probability of the

ground-truth token y∗t in the whole vocabulary V . 2

T ∗
t = argmax

T>0

exp(logits(y∗t)/T)∑
v∈V exp(logits(v)/T)

(1)

• For top-p (P ∗
t): Using the distribution shaped by T ∗

t , we find the smallest cumulative proba-
bility (P) that defines a nucleus VP still containing the ground-truth token y∗t .

P ∗
t = min{P ∈ [0, 1] | y∗t ∈ VP } (2)

In essence, for each ground-truth token, we ask: “What temperature would have maximized this
token’s probability?” and “What is the tightest top-p nucleus that would have included it?” The
answers become our training targets.

Step 2: Training With a complete set of pseudo-labels (T ∗
t , P ∗

t), training the AutoDeco heads
on a frozen base LLM becomes a standard supervised task. While jointly training both heads on
these labels provides a strong baseline, we introduce a series of advanced techniques to consistently
improve performance and robustness.

CASCADED TRAINING. First, we adopt a cascaded training schedule that mirrors the dependency
in our pseudo-label generation. Since P ∗

t is derived from the temperature-scaled distribution, we first
train the temperature head to convergence. Only then do we freeze it and train the top-p head. This
staged approach provides a more stable and logically sound training signal.

ADDRESSING DATA BIAS. Next, we address two opposing biases in the pseudo-label data: over-
confidence on “easy” tokens and extreme uncertainty on “hard” ones.

• Easy-Token Masking. For many tokens, the base model’s greedy prediction already matches
the ground-truth. These “easy” tokens often yield an optimal temperature T ∗

t near zero, biasing
the head to be overly conservative. To mitigate this, we randomly mask the training loss for a
large fraction (e.g., 60%) of these positions, forcing the model to learn from more challenging
and informative examples.

• Dynamic Fine-Tuning (DFT). Conversely, a naive fine-tuning approach can cause the tem-
perature head to predict extremely large values for uncertain tokens. We incorporate Dynamic
Fine-Tuning (DFT) Wu et al. (2025), which re-weights the training loss to focus on tokens
where the model has a reasonable prior. This teaches the head to apply high temperatures more
judiciously in situations of calibrated uncertainty, rather than being skewed by outlier signals.

2.2 INFERENCE: DYNAMIC DECODING

At the heart of AutoDeco lies a design optimized for efficiency. By seamlessly integrating all dynamic
adjustments into the model’s standard forward pass, it avoids any separate, costly computational steps.
This architecture results in a negligible latency overhead, typically adding only 1-2% to the total
generation time. As illustrated in Figure 1, the process for each token generation step is as follows:

1. Compute Hidden State: The base LLM computes the final hidden state ht.

2. Predict Decoding Parameters: In parallel, the standard lm head computes the logits while
the AutoDeco heads predict the dynamic parameters. The temperature is predicted directly from the
hidden state. Crucially, mirroring our cascaded training, the top-p head then uses both the hidden
state and the just-predicted temperature as input:

Tt = temp head(ht), Pt = top-p head(ht, Tt) (3)

2The optimization process can also be done without any pesudo-label. Details can be found at Appendix 6.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

This micro-dependency, shown as a dashed arrow in Figure 1, allows for a more nuanced interplay
between the two parameters.

3. Internal Probability Modification: The model immediately uses the predicted Tt and Pt to
internally rescale and filter the logits, producing a final, dynamically-adjusted probability distribution.

Latency and Simplicity. The AutoDeco heads (simple 2-layer MLPs) add negligible computational
overhead compared to the massive transformer layers. This internal architecture results in only 1-2%
additional latency and makes usage incredibly simple. This internal architecture ensures seamless
integration, allowing an AutoDeco-enabled model to serve as a drop-in replacement for its standard
counterpart, requiring no modifications to the user’s existing generation logic.

3 EXPERIMENTS

We conduct extensive experiments to validate AutoDeco, structuring our evaluation around its core
contributions to performance, efficiency, and a surprising capability that emerged as a byproduct.

• In Section 3.2.1, we demonstrate the superior performance of AutoDeco. It not only
substantially outperforms standard, non-expert decoding baselines (Greedy Search and
Default Sampling) but also matches or even slightly surpasses the performance of optimal
static hyperparameters found through an exhaustive expert-guided tuning.

• Following this, in Section 3.2.2, we analyze its practical efficiency and confirm that AutoDeco
introduces a minimal computational burden, with a marginal latency increase of 1-2% and a
negligible memory footprint.

• We present our most striking finding in Section 3.3: the emergent capability of AutoDeco to
interpret natural language commands to dynamically steer its own generation style, a crucial
step towards more intuitive and controllable AI.

3.1 EXPERIMENTAL SETUP

Models To demonstrate broad applicability, we select a representative model from three of the most
popular open-source model families. All AutoDeco heads are trained on top of the official pre-trained
checkpoints of these models:

• Llama-3.1-Nemotron-Nano-8B-v13(Bercovich et al., 2025): A general-purpose model from the
widely-used Llama family, developed by Nvidia (hereinafter Llama-Nemotron-8B).

• R1-Distill-Qwen-7B4(Guo et al., 2025): A distilled model from the Qwen family developed by
DeepSeek, known for its strong reasoning capabilities.

• GPT-Oss-20B5(Agarwal et al., 2025): A MoE model with 20B parameters released by OpenAI.

Datasets The models are trained on a focused domain and evaluate on a wide range of tasks to test
for generalization.

• Training Data: The AutoDeco heads are trained on a specialized dataset of 10,000 correct reasoning
trajectories. These trajectories were generated by sampling solutions from our three base models
on problems from the DeepMath-103K dataset (He et al., 2025)6.

• Evaluation Benchmarks: We evaluate on a diverse suite of eight benchmarks, split into two
categories to assess both in-domain and out-of-domain performance:
– In-Domain (Math): AIME (24+25), BRUMO25, HMMT25 (Balunović et al., 2025), and

BeyondAIME (ByteDance-Seed, 2025).7

– Out-of-Domain (General Tasks): GPQA-Diamond (Rein et al., 2024) and MMLU-Pro (Wang
et al., 2024) (QA) , LiveCodeBenchV6 (Naman Jain, 2024) (Code), and IFEval (Zhou et al.,
2023)(Instruction Following).

3https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1
4https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
5https://huggingface.co/openai/gpt-oss-20b
6https://huggingface.co/datasets/zwhe99/DeepMath-103K
7We focus on these recent, hard benchmarks to mitigate the risk of data leakage issues in older datasets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 1: Pass@1 accuracy on mathematical reasoning benchmarks. AutoDeco consistently outper-
forms both greedy Search and Default Sampling methods across various models.

Model Method AIME BRUMO25 HMMT25 BeyondAIME Average

Llama-Nemotron-8B
Greedy Search 51.67 56.67 26.67 35.00 42.50
Default Sampling 50.84±1.44 57.89±1.46 29.82±1.60 31.82±0.40 42.59
AutoDeco (Ours) 56.30±1.08 60.49±1.17 34.56±1.06 34.38±0.54 46.43

R1-distill-Qwen-7B
Greedy Search 38.33 43.33 16.67 24.00 30.58
Default Sampling 43.49±1.38 49.01±1.10 22.32±0.83 24.21±0.79 34.76
AutoDeco (Ours) 47.37±0.92 52.10±0.92 24.06±0.41 25.98±0.73 37.38

GPT-Oss-20B
Greedy Search 56.67 66.67 46.67 36.00 51.50
Default Sampling 69.61±1.32 67.03±1.12 44.24±2.28 45.69±0.13 56.64
AutoDeco (Ours) 72.18±1.13 68.12±0.66 46.05±1.42 45.38±0.57 57.93

Table 2: Pass@1 accuracy on general-domain benchmarks. AutoDeco shows exciting generalization
performance across General QA, Code Generation, and Instruction Following tasks.

Model Method GPQA-Diamond MMLU-Pro LiveCodeBenchV6 IFEval Average

Llama-Nemotron-8B
Greedy Search 51.01 52.00 19.17 71.53 48.43
Default Sampling 44.93 54.00 21.22 65.25 46.35
AutoDeco (Ours) 50.57 55.85 21.64 70.98 49.76

R1-distill-Qwen-7B
Greedy Search 37.87 47.20 49.13 32.90 39.32
Default Sampling 47.41 47.65 53.00 32.35 42.47
AutoDeco (Ours) 48.79 50.50 53.29 34.01 44.43

GPT-Oss-20B
Greedy Search 59.60 67.00 69.69 29.94 56.56
Default Sampling 65.67 68.00 70.15 30.68 58.63
AutoDeco (Ours) 66.40 69.37 71.32 30.77 59.47

Baselines and Evaluation We evaluate AutoDeco against two standard, non-expert decoding
strategies: Greedy Search and Default Sampling (temperature=1.0, top-p=1.0). Furthermore, to
establish a practical upper bound, we also compare against an Expert-Guided Tuning. It is crucial
to note that this expert-tuned baseline is an oracle setting, as it involves finding the optimal static
hyperparameters by tuning on the test set—a process that is infeasible in real-world applications.

Our primary metric is Pass@1 accuracy, estimated via oversampling with 128 samples per problem
(with 8 random seeds, 16 samples per seed).

3.2 MAIN RESULTS

We present our main findings separately for mathematical reasoning and open-domain question
answering to provide a clear and detailed view of AutoDeco’s performance across different domains..

3.2.1 PERFORMANCE

In-Domain Performance. As shown in Table 1 AutoDeco consistently demonstrates a performance
boost compared to Greedy Search and Default Sampling. For instance, on Llama-Nemotron-8B,
it achieves an average score of 46.43, a substantial improvement of nearly 4 absolute points over
Default Sampling and Greedy Search.

Out-of-Domain Generalization. More strikingly, despite being trained exclusively on mathe-
matical reasoning, AutoDeco demonstrates powerful zero-shot generalization to a diverse set of
out-of-domain tasks (Table 2). It consistently secures the highest average scores across general QA,
code generation, and instruction following. This strong performance reveals two interesting patterns.

First, the magnitude of improvement is remarkably consistent across domains. For example, on
Llama-Nemotron-8B, AutoDeco improves the average score on general tasks by 3.4 points over
Default Sampling—a gain nearly identical to that seen in the math domain. This suggests that the
benefits of dynamic decoding are fundamental and not tied to a specific task type.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(a) Llama-Nemotron-8B with AutoDeco.

(b) R1-Distill-Qwen-7B with AutoDeco.

Figure 2: Expert-Guided Tuning Comparison with Search Interval of 0.1. Temperature is adjusted
first (setting top-p to 1.0), and the selection is made based on the best performance of temperature
to conduct the search for top-p. AutoDeco achieves competitive performance without requiring any
prior empirical tuning or domain-specific expert knowledge.

Second, AutoDeco shows an ability to dynamically arbitrate between deterministic and stochastic
strategies. On general tasks, Default Sampling is not always better than Greedy Search (e.g., on
Llama-Nemotron-8B for GPQA-Diamond and IFEval). In these cases, AutoDeco learns to predict
more deterministic, low-temperature parameters, allowing it to match or exceed the performance of
the stronger greedy baseline. Conversely, when stochasticity is beneficial, it raises the temperature to
outperform Default Sampling.

The above findings suggest that AutoDeco is not simply learning “what” to generate, but rather the
fundamental “meta-skill of how” to generate text effectively. By training on a high-signal domain
like mathematics, it learns universal principles for balancing exploration and exploitation. We will
further discuss this in Sec. 3.3, and this finding challenges the conventional assumption that adaptive
decoding requires broad, task-matched supervision, and instead points toward a more efficient,
modular paradigm for real “end-to-end” controllable generation.

Comparison with Expert-Guided Tuning. In real-world applications, developers often undertake
a laborious tuning process to find task-specific, optimal static hyperparameters. To assess how
AutoDeco compares to this best-case scenario, we simulate an expert with an unfair advantage: access
to a test-set oracle. As shown in Figure 2, we first perform a fine-grained search to find the optimal
static temperature on the test set, and then, using that temperature, find the optimal top-p. This
process represents the practical upper bound for any static decoding strategy.

The results are striking. AutoDeco’s single-pass performance is nearly identical to this oracle-tuned
baseline, with the performance gap consistently less than one point across all models and datasets.
Given that the Expert-Guided Tuning relies on “hacking the test set”, a process impossible in any
real-world scenario where the test data is unknown, we can confidently assert that AutoDeco is
effectively superior to any feasible expert-tuning strategy in practice.

Furthermore, the figure highlights the fundamental limitation of static decoding: the optimal hyper-
parameters are extremely task-dependent. For instance, Llama-Nemotron-8B requires drastically
different settings for BRUMO25 (T = 0.8, P = 0.9) versus GPQA-Diamond (T = 0.3, P = 0.6).
However, in real-world scenarios, a model developer has no way to switch hyperparameters based on
a user’s query type. AutoDeco elegantly solves this problem. By achieving near-oracle performance
automatically and on-the-fly for any task, it provides the optimal and, frankly, only practical solution
for developers seeking robust, high-performance generation across diverse user inputs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 3: FLOPs, Memory Usage and latency (1k tokens) across various prompt length for R1-Distill-
Qwen-7B with/without temp head and top-p head.

Metrics Method 1k 2k 4k 8k 16k 24k

FLOPs Default Sampling 2.89e+13 4.34e+13 7.23e+13 13.03e+13 24.61e+13 36.19e+13
AutoDeco (Ours) 2.89e+13 4.34e+13 7.24e+13 13.03e+13 24.62e+13 36.20e+13

Latency (s) Default Sampling 18.23 18.86 18.93 19.72 22.11 25.76
AutoDeco (Ours) 18.84 19.10 19.43 20.03 22.36 26.05

Memory (MB) Default Sampling 15546 16032 17130 19098 23182 27262
AutoDeco (Ours) 15550 16036 17134 19102 23183 27266

Figure 3: Ablation study on AutoDeco
architecture designs. Joint optimization
achieves the highest AIME Score.

Ablation Study. A natural question is what role the
temperature and top-p heads play individually. To isolate
their effects, we conduct an ablation study, with the results
presented in Figure 3. The most striking finding is the
remarkable effectiveness of each component in isolation.
Using either the temperature head or the top-p head alone
achieves an average performance gain of approximately
3-3.5 absolute points over the Default Sampling baseline.

This result is highly significant. It demonstrates that sub-
stantial improvements in decoding do not require a sophis-
ticated architecture. A single, lightweight prediction head
is sufficient to dramatically outperform standard static
decoding methods.

Of course, while each head is powerful on its own, our
results also confirm that the full AutoDeco model, with both heads, yields the best performance. They
provide complementary benefits, allowing for even finer-grained control over the generation process
to achieve optimal results.

3.2.2 EFFICIENCY

A critical advantage of AutoDeco is its computational efficiency. To quantify this, we evaluated its
overhead against Default Sampling across three key metrics, with results summarized in Table 3.

The analysis shows that the additional computational burden is minimal. The FLOPs are virtually
identical to the baseline, and the memory footprint increases by a mere 4 MB, an insignificant amount
for modern hardware. The impact on latency is also negligible. This overhead remains consistently
low regardless of prompt length, adding a consistent overhead of 0.29-0.6 s/k tokens, which translates
to an average relative increase of just 1.7%.

These results empirically validate that AutoDeco is a lightweight enhancement. When considering
the substantial performance gains and the convenience of automatic, task-agnostic hyperparameter
tuning demonstrated in Sec. 3.2.1, this minor computational cost becomes trivial. AutoDeco thus
presents a highly practical solution, offering significant benefits for a negligible price.

The analysis regarding training efficiency can be found in the Appendix 8.

3.3 EMERGENT CONTROL OF DECODING VIA NATURAL LANGUAGE

Beyond outperforming static methods, our most significant finding is a remarkable emergent capabil-
ity: AutoDeco learns to interpret abstract, meta-level commands to guide its own decoding behavior.
This transforms the model from a passive generator into an active participant that can respond to user
intent about the desired generation style, a foundational step towards truly end-to-end generation.

Figure 4 provides a striking qualitative demonstration of this capability. On the left, a creative prompt
to “Design a unique drink for each emotion” elicits a dynamic but baseline set of temperature and
top-p values (solid lines). In the middle panel, when we append the command, “I hope the answers
can be more innovative and diverse,” the model’s response is immediate and visible: the predicted

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Prompt: Design a unique

drink for each emotion (joy,

anger, sadness, …

Prompt : … I hope the

answers can be more

innovative and diverse.

…crafted with the flavor , appearance , and sensory experience …

Prompt : … I hope the

answers can be as certain as

possible.

…crafted with the flavor , appearance , and sensory experience … …crafted with the flavor , appearance , and sensory experience …

Figure 4: AutoDeco with Diversity Commands. This figure shows the token-level T/P predictions
for the same prompt under three conditions. (Left) Baseline: The model’s default dynamic T/P values
(solid lines). (Middle) High-Diversity Command: When asked to be “more innovative and diverse,”
the model elevates its T/P predictions (dotted lines) above the baseline. (Right) Low-Diversity
Command: When asked to be “as certain as possible,” the model suppresses its T/P predictions.

Table 4: Quantitative Impact of Diversity Commands on Predicted Decoding Parameters (N=100).

Command Avg. Temp. ∆ Temp. Consistency (T) Avg. top-p ∆ top-p Consistency (P)

Baseline (No Cmd) 0.59 - - 0.84 - -
Low Diversity 0.48 ↓ 0.11 99% 0.75 ↓ 0.09 99%
High Diversity 0.66 ↑ 0.07 90% 0.89 ↑ 0.05 96%

T and P values (dotted lines) are consistently elevated above the baseline, effectively “turning up”
its own creativity. Conversely, on the right, the command “I hope the answers can be as certain as
possible” causes the model to autonomously suppress its T and P predictions, “turning down” its
randomness to favor more deterministic outputs. To our knowledge, this is the first demonstration
of an LLM directly translating natural language intent for creativity and certainty into its internal
sampling parameters on a token-by-token basis.

To verify that this is not an anecdotal result, we conducted a large-scale quantitative analysis. We
prepended commands for “high” or “low” diversity to a set of 100 questions and aggregated the
results, presented in Table 4. The data confirms the effect is systematic and robust. The “low diversity”
command prompted a substantial drop in average temperature from 0.59 to 0.48 with remarkable
99% consistency across all questions. The “high diversity” command triggered a similarly consistent
increase in both temperature and top-p, proving that the model has learned a generalizable mapping
from abstract language to its internal generation mechanics.

This result provides strong evidence of a learned semantic mapping. However, this emergent capability
is still nascent, as the model was not explicitly fine-tuned on such instructions. For instance, when
prompted to “ensure your generation has no randomness,” we observed a modest but directionally
correct drop in the average predicted temperature of 0.15, rather than the ideal of zero. This
highlights a clear path forward: with targeted instruction-following fine-tuning, AutoDeco could
enable a new paradigm where users achieve fine-grained control over creativity and determinism
simply by describing their intent within the prompt, transforming decoding from a hidden technical
setting into an intuitive, conversational command.

4 RELATED WORKS

The process of generating text from a language model, known as decoding, is a critical step that
significantly influences the quality of the output Wang et al. (2025); Shi et al. (2024). Existing
decoding strategies can be broadly categorized into deterministic, stochastic sampling, and model-
based approaches, most of which traditionally rely on static, predefined configurations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Deterministic Decoding Deterministic methods produce a single, reproducible output for a given
input. The most fundamental of these is Greedy Search, which selects the token with the highest
probability at each step. Another classic one is beam search, which maintains a “beam” of k most
probable partial sequences to explore a larger search space (Sutskever et al., 2014; Graves, 2013).
However, both of them are known to favor dull, high-frequency phrases Vijayakumar et al. (2016),
this results in their good performance on Machine Translation and QA tasks, but not suitable for
open-ended generation tasks. A more recent line of deterministic methods, Contrastive Search(Su &
Collier, 2022; Su et al., 2022), directly optimizes for open-ended generation quality by penalizing
tokens that are too similar to previous tokens, effectively mitigating the degeneration problem.

Stochastic Sampling To inject diversity, stochastic sampling methods are essential. These methods
sample from the model’s output probability distribution, which is typically modulated by some
hyperparameters. However, unrestricted sampling can produce incoherent text. To counter this,
truncation methods were developed. Top-K sampling(Fan et al., 2018) restricts the sampling pool
to the k most likely tokens, while the more adaptive Nucleus Sampling (top-p)(Holtzman et al.)
selects the smallest set of tokens whose cumulative probability exceeds a threshold p. Despite their
power, as our introduction highlights, finding the optimal configuration for these hyperparameters is
a non-trivial, task-dependent manual process (Shi et al., 2024).

Model-Based Decoding To gain more fine-grained control over generation, a third category of
methods modifies the model’s output distribution using external signals or auxiliary models. Early
examples include Plug-and-Play Language Models, which leverage attribute models to steer
generation towards desired topics (Dathathri et al.). More recently, Contrastive Decoding uses
a smaller “amateur” model to steer a larger “expert” model away from generic text (Li et al.,
2023; Chuang et al., 2023). Similarly, Speculative Decoding utilizes a faster “draft” model to
generate sequences of tokens that are then verified by the larger model, significantly accelerating
inference (Leviathan et al., 2023; Chen et al., 2023). While they are effective, they still operate under
a fixed algorithmic framework: the choice of the “guidance model” itself acts as another form of
hyperparameter. For example, in contrastive decoding and speculative decoding, the authors suggest
that using a smaller LM of the same architecture as the guidance model yields the best results.

Despite this rich landscape of research, a fundamental limitation persists: all these methods rely
on a static decoding strategy. Whether it’s a fixed algorithm (like Beam Search) or a fixed set of
hyperparameters, this “one-size-fits-all” approach is inherently suboptimal. In contrast, AutoDeco
proposes a paradigm shift. Instead of relying on fixed hyperparameters or predefined heuristics, we
empower the model to dynamically control its own stochasticity at each generation step.

5 CONCLUSION AND FUTURE WORK

In this work, we challenged that the “end-to-end” label for LLM is a misnomer. We introduced
AutoDeco, a truly “end-to-end” architecture that empowers models to dynamically control their
own decoding strategy. By learning to predict token-level temperature and top-p values, AutoDeco
transforms decoding from a manual, static process into a dynamic, self-regulating pipeline.

Our extensive experiments reveal three key contributions. First, AutoDeco demonstrates remark-
able generalization, consistently outperforming standard decoding methods across diverse models
and tasks, even matching oracle-tuned baselines without any task-specific tuning. Second, this
performance is achieved with negligible computational overhead, making it a practical, drop-in
enhancement for any transformer-based model. Most significantly, we discovered a remarkable emer-
gent capability: AutoDeco learns to interpret natural language commands to steer its own generation
style, a foundational step towards more intuitive human-AI interaction.

Future Work. The emergent control we observed is a promising but nascent capability. Our immediate
future work will focus on explicitly fine-tuning AutoDeco with instruction-based data to achieve more
precise and granular control over generation. This path leads toward a new paradigm where users can
conversationally specify not just what they want, but how they want it, transforming LLMs into truly
collaborative and controllable partners.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

STATEMENTS

ETHICS STATEMENT

The authors of this paper have read and agree to abide by the ICLR Code of Ethics. We believe that
this work does not raise any significant ethical concerns. Our research did not involve experiments
with human subjects, nor did it process sensitive personal data. All datasets used in our study are
publicly available. We foresee no direct negative societal impacts from the methods and potential
applications presented in this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. We have provided comprehensive
experimental details in the main paper and Appendix 7, including dataset preprocessing proce-
dures, model architecture specifications, full training details, and all hyperparameter configurations.
Furthermore, we will make our source code and model checkpoints publicly available.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949, 2025.

ByteDance-Seed. Beyondaime: Advancing math reasoning evaluation beyond high school olympiads.
https://huggingface.co/datasets/ByteDance-Seed/BeyondAIME, 2025.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. In The Twelfth
International Conference on Learning Representations, 2023.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. In International Conference on Learning Representations.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, 2018.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

10

https://matharena.ai/
https://matharena.ai/
https://huggingface.co/datasets/ByteDance-Seed/BeyondAIME

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

Alex Gu Wen-Ding Li Fanjia Yan Tianjun Zhang Sida Wang Armando Solar-Lezama Koushik Sen
Ion Stoica Naman Jain, King Han. Livecodebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Yixuan Su and Nigel Collier. Contrastive search is what you need for neural text generation. arXiv
preprint arXiv:2210.14140, 2022.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. Advances in Neural Information Processing Systems, 35:
21548–21561, 2022.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence
models. arXiv preprint arXiv:1610.02424, 2016.

Haoran Wang, Xiongxiao Xu, Philip S Yu, and Kai Shu. Beyond tokens: A survey on de-
coding methods for large language models and large vision-language models. April 2025.
doi: 10.36227/techrxiv.174495300.03784996/v1. URL http://dx.doi.org/10.36227/
techrxiv.174495300.03784996/v1.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
perspective with reward rectification, 2025. URL https://arxiv.org/abs/2508.05629.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

11

https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
http://dx.doi.org/10.36227/techrxiv.174495300.03784996/v1
http://dx.doi.org/10.36227/techrxiv.174495300.03784996/v1
https://arxiv.org/abs/2508.05629

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CONTENTS OF THE PAPER

1 Introduction 1

2 AudoDeco 2
2.1 Training Strategy . 2
2.2 Inference: Dynamic Decoding . 3

3 Experiments 4
3.1 Experimental Setup . 4
3.2 Main Results . 5

3.2.1 Performance . 5
3.2.2 Efficiency . 7

3.3 Emergent Control of Decoding via Natural Language 7

4 Related Works 8

5 Conclusion and Future Work 9

6 Online Optimization Nature of AutoDeco 12

7 Experimental Setup 14

8 Supplementary discussion of Efficiency 14

9 Declaration of LLM usage 14

6 ONLINE OPTIMIZATION NATURE OF AutoDeco

Recall that we formalize two optimization problems to update the temperature head and the top-p
head:

• For Temperature (T ∗
t): We find the temperature that maximizes the softmax probability of

the ground-truth token y∗t .

T ∗
t = argmax

T>0

exp(logits(y∗t)/T)∑
v∈V exp(logits(v)/T)

(4)

• For Top-p (p∗t): Using the distribution shaped by T ∗
t , we find the smallest cumulative

probability (p) that defines a nucleus Vp still containing the ground-truth token y∗t .

p∗t = min{p ∈ [0, 1] | y∗t ∈ Vp} (5)

We will show here that the optimization process can be done directly in the normal fine-tuning training
with no need for any advance label calculation.
Proposition 1 (Equivalence of Temperature Optimization Paradigms). Let {logits(v)}v∈V denote
the logits over the vocabulary V , and let y∗ ∈ V be the ground-truth token. Define the temperature-
scaled softmax probability of the ground-truth token as:

p(y∗ | T) = exp(logits(y∗)/T)∑
v∈V exp(logits(v)/T)

, T > 0.

Then, the optimal temperature T ∗ that maximizes p(y∗ | T) is equivalent to the temperature that
minimizes the cross-entropy loss, LCE(T) = − log p(y∗ | T). That is,

argmax
T>0

p(y∗ | T) ≡ argmin
T>0

LCE(T),

and both optimization procedures yield the same solution T ∗.

Proof. We will demonstrate that the first-order optimality condition is identical for both optimization
objectives.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

1. Optimization via Cross-Entropy Loss Minimization The objective is to find T ∗ =
argmin

T>0
LCE(T). The cross-entropy loss is defined as:

LCE(T) = − log p(y∗ | T) = − log

(
exp(logits(y∗)/T)∑
v∈V exp(logits(v)/T)

)
This can be rewritten as:

LCE(T) = − logits(y∗)

T
+ log

(∑
v∈V

exp

(
logits(v)

T

))
To find the minimum, we take the partial derivative of LCE with respect to T and set it to zero.

∂LCE

∂T
=

∂

∂T

(
− logits(y∗)

T
+ log

(∑
v∈V

exp

(
logits(v)

T

)))

=
logits(y∗)

T 2
+

1∑
v∈V exp(logits(v)/T)

·
∑
v∈V

(
exp

(
logits(v)

T

)
·
(
− logits(v)

T 2

))
=

logits(y∗)

T 2
− 1

T 2

∑
v∈V logits(v) exp(logits(v)/T)∑

u∈V exp(logits(u)/T)

=
1

T 2

(
logits(y∗)−

∑
v∈V

logits(v)
exp(logits(v)/T)∑

u∈V exp(logits(u)/T)

)
Let p(v | T) be the softmax probability of a token v at temperature T . Let Ev∼p(·|T)[logits] =∑

v∈V logits(v)p(v | T) denote the expected value of the logits under the softmax distribution. The
derivative then becomes:

∂LCE

∂T
=

1

T 2

(
logits(y∗)− Ev∼p(·|T)[logits]

)
Setting the derivative to zero yields the optimality condition:

logits(y∗) = Ev∼p(·|T)[logits]

2. Optimization via Probability Maximization The objective is to find T ∗ = argmax
T>0

p(y∗ | T).

The probability of the ground-truth token is:

p(y∗ | T) = exp(logits(y∗)/T)∑
v∈V exp(logits(v)/T)

To find the maximum, we take the partial derivative of p(y∗ | T) with respect to T and set it to zero.
Using the quotient rule:

∂p(y∗ | T)
∂T

= − 1

T 2
· exp(logits(y∗)/T)∑

v∈V exp(logits(v)/T)

[
logits(y∗)−

∑
v∈V logits(v) exp(logits(v)/T)∑

u∈V exp(logits(u)/T)

]
= −p(y∗ | T)

T 2

(
logits(y∗)−

∑
v∈V

logits(v)p(v | T)

)
This simplifies to:

∂p(y∗ | T)
∂T

= −p(y∗ | T)
T 2

(
logits(y∗)− Ev∼p(·|T)[logits]

)
Setting the derivative to zero, and knowing that p(y∗ | T) > 0 and T 2 > 0, we arrive at the same
optimality condition:

logits(y∗) = Ev∼p(·|T)[logits]
Since both optimization objectives lead to the identical first-order optimality condition, the optimal
temperature T ∗ that minimizes the cross-entropy loss is the same as the one that maximizes the
softmax probability of the ground-truth token.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

7 EXPERIMENTAL SETUP

Training. For the training of all models with our AutoDeco framework, we employed a consistent
hyperparameter configuration to ensure fair comparison. To efficiently manage memory and scale our
experiments, we utilized the DeepSpeed library with the ZeRO Stage 3 optimization. The specific
training settings are detailed below:

• Training Framework: DeepSpeed (ZeRO Stage 3) for DeepSeek-R1-Distill-Qwen-7B
and Llama-3.1-Nemotron-8B-Nano-v1. DeepSpeed (ZeRO Stage 2) for the MoE model
GPT-Oss-20B.

• Hardware: 8 GPUs
• Batch Size: A per-device batch size of 1 with 4 gradient accumulation steps, resulting in an

effective global batch size of 32.
• Optimizer: AdamW
• Learning Rate: 5× 10−6.
• Max Token Length: 16384.

For each task, we calculated the Pass@1 through oversampling (16 times). To ensure the results are
solid, we do 8 runs on each experiment with different seeds.

Datasets. Our experimental configuration is detailed as follows:

• MMLU-Pro: We used a comprehensive and evenly distributed “lite” subset 8 for evaluation
to ensure a balanced assessment across all subject areas.

• LiveCodeBench: The V6 version of the dataset was used. The evaluation window for this
benchmark was initiated on September 1, 2023, and included all subsequent data.

• Others: All the others selected datasets were processed using their full sets.

8 SUPPLEMENTARY DISCUSSION OF EFFICIENCY

Training Efficiency. Given AutoDeco’s superior decoding performance and minimal deployment
overhead, a natural question arises: What is the cost of endowing a language model with this adaptive
decoding capability? Remarkably, the answer is negligible. AutoDeco is a resource-efficient, general-
purpose solution for adaptive decoding optimization. Our experiments reveal two key practical
advantages:

• Label-free supervision: AutoDeco eliminates the need to pre-compute or invoke any external
optimization modules to generate supervision signals (e.g., temperature or top-p labels) for fine-
tuning. In Proposition 1, we formally demonstrate that the temperature head can be implicitly
updated by simply scaling the model’s predicted logits by the inverse of its own output.

• Data efficiency: We show the training curves of all models in Figure 5, and AutoDeco achieves
strong performance within about only 6K training samples and 400 steps, making it effortlessly
be integrated into any pre-trained LLMs.

9 DECLARATION OF LLM USAGE

The LLM is used only for writing, editing, or formatting purposes and does not impact the core
methodology, scientific rigorousness, or originality of the research.

8https://huggingface.co/datasets/koiwave/100MMLUpro

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 5: AutoDeco’s training curves on all models. Training loss curve across models. The loss
converges effectively, indicating resource-friendly training of AutoDeco.

15

	Introduction
	AudoDeco
	Training Strategy
	Inference: Dynamic Decoding

	Experiments
	Experimental Setup
	Main Results
	Performance
	Efficiency

	Emergent Control of Decoding via Natural Language

	Related Works
	Conclusion and Future Work
	Online Optimization Nature of AutoDeco
	Experimental Setup
	Supplementary discussion of Efficiency
	Declaration of LLM usage

