
Published as a conference paper at ICLR 2021

SMIRL: SURPRISE MINIMIZING REINFORCEMENT
LEARNING IN UNSTABLE ENVIRONMENTS

Glen Berseth
UC Berkeley

Daniel Geng
UC Berkeley

Coline Devin
UC Berkeley

Nicholas Rhinehart
UC Berkeley

Chelsea Finn
Stanford

Dinesh Jayaraman
University of Pennsylvania

Sergey Levine
UC Berkeley

ABSTRACT

Every living organism struggles against disruptive environmental forces to carve
out and maintain an orderly niche. We propose that such a struggle to achieve and
preserve order might offer a principle for the emergence of useful behaviors in
artificial agents. We formalize this idea into an unsupervised reinforcement learn-
ing method called surprise minimizing reinforcement learning (SMiRL). SMiRL
alternates between learning a density model to evaluate the surprise of a stimulus,
and improving the policy to seek more predictable stimuli. The policy seeks out
stable and repeatable situations that counteract the environment’s prevailing sources
of entropy. This might include avoiding other hostile agents, or finding a stable,
balanced pose for a bipedal robot in the face of disturbance forces. We demonstrate
that our surprise minimizing agents can successfully play Tetris, Doom, control
a humanoid to avoid falls, and navigate to escape enemies in a maze without any
task-specific reward supervision. We further show that SMiRL can be used together
with standard task rewards to accelerate reward-driven learning.

1 INTRODUCTION

Organisms can carve out environmental niches within which they can maintain relative predictability
amidst the entropy around them (Boltzmann, 1886; Schrödinger, 1944; Schneider & Kay, 1994;
Friston, 2009). For example, humans go to great lengths to shield themselves from surprise — we
band together to build cities with homes, supplying water, food, gas, and electricity to control the
deterioration of our bodies and living spaces amidst heat, cold, wind and storm. These activities
exercise sophisticated control over the environment, which makes the environment more predictable
and less “surprising” (Friston, 2009; Friston et al., 2009). Could the motive of preserving order guide
the automatic acquisition of useful behaviors in artificial agents?

We study this question in the context of unsupervised reinforcement learning, which deals with the
problem of acquiring complex behaviors and skills with no supervision (labels) or incentives (external
rewards). Many previously proposed unsupervised reinforcement learning methods focus on novelty-
seeking behaviors (Schmidhuber, 1991; Lehman & Stanley, 2011; Still & Precup, 2012; Bellemare
et al., 2016; Houthooft et al., 2016; Pathak et al., 2017). Such methods can lead to meaningful
behavior in simulated environments, such as video games, where interesting and novel events mainly
happen when the agent executes a specific and coherent pattern of behavior. However, we posit that in
more realistic open-world environments, natural forces outside of the agent’s control already offer an
excellent source of novelty: from other agents to unexpected natural forces, agents in these settings
must contend with a constant stream of unexpected events. In such settings, rejecting perturbations
and maintaining a steady equilibrium may pose a greater challenge than novelty seeking. Based on
this observation, we devise an algorithm, surprise minimizing reinforcement learning (SMiRL), that
specifically aims to reduce the entropy of the states visited by the agent.

SMiRL maintains an estimate of the distribution of visited states, pθ(s), and a policy that seeks to
reach likely future states under pθ(s). After each action, pθ(s) is updated with the new state, while
the policy is conditioned on the parameters of this distribution to construct a stationary MDP. We
illustrate this with a diagram in Figure 1a. We empirically evaluate SMiRL in a range of domains that

1

Published as a conference paper at ICLR 2021

(a) (b)
Figure 1: Left: SMiRL observes a state st and computes a reward rt as the negative surprise under its current
model pθt−1(st), given by log pθt−1(st). Then the model is updated on the agents state history, including st,
to yield pθt . The policy πφ(at|st, θt, t) then generates the action at. Right: This procedure leads to complex
behavior in environments where surprising events happen on their own. In this cartoon, the robot experiences a
wide variety of weather conditions when standing outside, but can avoid these surprising conditions by building
a shelter, where it can reach a stable and predictable states in the long run.

are characterized by naturally increasing entropy, including video game environments based on Tetris
and Doom, and simulated robot tasks that require controlling a humanoid robot to balance and walk.
Our experiments show that, in environments that satisfy the assumptions of our method, SMiRL
automatically discovers complex and coordinated behaviors without any reward signal, learning
to successfully play Tetris, shoot enemies in Doom, and balance a humanoid robot at the edge
of a cliff. We also show that SMiRL can provide an effective auxiliary objective when a reward
signal is provided, accelerating learning in these domains substantially more effectively than pure
novelty-seeking methods. Videos of our results are available online1

2 RELATED WORK

Prior work on unsupervised learning has proposed algorithms that learn without a reward function,
such as empowerment (Klyubin et al., 2005; Mohamed & Jimenez Rezende, 2015) or intrinsic
motivation (Chentanez et al., 2005; Oudeyer & Kaplan, 2009; Oudeyer et al., 2007). Intrinsic
motivation has typically focused on encouraging novelty-seeking behaviors by maximizing model
uncertainty (Houthooft et al., 2016; Still & Precup, 2012; Shyam et al., 2018; Pathak et al., 2019), by
maximizing model prediction error or improvement (Lopes et al., 2012; Pathak et al., 2017), through
state visitation counts (Bellemare et al., 2016), via surprise maximization (Achiam & Sastry, 2017b;
Schmidhuber, 1991; Sun et al., 2011), and through other novelty-based reward bonuses (Lehman &
Stanley, 2011; Achiam & Sastry, 2017a; Burda et al., 2018a; Kim et al., 2019). We do the opposite.
Inspired by the free energy principle (Friston, 2009; Friston et al., 2009; Ueltzhöffer, 2018; Faraji
et al., 2018; Friston et al., 2016) including recent methods that train policies using RL (Tschantz et al.,
2020a;b; Annabi et al., 2020) that encode a prior over desired observations, we instead incentivize
an agent to minimize surprise over the distribution of states generated by the policy in unstable
environments, and study the resulting behaviors. In such environments it is non-trivial to achieve low
entropy state distributions, which we believe are more reflective of the real world. Learning progress
methods that minimize model parameter entropy (Lopes et al., 2012; Kim et al., 2020) avoid the
issues novelty-based methods have with noisy distractors. These methods are based on learning the
parameters of the dynamics where our method is learning to control the marginal state distribution.

Several works aim to maximize state entropy to encourage exploration (Lee et al., 2019; Hazan et al.,
2019). Our method aims to do the opposite, minimizing state entropy. Recent work connects the free
energy principle, empowerment and predictive information maximization under the same framework
to understand their differences (Biehl et al., 2018). Existing work has also studied how competitive
self-play and competitive, multi-agent environments can lead to complex behaviors with minimal
reward information (Silver et al., 2017; Bansal et al., 2017; Sukhbaatar et al., 2017; Baker et al., 2019;
Weihs et al., 2019; Chen et al., 2020). Like these works, we also consider how complex behaviors
can emerge in resource-constrained environments, but instead of multi-agent competition, we utilize
surprise minimization to drive the emergence of complex skills.

1https://sites.google.com/view/surpriseminimization

2

Published as a conference paper at ICLR 2021

3 SURPRISE MINIMIZING AGENTS

We propose surprise minimization as a means to operationalize the idea of learning useful behaviors
by seeking out low entropy state distributions. The long term effects of actions on surprise can be
subtle, since actions change both (i) the state that the agent is in, and (ii) its beliefs, represented
by a model pθ(s), about which states are likely under its current policy. SMiRL induces the agent
to modify its policy π so that it encounters states s with high pθ(s), as well as to seek out states
that will change the model pθ(s) so that future states are more likely. In this section, we will first
describe what we mean by unstable environments and provide the surprise minimization problem
statement, and then present our practical deep reinforcement learning algorithm for learning policies
that minimize surprise.

Many commonly used reinforcement learning benchmark environments are stable, in the sense the
agent remains in a narrow range of starting states unless it takes coordinated and purposeful actions.
In such settings, unsupervised RL algorithms that seek out novelty can discover meaningful behaviors.
However, many environments – including, as we argue, those that reflect properties commonly found
in the real world, – are unstable, in the sense that unexpected and disruptive events naturally lead to
novelty and increased state entropy even if the agent does not carry out any particularly meaningful
or purposeful behavior. In unstable environments, minimizing cumulative surprise requires taking
actions to reach a stable distribution of states, and then acting continually and purposefully to stay in
this distribution. An example of this is illustrated in Figure 1b: the agent’s environment is unstable
due to varied weather. If the robot builds a shelter, it will initially experience unfamiliar states, but
in the long term the observations inside the shelter are more stable and less surprising than those
outside. Another example is the game of Tetris (Figure 2), where the environment spawns new blocks
and drops them into random configurations, unless a skilled agent takes actions to control the board.
The challenge of maintaining low entropy in unstable settings forces the SMiRL agent to acquire
meaningful skills. We defer a more precise definition of unstable environments to Section 4, where
we describe several unstable environments and contrast them with the static environments that are
more commonly found in RL benchmark tasks. In static environments, novelty seeking methods
must discover complex behaviors to increase entropy, leading to interesting behavior, while SMiRL
may trivially find low entropy policies. We show that the reverse is true for unstable environments: a
novelty seeking agent is satisfied with watching the environment change around it, while a surprise
minimizing agent must develop meaningful skills to lower entropy.

Problem statement. To instantiate SMiRL, we design a reinforcement learning agent that receives
larger rewards for experiencing more familiar states, based on the history of states it has experienced
during the current episode. This translates to learning a policy with the lowest state entropy. We
assume a fully-observed controlled Markov process (CMP), where we use st to denote the state at
time t, at to denote the agent’s action, p(s0) to denote the initial state distribution, and T (st+1|st, at)
to denote the transition probabilities. The agent learns a policy πφ(a|s), parameterized by φ. The goal
is to minimize the entropy of its state marginal distribution under its current policy πφ at each time
step of the episode. We can estimate this entropy by fitting an estimate of the state marginal dπφ(st) at
each time step t, given by pθt−1

(st), using the states seen so far during the episode, τt = {s1, . . . , st}
that is stationary. The sum of the entropies of the state distributions over an episode can then be
estimated as

T∑
t=0

H(st) = −
T∑
t=0

Est∼dπφ (st)[log dπφ(st)] ≤ −
T∑
t=0

Est∼dπφ (st)[log pθt−1
(st)], (1)

where the inequality becomes an equality if pθt−1(st) accurately models dπφ(st). Minimizing the
right-hand side of this equation corresponds to maximizing an RL objective with rewards:

r(st) = log pθt−1
(st). (2)

However, an optimal policy for solving this problem must take changes in the distribution pθt−1
(st)

into account when selecting actions, since this distribution changes at each step. To ensure that the
underlying RL optimization corresponds to a stationary and Markovian problem, we construct an
augmented MDP to instantiate SMiRL in practice, which we describe in the following section.

3

Published as a conference paper at ICLR 2021

Algorithm 1 SMiRL
1: while not converged do
2: β ← {} . Reset experience
3: for episode = 0, . . . ,M do
4: s0 ∼ p(s0); τ0 ← {s0} . Initialize state
5: s̄0 ← (s0,0, 0) . Initialize aug. state
6: for each t = 0, . . . , T do
7: at ∼ πφ(at|st, θt, t) . Get action
8: st+1 ∼ T (st+1|st, at) . Step dynamics
9: rt ← log pθt(st+1) . SMiRL reward

10: τt+1←τt ∪ {st+1} . Record state
11: θt+1 ← U(τt+1) . Fit model
12: s̄t+1 ← {(st+1, θt+1, tt+1)}
13: β ← β ∪ {(s̄t, at, rt, s̄t+1)}
14: end for
15: end for each
16: φ← RL(φ, β) . Update policy
17: end while

Training SMiRL agents. In order to instanti-
ate SMiRL, we construct an augmented MDP
out of the original CMP, where the reward in
Equation (2) can be expressed entirely as a func-
tion of the state. This augmented MDP has
a state space that includes the original state
st, as well as the sufficient statistics of pθt(s).
For example, if pθt(s) is a normal distribu-
tion with parameters θt, then (θt, t) – the pa-
rameters of the distribution and the number
of states seen so far – represents a sufficient
statistic. Note that it is possible to use other,
more complicated, methods to summarize the
statistics, including reading in the entirety of
τt using a recurrent model. The policy condi-
tioned on the augmented state is then given by
πφ(at|st, θt, t). The parameters of the sufficient
statistics are updated θt =U(τt) using a maxi-
mum likelihood state density estimation process
θt=arg max θ

∑t
n=0 log pθ(sn) over the experience within the episode τt. When (θt, t) is a suf-

ficient statistic, the update may be written as θt = U(st, θt−1, t − 1). Specific update functions
U(τt) used in our experiments are described in Appendix C and at the end of the section. Since the
reward is given by r(st, θt−1, t− 1) = log pθt−1

(st), and θt is a function of st and (θt−1, t− 1), the
resulting RL problem is fully Markovian and stationary, and as a result standard RL algorithms will
converge to locally optimal solutions. Appendix D include details on the MDP dynamics. In Figure 8,
we illustrate the evolution of pθt(s) during an episode of the game Tetris. The pseudocode for this
algorithm is presented in Algorithm 1.

Density estimation with learned representations. SMiRL may, in principle, be used with any
choice of model class for the density model pθt(s). As we show in our experiments, relatively
simple distribution classes, such as products of independent marginals, suffice to run SMiRL in many
environments. However, it may be desirable in more complex environments to use more sophisticated
density estimators, especially when learning directly from high-dimensional observations such as
images. In these cases, we can use variational autoencoders (VAEs) (Kingma & Welling, 2014)
to learn a non-linear state representation. A VAE is trained using the standard ELBO objective to
reconstruct states s after encoding them into a latent representation z via an encoder qω(z|s), with
parameters ω. Thus, z can be viewed as a compressed representation of the state.

When using VAE representations, we train the VAE online together with the policy. This approach
necessitates two changes to the procedure described Algorithm 1. First, training a VAE requires more
data than the simpler independent models, which can easily be fitted to data from individual episodes.
We propose to overcome this by not resetting the VAE parameters between training episodes, and
instead training the VAE across episodes. Second, instead of passing the VAE model parameters to
the policy, we only update a distribution over the VAE latent state, given by pθt(z), such that pθt(z)
replaces pθt(s) in the SMiRL algorithm, and is fitted to only that episode’s (encoded) state history.
We represent pθt(z) as a normal distribution with a diagonal covariance, and fit it to the VAE encoder
outputs. Thus, the mean and variance of pθt(z) are passed to the policy at each time step, along with
t. This implements the density estimate in line 9 of Algorithm 1. The corresponding update U(τt) is:

z0, . . . , zt = E[qω(z|s)] for s ∈ τt, µ = 1/t+1

t∑
j=0

zj , σ = 1/t+1

t∑
j=0

(µ− zj)
2,θt = [µ, σ].

Training the VAE online, over all previously seen data, deviates from the recipe in the previous
section, where the density model was only updated within an episode. In this case the model is
updated after a collection of episodes. This makes the objective for RL somewhat non-stationary and
could theoretically cause issues for convergence, however we found in practice that the increased
representational capacity provides significant improvement in performance.

4

Published as a conference paper at ICLR 2021

4 EVALUATION ENVIRONMENTS

We evaluate SMiRL on a range of environments, from video game domains to simulated robotic
control scenarios. In these unstable environments, the world evolves automatically, without the goal-
driven behavior of the agent, due to disruptive forces and adversaries. Standard RL benchmark tasks
are typically static, in the sense that unexpected events don not happen unless the agent carries out a
specific and coordinated sequence of actions. We therefore selected these environments specifically
to be unstable, as we discuss below. This section describes each environment, with details of the
corresponding MDPs in Appendix B. Illustrations of the environments are shown in Figure 2.

Figure 2: Evaluation environments. Top row, left to right: Tetris environment, VizDoom TakeCover
and DefendTheLine, HauntedHouse with pursuing “enemies,” where the agent can reach a more
stable state by finding the doors and leaving the region with enemies. Bottom row, left to right:
Humanoid next to a Cliff , Humanoid on a Treadmill, Pedestal, Humanoid learning to walk.

Tetris. The classic game offers a naturally unstable environment — the world evolves according
to its own dynamics even in the absence of coordinated agent actions, piling pieces and filling the
board. The agent’s task is to place randomly supplied blocks to construct and eliminate complete
rows. The environment gives a reward of −1 when the agent fails or dies by stacking a column too
high. Otherwise, the agent gets 0.

VizDoom. We consider two VizDoom environments from Kempka et al. (2016): TakeCover and
DefendTheLine where enemies throw fireballs at the agent, which can move around to avoid damage.
TakeCover is unstable and evolving, with new enemies appearing over time and firing at the player.
The agent is evaluated on how many fireballs hit it, which we term the “damage" taken by the agent.

HauntedHouse. This is a partially observed navigation task. The agent (red) starts on the left of
the map, and is pursued by “enemies" (blue). To escape, the agent can navigate down the hallways
and through randomly placed doors (green) to reach the safe room on the right, which the enemies
cannot enter. To get to the safe room the agent must endure increased surprise early on, since the
doors appear in different locations in each episode.

Simulated Humanoid robots. A simulated planar Humanoid agent must avoid falling in the face
of external disturbances (Berseth et al., 2018). We evaluate four versions of this task. For Cliff the
agent is initialized sliding towards a cliff, for Treadmill, the agent is on a small platform moving
backwards at 1 m/s. In Pedestal, random forces are applied to it, and objects are thrown at it. In Walk,
we evaluate how the SMiRL reward stabilizes an agent that is learning to walk. In all four tasks, we
evaluate the proportion of episodes the robot does not fall.

Training Details. For discrete action environments, the RL algorithm used is DQN (Mnih et al.,
2013) with a target network. For the Humanoid domains, we use TRPO (Schulman et al., 2015). For
Tetris and the Humanoid domains, the policies are parameterized by fully connected neural networks,
while VizDoom uses a convolutional network. Additional details are in Appendix Section B.

Environment Stability. In Section 3, we described the connection between SMiRL and unstable
environments. We can quantify how unstable an environment is by computing a relative entropy gap.
We compare the entropy between three methods: entropy minimizing (SMiRL), entropy maximizing
(RND) methods, and an initial random (Random) policy (or, more generally, an uninformed policy,
such as a randomly initialized neural network). In stable environments, an uninformed random policy
would only attain slightly higher state entropy than one that minimizes the entropy explicitly (SMiRL
- Random∼ 0) , whereas a novelty-seeking policy should attain much higher entropy (RND - Random
> 0), indicating a relative entropy gap in the positive direction. In an unstable environment, we

5

Published as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episodes 1e4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

De
at

hs
 %

Tetris: Deaths %

SMiRL (ours)
SMiRL VAE (ours)
SMiRL + ICM (ours)
ICM
RND
Oracle
Oracle (rows cleared)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episodes 1e4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ro
ws

 C
le

ar
ed

 %

Tetris: Rows Cleared %

0 2 4 6 8
Episodes 1e3

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Av
er

ag
e

Da
m

ag
e

DefendTheLine: Damage
SMiRL (ours)
SMiRL + ICM (ours)
ICM
RND
Reward

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episodes 1e4

8

6

4

2

0

Av
er

ag
e

Re
wa

rd

Tetris: Episode Reward

Reward + SMiRL (ours)
Reward + ICM
Reward + RND
Reward

0 2 4 6 8
Episodes 1e3

50

75

100

125

150

175

200

225

Av
er

ag
e

Re
wa

rd

TakeCover: Episode Reward

Reward + SMiRL (ours)
Reward + ICM
Reward + RND
Reward

Figure 3: Comparison between SMiRL, ICM, RND, and an Oracle baseline that uses the true reward,
evaluated on Tetris with (top-left) number of deaths per episode (lower is better), (top-center) rows
cleared per episode (higher is better), and in TakeCover (top-right) and DefendTheLine (bottom-left)
on amount of damage taken (lower is better). In all cases, the RL algorithm used for training is
DQN, and all results are averaged over 6 random seeds, with the shaded areas indicating the standard
deviation. In Tetris (bottom-center) and TakeCover (bottom-right) methods are evaluated on how they
improve learning when added to the environment reward function.

expect random policies and novelty-seeking policies should attain similar entropies, whereas entropy
minimization should result in much lower entropy (SMiRL - Rand < 0), indicating a negative entropy
gap. To compute the entropy used in this evaluation, we used the approximation in Eq. 1 multiplied
by −1 for three of our tasks as well as many Atari games studied in the RND paper (Burda et al.,
2018b), with numbers shown in Table 1 and full results in Appendix E. Our environments have a
large negative entropy gap, whereas most Atari games lack this clear entropy gap.2 We therefore
expect SMiRL to perform well on these tasks, which we use in the next section, but poorly on most
Atari games. We show animations of the resulting policies on our anonymous project website.

5 EXPERIMENTAL RESULTS

Environment RND* SMiRL* Relative

DefendTheLine -0.3±0.6 -43.1±0.4 -43.4
Tetris 1.5±2.7 -11.9±2.1 -10.4
TakeCover -1.2±0.7 -7.3±0.7 -8.5
Assault 11.3±1.4 -56.9±2.3 -45.6
SpaceInvaders 1.9±3.4 -10.2±4.2 -8.3
Carnival 20.4±1.4 -23.1±4.3 -2.7
RiverRaid -5.5±3.4 5.8±3.2 0.3
Gravitar 30.8±1.7 -26.5±1.3 4.3
Berzerk 17.2±1.4 -2.9±4.7 14.3

Table 1: Difference in entropy vs. a Random policy
(SMiRL*=SMiRL-Random and RND*=RND-Random,
Relative=RND*+SMiRL*). More negative values in-
dicate more unstable environments. Note the negative
relative entropy gap on our tasks and for Assault and
SpaceInvaders.

Our experiments aim to answer the following
questions: (1) Can SMiRL learn meaningful
and complex emergent behaviors without su-
pervision? (2) Can we improve SMiRL by in-
corporating representation learning via VAEs,
as described in Section 3? (3) Can SMiRL
serve as a joint training objective to acceler-
ate the acquisition of reward-guided behavior,
and does it outperform prior intrinsic motivation
methods in this role? We also illustrate sev-
eral applications of SMiRL, showing that it can
accelerate task learning, facilitate exploration,
and implement a form of imitation learning.
Video results of learned behaviors are available
at https://sites.google.com/view/
surpriseminimization

6

https://sites.google.com/view/surpriseminimization
https://sites.google.com/view/surpriseminimization
https://sites.google.com/view/surpriseminimization

Published as a conference paper at ICLR 2021

5.1 EMERGENT BEHAVIOR WITH UNSUPERVISED LEARNING

To answer (1), we evaluate SMiRL on the Tetris, VizDoom and Humanoid tasks, studying its ability
to generate purposeful coordinated behaviors without engineered task-specific rewards. We compare
SMiRL to two intrinsic motivation methods, ICM (Pathak et al., 2017) and RND (Burda et al., 2018b),
which seek out states that maximize surprise or novelty. For reference, we also include an Oracle
baseline that directly optimizes the task reward. We find that SMiRL acquires meaningful emergent
behaviors across these domains. In both the Tetris and VizDoom environments, stochastic and chaotic
events force the SMiRL agent to take a coordinated course of action to avoid unusual states, such as
full Tetris boards or fireball explosions. On Tetris, after training for 3000 epochs, SMiRL achieves
near-perfect play, on par with the oracle baseline, with no deaths, indicating that SMiRL may provide
better dense rewards than the Oracle reward, as shown in Figure 3 (top-left, top-middle). Figure 3
top-left and top-center show data from the same experiment that plots two different metrics, where the
Oracle is optimized for minimizing deaths. We include another oracle, Oracle (rows cleared) where
the reward function is the number of rows cleared. ICM and RND seek novelty by creating more
and more distinct patterns of blocks rather than clearing them, leading to deteriorating game scores
over time. The SMiRL agent also learns emergent game playing behavior in VizDoom, acquiring an
effective policy for dodging the fireballs thrown by the enemies, illustrated in Figure 3 (top-right and
bottom-left). Novelty-seeking seeking methods once again yield deteriorating rewards over time. In
Cliff , the SMiRL agent learns to brace against the ground and stabilize itself at the edge, as shown
in Figure 2. In Treadmill, SMiRL learns to jump forward to increase the time it stays on the treadmill.
In Pedestal, the agent must actively respond to persistent disturbances. We find that SMiRL learns a
policy that can reliably keep the agent atop the pedestal, as shown in Figure 2. Figure 4 plots the
reduction in falls in the Humanoid environments. Novelty-seeking methods learn irregular behaviors
that cause the humanoid to jump off the Cliff and Pedestal tasks and roll around on the Treadmill,
maximizing the variety (and quantity) of falls.

Next, we study how representation learning with a VAE improves the SMiRL algorithm (question
(2)). In these experiments, we train a VAE model and estimate surprise in the VAE latent space.
This leads to faster acquisition of the emergent behaviors for TakeCover (Figure 3, top-right), Cliff
(Figure 4, left), and Treadmill (Figure 4, middle), where it also leads to a more successful locomotion
behavior.

At first glance, the SMiRL surprise minimization objective appears to be the opposite of standard
intrinsic motivation objectives (Bellemare et al., 2016; Pathak et al., 2017; Burda et al., 2018b) that
seek out states with maximal surprise (i.e., novel states). However, while those approaches measure
surprise with respect to all prior experience, SMiRL minimizes surprise over each episode. We
demonstrate that these two approaches are in fact complementary. SMiRL can use conventional
intrinsic motivation methods to aid in exploration so as to discover more effective policies for
minimizing surprise. We can, therefore, combine these two methods and learn more sophisticated
behaviors. While SMiRL on its own does not successfully produce a good walking gait on Treadmill,
the addition of novelty-seeking intrinsic motivation allows increased exploration, which results in
an improved walking gait that remains on the treadmill longer, as shown in Figure 4 (middle). We

2We expect that in all cases, random policies will have somewhat higher state entropy than SMiRL, so the
entropy gap should be interpreted in a relative sense.

0 50 100 150 200 250 300 350
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
t F

al
ls

Cliff: % Episodes with Falls

SMiRL (ours)
SMiRL VAE (ours)
SMiRL + ICM (ours)
ICM
RND

0 50 100 150 200 250 300 350
Episodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
t F

al
ls

Treadmill: % Episodes with Falls

0 50 100 150 200 250 300 350
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
t F

al
ls

Pedestal: % Episodes with Falls

Figure 4: Cliff , Treadmill and Pedestal results. In all cases, SMiRL reduces episodes with falls (lower
is better). SMiRL that uses the VAE for representation learning typically attains better performance.
Trained using TRPO with results averaged over 12 random seeds, showing mean and standard
deviation in the shaded area.

7

Published as a conference paper at ICLR 2021

SMiRL:

SMiRL+Counts:

Figure 5: Here we show SMiRL’s incentive for longer-term planning in the HauntedHouse envi-
ronment. On the top-left, we see that SMiRL on its own does not explore well enough to reach the
safe room on the right. Adding exploration via Counts (bottom-left) allows SMiRL to discover more
optimal entropy reducing policies, shown on the right.

evaluate this combined approach across environments including Pedestal and Cliff as well, where
learning to avoid falls is also a challenge. For these two tasks SMiRL can already discover strong
surprise minimizing policies and adding exploration bonuses does not provide additional benefit.
In Figure 5 adding a bonus enables the agent to discover improved surprise minimizing strategies.

SMiRL and long term surprise. Although the SMiRL objective by itself does not specifically
encourage exploration, we observe that optimal SMiRL policies exhibit active “searching” behaviors,
seeking out objects in the environment that would allow for reduced long-term surprise. For example,
in HauntedHouse, the positions of the doors leading to the safe room change between episodes, and
the policy trained with SMiRL learns to search for the doors to facilitate lower future surprise, even if
finding the doors themselves yields higher short-term surprise. This behavior is illustrated in Figure 5,
along with the “delayed gratification” plot, which shows that the SMiRL agent incurs higher surprise
early in the episode, for the sake of much lower surprise later.

5.2 APPLICATIONS OF SMIRL

Targets | States attained by SMiRL

Figure 6: Tetris imitation by
starting pθ(s) with left image.

While the focus of this paper is on the emergent behaviors obtained
by SMiRL, here we study more pragmatic applications. We show
that SMiRL can be used for basic imitation and joint training to
accelerate reward-driven learning.

Imitation. SMiRL can be adapted to perform imitation by initial-
izing the prior via the buffer D0 with states from demonstrations,
or individual desired outcome states. We initialize the buffer D0 in
Tetris with user-specified desired board states. An illustration of the
Tetris imitation task is presented in Figure 6, showing imitation of
a box pattern (top) and a checkerboard pattern (bottom), with the
leftmost frame showing the user-specified example, and the other
frames showing actual states reached by the SMiRL agent. While several prior works have studied
imitation without example actions (Liu et al., 2018; Torabi et al., 2018a; Aytar et al., 2018; Torabi
et al., 2018b; Edwards et al., 2018; Lee et al.), this capability emerges automatically in SMiRL,
without any further modification to the algorithm.

SMiRL as an auxiliary reward. We explore how combining SMiRL with a task reward can lead to
faster learning. We hypothesize that, when the task reward is aligned with avoiding unpredictable
situations (e.g., falling or dying), adding SMiRL as an auxiliary reward can accelerate learning by
providing a dense intermediate signal. The full reward is given by rcombined(s) = rtask(s)+αrSMiRL(s),
where α is chosen to put the two reward terms at a similar magnitude. We study this application
of SMiRL in the tasks: Tetris in Figure 3 (bottom-center), TakeCover in Figure 3 (bottom-right),
DefendTheLine and Walk. On the easier tasks Tetris and TakeCover task (Figure 7), prior exploration
methods generally lead to significantly worse performance and SMiRL improves learning speed.
On the harder Walk and DefendTheLine tasks, the SMiRL reward accelerates learning substantially,
and also significantly reduces the number of falls or deaths. We found that increasing the difficulty
of TakeCover and DefendTheLine (via the environment’s difficulty setting (Kempka et al., 2016))
resulted in a clearer separation between SMiRL and other methods

8

Published as a conference paper at ICLR 2021

0 2 4 6 8
Episodes 1e3

150

200

250

300

350

400

Av
er

ag
e

Re
wa

rd

DefendTheLine: Episode Reward

Reward + SMiRL (ours)
Reward + ICM
Reward + RND
Reward

0 50 100 150 200 250 300 350
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
t F

al
ls

Walk Task: Falls

0 50 100 150 200 250 300 350
Episodes

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

R
ew

ar
d

Walk Task: Reward

Reward + SMiRL (ours)
Reward + SMiRL VAE (ours)
Reward + SMiRL + prior data
Reward + ICM
Reward + RND
Reward

Figure 7: Left: We combine SMiRL with the survival time task reward in the DefendTheLine task.
Middle/Right: We combine the SMiRL reward with the Walk reward and initialize SMiRL without
walking prior walking data (ours) and with (prior data). Results over 12 seeds with standard deviation
indicated by the shaded area.

In Walk, we include a version of SMiRL with prior data, where pθ(s) is initialized with 8 walking
trajectories (256 timesteps each), similar to the imitation setting. Incorporating prior data requires no
modification to the SMiRL algorithm, and we can see in Figure 7 (middle and right) that this variant
(“Reward + SMiRL + prior data”) further accelerates learning and reduces the number of falls. This
shows that while SMiRL can learn from scratch, it is possible to encode prior knowledge in pθ(s) to
improve learning.

6 DISCUSSION

We presented an unsupervised reinforcement learning method based on minimizing surprise. We
show that surprise minimization can be used to learn a variety of behaviors that reach “homeostasis,”
putting the agent into stable state distributions in its environment. Across a range of tasks, these
cycles correspond to useful, semantically meaningful, and complex behaviors: clearing rows in Tetris,
avoiding fireballs in VizDoom, and learning to balance and hop with a bipedal robot. The key insight
utilized by our method is that, in contrast to simple simulated domains, realistic environments exhibit
unstable phenomena that gradually increase entropy over time. An agent that resists this growth in
entropy must take effective and coordinated actions, thus learning increasingly complex behaviors.
This stands in contrast to commonly proposed intrinsic exploration methods based on novelty.

Besides fully unsupervised reinforcement learning, where we show that our method can give rise
to intelligent and sophisticated policies, we also illustrate several more practical applications of our
approach. We show that surprise minimization can provide a general-purpose auxiliary reward that,
when combined with task rewards, can improve learning in environments where avoiding catastrophic
(and surprising) outcomes is desirable. We also show that SMiRL can be adapted to perform a
rudimentary form of imitation.

Our investigation of surprise minimization suggests several directions for future work. The particular
behavior of a surprise minimizing agent is strongly influenced by the choice of state representation:
by including or excluding particular observation modalities, the agent will be more or less surprised.
Thus, tasks may be designed by choosing an appropriate state or observation representations. Explor-
ing this direction may lead to new ways of specifying behaviors for RL agents without explicit reward
design. Other applications of surprise minimization may also be explored in future work, possibly
for mitigating reward misspecification by disincentivizing any unusual behavior that likely deviates
from what the reward designer intended. The experiments in this work make use of available or easy
to learn state representations. Using these learned representations does not address the difficulty of
estimating and minimizing surprise across episodes or more generally over long sequences (possibly
a single episode) which is a challenge for surprise minimization-based methods. We believe that
non-episodic surprise minimization is a promising direction for future research to study how surprise
minimization can result in intelligent and sophisticated behavior that maintains homeostasis by
acquiring increasingly complex behaviors.

Acknowledgments The authors thank Aviral Kumar and Michael Janner for discussion. This
research was supported by a DARPA Young Faculty Award #D13AP0046, Office of Naval Research,
the National Science Foundation, NVIDIA, Amazon, and ARL DCIST CRA W911NF-17-2-0181.

9

Published as a conference paper at ICLR 2021

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. CoRR, abs/1703.01732, 2017a. URL http://arxiv.org/abs/1703.01732.

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017b.

Louis Annabi, Alexandre Pitti, and Mathias Quoy. Autonomous learning and chaining of motor
primitives using the free energy principle. arXiv preprint arXiv:2005.05151, 2020.

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching youtube. In Advances in Neural Information Processing
Systems, pp. 2930–2941, 2018.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent com-
plexity via multi-agent competition. arXiv preprint arXiv:1710.03748, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Glen Berseth, Xue Bin Peng, and Michiel van de Panne. Terrain RL simulator. CoRR, abs/1804.06424,
2018. URL http://arxiv.org/abs/1804.06424.

M. Biehl, C. Guckelsberger, C. Salge, S. Smith, and D. Polani. Free energy , empowerment , and
predictive information compared. 2018.

Ludwig Boltzmann. The second law of thermodynamics. 1886.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-Scale Study of Curiosity-Driven Learning. 2018a. URL http://arxiv.org/abs/
1808.04355.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. ICLR, 2018b.

Boyuan Chen, Shuran Song, Hod Lipson, and Carl Vondrick. Visual hide and seek. In Artificial Life
Conference Proceedings, pp. 645–655. MIT Press, 2020.

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated reinforcement
learning. In Advances in neural information processing systems, pp. 1281–1288, 2005.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Ashley D Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L Isbell. Imitating latent
policies from observation. arXiv preprint arXiv:1805.07914, 2018.

Mohammadjavad Faraji, Kerstin Preuschoff, and Wulfram Gerstner. Balancing new against old
information: the role of puzzlement surprise in learning. Neural computation, 30(1):34–83, 2018.

Karl Friston. The free-energy principle: a rough guide to the brain? Trends in cognitive sciences, 13
(7):293–301, 2009.

Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, Giovanni Pezzulo, et al.
Active inference and learning. Neuroscience & Biobehavioral Reviews, 68:862–879, 2016.

Karl J. Friston, Jean Daunizeau, and Stefan J. Kiebel. Reinforcement learning or active inference?
PLOS ONE, 4(7):1–13, 07 2009. doi: 10.1371/journal.pone.0006421. URL https://doi.
org/10.1371/journal.pone.0006421.

10

http://arxiv.org/abs/1703.01732
http://arxiv.org/abs/1804.06424
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1808.04355
https://github.com/maximecb/gym-minigrid
https://doi.org/10.1371/journal.pone.0006421
https://doi.org/10.1371/journal.pone.0006421

Published as a conference paper at ICLR 2021

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691, 2019.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
Variational Information Maximizing Exploration. 2016. URL http://arxiv.org/abs/
1605.09674.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Vizdoom:
A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, 2016.

Kuno Kim, Megumi Sano, Julian De Freitas, Nick Haber, and Daniel Yamins. Active world model
learning with progress curiosity. arXiv preprint arXiv:2007.07853, 2020.

Youngjin Kim, Wontae Nam, Hyunwoo Kim, Ji-Hoon Kim, and Gunhee Kim. Curiosity-bottleneck:
Exploration by distilling task-specific novelty. In International Conference on Machine Learning,
pp. 3379–3388, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014.

Alexander S. Klyubin, Daniel Polani, and Chrystopher L. Nehaniv. All else being equal be empow-
ered. In Mathieu S. Capcarrère, Alex A. Freitas, Peter J. Bentley, Colin G. Johnson, and Jon
Timmis (eds.), Advances in Artificial Life, pp. 744–753, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg. ISBN 978-3-540-31816-3.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Ruslan Salakhutdinov, and Sergey Levine. State
marginal matching with mixtures of policies.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdinov.
Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation:
Learning to imitate behaviors from raw video via context translation. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1118–1125. IEEE, 2018.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Advances in neural
information processing systems, pp. 206–214, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 28, pp. 2125–2133. Curran
Associates, Inc., 2015.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven Exploration by
Self-supervised Prediction. 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-Supervised Exploration via Disagreement.
2019.

11

http://arxiv.org/abs/1605.09674
http://arxiv.org/abs/1605.09674

Published as a conference paper at ICLR 2021

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint conference
on neural networks, pp. 1458–1463, 1991.

Eric D Schneider and James J Kay. Life as a manifestation of the second law of thermodynamics.
Mathematical and computer modelling, 19(6-8):25–48, 1994.

Erwin Schrödinger. What is life? The physical aspect of the living cell and mind. Cambridge
University Press Cambridge, 1944.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. arXiv
preprint arXiv:1810.12162, 2018.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforcement
learning. Theory in Biosciences, 131(3):139–148, 2012.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be surprised: Optimal bayesian ex-
ploration in dynamic environments. In International Conference on Artificial General Intelligence,
pp. 41–51. Springer, 2011.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Alexander Tschantz, Manuel Baltieri, Anil K Seth, and Christopher L Buckley. Scaling active
inference. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE,
2020a.

Alexander Tschantz, Beren Millidge, Anil K Seth, and Christopher L Buckley. Reinforcement
learning through active inference. arXiv preprint arXiv:2002.12636, 2020b.

Kai Ueltzhöffer. Deep active inference. Biological Cybernetics, 112(6):547–573, 2018.

Luca Weihs, Aniruddha Kembhavi, Winson Han, Alvaro Herrasti, Eric Kolve, Dustin Schwenk,
Roozbeh Mottaghi, and Ali Farhadi. Artificial agents learn flexible visual representations by
playing a hiding game. arXiv preprint arXiv:1912.08195, 2019.

12

Published as a conference paper at ICLR 2021

A STATE ENTROPY MINIMIZATION DERIVATION

Here we will show that the SMiRL reward function leads to a policy objective that lower-
bounds the negative entropy of the state marginal distribution, −H(dπφ). In the infinite hori-
zon setting, the value of a trajectory τ = (s0, a0, s1, a1, . . .) is given as the discounted cumu-
lative rewards: R(τ) = (1 − γ)

∑∞
t=0 γ

tr(st, at). In our case, r(st, at) is a function only of
state: r(st, at) = r(st) = log pθ(st). The policy and dynamics define a trajectory distribution
p(τ |φ) = p(s0)

∏∞
t=1 p(st+1|st, at)πφ(at|st). The value of a policy is its expected cumulative

reward:

V πφ = Eτ∼p(τ |πφ)R(τ) = (1−γ)Eτ∼p(τ |πφ)
∞∑
t=0

γtr(st).

Using the indicator function 1(a = b) , 1 if a = b; 0 if a 6= b, the t-step state distribution and the
discounted state marginal are given as:

d
πφ
t (s) = p(st = s|πφ) = Eτ∼P (τ |πφ)1(st = s)

dπφ(s) = (1− γ)

∞∑
t=0

γtd
πφ
t (s)

The expected reward under the discounted state marginal is equivalent to the policy value V π:

Es∼dπφ (s)[r(s)] =

∫
dπφ(s)r(s)ds

= (1−γ)Eτ∼P (τ |πφ)

∞∑
t=0

γt
∫
1(st = s)r(s)ds

= (1−γ)Eτ∼P (τ |πφ)

∞∑
t=0

γtr(st) = V πφ

After incorporating the rewards, the policy value becomes:

V πφ =Es∼dπφ (s)[r(s)]=Es∼dπφ (s)[log pθ(s)]=J(φ, θ)

J(φ, θ) = −H(dπφ , pθ) ≤ −H(dπφ),

where H(dπ, pθ) denotes the cross-entropy between dπφ and pθ. Thus, by optimizing πφ with reward
function log pθ(s) via RL, we maximize the policy value, equivalent to the negative cross-entropy
from the discounted state marginal and the model. By optimizing pθ with maximum-likelihood
density estimation (minimizing forward cross-entropy) of states induced by πφ, we tighten the bound
towards −H(dπφ(s)). When the model is perfect (i.e., pθ = dπφ), the inequality becomes tight. As
discussed in the main text, we cannot draw samples from dπφ(s). We can only sample trajectories of
finite length T by rolling out the policy πφ. In this case, the finite-horizon discounted state marginal
can be written as:

d̂πφ,T (s) ,
1− γ

1− γT
T−1∑
t=0

γtp(st = s|πφ, t < T)

=
1− γ

1− γT
T−1∑
t=0

γtEτ∼p(τ |πφ)1(st = s, t < T).

Note that dπφ,T (s) ≥ 0 ∀s, and
∑

s d
πφ,T (s)= 1−γ

1−γT
∑T−1
t=0 γt

∑
s p(st=s|πφ,t < T)=1.

dπφ,T (s) converges to dπφ(s) as T →∞: limT→∞ d̂πφ,T =(1−γ)
∑∞
t=0 γ

tEP (τ |πφ)1(st=s)=dπφ .

Thus, by using dπφ,T (s) in place of dπφ(s), we obtain an objective, −H(d̂πφ,T (s), pθ(s)), that we
can approximate with a sample of finite-length trajectories and optimize with respect to φ using a

13

Published as a conference paper at ICLR 2021

policy-gradient reinforcement learning algorithm on the equivalent finite-horizon value function:

J̄(φ; θ) = −H(d̂πφ,T (s), pθ(s)) = V πφ,T

=
1− γ

1− γT
Eτ∼P (τ |πφ)

T−1∑
t=0

γt log pθ(st).

The approximation to J(φ; θ) improves as T →∞, since limT→∞ d̂πφ,T (s) = dπφ .

B ADDITIONAL IMPLEMENTATION DETAILS

Additional Training Details. The experiments in the paper used two different RL algorithms for
discrete action environemnts (Double DQN) and continuous action environments (TRPO). For all
environments trained with Double-DQN (Tetris, VizDoom, HauntedHouse) we use a fixed episode
length of 500 for training and collect 1000 sample between training rounds that perform 1000 gradient
steps on the network. The replay buffer size that is used is 50000. The same size is used for additional
data buffers for RND and ICM. For Tetris and HauntedHouse network with layer sizes [128, 64, 32]
is used for both Q-networks. For VizDoom the network include 3 additional convolutional layers with
[64, 32, 8] filters with strides [5, 4, 3], all using relu activations. A learning rate of 0.003 is used to
train the Q networks.

For the Humanoid environments the network uses relu activations with hidden layer sizes [256, 128].
TRPO is used to train the policy with the advantage estimated with Generalize Advantage Estimation.
The training collects 4098 sample at a time, performs 64 gradient steps on the value function and one
step with TRPO. A fixed variance is used for the policy of 0.2 which is scaled according to the action
dimensions from the environment. Each episode consisted of 4 rounds of training and it typically take
20 hours to train one of the SMiRL policies using 8 threads. A kl constraint of 0.2 is used for TRPO
and a learning rate of 0.001 is used for training the value function. Next, we provide additional details
on the state and action spaces of the environments and how θ was represented for each environment.

Tetris We consider a 4 × 10 Tetris board with tromino shapes (composed of 3 squares). The
observation is a binary image of the current board with one pixel per square, as well as an indicator
integer for the shape that will appear next. A Bernoulli distribution is used to represent the sufficient
statistics θ given the to policy for SMiRL. This distribution models the probability density of a block
being in each of the boad locations. Double-DQN is used to train the policy for this environment.
The reward function used for this environment is based on the Tetris game which gives more points
for eliminating more rows at a single time.

VizDoom For the VizDoom environment the images are scaled down to be 48× 64 grayscale. Then
a history of the latest 4 images are stacked together to use as in separate channels. To greatly reduce
the number of parameters θ, SMiRL needs to estimate in order to compute the state entropy the image
is further reduces to 20. A Gaussian distribution is used to model the mean and variance over this
state input. This same design is used for TakeCover and DefendTheLine. An episode timelimit of 500
is used for each environent. Double-DQN is used to train the policy for this environment.

Simulated Humanoid robots. A simulated planar Humanoid agent must avoid falling in the face of
external disturbances (Berseth et al., 2018). The state-space comprises the rotation of each joint and
the linear velocity of each link. We evaluate four versions of this task: Cliff , Treadmill, Pedestal, and
Walk. The Cliff task initializes the agent at the edge of a cliff, in a random pose and with a forward
velocity of 1 m/s. Falling off the cliff leads to highly irregular and unpredictable configurations,
so a surprise minimizing agent will want to learn to stay on the cliff. In Treadmill, the agent starts
on a platform that is moving backwards at 1 m/s. In Pedestal, random forces are applied to it, and
objects are thrown at it. In this environment, the agent starts on a thin pedestal and random forces are
applied to the robot’s links and boxes of random size are thrown at the agent. In Walk, we evaluate
how the SMiRL reward stabilizes an agent that is learning to walk. In all four tasks, we evaluate the
proportion of episodes the robot does not fall. A state is classified a fall if the agent’s links, except for
the feet, touch the ground, or if the agent is −5 meters or more below the platform or cliff. Since the
state is continuous, We model pθ(s) as independent Gaussian for these tasks. The full pose and link
velocity state is used for the Humanoid environments θ. The simulated robot has a control frequency

14

Published as a conference paper at ICLR 2021

Figure 8: Frames from Tetris, with state s on the left and parameters θt of an independent Bernoulli
distribution for each board location on the right, with higher probability shown in yellow. The top
row indicates the newly added block and bottom row shows how the state changes due to the newly
added block along with the updated θt.

of 30hz. TRPO is used to train the policy for this environment. Similar to VizDoom p(s) is modeled
as an independent Gaussian distribution for each dimension in the observation. Then, the SMiRL
reward can be computed as:

rSMiRL(s) = −
∑
i

(
log σi +

(si − µi)2

2σ2
i

)
,

where s is a single state, µi and σi are calculated as the sample mean and standard deviation from Dt
and si is the ith observation feature of s.

HauntedHouse. This partially observed navigation environment is based on the gym_minigrid
toolkit (Chevalier-Boisvert et al., 2018). The agent vision if changed to be centered around the agent.
The experiments in the paper combine SMiRL with curiosity measures for Counts that are computed
using the agent locations in the discrete environment. Similar, to the VizDoom and Humanoid
environments a Gaussian distribution over the agents observations is used to estimate θ. Double-DQN
is used to train the policy for this environment.

SMiRL VAE training The encoders and decoders of the VAEs used for VizDoom and Humanoid
experiments are implemented as fully connected networks. The coefficient for the KL-divergence
term in the VAE loss was 0.1 and 1.0 for the VizDoom and Humanoid experiments, respectively. We
found it very helpful to train the VAE in batches. For the Humanoid experiments where TRPO is
used to train the policy the VAE is trained every 4 data collection phases for TRPO. This helped make
the learning process more stationary, increasing convergence. The design of the networks used for
the VAE mirrors the size and shapes of the policies used for training described earlier in this section.

Fixed Length Episodes For SMiRL it helped to used fixed length episodes during training to help
keep SMiRL from terminating early. For example, in the VizDoom environments SMiRL would result
in policies that would terminate as soon as possible so the agent would return to a similar initial state.
In fact, for training we need to turn on god mode to prevent this behaviour. Similarly, to discourage
SMiRL from terminating Tetris early by quickly stacking pieces in the same tower (resulting in low
entropy) we added "soft resets" where the simulation will reset when the game fails and the episode
will continue on forcing the SMiRL agent to learn how to eliminate rows to reduce the number of
blocks in the scene.

C SMIRL DISTRIBUTIONS

SMiRL on Tetris. In Tetris, since the state is a binary image, we model p(s) as a product of
independent Bernoulli distributions for each board location. The SMiRL reward log pθ(s) becomes:

rSMiRL(s) =
∑
i

si log θi + (1− si) log(1− θi),

where s is a single state, the update procedure θi = U(Dt) returns the sample mean of Dt, indicating
the proportion of datapoints where location i has been occupied by a block, and si is a binary variable
indicating the presence of a block at location i. If the blocks stack to the top, the game board resets,
but the episode continues and the dataset Dt continues to accumulate states.

15

Published as a conference paper at ICLR 2021

Environment RND Random SMiRL Relative

Tetris 18.6±2.7 17.1±1.8 5.2±2.1 -43.4
TakeCover -4.7±0.7 -5.9±1.1 -13.2±0.7 -10.4

DefendTheLine 19.6±0.6 19.9±0.7 -23.4±0.4 -8.5
Assault 193.1±1.4 181.8±2.7 124.9±2.3 -45.6

SpaceInvaders 208.4±3.4 206.5±5.2 196.3±4.2 -8.3
Carnival 151.2±1.4 130.8±2.7 107.7±4.3 -2.7

RiverRaid 264.4±3.4 269.1±2.2 274.9±3.2 0.3
Gravitar 198.6±1.7 167.8±2.7 141.3±1.3 4.3
Berzerk 197.2±1.4 180.0±2.7 177.1±4.7 14.3

Table 2: Estimated entropies for three of our tasks, and an example Atari games studied by Burda et al.
(2018b), where novelty-seeking exploration works well. Note the large negative Relative entropy gap
in our tasks with overall lower initial entropy, which are both absent in most Atari games. This data
shows the mean and std over 3 seeds.

D SMIRL MDP

Note that the RL algorithm in SMiRL is provided with a standard stationary MDP (except in the VAE
setting, more on that below), where the state is augmented with the parameters of the belief over states
θ and the timestep t. We emphasize that this MDP is Markovian, and therefore it is reasonable to
expect any convergent reinforcement learning (RL) algorithm to converge to a near-optimal solution.
Consider the augmented state transition p(st+1, θt+1, t+ 1|st, at, θt, t). This transition model does
not change over time because the updates to θ are deterministic when given st and t. The reward
function r(st, θt, t) is also stationary, and is in fact deterministic given st and θt. Because SMiRL
uses RL in an MDP, we benefit from the same convergence properties as other RL methods.

Transition dynamics of θt. Given the augmented state (st, θt, t), we show that the transition
dynamics of the MDP are Markovian. The st portion of the augmented state are from the environment,
therefore all convergence properties of RL hold. Here we show that (θt, t) is also Markovian given
st+1. To this end, we describe the transition dynamics of (θt, t) for an incremental estimation of a
Gaussian distribution, which is used in most experiments. Here we outline θt+1 = U(st, θt, t).

θt = (µt, σ
2
t)

µt+1 =
tµt + st
t+ 1

σ2
t+1 =

t(σ2
t + µ2

t) + st
t+ 1

− µ2
t+1

θt+1 = (µt+1, σ
2
t+1)

tt+1 = tt + 1

These dynamics are dependant on the current augmented state (st, θt, t) and the next state st+1 of the
RL environment and do not require an independent model fitting process.

However, the version of SMiRL that uses a representation learned from a VAE is not Markovian due
to not adding the VAE parameters to the state s, and thus the reward function changes over time. We
find that this does not hurt results, and note that many intrinsic reward methods such as ICM and
RND also lack stationary reward functions.

E MORE ENVIRONMENT STABILITY DETAILS

Here we include the full data on the stability analysis in Figure 2. From this data and the additional
results on the website we can see the SMiRL can reduce the entropy of a few of the Atari environments
as well. These include Assault, where SMiRL hides on the left but is good at shooting ships and
Carnival, where SMiRL also reduces the number of moving objects. RND on the other hand tends to
induce entropy and cause many game flashes.

16

https://sites.google.com/view/surpriseminimization

Published as a conference paper at ICLR 2021

0 50 100 150 200 250 300
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 F

al
ls

SMiRL: Humanoid % falls without resets

Treadmill
Pedestal
Cliff

Figure 9: SMiRL results when the Humanoid environments are trained without early termination
based resets (fixed episode lengths). Cliff and Pedestal still produce entropy minimizing policies that
reduce falls. RL has difficulty with optimizing the more challenging Treadmill environment.

F ADDITION NOTES ON UNSUPERVISED RL RELATED WORK

The works in Tschantz et al. (2020b); Annabi et al. (2020) are interesting and discuss connections to
active inference and RL. However, these methods and many based on active inference “encode” the
task reward function as a “global prior” and minimizing a KL between the agents state distribution
this “global prior”. Our work instead actively estimates a marginal over the distribution of states
the agent visits (with no prior data) and then minimizes this “online” estimate of the marginal, as
is described in Section 3. Our work differs from LP-based methods (Kim et al., 2020; Lopes et al.,
2012; Schmidhuber, 1991) because SMiRL is learning to control the marginal state distribution rather
than identifying the system parameters.

G ADDITIONAL RESULTS

To better understand the types of behaviors SMiRL produces we conducted an experiment with fixed
episode lengths on the Humanoid environments (Figure 9). This shows that SMiRL results in surprise
minimizing behaviors independent of how long the episode is.

17

	Introduction
	Related Work
	Surprise Minimizing Agents
	Evaluation Environments
	Experimental Results
	Emergent Behavior with Unsupervised Learning
	Applications of SMiRL

	Discussion
	State Entropy Minimization Derivation
	Additional Implementation Details
	SMiRL Distributions
	SMiRL MDP
	More Environment Stability Details
	Addition Notes on Unsupervised RL Related Work
	Additional Results

