Under review as a conference paper at ICLR 2025

CAPTURING AND MITIGATING GRADIENT AGGREGA-
TION ERRORS FOR FAULT-TOLERANT DISTRIBUTED
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Capturing and recovering from hardware failures is important in fault-tolerant dis-
tributed training to guarantee system efficiency. However, some hardware-related
silent data corruption errors during gradient aggregation like bit corruptions or
communication noise, are difficult to capture and address, leading to slow or
failed convergence. To understand and mitigate these errors, we first mathemat-
ically formulate and generalize them as gradient inconsistency. Then, we theo-
retically analyze how it leads to model divergence accumulated during training
and the failed convergence. Based on the analytical study, we design PAFT, a
fault-tolerant distributed training system with dynamic and asynchronous parame-
ter synchronization. PAFT includes two parts: (1) PAFT-Sync, which mitigates
model divergence by periodically synchronizing parameters, and (2) PAFT-Dyn,
which minimizes synchronization overhead through dynamic training overlap and
synchronization frequency scheduling based on profiled error degrees. Together,
they ensure efficient model convergence at scale. The fault-tolerant synchroniza-
tion in PAFT is optimized to support commonly used optimizers, e.g., Stochastic
Gradient Descent (SGD), SGD momentum, and Adam. We implement PAFT on
PyTorch Distributed and train ResNet, GPT-2, and LLaMA-2 on 4~ 32 GPUs.
Experimental results show that PAFT efficiently defends against gradient aggrega-
tion error degrees while maintaining training performance.

1 INTRODUCTION

To efficiently train deep learning (DL) models (He“ef—all, POT6) and large language models
(LLMs) (Radford ef-all, POTX; Chung et all, 2077), high-performance and large-scale distributed
training frameworks have been proposed (Rasley et all, P020); Narayanan et all, Z02T; D(TY; Tang
efall, 2073). Frequent system failures suspend training and require manual recovery from check-
points, significantly reducing system efficiency and GPU utilization (up to 43%) (Maeng et all, 2021,
Wang et all, P2073F). Approximately 178,000 GPU hours were wasted during the OPT-175B train-
ing (Zhang et al], 2077) due to various failures like MPI and CUDA errors (Humbafovaef all, P020),
and hardware failures such as GPU malfunctions (Huef all, 2024)), electronic breakdowns, and node
failures (Wang et all, P023H; Hu“efall, 2024). Many existing studies focus on improving the robust-
ness and efficiency of the system through fast recovery (Wang et all, POZ3H; P(074; Narayanan et all,
202T) or elastic training (Thorpe et all, P022; Harlap et all; He_ef-all, P073a).

However, unlike system failures, silent data corruption (SDC) errors (Wang et all, P0234; Fiala
ef-all, DOT2; Bacon, D027, He'ef all, DO773H), which do not directly interrupt training, are increasingly
affecting model quality and convergence. As reported in LLaMA-3 pretraining cluster and Fire-Flyer
cluster, SDC errors have become the main cause of LLM convergence issues, and the secondary cost
of fault tolerance during pretraining (Dubey et all, P074; An_ef all, (074, harming the reliability and
efficiency of GPU clusters at extensive scale. (We provide more real-world error types and frequency
during LLM pretraining in Appendix Hi).

In this work, we consider the errors happen during gradient aggregation (GA), which are caused by
hardware failures like bit corruptions (leon efall, POTY; Tiwari ef all, POT3; Gao efall, P073; Huefall,
2024) and communication noise on network links (Huef-all, 2074; Gallef all, POT1; Tanef all, P19,



Under review as a conference paper at ICLR 2025

Gao_ef all, P073; Khan ef all, 2073), as shown in Fig. . Specifically, the communicated messages
are aggregated and broadcasted with noise, leading to different gradients on workers, which results
in slow or failed convergence. To this end, we propose the following research questions.

How do silent errors in gradient aggregation influence distributed training and
how to capture and mitigate them?

In this work, we formulate and generalize gra-
dient inconsistency (in Section D) errors, where
workers obtain different noisy averaged gradi-
ents instead of the accurate averages. We then
theoretically demonstrate that this gradient in-
consistency leads to accumulated model diver-
gence (in Section B), resulting in failed conver-
gence. Additionally, we quantify the conver-
gence error theoretically concerning the degree
of gradient inconsistency.

Bit Corruption

Machine 1

Ring-Allreduce

To address the GA errors at scale, we design /@xl:'flse
PAFT, a fault-tolerant distributed training sys- E {8} {g}
tem with two components: PAFT-Sync and £

PAFT-Dyn. PAFT-Sync periodically syn- = @ © 8 ©

chronizes model parameters with a frequency J Tree-Allreduce

H to eliminate the model divergence. Then, Figure 1: SDC errors lead to GA errors during
PAFT-Dyn overlaps synchronization with the ~distributed training. We provide more discussions
training process through asynchronous com- aboutreal-world cases in Appendix B.
munication to save parameter synchronization

overhead. To further reduce unnecessary communication costs, PAFT—-Dyn adjusts the synchroniza-
tion frequency H according to the signal-to-noise ratio as observed in our theoretical convergence
analysis. Our theoretical and empirical studies show that PAFT can alleviate accumulated model
divergence, ensuring training convergence.

We implement PAFT on PyTorch Distributed (Ansel'ef"all, 2(074) for real-world distributed training
and finetuning. We summarize our contributions as follows:

* We formulate and generalize gradient inconsistency caused by silent GA errors. We theo-
retically analyze how it leads to accumulated model divergence and failed convergence.

* We design PAFT, a fault-tolerant distributed training system to alleviate the gradient incon-
sistency. We theoretically prove that PAF T—Sync can illuminate the model divergence and
ensure convergence. To reduce the extra communication overhead, we design PAFT-Dyn
to overlap synchronization with training, and adjust the synchronization frequency with
respect to the profiled error degree based on the theoretical analysis.

* We conduct real-world experiments with 8-node GPU cluster with 4 ~ 32 GPUs
to train ResNet-18 with CIFAR-10 (Krizhevsky et all, Z0T0), ResNet-50 with CIFAR-
100 (Krizhevsky et all), and LLMs including GPT-2 (Radford_ef-all, 2019) and LLaMA-
2 (Monvron_ef_all, 2023) with OpenWebText (Gokaslan_ef_all, 2019) and Alpaca (Taori
ef all, P0773). We consider noises with different patterns to simulate the SDC errors with
different degrees. Results show that our method can successfully mitigate these errors.

2 PRELIMINARIES

We first present the preliminaries of single-device and distributed training, incorporating both im-
age classification (He ef-all, PITA) and language modeling tasks (Radford_ef-all, 20T9). Then, we
formulate the gradient inconsistency caused by the SDC errors during communication.

Single-device Training. With a model parameterized by # € R?, and sampling data 2 ~ D, the
object function is usually defined as (Boffou_efall, DUTH)

mein F(e) £ E:L’NDf(g; (E), (1)



Under review as a conference paper at ICLR 2025

in which the specific definition of f(6; z) depends on the task, and it is a general formulation in many
deep learning optimization problems (Dean_ef all, DOT7). For image classification, the f(0;z) =
1(po(x;), o), where x; is the data inputs, z, the labels in the data sample, x = (z;, z,), po(x;) is
the output of model py, [ is any classification loss function, like the cross-entropy. For next-word
prediction in LLMs (Radford_efall, POTY; [Yang et all, P0T9), the f(0;2) = I(po(Z1:n), Tnt1:N)s
where the sequence length of the x is N. Given the seen tokens indexed by 1 : n, the model predicts
the unseen tokens indexed by n + 1 : V.

In ¢-th iteration, the gradient is estimated as g:(0:; x¢) = V f,~p(0%; x1). With the SGD optimiza-
tion, the model parameters are descended towards the direction g, as ;11 = 6; — n.g;. We also
extend our algorithm to SGD momentum and Adam (Kingma & Ba, PZ0T5) optimizer.

Distributed SGD (DSGD). In distributed training, multiple workers M = {m|m =1,2,..., M}
collaboratively optimize 6. In ¢-th iteration, each worker calculates the local gradient g,,, (67"*). Then,
the training system uses collective communication (Shiefall, Z02Ta; Thaknr ef all, D003, [Tang et all,
2020) or a parameter server (Jiang et all, P020; [Tang et all, P07() to aggregate and broadcast the av-
eraged gradient across workers to update model parameters 6. This distributed gradient computation
and model updating can be formulated as follows.

1 ;

go=q7 D 9O, ol ~ D, )
meM

07y = 07" — i, (3)

where D,,, represents dataset on worker m, g (07"; x}"*) represents the local gradient of f(67") of
worker m at iteration ¢, and the 6} is updated with the average of local gradients g;. Normally,
local dataset D,,, has the same distribution as D in distributed training. We write g;™ (6;"; 27™) as g}"
for simplicity. Note that all models are initialized as 6, and all workers utilize the same averaged
gradient g; to update their local models. Thus, there is ;" = 6; during the training process.

2.1 ERRORS IN DISTRIBUTED AVERAGING GRADIENTS

The SDC errors (Hu"ef-all, 2074; Gao_ef-all, 2023) in distributed training (Malcolm, T971); Saad,
207200) actually add the noise on the estimated average gradient g;. Thus, workers finally obtain
different noised gradients g;"* as follows.

Definition 2.1. (Inconsistent Gradient). The noised averaged gradient g;"* is called inconsistent
gradient, if there is an individual noise €;* generated depending on m-th worker added on g;.

gt =gt €~ N(0,07), “
in which noise €} is sampled from a Gaussian distribution N with mean of 0 and variance of 2.
Noise Degree and Patterns. The small o2 can represent the small communication noise and less
frequent SDC happening. On the contrary, the large o can represent the larger noise like bit corrup-

tions (leon_ef all, 20TY; Hu ef all, 2074) and more frequent happening. We consider both of these
two patterns in our experiments.

The noises may not consistently follow the same pattern during training. We consider the burst
pattern of large noise (like bit corruption) that accidentally happen during training in experiments
(Section B). More discussions about the SDC erros and noise simulation are provided in Appendix Bl.

3 ANALYSIS OF THE FAILED CONVERGENCE

Fig. shows training ResNet-18 with CIFAR-10 dataset across 4 workers with and without noises
€™ with different o2 ranging from 0.0001 ~ 1.0. Results show that even the small noise 0.001 also
leads to failed training convergence.

3.1 ACCUMULATED MODEL DIVERGENCE



Under review as a conference paper at ICLR 2025

To understand and address this problem, we theoretically and em-
pirically show how the gradient inconsistency (Eq. B) leads to failed
convergence. With the noised averaged gradient, the model updat-
ing process becomes from Eq. B as:

©
1=}

o
k=)

Test Accuracy [%]

eml = 0;’:'” - ntg’tml = 9;” - ntgt - nt6?~ (5) 40 i —— Noise 0.0001
At t-th iteration, local models {0]*|m € M} are updated towards 2 el
different directions g;". Thus, this leads to diverged model parame- 0 20 40 60 s 100

# Epochs

ters 0} # 9@ # 6y, instead of the same 6; in normal DSGD (Eq. B).
With training goes on, models 6} gradually diverge from each other.
We define the averaged model 0; = ﬁ Z£1 6% and model diver-
gence A" = ||0;41 — 0" || to measure it. Fig. shows the em-
pirical accumulated model divergence during training. Larger noise
(higher o?) introduces more divergence. This aligns with training
convergence curves in Fig. Z{@), where larger o2 leads to a larger
accuracy drop or failed convergence.

Lemma 3.1 (Increasing Model ]{Dinlzrgence). With tiie same initial 0 200 mons ° 100
point 05" = 6y across workers {m|m = 1,2, ..., M}, DSGD with .

noise € ~ N(0,0?) introduces accumulated model divergence (b) Model Divergence

(a) Convergence Gap

— SGD

~— Noise 0.0001

—— Noise 0.001

== Noise 0.01
Noise 0.1

TOTAL DIVERGENSITY [%]
o R N W A U O

AT during training: Figure 2: Training ResNet-18
with gradient inconsistency

. m (M + o .

El[fesr — 0] = Z 2 ©) ©°n 4 workers

Remark. Lemma B shows that the divergence A® will be accumulated with the noise during
training. This may lead to meaningless gradient estimation. Specifically, if the model 6} is far away
from the other model 07, the gradient V f (6} ; z) has no useful descent information about the 6} in
the parameter space.

3.2 CONVERGENCE ANALYSIS OF NOISED DSGD

Assumption 3.1. The following assumptions are commonly used in deep learning (Boffon ef all,
2016): (1) Bounded variance: E,,|[g"(0) — VF™(0)]|* < ¢2; (2) Bounded gradient magmtude

Emllgm(0)]]* < G*. The VF™(0) = E; g"(0) and VF(0) = 1/M Y\, VF™(0), and the
bounded variance comes from sampling bias of the dataset on Worker m.

Now, we have the following theorem to show that it is difficult to tune the learning rate to have a
good convergence speed.

Theorem 3.2. (Convergence with noised training.) With object function defined in Eq. W satisfying
Assumption B, DSGD with noise €/* ~ N(0,0?) has the following convergence bound

1 . oo 2E||00 — 072 202 +0%) = 5 ALo*(M +1) — .,
= D mE(f(6:) — f*) < + Znt+7z Z n. (D)
T t=0 —I:_/ ™ t=0 ™ t=0
T
Ty T3

Remark. In Theorem B, T}, T5 converge with respect to training iteration 7' — oo, 15 only
converges when setting 77, = 0. However, the zero learning rate does not have any practical ef-
fect on decreasing the object function. To alleviate the model divergence in Lemma Bl and 75 in
Theorem B, we propose PAFT in Section &.

4 PERIODICAL PARAMETER SYNCHRONIZATION

As discussed in Section I7Tl, the root cause of the failed convergence is the optimization of local
model parameters in different directions. In this section, we begin with a straightforward but sys-
tematic solution to this issue, parameter synchronization (Section El). To minimize the additional
overhead of this method, we designed PAFT-Sync to efficiently ensure training convergence (Sec-
tion B2 and E3).



Under review as a conference paper at ICLR 2025

Local > Global _, Model ° Noised Global.. ...,
Gradient Gradient Parameter Gradient

Synchronized g

> A —_—
verage Model Parameter

T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25
(a) Distributed training without noise; (b) With noise (gradient inconsistency); (c) PSync With noise;

Figure 3: The trajectory of model parameters with training with two workers with/without noise and
training with PAFT.

1.00

0.75 4

0.25

0.00

—-0.25 ParameterSpace

4.1 PARAMETER SYNCHRONIZATION

To eliminate the model divergence
A7, one intuitive approach is to di-
rectly synchronize model parameters
across workers. Specifically, after up-
dating the model at iteration ¢, work-
ers can communicate and average
their parameters Qﬁl then. reload the I: fort = 1,....T do

lqca]_mOdels as 0y11. This SynCth' 2 for worker m € M in parallel do

nization en:}blr'es t.ha't the mode.:l d}- 3. a0 = 1/BYE Ve, ion(0000);

vergence A}" is eliminated, setting it 4. g =1/M> g (07 + e >
to zero. However, given the model Communication meM

Algorithm 1 Distributed training with PAFT-Sync

Input: Initialized model 6y, dataset D, workers M, total iteration
T, learning rate 7, synchronization frequency H.

Qutput: Final trained model 0.

size Sy, this synchronization per it- 5 07110 = 00 — negis > Update model
eration incurs additional communica- 6: if t + 1%H = 0 then > Synchronization
tion costs amounting to 7'Sy, which 7 07y =1/ MY g 07125

equals the original communication 8 else

costs of the gradients. Therefore, 9: 0731 = 6071123
reducing the overhead of parameter 10: Return 07 = 6r;
synchronization is crucial.

To address this, we propose PAFT-Sync, as detailed in Algorithm 0. In addition to standard for-
ward and backward propagation (FP and BP), gradient averaging, and model updating, PAFT-Sync
averages model parameters after every H training iteration. The model parameters are updated as
follows:

m {9%” — gy, ift+1%H #0 ®)

t+1 — % Zm€M(92n _ ntg;rn% ift + 1%H =0 )

where g = g, + € = 4 >, v 9 (0) + €. After H iterations, workers start training from
the same point in the parameter space. The accumulated model divergence 6;" is cleared and re-
accumulated at a low level, resulting in less harmful influences on gradient estimation. We theoret-
ically and empirically demonstrate that this synchronization effectively eliminates the accumulated
model divergence, thus ensuring training convergence.

Definition 4.1. (gap). The gap of a set A := {ag,a1,...,a:} of t + 1 integers, a; < a;y; for
i=0,...,t — 1, is defined as gap(A) := max;=1___.(a; — a;=1).

Definition Bl is used to generally describe the fixed and dynamic synchronization frequency in both
Algorithm 0 and D. The timestamp in sequence { H;} represents the synchronization point. And the
gap({H:}) is the maximal time gap between two synchronization points.

Lemma 4.1. If gap(A) < H and sequence of decreasing positive stepsizes {n }+>o satisfying n, <
204 for allt > 0, then. With the same initial point 07" = 0y across workers {m|m =1,2,..., M },
DSGD with noise €* ~ N(0,0?) introduces accumulated model divergence A" along the training
process as



Under review as a conference paper at ICLR 2025

4H(M + 1)o*n?

9
i ®

E||0:11 — 0734]° <

Remark. Lemma BT shows that the model divergence is bounded with O(Ho?n?). Less H helps
to reduce this divergence but introduces more communication overheads. In Section B2 We will
show that PAFT-Dyn finds a good trade-off between the convergence and the communication in
Algorithm .

Theorem 4.2. (Convergence with noised training with PAFT-Sync.) With object function defined
in Eq. W satisfying Assumption B, DSGD with PAFT (Eq. B or I2) noise ] ~ N (0,02), we have,

AT(T + 2a)(o} + %) 256T (M +1)

2
HL 10
uMSt 257 M ° (10)

3
N * N/a’ *12
Ef(0r) — fF < —|60 — 0
§lor) = 1 < L jioo— 07" +
where 07 = 4M15'T Z%:l Zg:ol wy O, for wy = (a +t)% and St = ZtT;ol wy > %TS

Remark. Theorem B2 shows that PAFT ensures the convergence of DSGD with noised gradients.
And we can adjust the H with respect to the noise variance o to trade off the convergence and
communication. And Theorem B2 is dependent on a heterogeneous synchronization sequence {H; }
instead of a uniform sequence with the same gap H. Thus, it is general and can be easily extended
to different algorithms that considering adjusting synchronization frequency.

Corollary 4.3. Let b1 be defined as in Theorem B2, for parameter a = max{16x, H}. Then
N K+ H? 1 k+ H
1) - =0 )6 0 St
fOr)—f @ T G°+0 MMTJr,uMTQ o,
(M +1)Hk 1 /1—|—H>02
uMT? uMT — pMT?

(11

+0(
Remark. Corollary B3 shows that the convergence rate is the same as the SGD (Boffonefall, POTH).

4.2 ADIJUSTING SYNCHRONIZATION FREQUENCY

While the synchronization can completely address the model divergence problem, it introduces extra
communication overheads due to the communication of model parameters. Through the theoretical
analysis (Theorem E7) in Section B, we adjust the synchronization frequency H detected error
degrees of ¢ to reduce the unnecessary communication costs.

In light of this, we propose PAFT-Dyn in PAFT, as detailed in Algorithm D. Compared with
PAFT-Sync (Algorithm B), PAFT-Dyn detects the magnitude of error degrees in training (Line
10) and adjusts H; according to o and the gradient norm (Line 11) to dynamically reduce commu-
nication costs.

Then, the new parameter synchronization scheme is given as follows.

om {9{” = ng¢", ift+1¢ Hp 12
o ﬁ ZTVLEM(Q? - ntg;n)a ift + 1e 7'LT ’

in which H is the sequence that indicates when to synchronize parameters.

Estimating Error Degree. The naive error detection method is directly computing the average of
the gradients 1/M ) . g;"(0{") and compare it with g;" to estimate the noise degree of €;",
which introduces extra communication costs equal to synchronization. To this end, we estimate the
error degree through the accumulated model divergence A} to reduce the communication costs, as
the A} takes historical error information and need not be communicated at each iteration. Accord-
ing to Eq. 3 in Lemma BT, we can directly compute the accumulated model divergence A} (Line
22 in Algorithm D).

Adjusting Synchronization Frequency. Observing the convergence rate in Theorem B, the in-
tuitive way to adjust H is set H = [1/0?], thus the third term in the convergence bound (Eq. M)
becomes as O(T'(M +1)L/(M St)). However, this too less H actually is set too small and, because



Under review as a conference paper at ICLR 2025

Algorithm 2 Distributed training with PAFT
Input: Initial model Ay, dataset D, workers M, total iteration 7', learning rate 7, initial detecting time gap
Hu4, initial synchronization sequence Hr = {Hoid }-
Output: Final trained model 0.
1: fort =1,..., T do
2: for worker m € M in parallel do

3 g (07 =1/BY 2 1 V oy inp (005 20,0); > FP and BP
4 Gt =1/M> 907 Y+ em > Communication
5: if ¢ € Hr then > Launch Synchronization.
6: 0t = 01" —megr > Update before averaging
7: (Asynchronous) 01 = 1/M 37\, 0{%1;

8 elseif £ — 1 € Hr then > Wait for synchronization.
9 Wait for 6y = 1/M Y\ 07"

10: O = 160 — 071

11: Hpew = All-Reduce(||gi" ||/ oest) 5 > Estimating New H.
12: Append t + Hiew in Hr;

13: 071 =0 —meGrs > Update after synchronization
14: else

15: 071 = 0" — g > Update model

16: Return {07 |m € M};

the dominant bound becomes as the second term as O(27'(T + 2a)(oz + 0*)/(M Sr)) and cannot
be reduced by smaller H. Thus, we can set the H = o, /o. Now, the second term and the third term
in Eq. [ is balanced. Note that the H = |[|g"}, ||/0max also represents the signal-to-noise ratio
(SNR) that is widely used in many methods to adjust hyper-parameters (Q1ao et all, POZT).

4.3 OVERLAPPING SYNCHRONIZATION WITH TRAINING

Furthermore, synchronization after some training iterations still requires communication. To further
reduce this communication cost, we overlap synchronization with the normal backward propagation
process using asynchronous communication. The timeline of this overlapped communication is
shown in Fig. B.

As detailed in Algorithm D, if the current round
requires synchronization, the model averaging [ computation [JlUpdatc [JI AllReduce g Parameter
process is initiated without waiting (Line 7). Gradients Syne

. Model
In the next round, the model averaging can dwergenceT__’»”’_,__*—-—b——#

be overlapped with the forward and backward 100
[ N W W W -

propagation processes. During model updating, = process
workers wait for the previous round’s SyIlChI'O- (a) Distributed training with gradient inconsistency Time
nization to be completed. The new model pa- ~ Model

divergence >

rameters are then updated using the averaged -
R . Training

model and the new gradients. Note that this ap- process :D:D;D:D:D——.D

proach introduces a trade-off, where we trade (b) Distributed training with PAFT Time’

precise gradient estimation for the benefit of Figure 4: Overlapped synchronization with train-

overlapping communication. We show the em- ing.

pirical effect on eliminating the model divergence in Appendix .

4.4 EXTENSION TO OTHER OPTIMIZERS

The analysis in Seciton B is mainly built on the SGD, while the most of current DL models and
LLMs are optimized with SGD momentum and Adam (Kingma & Bad, P0TS). However, in the
noised distributed training, the intrinsic characteristics of these optimizers are similar to the SGD.
Specifically, the inconsistent gradients g;* also lead to diverge updating directions of the model
parameters, and the accumulated model divergence. Differently, the SGD momentum and Adam
introduce extra terms including the momentum and precondition, which are updated according to
the gradients. Thus, there is divergence existing in these extra terms. However, the divergence on
them may not be accumulated as the model parameters as they are updated with moving averaging.
Neverthess, we can consider to synchronize these extra terms with the model parameters to ensure



Under review as a conference paper at ICLR 2025

the convergence of the model. To this end, we provides results of synchronizing the momentum and
precondition in Appendix D.

5 EXPERIMENTAL STUDIES

In this section, we conduct experiments on distributed training with varying degrees of noise to
verify our method. We compare basic distributed training without gradient inconsistency (Oracle),
distributed training with gradient inconsistency (Noised), PAFT-Sync with different H values, and
PAFT.

s S 5 601
s < 601 g
o 9 o
d e g 401
5 5 40 £
3 2 3
o nmmAAAAL N A o o MmN
< — oracle PAFT 0% =0.0001 < — Oracle PAFT 0% =0.0001 < 20 — Oracle PAFT 0% = 0.0001
b 02=0.0001 —— PAFT 0% =0.001 4% 201 02=0.0001 —— PAFT 02 = 0.001 b ?=0.0001 —— PAFT 0% =0.001
@ 40 A 020,001 — PAFT 02 =0.01 ) 02=0.001 —— PAFT 02=0.01 i) 0=0.001 — PAFT 0 =0.01
— 02=0.01 — 0?=0.01 — 02=0.01
T T T T T 04 T T T T T Y T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
# EPOCHS # EPOCHS # EPOCHS
(@) Training ResNet-18 with 4 workers. (b) Training ResNet-50 with 4 workers. () Training ResNet-50 with 32 workers.
Figure 5: Different noise degrees.
S 9 S 601
& 2 60 s
o o) 9
g g £ 40
=1 S 401 =1
3 I+ 3
¥ %3 ¥
< < <
= i = 204 L = 20 .
a — Oracle PAFT-Sync H=10 @ — Oracle PAFT-Sync H =10 o — oracle PAFT-Sync H=10
i W. Noise PAFT-Sync H="50 [ W. Noise PAFT-Sync H =50 ~ W. Noise PAFT-Sync H=50
40 PAFTSync H=5 _ patr o PAFT-Sync H=5 —_ ppr 0 PAFTSync H=5 — ptr
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
# EPOCHS # EPOCHS # EPOCHS

(@) Training ResNet-18 with 4 workers. (b) Training ResNet-50 with 4 workers. () Training ResNet-50 with 32 workers.
Figure 6: Different Synchronization frequency.

Cluster Configuration. We have two testbeds
including an 8-node GPU cluster, each of which Table 1: Test Accuracy of ResNet-18.
installs 4 Nvidia RTX2080Ti GPU connected

Noise degree 0> | 0.0001 | 0.001 | 0.01 | 0.1

with PClIe3.0x16 with 10Gbps bandwidth, and DSGD 910 | 940~ 940- 1940
a single GPU machine equipped with 8 Nvidia Noised DSGD 937 | 91.1 | 605 | 13.5
A6000 GPUs. PAFT-Sync H=5 | 938 | 93.3 | 852 | 328

PAFT-Sync H =10 | 93.9 93.6 | 84.7 | 31.9
PAFT-Sync H =50 | 93.9 93.4 | 843 | 285

DL Models and Datasets. We train PAFT 93.9 | 934 | 852|332
ResNet-18 (He—ef —all, 20T6) with CIFAR-

10 (Krizhevsky et all, 2010), ResNet-50 (He Table 2: Test Accuracy of ResNet-50.
et all, 0T6) with CIFAR-100 with 120 epochs, Noise degree ‘ 02 = 0.0001 ‘ 02 = 0.001 ‘ 02 =0.01 ‘ 02 =0.1
and GPT-2 (Radford ef all, 2019) with Open- # of workers 4 R4 R4 R[4 R
S A . . DSGD 750 651 750 651|750 651|750 65.1
WebText (Gokaslan_ef all, POTY) with 3K iter- Noised DSGD 749 648 | 688 445|113 38 | 13 12
: : PAFT-Sync H=15 | 751 623 | 740 637 | 537 444 | 13 32
ations. We also ﬁnetune pretrained LLaMA- PART_Syno H 10 | 751 639 | 740 632 | 535 418 | 12 22
2 (Tonvron_ef all, P073) and GPT-2 on Al- earT-syncH=50 | 747 649 | 738 632|495 172 LI 11
’ PAFT 743 649 | 741 639 | 540 409 | 1.4 42

paca (Taoriefall, PO23) using LoRA (Hirefall,
P02T) with 1 epoch. ResNet-18 and ResNet-50 are optimized with SGDm (Bofton_ef all, POTH) with
learning rate of 0.1 and momentum of 0.9. GPT-2 is trained with Adam (Kingma & Bd, Z0T5) with
learning rate of 0.001, 3; as 0.9 and 3, as 0.99.

Simulation of Gradient Inconsistency. We simulate the noise with different degrees by adjusting
o with range {0.0001,0.001, 0.01,0.1}. The small noise degree {0.0001, 0.001} can represent the
small communication noises. While the larger noise {0.01, 0.1} can simulate the bit corruptions or
the large communication noise, which appears less during training.

5.1 MAIN RESULTS



Under review as a conference paper at ICLR 2025

PAFT 0 = 0.0001 — oradle PAFT-Sync H=10
001 s PAFT 02.2/0,001 W. Noise. PAFT-Sync H=50
01 —— PAFT 02=0.01 7.04 PAFT-SyncH=5 — papr

Fig. and show conver-
gence of noised distributed training
on ResNet-18 and ResNet-50 with
4 workers. Fig. show training
resnet_so Of nOISed dIStrlbuted traln_ 0 560 10‘00 15‘00 ZObO 25‘00 3000 0 260 4(30 660 860 1000
ing with 32 workers. All results show # lters # lters

that as noise degree Increases, the ac- (a) Different noise degrees. (b) Different Sync. frequency.
curacy of model declines correspond- . . .

) yorn p Figure 7: Training GPT-2 with OpenWebText.
ingly. While PAFT can successfully

. . . . 0.7 13
illuminate the small noise influence | Tonie — mraroum —omn o om
and mitigate the large noise influence. 06

~ ©
N
A0
% 4
~
5

o
s

Train Loss
Train Loss

o]
w
w»

0220001 — PAFT 07=0.01

o000 8.,
NVA\VAAL 3 .19

\/ c
T 1.0

b A AR =

0.9 1

07=0.001 —— PAFT 07 =0.01
— =001

Train Loss
o
»

The results in all figures show that
the PAFT can successfully defend

. . . o3 os AN
agalnSt nOIS? and IH.lp'IOVC the COI;VGI'- "o 2_;:0 560 7_%0 10‘00 12‘50 1500 o 2_%0 560 7%0 1(;00 12‘50
gence of noised training when o = # lters # lters
0.0001 or 0.001. Note that there is (a) GPT-2 with Alpaca. (b) LLaMA-2 with Alpaca.

still gap between the normal training
(Oracle) and PAFT when o2 > 0.01.
The reason is that the noise not only
introduces gradient inconsistency, but
also the noised gradient direction that
influences gradient descend. This is
the inherent problem of the noise, like
the Byzantine Fault-tolerance prob-

Figure 8: Finetuning LLMs with different noise degrees.

80 1 WW/——

ST

— oracle PAFT-Sync H=10

@
S

-3
o
L

IS
o

— oracle PAFT-Sync H=10
W. Noise PAFT-Sync H =50 W. Noise PAFT-Sync H=50
PAFT-SyncH=5 __ papr PAFT-Sync H=5 —_ papr

Test Accuracy (%)
Test Accuracy (%)

N
o
!

T T T T T T T T T T
0 20 40 60 80 100 ] 20 40 60 80 100

lem (Guerraouiefall, 20724). # EPOCHS # EPOCHS
Training and Finetuning LLMs. (@) opy =0.1. (b) o, = 1.0.

Fig. [, and show the loss
curves of pretraining and fine-tuning
LLMs. The results show that the
PAFT can successfully defend against noise and improve the convergence. While the model size
increases from ResNets to LLMs like GPT-2 and LLaMA-2, the PAFT can significantly improve
than baselines. When the noise degree o2 = 0.0001 or 0.001, the PAFT can almost ensure the con-
vergence as similar to the training without noise. While for the larger noise 02 = 0.01, the PAFT can
improve the convergence compared with the noised training. The exiting performance gap between
PAFT and the normal training without noise comes from the noisy gradient itself, which leads to
an incorrect updating direction. Future works should consider combining both synchronization and
voting mechanisms like the Byzantine Fault-tolerance problem (Guerraoni_ef afl, 2074)) to address
this problem.

Figure 9: Training ResNet-18 with accidental large noise.

Accidental Large Noise. We simulate accidental large noise

like bit corruptions. Specifically, in each round, the noise Table 3: Average iteration wall-
is sampled from A/ (0,0.0001) to simulate the normal small clock time (seconds) during train-
noises. However, after each 500 iterations, the noise is sam- ing ResNet-50.

pled from a A/(0,0.1) or A'(0,1.0) as simulated accidental

large noise. The Fig. shows training with large noise sam-  #of workers | 4 8 16 32
pled from A(0,0.1) while Fig. shows N(0,1.0). The DSGD | 0201 0212 0228 0333
convergence curves clearly demonstrate the influence of this ~ F*7) Syne | 0243 0234 0276 0411
accidental noise. In each iteration that the noise happens, the

test accuracy instantly drops a lot and is pulled back by PAFT from the valley. However, for a large
noise with variance of 1.0, it is hard to pull it back. Interestingly, we observe that the learning rate de-
cay at the late stage helps the model defend against the noise. Less learning rate results in less model
update and divergence, which aligns with our theoretical analysis (Lemma Bl and Theorem B72).

Wall-clock Iteration Time We provide a comparison of the average iteration wall-clock time (in
seconds) during the training of the ResNet-50 model, using different numbers of workers ranging
from 4 ~ 32 in Table B. By dynamic adjusted synchronization frequency and overlapped com-
munication, the PAFT reduces the extra cost than PAFT-Sync for around up to 11.0% efficiency
improvement for 32 workers. And the extra cost of PAFT than DSGD is around 18.9% for 32 work-



Under review as a conference paper at ICLR 2025

ers. For more workers, PAFT—-Sync shows better improvement, which means the good scalability
of PAFT-Sync.

6 RELATED WORKS

Due to the limited space, we introduce the concise related works here, and leave detailed discussions
in Appendix [A.

Parallelism at Scale Distributed large model (LM) training (Narayanan et all, 2021) employs
hybrid parallelism techniques, including data parallelism (DP), tensor model parallelism (TP), and
pipeline parallelism (PP). DP (Krizhevsky et all, POT7; Chen ef all, POT6H; Ciu_ef-all, POTH; [Zhang
ef_all, DOT7; [Tang et all, 2020; DO27), which replicates models for parallel training, is central in
hybrid parallelism. It scales the training effectively by increasing the batch size to accelerate model
convergence. TP (Dr_ef-all, P020; Narayanan et all, 202T) and PP (Narayanan et all, P019; Rasley
ef—all, P020; [Tang et all, 023) complement DP by addressing memory limitations when models
exceed a single device’s memory capacity. PAFT tackles GA errors and has been generalized to
hybrid parallel training frameworks like DeepSpeed (Kasley et all, 2070) and Megatron (Narayanan
efall, DO7T) towards large-scale LLM training.

Safety and Reliability of Distributed Training Many studies focus on system reliability concern-
ing node failures, using checkpointing (Wang et al], 2023h; 2024; Narayanan et all, PZ02T) and elas-
ticity ([Thorpe et all, P072; Harlap et all; He_ef all, P073a) optimizations for rapid recovery. These
optimizations enhance system robustness and enable quick restarts. Also, there are many efforts
against Byzantine faults (El=Mhamdi ef all, 2020; Damaskinos_ef all, POTE; Guerraoui ef all, 2074))
by malicious node behavior. However, silent errors, represented by GA errors in the scope of this
paper, arise from unintentional issues like hardware errors or communication errors, leading to inac-
curacies in gradient updates. Unlike the other types of errors, GA errors are particularly challenging
due to their subtlety and variability, making them more difficult and resource-intensive to detect and
mitigate. To the best of our knowledge, PAFT is the first effort to improve system reliability against
GA errors at scale.

7 LIMITATIONS

Performance gap between PAFT and the oracle. In this work, as illustrated in the experiments B,
we do not completely close the performance gap when the noise degree is large.Future works should
consider combining both parameter synchronization and voting mechanisms like the Byzantine
Fault-tolerance problem (Guerraoniefall, 2074) to address this problem.

Extra communication overheads. PAFT introduces extra communication overheads due to the
parameter synchronization. And the synchronizing optimizer states also introduce extra overheads.
While we have shown that the overheads are acceptable in the experiments, the overheads may be
significant in some scenarios like the low-bandwidth environments. Future works should consider
optimizing the synchronization frequency to reduce the overheads.

8 CONCLUSION

In this work, we address GA errors in distributed training caused by hardware issues like bit corrup-
tions and communication noise, which are challenging to capture and mitigate for fault tolerance.
We first mathematically formulate and generalize these errors as gradient inconsistency. Then, we
theoretically analyze how they lead to accumulated model divergence and failed convergence. To ad-
dress this issue, we propose PAF T, a fault-tolerant distributed training system incorporating dynamic
and asynchronous parameter synchronization optimizations. The two components of PAFT-Sync
and PAFT-Dyn work synergistically to mitigate the negative impact of GA errors. PAFT-Sync
maintains model convergence by periodically synchronizing parameters, while PAFT-Dyn mini-
mizes overhead by adjusting synchronization frequency based on the profiled error degrees. Our
implementation of PAFT on PyTorch Distributed, evaluated on ResNet-18, ResNet-50, GPT-2, and
LLaMA-2 models across 32 GPUs, demonstrates the systems robustness against a wide range of
GA errors. The evaluation results indicate that, unlike vanilla distributed training, PAF T effectively
maintains fault tolerance without compromising training throughput.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Wei An, Xiao Bi, et al. Fire-flyer ai-hpc: A cost-effective software-hardware co-design for deep
learning, 2024. URL https://arxiv.org/abs/2408.14158.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pp. 929-947, 2024.

David F. Bacon. Detection and prevention of silent data corruption in an exabyte-scale database
system. In The 18th IEEE Workshop on Silicon Errors in Logic System Effects, 2022.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60:223-311, 2016.

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed syn-
chronous sgd. In ICLR Workshop Track, 2016.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, and Eric P. Xing. GeePS:
Scalable deep learning on distributed GPUs with a gpu-specialized parameter server. In EuroSys,
2016.

Georgios Damaskinos, Rachid Guerraoui, Rhicheek Patra, Mahsa Taziki, et al. Asynchronous byzan-
tine machine learning (the case of sgd). In International Conference on Machine Learning, pp.
1145-1154. PMLR, 2018.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
Neural Information Processing Systems, pp. 1223-1231, 2012.

Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024. URL https://
arxiv.ora/abs/2407.21733.

El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, L& Nguyén Hoang, and Sébastien
Rouault. Genuinely distributed byzantine machine learning. In Proceedings of the 39th Sympo-
sium on Principles of Distributed Computing, PODC 20, pp. 355364, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450375825. doi: 10.1145/3382734.3405695.
URL https://doi.org/10.1145/338277/34.3405695.

David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron Brightwell.
Detection and correction of silent data corruption for large-scale high-performance computing. In
SC ’12: Proceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis, pp. 1-12, 2012.

Yanjie Gao, Xiaoxiang Shi, Haoxiang Lin, Hongyu Zhang, Hao Wu, Rui Li, and Mao Yang. An
empirical study on quality issues of deep learning platform. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 455—
466, 2023.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures in data
centers: measurement, analysis, and implications. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pp. 350361, New York, NY, USA, 2011. Association for Computing
Machinery.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

11


https://arxiv.org/abs/2408.14158
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3382734.3405695
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Under review as a conference paper at ICLR 2025

Rachid Guerraoui, Nirupam Gupta, and Rafael Pinot. Byzantine machine learning: A primer. ACM
Comput. Surv., 56(7), apr 2024. ISSN 0360-0300. doi: 10.1145/3616537. URL https://doi.
org/10.114573616537.

Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger, and Phillip B. Gibbons. Pro-
teus: agile ML elasticity through tiered reliability in dynamic resource markets.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Tao He, Xue Li, Zhibin Wang, Kun Qian, Jingbo Xu, Wenyuan Yu, and Jingren Zhou. Unicron:
Economizing self-healing 1lm training at scale, 2023a. URL https://arxiv.org/abs/
JAOT 00T 34,

Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nishant Patil, and Yanjing
Li. Understanding and mitigating hardware failures in deep learning training systems. In Pro-
ceedings of the 50th Annual International Symposium on Computer Architecture, ISCA °23, New
York, NY, USA, 2023b. Association for Computing Machinery. ISBN 9798400700958.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling Chen, Peng Sun,
Dahua Lin, Xiaolin Wang, Yingwei Luo, et al. Characterization of large language model de-
velopment in the datacenter. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), pp. 709-729, 2024.

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and
Paolo Tonella. Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ICSE *20, pp. 11101121, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450371216.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan
Yang. Analysis of Large-Scale Multi-Tenant GPU clusters for DNN training workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pp. 947-960, Renton, WA, July 2019.
USENIX Association.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A unified archi-
tecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters. In OSDI,
2020.

Hassan Khan, Frederico Cerveira, Tiago Cruz, and Henrique Madeira. Network failures in cloud
management platforms: A study on openstack. pp. 228-235, 04 2023.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/~kriz/cifar.htmll.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/kriz/cifar.html, 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Commun. ACM, 60(6):84-90, 5 2017.

Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram Saraph, Bor-Yiing Su, Caroline
Trippel, Jiyan Yang, Mike Rabbat, Brandon Lucia, et al. Understanding and improving failure
tolerant training for deep learning recommendation with partial recovery. Proceedings of Machine
Learning and Systems, 3:637-651, 2021.

12


https://doi.org/10.1145/3616537
https://doi.org/10.1145/3616537
https://arxiv.org/abs/2401.00134
https://arxiv.org/abs/2401.00134
http://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2025

Michael A. Malcolm. On accurate floating-point summation. Commun. ACM, 14(11):731736, nov
1971.

Jayashree Mohan, UT Austin, and Amar Phanishayee. CheckFreq: Frequent, Fine-Grained DNN
Checkpointing. pp. 15.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. PipeDream: Generalized pipeline paral-
lelism for DNN training. In SOSP, pp. 1-15, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, et al. Efficient large-scale language model
training on gpu clusters using Megatron-LM. In SC, 2021.

Andrew Or, Haoyu Zhang, and Michael Freedman. Resource elasticity in distributed deep learning.
In L. Dhillon, D. Papailiopoulos, and V. Sze (eds.), MLSys, volume 2, pp. 400411, 2020.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger, Qirong Ho, Hao
Zhang, Gregory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning. In 15th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 21), pp. 1-18. USENIX Association, July 2021. ISBN 978-1-939133-22-9.
URL https://www.usenix.org/conference/osdiZ2l/presentation/giad.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/research-covers/language-unsupervised/language_understanding_paper. pdf, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In ACM SIGKDD,
2020.

Yousef Saad. Csci 5304: Computational aspects of matrix theory. Course Lecture
Notes, 2020. https://www-users.cselabs.umn.edu/classes/Fall-2020/
cscib304/FILES/LecN4 . pdf.

Shaohuai Shi, Qiang Wang, Xiaowen Chu, Bo Li, Yang Qin, Ruihao Liu, and Xinxiao Zhao.
Communication-efficient distributed deep learning with merged gradient sparsification on gpus.
In IEEE INFOCOM, 2020.

Shaohuai Shi, Xiaowen Chu, and Bo Li. Exploiting simultaneous communications to accelerate data
parallel distributed deep learning. In /[EEE INFOCOM, pp. 1-10, 2021a.

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao Wang, Zilin Zhu, Xue Huang, Xinan Jiang,
Feihu Zhou, Zhenyu Guo, Ligiang Xie, et al. Towards scalable distributed training of deep learn-
ing on public cloud clusters. volume 3, pp. 401412, 2021b.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,

NIPS’18, pp. 44524463, Red Hook, NY, USA, 2018. Curran Associates Inc.

Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng, Dongming Bi, and
Dong Xiang. NetBouncer: Active device and link failure localization in data center networks.
In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pp.
599-614, Boston, MA, February 2019. USENIX Association.

Zhenheng Tang, Shaohuai Shi, Xiaowen Chu, Wei Wang, and Bo Li. Communication-efficient
distributed deep learning: A comprehensive survey. arXiv preprint arXiv:2003.06307, 2020.

Zhenheng Tang, Shaohuai Shi, Bo Li, and Xiaowen Chu. Gossipfl: A decentralized federated learn-
ing framework with sparsified and adaptive communication. /EEE Transactions on Parallel and
Distributed Systems, pp. 1-13, 2022. doi: 10.1109/TPDS.2022.3230938.

13


https://www.usenix.org/conference/osdi21/presentation/qiao
https://www-users.cselabs.umn.edu/classes/Fall-2020/csci5304/FILES/LecN4.pdf
https://www-users.cselabs.umn.edu/classes/Fall-2020/csci5304/FILES/LecN4.pdf

Under review as a conference paper at ICLR 2025

Zhenheng Tang, Yuxin Wang, Xin He, Longteng Zhang, Xinglin Pan, Qiang Wang, Rongfei Zeng,
Kaiyong Zhao, Shaohuai Shi, Bingsheng He, et al. Fusionai: Decentralized training and deploying
IIms with massive consumer-level gpus. In The 32nd International Joint Conference on Artificial
Intelligence, Symposium on Large Language Models, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford alpaca, 2023.

TorchSnapshot team. TorchSnapshot: A performant, memory-efficient checkpointing library for
PyTorch applications. https://github.com/pvtorch/torchsnapshot, 2022.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in mpich. Int. J. High Perform. Comput. Appl., 2005.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang, Ravi Ne-
travali, and Guoqing Harry Xu. Bamboo: Making Preemptible Instances Resilient for Afford-
able Training of Large DNNs, April 2022. URL http://arxiv.org/abs/2204.12013.
arXiv:2204.12013 [cs].

Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech, Sudharshan Vazhkudai,
Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe Navaux, Luigi Carro, and Arthur
Bland. Understanding gpu errors on large-scale hpc systems and the implications for system de-
sign and operation. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pp. 331-342, 2015.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, 2023.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9):

803-812, 1986.

Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang, Jiesheng Wu, and Qingchao Luo. Under-
standing silent data corruptions in a large production cpu population. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP *23, pp. 216230, New York, NY, USA, 2023a.
Association for Computing Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613149.
URL https://doi.org/10.1145/3600006.36131479.

Yuxin Wang, Shaohuai Shi, Xin He, Zhenheng Tang, Xinglin Pan, Yang Zheng, Xiaoyu Wu,
Amelie Chi Zhou, Bingsheng He, and Xiaowen Chu. Towards fault-tolerant hybrid-parallel
training at scale with reliable and efficient in-memory checkpointing, 2024. URL https:
//arxiv.orqg/abs/2310.126770.

Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, TS Eugene Ng, and Yida Wang.
Gemini: Fast failure recovery in distributed training with in-memory checkpoints. In Proceedings
of the 29th Symposium on Operating Systems Principles, pp. 364-381, 2023b.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang
Wei, Pengtao Xie, and Eric P. Xing. Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters. In USENIX ATC, pp. 181-193, 2017.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

14


https://github.com/tatsu-lab/stanford_alpaca
https://github.com/pytorch/torchsnapshot
http://arxiv.org/abs/2204.12013
https://doi.org/10.1145/3600006.3613149
https://arxiv.org/abs/2310.12670
https://arxiv.org/abs/2310.12670

Under review as a conference paper at ICLR 2025

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu

Asynchronous stochastic gradient descent with delay compensation. In International Conference
on Machine Learning, pp. 4120-4129, 2017.

Ma gorzata Steinder and Adarshpal S. Sethi. A survey of fault localization techniques in computer

networks. Science of Computer Programming, 53(2):165-194, 2004. ISSN 0167-6423. Topics in
System Administration.

15



Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

A.1 PARALLELISM AT SCALE

Distributed large model (LM) training (Narayanan et all, 2021) employs hybrid parallelism tech-
niques, including data parallelism, tensor model parallelism, and pipeline parallelism.

Data parallelism (DP) (Krizhevsky et all, P0OT7; Chen"ef all, POTH; Cni“ef-all, POTA; Zhang et all,
20T7; Tang et all, 2020; X0O27), which replicates models for parallel training, is central in hybrid
parallelism. It scales the training effectively by increasing the batch size to accelerate model conver-
gence. However, DP is limited by memory capacity and communication overheads, especially for
large-scale LM training. This paper focuses on the GA erros in DP training.

Tensor model parallelism (TP) (Or_ef-all, 2020; Narayanan et all, 2021) complement DP by ad-
dressing memory limitations when models exceed a single device’s memory capacity. PAFT tackles
GA errors and has been generalized to hybrid parallel training frameworks like DeepSpeed (Kasley
efall, 2020) and Megatron (Narayanan et al], Z02T) towards large-scale LM training. The TP training
may also have communicatin errors, which is out of the scope of this paper. And the communication
errors in concating tensors in TP more like the computational SDC errors, which is different from
the GA errors in DP.

Pipeline parallelism (PP) (Narayanan et all, P0T9; Rasley et all, 2020; [lang et all, 20723) splits the
whole model into different stages and processes them in a pipelined manner. The PP can reduce the
memory consumption and communication overheads. The communication errors happen in PP are
more like the quantization or compression errors, which is different from the GA errors either.

A.2 SAFETY AND RELIABILITY OF DISTRIBUTED TRAINING

Active Failures. Many studies focus on system reliability concerning node failures, which may
directly interrupt training processes. These studies propose fault-tolerant mechanisms using check-
pointing (Wang et all, P023h; (074, Narayanan et al), PZ021) and elasticity (Thorpe et all, 2022; Hat-
[ap et all; Heef all, P(0734) optimizations for rapid recovery. These optimizations enhance system
robustness and enable quick restarts.

Silent Failures. There are other soft failures like the communication noise happen in GA, or the
workers upload the wrong gradients to the server. The typical methods to handle these failures
include gradient clip, or considering them as the Byzantine faults by malicious node behavior (EIZ
Mhamdi_ef all, PO20; Damaskinos_ef all, POTY; Guerraoni_ef all, 2024). However, the silent errors
in GA errors in the scope of this paper, arise from unintentional issues like hardware errors or
communication errors, leading to inaccuracies in gradient updates. And we mainly focus on the GA
errors happen during the broadcasting in DP training, which is different from the other types of soft
failures.

A.3 ASYNCHRONOUS OPTIMIZATIONS

To accelerate distributed training, asynchronous optimization techniques have been proposed to re-
duce the synchronization overheads ([sifsiklis"ef all, TY86; [Zheng et all, POT7; Damaskinos_ef all,
20718). These techniques allow workers to update model parameters independently, reducing the
waiting time for synchronization. To consider accelerating synchronizing checkpoints, many works
utilize the asynchronous and heterogeneous capabilities of hardware resources for parallel process-
ing of different tasks. For example, in checkpointing optimizations, asynchronous parameter snap-
shotting can compete for memory bandwidth with training processes, potentially slowing down the
training speed (Mohan ef all; ream, 2027; Wang et all, P024). Additionally, inter-node communi-
cations asynchronous to training can introduce communication overheads (Shi“ef-all, P020; PZO2TH).
In PAFT-Sync, we also observe unavoidable asynchronous overheads during training. However,
the dynamic synchronization frequency effectively reduces the overall asynchronous overhead in the
fault-tolerant system.

16



Under review as a conference paper at ICLR 2025

B MORE DISCUSSION

B.1 SILENT DATA CORRUPTION ERRORS

Silent data corruption (SDC) errors are particularly insidious in high-performance computing
(HPC) (Wang et all, 2023a; He ef all, Z023H), database (Bacon, PZ077) and communication systems
because they can go undetected and lead to incorrect results. These errors can occur due to vari-
ous reasons, including hardware faults, software bugs, or cosmic radiation. In the context of HPC,
SDC errors can significantly impact the reliability and accuracy of computations, especially in large-
scale simulations and data-intensive applications. The large-scale distributed deep learning might
be severely influenced by the SDC errors (He_ef-all, PO73H).

In communication systems, SDC errors can be introduced during data transmission between nodes
in a distributed computing environment (Fiala_ef all, Z017; gorzata Steinder & Sethi, 2004). These
errors can be caused by issues such as faulty network hardware, electromagnetic interference, or sig-
nal degradation over long distances. The impact of SDC errors in communication can be severe, as
they can lead to incorrect data being propagated through the system, potentially causing widespread
computational errors.

Table B shows the root-cause categorization of unexpected interruptions during a 54-day period of
Llama 3 405B pre-training (Dubey et all, Z024). About 78% of unexpected interruptions were at-
tributed to confirmed or suspected hardware issues, including faulty GPUs, GPU memory, and other
components. These interruptions can lead to significant downtime and data loss, affecting the overall
performance and reliability of the system. The SDC and network errors occupy a significant portion
of the interruptions, highlighting the importance of addressing these issues in distributed computing
environments. Note that the reported SDC erros belong to the explicit results that obviously ob-
served. However, there exists a large portion of silent erros with low erro degree may appear in the
training process, which is hard to detect and not reported.

Component Category Interruption Count % of Interruptions
Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%
Host Maintenance 1\}[J Qplanned 32 7.6%
aintenance
GPU SRAM Memory GPU 19 4.5%
GPU System Processor GPU 17 4.1%
NIC Host 7 1.7%
NCCL Watchdog Timeouts Unknown 7 1.7%
Silent Data Corruption GPU 6 1.4%
GPU Thermal Interface + Sensor GPU 6 1.4%
SSD Host 3 0.7%
Power Supply Host 3 0.7%
Server Chassis Host 2 0.5%
10 Expansion Board Host 2 0.5%
Dependency Dependency 2 0.5%
CPU Host 2 0.5%
System Memory Host 2 0.5%

Table 4: Root-cause categorization of unexpected interruptions during a 54-day period of
Llama 3 405B pre-training. (Dubey et all, 2024) About 78% of unexpected interruptions were
attributed to confirmed or suspected hardware issues.

There is a substantial amount of SDC in data center processors (He-ef-all, P0173R; Wang et all, 20233),
leading to complex issues that are difficult to replicate and locate. In Fire-Flyer HPC (An ef-all,
2024), various computational errors and GPU memory errors not detected by Error Correction Code
(ECC) listed in Table B, which led to models gradnorm spikes, loss explosions and even nonconver-

17



Under review as a conference paper at ICLR 2025

Table 5: Type of GPU Xid Errors and Its Causes (An-efall, D(074).

Xid Errors Analysis

Software  Causes: | Triggered by application programs, software-related Xid messages may
Xid_13/31 indicate anomalies in GPU memory affecting code and data segments.
Xid_43/45 However, it’s crucial to consider other information for a comprehensive

hardware functionality assessment.

NVLink Error: Xid
74

Xid74 indicates errors in NVLink. For PCle A100, it’s mainly occurred

on the NVLink Bridge between two GPUs. Its occurrence rate is several
orders of magnitude higher than other hardware faults. Apart from stress
testing to exclude those that are constantly repeating errors, there isn’t a

good way to avoid the occurrence of Xid74 issues.

Xid_61/62/69/79

Memory ECC | Triggered when the GPU handles memory ECC errors on the GPU. With

Error:  Xid_63/64 | the introduction of row remapping technology in A100, most instances

Xid_94/95 can be resolved by simply resetting the GPU to retain optimal
performance.

Uncorrectable Thease failures mean an uncorrectable error occurs on the GPU, which is

GPU Failures: | also reported back to the user application. A GPU reset or node reboot is

Xid_44/48 needed to clear this error.

Other Failures: Xid
119

Xid119 means GPU GSP module failed. These failures need to do fieldiag
test, and most need to RMA.

gence. Tackling these silent errors is crucial for ensuring the reliability and accuracy of distributed
training systems. The errors like Xid 63/64 will cause the failed convergence problems.

Table B shows that NVLink Erros and software errors occupy a large portion of all errors. It is crucial
to address the SDC erros in both communication and computation.

B.2 SDC ERROR SIMULATION

Fig. M shows the bias distribution with different noise degrees. For the ¢ = 0.0001, almost all
elements are less than 3e-4. Fig. [ shows the maximal value in the noise during training with
different noise degrees. After each 500 iterations, there is a burst value happens, which is more
significant for the larger noise degree.

500

i T\ 400 J

ol
mh ol
., .l

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1
Bias e Bias

Frequency
'S
S
=]

= |

Frequency

w
153
3

=

—
Frequency

»

S

3
=

|
e, | .l

2 3 4

(a) o = 0.0001. (b) o = 0.001. (¢) o =0.01.
Figure 10: The bias distribution for all elements in a gradient with different 2.

Gradient Magnitude Distribution. Fig. [ and 3 show the distribution of values in the gradients
of the ResNet-50 when training with CIFAR-100 at different iterations. Comparing the magnitudes
of gradients with the noise, we can see that even the noise with o = 0.001 is a large noise that has
similar magnitude to the gradients. In the real-world scenarios, noises with ¢ > 0.01 happen less.

18



Under review as a conference paper at ICLR 2025

Table 6: Raw Data of GPU Xid Errors during one year in Fire-Flyer HPC (An_ef-all, D124

GPU Error Type Xid Code Number Percentage
NVLink Error xid_74 5521 42.57%
Software Causes xid_13 45 0.35%
xid_31 2487 19.18%
xid_43 4342 33.48%
xid_45 240 1.85%
GPU ECC Error xid_63 245 1.89%
xid_64 2 0.02%
xid_94 13 0.10%
xid_95 17 0.13%
Uncorrectable Failures | xid_44 1 0.01%
xid_48 2 0.02%
xid_61 13 0.10%
xid_62 3 0.02%
xid_69 1 0.01%
xid_79 37 0.29%
GPU GSP ERROR | xid_119 1 0.01%
Total 12970 100.00%
L as —
120 30
g .0
105 15
(a) o = 0.001. (b) ¢ =0.01.

Figure 11: The maximal value in the noise during training.

For the significant larger noise error, which can be detected by the some machine learning methods
like the gradient clip, or the majority voting.

C PROOF

In this section, we provide the detailed proof of Lemma B, Theorem B2, Lemma B and Theo-
rem B, We rewrite all of them in this section for convenience of reading.

C.1 SOME DEFINITIONS AND ASSUMPTIONS

Definition C.1. (Virtual Average). In distributed stochastic gradient descend (Eq. B) with inconsis-
tent gradient (Definition D7), an averaged model weight sequence {6; },> is defined as

1 M ]
G = 6o, 0, =—> 0 (13)
M =1

19



Under review as a conference paper at ICLR 2025

4000

2000 6000 3500

5000 3000

1500 2500
> 24000 >
§ g 5]

% qg,. %2000
£ 1000 £3000 g

1500

2000
1000

Wy A RS §

-6 -4 -2 0 2 4 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 4
Gradient Magnitude a0t Gradient Magnitude o Gradient Magnitude a0t
(a) At 10-th training itertaion. (b) At 50-th training itertaion. (c) At 100-th training itertaion.

Figure 12: The bias distribution for all elements of gradients of Conv layer in the first block.

50000
20000 20000
40000
..15000 o -.15000
g g 2
I3 3 30000 ]
3 3 3
= = =
L o o
10000 = 10000
20000
5000 JX( 10000 5000 J
0 L 0 _d L o L
-2 [ 2 4 6 8 -1 0 1 2 3 4 -4 2 0 2 4 6 8
Gradient Magnitude 0% Gradient Magnitude e Gradient Magnitude 0%
(a) At 10-th training itertaion. (b) At 50-th training itertaion. (c) At 100-th training itertaion.

Figure 13: The bias distribution for all elements of gradients of Conv layer in the second block.

From Definition I, Eq. B and 3, we have

9_t+1 = ét - 7]t§t- (14)

C.2 INCREASING MODEL DIVERGENCE

Lemma C.1 (Increasing Model Divergence (Lemma B)). With the same initial point 87" = 0
across workers {m|m = 1,2, ..., M'}, the DSGD with noise ;" ~ N (0, o) introduces accumulated
model divergence A}" along the training process as

~ m M +1)0% <&
E||0c41 — 0754 = % > o (15)
s=0

Proof of Lemma B We define the 8, = - S°M 67 and §, = L M gi = & M (g + €).
Then, we have 0,1 = 0; — 1;;. By substituting Eq. B and H into A7 and iterating.

E||0c11 — 0731 11* =El|0: — mege — 07" + et ||
=E|(0: — 07"|1> + 7 El|Ge — 3" ||° + 20 B — 07", 3" — Ge) - (16)

=0

20



Under review as a conference paper at ICLR 2025

By iterating above equation from ¢t — 0, we have

t
Elffin — 07| =Elldo — 637112 + > nEllg. — 7'
————

) s=0

t M
1 = P m
= niVar(3; D@+ ) — (@ + ")
s=0 k=1
t 1 M
_ 2 k m
_ZnsVar(M Z €5 —€5")
s=0 k=1
(M +1)0? &<
- M — Ms

C.3 CONVERGENCE WITH NOISED TRAINING.

Firstly, we provide the Lemma [ before proving Theorem B2.

Lemma C.2. Let {0;};>0 and {0;}1>0 for m € [M] be defined as in Equation (8), (I3) and let f be
L-smooth and p-strongly convex and n, < ﬁ. Then

E[[f+1 — 07|* <(1— pno)El0: — 67[|* + 7 El|Ge — VE ||

M
1 - e 2L . an
- §7hE(f(9t) -+ ]\/?t ZEHGt - 0t‘|2
1=1
Proof of Lemma IC2. Using the update Equation 4, we have
041 — 07|° =[10: — mege — 07| = |0 — meGe — 0" — eV Fe + . VE||° (18)
=||6: = VF; — 9*H2 + 77752H§t - VFtH2 +2m:(0: — 0 — eV Fy, Ge — VF).
Observe that
10: — eV Ey — 607[1* =[16: — 071> + ni [[VF||* — 2(0: — 0",V F)
_ 1 & , o, ML ) ) )
SRS G o > =i +61 = 0", 0(60)
M
n * 1 12 * (19)
=|10: — 67|” + U?M Zl l19(6:) — g(6)I1?
o M ' o M. ' .
= T D007 g(60) = S D" (0~ 61, 9(67)).
i=1 =1
By L-smoothness, we have
ll9(6:) = g(0")II” < 2L(f(61) = f7). (20)
By p-strong convexity, we have
—(6; — 6", 9(60) < —(F(6) — £) = E|lo; - 0|”. 1)
To estimate the last term in (I), we use 2(a, b) < v||a||? + v~ |[b||? for v > 0, thus
] i i a3 i 1 i
—2(0: — 01, 9(01)) <2L[[0: — 0;]|* + ﬁ||g(9t)|\2
n (3 1 7 *
=2L|8. — 61> + 5 119(6}) — 9(6")I* 22

<2L||0: — 0}|° + (f(67) — f7).

21



Under review as a conference paper at ICLR 2025

By applying these estimates to (I9), we get

M
0, — 0" F1? <||8, — 07| + 2L G, — 012
[|0: — 0" —m: VF||” <[[0: — 07" + 1% Zl\t* HI
=t (23)

217 M 1 M
4t i * i %112
R ;((mLfg)(f(&)ff )= Sli6i = 0711%)

Forn, < ;= itholds (n,L — 1) < —1. By convexity of a(f(6) — f*) + b||0 — 6*||? for a,b > 0,

11%

_M_
i=1

Hence, we can continue in (Z3) and obtain

(a(f(01) — f*) +bl16; — 07117) < —(a(f(B:) — f*) + b6 — 67 |). (24)

M
18— 0"~V EP < (1= )18 — 01 — Snu(FB) — ) + Z2E ICEINED
Finally, we can combine (Z3) with (IR). By taking expectation we get
E[fe+1 — 07|* <(1 — pmo)El0: — 07[|* + n7El|Ge — VE ||
(26)

1 _ 2y A
- §ntE(f(9t)_f*)+ Mt ZEH@t — 6;1?
i=1

Now, we can prove Theorem B2 with help of Lemma C2.

Theorem C.3 (Convergence with noised training (Theorem B72.). With object function defined in
Eq. U satisfying Assumption B, DSGD with noise ¢/ ~ N (0,0?) has the following convergence
bound

T—1 = 2 2\ T—1
1 _ N QEHGO—@*HQ 2(0y +0%) 5
= mE(f(0) - 1) < - > i
T —~ T TM —~

ALo*(M +1) = &4
RPN
t=0 s=0

C.4 BOUNDED MODEL DIVERGENCE

Lemma C.4 (Bounded Model Divergence (Lemma ET). If gap(A) < H and sequence of decreas-
ing positive stepsizes {n, }1>o satisfying n, < 2ny1 g for all t > 0, then. With the same initial point
05" = 0y across workers {m|m = 1,2, ..., M}, the DSGD with noise ¢;* ~ N (0,0?) introduces
accumulated model divergence AJ" along the training process as
2.2
E||fp1 — 011 |% < AH(M +1)o7n; (27)
M
Proof of Lemma E-1. By Lemma B, and observing that all 67} ; will be synchronized at the syn-
chronization point as Eq. 8 or Eq. I, we have
E[|0, — 0| =0,

where r = H; < |t/H | represents the last synchronization timestamp until iteration ¢. Thus, we
have the following equation by iterating Eq. [8 from ¢t — r,

t
Elfe1 — 075411" =EN6- — 071+ nZEl|gs — g1
———
-0 s=r

M

¢
= Z n?Var(% Z e —em)

k=1
M+1)o? < _ .
:(T) > niE[01 — 0754
t
(M +1)0? o _ 4H(M + 1)o’n?
= 7 < oF 7 R

22



Under review as a conference paper at ICLR 2025

We use 1; < n,- for t > r and learning rate decay assumption 7, < 29,4 p. Note that different
learning rate schedule methods do not influence the order of this bound too much. O

Proof of Theorem B2. By Equation (Z8), when p = 0, and f is convex, we have

El6i+1 — 6"[|* <E||f: — 67||* + n?El|ge — VE||*

M
o 2L _ (28)
~ SWE(I@) ~ 1)+ 2 DBl — 6l
Rearranging Eq. B3, we have
nE(f(0:) — £*) <2(E||8: — e*u? —E|lfes1 — 0°|*) + 207E||3: — VE|?
4 (29)
’7‘ Zﬁnet—etn

By summing ¢ from 0 to 7" — 1,

1 3 2E[|60 — 0*[]° | 2 _
1> k(s - gy <O TZ WEllg ~ VR
= t=0
- 30
4L
mZEHet—etn

For gradient estimation error from the noise, we have

LM _ M M

E[|g: — VF||? =Ell 57 > ai(6:) + Z € — Zg 0,)|
i=1 i1

M M

P

_EH*ZQz 9t

M

1 i
9(0,)1* JrEII*ZQH2

i=1
1 i A
o ZE@M(@J —g(0%), €t) 31)
i=1
=0
1 M ]
=15 D Ellgi(6) — 90D + 1 ZEM
i=1

05—1—02
- M

Combining Eq. BT and Lemma Bl into Eq. BO, we have

T-1 ~ T-1
1 ~ o _2E[|00 — 0*])>  2(02 4 0?)

S nE(f(0) - ) <P OIE 2 T S
t=0

t=0

. (32

- 1
4L0 M+1 Z 17“

s=

which completes the proof. O

C.5 CONVERGENCE WITH NOISED TRAINING WITH PAFT-SvyNC.

Here, we use the Martingale Lemma (Lemma 3.3 in (Sfich’ef-all, Z0TR)) to help our proof.

23



Under review as a conference paper at ICLR 2025

Lemma C.5. Let {a;}1>0,ar > 0,{et}i>0,e: > 0 be sequences satisfying

arr1 < (1= pne)ar — nier A+ B+, C, (33)
forn, = ;L(%H) and constants A > 0, B,C > 0, > 0,a > 1. Then we have
A= pa’ 2T(T + 2a) 16T
Sy ; wier < 45, % + 51 B+ 257 C, (34

forw; = (a+1)? and St = tT:_Ol wy = L(2T? + 6aT — 3T + 6a® — 6a + 1) > +T°.

Theorem C.6 (Convergence with noised training with PAFT-Sync ( B2).). With object function
defined in Eq. U satisfying Assumption B, DSGD with PAFT (Eq. B or Q) noise € ~ N(0,c?),
we have,

. 3 AT(T + 2 2 2
Effr) — 1* < H9 160 — 0%|2 + (T +2a)(oy +07)

— 257 uM St
2567 (M +1) o
W28 M oc“HL

where O = #& Zi\f:l ZtT;()l w0, for wy = (a +t)% and St = ZtT;Ol wy > T3

Proof of Theorem B. Using Lemma 2, Eq. B1l, Lemma Bl we get

7] * n * 0—2+O'2
BflBess = 0°I1* <(1— pno)BIIG — 7% + ==
(35)
1 5 «  S8LHo?*(M +1
— inB(@) - g7y + ST D o

By Lemma 3 and the convexity of f, rearranging Eq. B3, we have

AT (T + 2a)(02 + 0?)
uM St

5 . _ pa® o2
Ef(0r) — f* < 551100 — 07|" +
25T (36)
2567 (M +1)
WY 2HL
25y M °

D MORE EXPERIMENTAL RESULTS

D.1 ELIMINATE MODEL DIVERGENCE

Fig. [ shows that the in noised DSGD, the model divergence is accumulated during trainig, thus
severely influencing convergence. While the PAFT can effectively illuminate the model divergence
periodically, thus improving the convergence.

— < 0.06
> 0.051 MMHMM
= — SGD
% 0.04 1 — = Noise 0.0001
SGD L —— Noise 0.01
—— Noise 0.0001 4 2 0.03 1 == Noise 0.0001(H5)
—— Noise 0.01 g Noise 0.01(H5)
— = Noise 0.0001(H5) 7 0.021 — = Noise 0.0001(H50)
Noise 0.01(H5) o —— Noise 0.01(H50)
== Noise 0.0001(H50) |<5 0.01 1 Lol d b bbb b p.]
= Noise 0.01(H50) @)
304 y y y y T F 0.00 v EESTASomIRRIITITIITIIIITITIT
0 20 40 60 80 100 0 200 400 600 800 1000
# EPOCHS # ITERATIONS
(a) Test accuracy. (b) Model divergence

Figure 14: Training ResNet-18 with 4 workers.

24



Under review as a conference paper at ICLR 2025

D.2 CONVERGENCE UNDER LARGER NOISE

Fig. I3 and [A show results of training ResNet-18, ResNet-50 and LLMs with larger noise degrees
(0 = 0.1 or 1.0). Under the more severe noises, the convergence of LLM:s is significantly influ-
enced. And it is more difficult for PAFT to mitigate these erros. Nevertheless, such a large noise
degree is not common in practice.

—— Oracle = PAFT 0?=0.1 —— Oracle — PAFT 0?=0.1 —— Oracle —— PAFT0?=0.17]
?80 02=0.1 — PAFT 02=1.0 = 02=0.1 — PAFT 2= 1.0 = 60 1 02=0.1 — PAFT 0= 1.0
& 807 —ot=10 < 60 — =10 s —ot=10
> > > - '
@ 60 3 3 401
5 5 401 5
S 40 S S
< < <
J 204
7 7 20 7
£ 20+ & [
0 0
T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
# EPOCHS # EPOCHS # EPOCHS
(a) Training ResNet-18 with 4 workers. (b) Training ResNet-50 with 4 workers. (C) Training ResNet-50 with 32 workers.

Figure 15: Training computer vision models with larger noises.

8 = Onacle i— PAFTo7 =01 20 — Oracle —— PAFT 02=0.1 1.4 — Oracle — PAFT 02 =0.1
_Z;:?;inna:m 02201 — PAFT 0= 1.0 =01

8. E @ 151 2 1.2 LN N S A
S 3 S
£ c c
° '© 1.0 s
= 61 = = 1.01

> ] 08

0 500 1000 1500 2000 2500 3000 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250
# lters # lters # Iters

(@) Training GPT-2 with OpenWebText. (b) Finetuning GPT-2 with Alpaca. (C) Finetuning LLaMA-2 with Alpaca.

Figure 16: Training LLMs with larger noises.

D.3 COMPARING SYNCHRONIZING OPTIMIZER STATES

Fig. [ provides results of comparing PAF T with synchronizing model or all parameters (including
optimizer states). The results show that synchronizing all parameters can improve the convergence
than synchronizing model only. However, the improvement is limited, and the overhead of synchro-
nizing all parameters is much higher than synchronizing model only. Thus, synchronizing model
only is more practical in distributed training.

6.5 0.50
. — Oracle PAFT Sync. Model \ g — Oracle PAFT Sync. Model
£ —— 07=0.0001 — PAFT Sync. All —— 0?=0.001 — PAFT Sync. All
2 60 W
z 8 60 2 0.45
© o o
5 40 3 3
g 355 3
< o > L 0.404
% 201 = =
£ ¥ S Y
04 T T v v T ———————— 0.35 T T |
0 20 40 60 80 100 0 500 1000 1500 2000 2500 3000 0 500 1000 1500
# EPOCHS # lters # lters
(@) Training ResNet-50. (b) Training GPT-2 with OpenWebText. () Training GPT-2 with Alpaca.

Figure 17: Comparing PAFT with synchronizing model or all parameters (including optimizer
states). The “Sync. All” denotes synchronizing all parameters including optimzier states.

25



	Introduction
	Preliminaries
	Errors in Distributed Averaging Gradients

	Analysis of the Failed Convergence
	Accumulated Model Divergence
	Convergence Analysis of Noised DSGD

	Periodical Parameter Synchronization
	Parameter Synchronization
	Adjusting Synchronization Frequency
	Overlapping Synchronization with Training
	Extension to Other Optimizers

	Experimental Studies
	Main Results

	Related Works
	Limitations
	Conclusion
	More Related Works
	Parallelism at Scale
	Safety and Reliability of Distributed Training
	Asynchronous Optimizations

	More Discussion
	Silent Data Corruption Errors
	SDC Error Simulation

	Proof
	Some Definitions and Assumptions
	Increasing Model Divergence
	Convergence with noised training.
	Bounded Model Divergence
	Convergence with noised training with PAFT-Sync.

	More Experimental Results
	Eliminate Model Divergence
	Convergence under Larger Noise
	Comparing Synchronizing Optimizer States


