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ABSTRACT

Capturing and recovering from hardware failures is important in fault-tolerant dis-
tributed training to guarantee system efficiency. However, some hardware-related
silent data corruption errors during gradient aggregation like bit corruptions or
communication noise, are difficult to capture and address, leading to slow or
failed convergence. To understand and mitigate these errors, we first mathemat-
ically formulate and generalize them as gradient inconsistency. Then, we theo-
retically analyze how it leads to model divergence accumulated during training
and the failed convergence. Based on the analytical study, we design PAFT, a
fault-tolerant distributed training system with dynamic and asynchronous parame-
ter synchronization. PAFT includes two parts: (1) PAFT-Sync, which mitigates
model divergence by periodically synchronizing parameters, and (2) PAFT-Dyn,
which minimizes synchronization overhead through dynamic training overlap and
synchronization frequency scheduling based on profiled error degrees. Together,
they ensure efficient model convergence at scale. The fault-tolerant synchroniza-
tion in PAFT is optimized to support commonly used optimizers, e.g., Stochastic
Gradient Descent (SGD), SGD momentum, and Adam. We implement PAFT on
PyTorch Distributed and train ResNet, GPT-2, and LLaMA-2 on 4∼ 32 GPUs.
Experimental results show that PAFT efficiently defends against gradient aggrega-
tion error degrees while maintaining training performance.

1 INTRODUCTION

To efficiently train deep learning (DL) models (He et al., 2016) and large language models
(LLMs) (Radford et al., 2018; Chung et al., 2022), high-performance and large-scale distributed
training frameworks have been proposed (Rasley et al., 2020; Narayanan et al., 2021; 2019; Tang
et al., 2023). Frequent system failures suspend training and require manual recovery from check-
points, significantly reducing system efficiency and GPU utilization (up to 43%) (Maeng et al., 2021;
Wang et al., 2023b). Approximately 178,000 GPU hours were wasted during the OPT-175B train-
ing (Zhang et al., 2022) due to various failures like MPI and CUDA errors (Humbatova et al., 2020),
and hardware failures such as GPU malfunctions (Hu et al., 2024), electronic breakdowns, and node
failures (Wang et al., 2023b; Hu et al., 2024). Many existing studies focus on improving the robust-
ness and efficiency of the system through fast recovery (Wang et al., 2023b; 2024; Narayanan et al.,
2021) or elastic training (Thorpe et al., 2022; Harlap et al.; He et al., 2023a).

However, unlike system failures, silent data corruption (SDC) errors (Wang et al., 2023a; Fiala
et al., 2012; Bacon, 2022; He et al., 2023b), which do not directly interrupt training, are increasingly
affecting model quality and convergence. As reported in LLaMA-3 pretraining cluster and Fire-Flyer
cluster, SDC errors have become the main cause of LLM convergence issues, and the secondary cost
of fault tolerance during pretraining (Dubey et al., 2024; An et al., 2024), harming the reliability and
efficiency of GPU clusters at extensive scale. (We provide more real-world error types and frequency
during LLM pretraining in Appendix B).

In this work, we consider the errors happen during gradient aggregation (GA), which are caused by
hardware failures like bit corruptions (Jeon et al., 2019; Tiwari et al., 2015; Gao et al., 2023; Hu et al.,
2024) and communication noise on network links (Hu et al., 2024; Gill et al., 2011; Tan et al., 2019;
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Gao et al., 2023; Khan et al., 2023), as shown in Fig. 1. Specifically, the communicated messages
are aggregated and broadcasted with noise, leading to different gradients on workers, which results
in slow or failed convergence. To this end, we propose the following research questions.

How do silent errors in gradient aggregation influence distributed training and
how to capture and mitigate them?

Comm Errors	and	Rounding	Errors

Communication	Errors

Send	1.0

Noise

M
ac
hi
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Receive	1.5
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Figure 1: SDC errors lead to GA errors during
distributed training. We provide more discussions
about real-world cases in Appendix B.

In this work, we formulate and generalize gra-
dient inconsistency (in Section 2) errors, where
workers obtain different noisy averaged gradi-
ents instead of the accurate averages. We then
theoretically demonstrate that this gradient in-
consistency leads to accumulated model diver-
gence (in Section 3), resulting in failed conver-
gence. Additionally, we quantify the conver-
gence error theoretically concerning the degree
of gradient inconsistency.

To address the GA errors at scale, we design
PAFT, a fault-tolerant distributed training sys-
tem with two components: PAFT-Sync and
PAFT-Dyn. PAFT-Sync periodically syn-
chronizes model parameters with a frequency
H to eliminate the model divergence. Then,
PAFT-Dyn overlaps synchronization with the
training process through asynchronous com-
munication to save parameter synchronization
overhead. To further reduce unnecessary communication costs, PAFT-Dyn adjusts the synchroniza-
tion frequency H according to the signal-to-noise ratio as observed in our theoretical convergence
analysis. Our theoretical and empirical studies show that PAFT can alleviate accumulated model
divergence, ensuring training convergence.

We implement PAFT on PyTorch Distributed (Ansel et al., 2024) for real-world distributed training
and finetuning. We summarize our contributions as follows:

• We formulate and generalize gradient inconsistency caused by silent GA errors. We theo-
retically analyze how it leads to accumulated model divergence and failed convergence.

• We design PAFT, a fault-tolerant distributed training system to alleviate the gradient incon-
sistency. We theoretically prove that PAFT-Sync can illuminate the model divergence and
ensure convergence. To reduce the extra communication overhead, we design PAFT-Dyn
to overlap synchronization with training, and adjust the synchronization frequency with
respect to the profiled error degree based on the theoretical analysis.

• We conduct real-world experiments with 8-node GPU cluster with 4 ∼ 32 GPUs
to train ResNet-18 with CIFAR-10 (Krizhevsky et al., 2010), ResNet-50 with CIFAR-
100 (Krizhevsky et al.), and LLMs including GPT-2 (Radford et al., 2019) and LLaMA-
2 (Touvron et al., 2023) with OpenWebText (Gokaslan et al., 2019) and Alpaca (Taori
et al., 2023). We consider noises with different patterns to simulate the SDC errors with
different degrees. Results show that our method can successfully mitigate these errors.

2 PRELIMINARIES

We first present the preliminaries of single-device and distributed training, incorporating both im-
age classification (He et al., 2016) and language modeling tasks (Radford et al., 2019). Then, we
formulate the gradient inconsistency caused by the SDC errors during communication.

Single-device Training. With a model parameterized by θ ∈ Rd, and sampling data x ∼ D, the
object function is usually defined as (Bottou et al., 2016)

min
θ

F (θ) ≜ Ex∼Df(θ;x), (1)

2
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in which the specific definition of f(θ;x) depends on the task, and it is a general formulation in many
deep learning optimization problems (Dean et al., 2012). For image classification, the f(θ;x) =
l(ρθ(xi), xo), where xi is the data inputs, xo the labels in the data sample, x = (xi, xo), ρθ(xi) is
the output of model ρθ, l is any classification loss function, like the cross-entropy. For next-word
prediction in LLMs (Radford et al., 2019; Yang et al., 2019), the f(θ;x) = l(ρθ(x1:n), xn+1:N ),
where the sequence length of the x is N . Given the seen tokens indexed by 1 : n, the model predicts
the unseen tokens indexed by n+ 1 : N .

In t-th iteration, the gradient is estimated as gt(θt;xt) = ∇fxt∼D(θt;xt). With the SGD optimiza-
tion, the model parameters are descended towards the direction gt as θt+1 = θt − ηtgt. We also
extend our algorithm to SGD momentum and Adam (Kingma & Ba, 2015) optimizer.

Distributed SGD (DSGD). In distributed training, multiple workers M = {m|m = 1, 2, ...,M}
collaboratively optimize θ. In t-th iteration, each worker calculates the local gradient gm(θmt ). Then,
the training system uses collective communication (Shi et al., 2021a; Thakur et al., 2005; Tang et al.,
2020) or a parameter server (Jiang et al., 2020; Tang et al., 2020) to aggregate and broadcast the av-
eraged gradient across workers to update model parameters θ. This distributed gradient computation
and model updating can be formulated as follows.

ḡt =
1

M

∑
m∈M

gmt (θmt ;xm
t ), xm

t ∼ Dm, (2)

θmt+1 = θmt − ηtḡt, (3)

where Dm represents dataset on worker m, gmt (θmt ;xm
t ) represents the local gradient of f(θmt ) of

worker m at iteration t, and the θmt is updated with the average of local gradients ḡt. Normally,
local dataset Dm has the same distribution as D in distributed training. We write gmt (θmt ;xm

t ) as gmt
for simplicity. Note that all models are initialized as θ0, and all workers utilize the same averaged
gradient ḡt to update their local models. Thus, there is θmt = θt during the training process.

2.1 ERRORS IN DISTRIBUTED AVERAGING GRADIENTS

The SDC errors (Hu et al., 2024; Gao et al., 2023) in distributed training (Malcolm, 1971; Saad,
2020) actually add the noise on the estimated average gradient ḡt. Thus, workers finally obtain
different noised gradients g̃mt as follows.

Definition 2.1. (Inconsistent Gradient). The noised averaged gradient g̃mt is called inconsistent
gradient, if there is an individual noise ϵmt generated depending on m-th worker added on ḡt.

g̃mt = ḡt + ϵmt , ϵmt ∼ N (0, σ2), (4)

in which noise ϵmt is sampled from a Gaussian distribution N with mean of 0 and variance of σ2.

Noise Degree and Patterns. The small σ2 can represent the small communication noise and less
frequent SDC happening. On the contrary, the large σ2 can represent the larger noise like bit corrup-
tions (Jeon et al., 2019; Hu et al., 2024) and more frequent happening. We consider both of these
two patterns in our experiments.

The noises may not consistently follow the same pattern during training. We consider the burst
pattern of large noise (like bit corruption) that accidentally happen during training in experiments
(Section 5). More discussions about the SDC erros and noise simulation are provided in Appendix B.

3 ANALYSIS OF THE FAILED CONVERGENCE

Fig. 2(a) shows training ResNet-18 with CIFAR-10 dataset across 4 workers with and without noises
ϵmt with different σ2 ranging from 0.0001 ∼ 1.0. Results show that even the small noise 0.001 also
leads to failed training convergence.

3.1 ACCUMULATED MODEL DIVERGENCE

3
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Figure 2: Training ResNet-18
with gradient inconsistency
on 4 workers.

To understand and address this problem, we theoretically and em-
pirically show how the gradient inconsistency (Eq. 4) leads to failed
convergence. With the noised averaged gradient, the model updat-
ing process becomes from Eq. 3 as:

θmt+1 = θmt − ηtg̃
m
t = θmt − ηtḡt − ηtϵ

m
t . (5)

At t-th iteration, local models {θmt |m ∈ M} are updated towards
different directions g̃mt . Thus, this leads to diverged model parame-
ters θit ̸= θjt ̸= θt, instead of the same θt in normal DSGD (Eq. 3).
With training goes on, models θmt gradually diverge from each other.
We define the averaged model θ̄t = 1

M

∑M
i=1 θ

i
t and model diver-

gence ∆m
t = ||θ̄t+1 − θmt+1|| to measure it. Fig. 2(b) shows the em-

pirical accumulated model divergence during training. Larger noise
(higher σ2) introduces more divergence. This aligns with training
convergence curves in Fig. 2(a), where larger σ2 leads to a larger
accuracy drop or failed convergence.
Lemma 3.1 (Increasing Model Divergence). With the same initial
point θm0 = θ0 across workers {m|m = 1, 2, ...,M}, DSGD with
noise ϵmt ∼ N (0, σ2) introduces accumulated model divergence
∆m

t during training:

E||θ̄t+1 − θmt+1||2 =
(M + 1)σ2

M

t∑
s=0

η2
s . (6)

Remark. Lemma 3.1 shows that the divergence ∆m
t will be accumulated with the noise during

training. This may lead to meaningless gradient estimation. Specifically, if the model θ1t is far away
from the other model θ2t , the gradient ∇f(θ1t ;x) has no useful descent information about the θ1t in
the parameter space.

3.2 CONVERGENCE ANALYSIS OF NOISED DSGD

Assumption 3.1. The following assumptions are commonly used in deep learning (Bottou et al.,
2016): (1) Bounded variance: Em||gm(θ) − ∇Fm(θ)||2 ≤ σ2

g ; (2) Bounded gradient magnitude:
Em||gmm(θ)||2 ≤ G2. The ∇Fm(θ) = Ei g

m(θ) and ∇F (θ) = 1/M
∑

m∈M ∇Fm(θ), and the
bounded variance comes from sampling bias of the dataset on worker m.

Now, we have the following theorem to show that it is difficult to tune the learning rate to have a
good convergence speed.
Theorem 3.2. (Convergence with noised training.) With object function defined in Eq. 1 satisfying
Assumption 3.1, DSGD with noise ϵmt ∼ N (0, σ2) has the following convergence bound

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤ 2E||θ̄0 − θ∗||2

T︸ ︷︷ ︸
T1

+
2(σ2

g + σ2)

TM

T−1∑
t=0

η2
t︸ ︷︷ ︸

T2

+
4Lσ2(M + 1)

TM

T−1∑
t=0

ηt

t−1∑
s=0

η2
s︸ ︷︷ ︸

T3

. (7)

Remark. In Theorem 3.2, T1, T2 converge with respect to training iteration T → ∞, T3 only
converges when setting ηt = 0. However, the zero learning rate does not have any practical ef-
fect on decreasing the object function. To alleviate the model divergence in Lemma 3.1 and T3 in
Theorem 3.2, we propose PAFT in Section 4.

4 PERIODICAL PARAMETER SYNCHRONIZATION

As discussed in Section 2.1, the root cause of the failed convergence is the optimization of local
model parameters in different directions. In this section, we begin with a straightforward but sys-
tematic solution to this issue, parameter synchronization (Section 4.1). To minimize the additional
overhead of this method, we designed PAFT-Sync to efficiently ensure training convergence (Sec-
tion 4.2 and 4.3).
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Figure 3: The trajectory of model parameters with training with two workers with/without noise and
training with PAFT.

4.1 PARAMETER SYNCHRONIZATION

Algorithm 1 Distributed training with PAFT-Sync
Input: Initialized model θ0, dataset D, workers M, total iteration
T , learning rate η, synchronization frequency H .
Output: Final trained model θT .
1: for t = 1, ..., T do
2: for worker m ∈ M in parallel do
3: gmt (θmt ) = 1/B

∑B
i=1 ∇fxt,i∼D(θt;xt,i);

4: g̃mt = 1/M
∑

m∈M gmt (θmt ) + ϵmt ; ▷
Communication

5: θmt+1/2 = θmt − ηtg̃
m
t ; ▷ Update model

6: if t+ 1%H = 0 then ▷ Synchronization
7: θmt+1 = 1/M

∑
m∈M θmt+1/2;

8: else
9: θmt+1 = θmt+1/2;

10: Return θmT = θT ;

To eliminate the model divergence
∆m

t , one intuitive approach is to di-
rectly synchronize model parameters
across workers. Specifically, after up-
dating the model at iteration t, work-
ers can communicate and average
their parameters θmt+1, then reload the
local models as θ̄t+1. This synchro-
nization ensures that the model di-
vergence ∆m

t is eliminated, setting it
to zero. However, given the model
size Sθ, this synchronization per it-
eration incurs additional communica-
tion costs amounting to TSθ, which
equals the original communication
costs of the gradients. Therefore,
reducing the overhead of parameter
synchronization is crucial.

To address this, we propose PAFT-Sync, as detailed in Algorithm 1. In addition to standard for-
ward and backward propagation (FP and BP), gradient averaging, and model updating, PAFT-Sync
averages model parameters after every H training iteration. The model parameters are updated as
follows:

θmt+1 =

{
θmt − ηtg̃

m
t , if t+ 1%H ̸= 0

1
M

∑
m∈M(θmt − ηtg̃

m
t ), if t+ 1%H = 0

, (8)

where g̃mt = ḡt + ϵmt = 1
M

∑
m∈M gmt (θmt ) + ϵmt . After H iterations, workers start training from

the same point in the parameter space. The accumulated model divergence δmt is cleared and re-
accumulated at a low level, resulting in less harmful influences on gradient estimation. We theoret-
ically and empirically demonstrate that this synchronization effectively eliminates the accumulated
model divergence, thus ensuring training convergence.

Definition 4.1. (gap). The gap of a set A := {a0, a1, ..., at} of t + 1 integers, ai ≤ ai+1 for
i = 0, ..., t− 1, is defined as gap(A) := maxi=1,...,t(ai − ai=1).

Definition 4.1 is used to generally describe the fixed and dynamic synchronization frequency in both
Algorithm 1 and 2. The timestamp in sequence {Ht} represents the synchronization point. And the
gap({Ht}) is the maximal time gap between two synchronization points.

Lemma 4.1. If gap(A) ≤ H and sequence of decreasing positive stepsizes {ηt}t≥0 satisfying ηt ≤
2ηt+H for all t ≥ 0, then. With the same initial point θm0 = θ0 across workers {m|m = 1, 2, ...,M},
DSGD with noise ϵmt ∼ N (0, σ2) introduces accumulated model divergence ∆m

t along the training
process as

5
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E||θ̄t+1 − θmt+1||2 ≤ 4H(M + 1)σ2η2
t

M
(9)

Remark. Lemma 4.1 shows that the model divergence is bounded with O(Hσ2η2t ). Less H helps
to reduce this divergence but introduces more communication overheads. In Section 4.2 We will
show that PAFT-Dyn finds a good trade-off between the convergence and the communication in
Algorithm 2.
Theorem 4.2. (Convergence with noised training with PAFT-Sync.) With object function defined
in Eq. 1 satisfying Assumption 3.1, DSGD with PAFT (Eq. 8 or 12) noise ϵmt ∼ N (0, σ2), we have,

Ef(θ̂T )− f∗ ≤ µa3

2ST
||θ0 − θ∗||2 +

4T (T + 2a)(σ2
g + σ2)

µMST
+

256T

µ2ST

(M + 1)

M
σ2HL (10)

where θ̂T = 1
MST

∑M
m=1

∑T−1
t=0 wtθ

m
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3

Remark. Theorem 4.2 shows that PAFT ensures the convergence of DSGD with noised gradients.
And we can adjust the H with respect to the noise variance σ to trade off the convergence and
communication. And Theorem 4.2 is dependent on a heterogeneous synchronization sequence {Ht}
instead of a uniform sequence with the same gap H . Thus, it is general and can be easily extended
to different algorithms that considering adjusting synchronization frequency.

Corollary 4.3. Let θ̂T be defined as in Theorem 4.2, for parameter a = max{16κ,H}. Then

Ef(θ̂T )− f∗ = O
(κ3 +H3

µT 3

)
G2 +O

( 1

µMT
+

κ+H

µMT 2

)
σ2
g

+O
( (M + 1)Hκ

µMT 2
+

1

µMT
+

κ+H

µMT 2

)
σ2

(11)

Remark. Corollary 4.3 shows that the convergence rate is the same as the SGD (Bottou et al., 2016).

4.2 ADJUSTING SYNCHRONIZATION FREQUENCY

While the synchronization can completely address the model divergence problem, it introduces extra
communication overheads due to the communication of model parameters. Through the theoretical
analysis (Theorem 4.2) in Section 4.1, we adjust the synchronization frequency H detected error
degrees of ϵ to reduce the unnecessary communication costs.

In light of this, we propose PAFT-Dyn in PAFT, as detailed in Algorithm 2. Compared with
PAFT-Sync (Algorithm 2), PAFT-Dyn detects the magnitude of error degrees in training (Line
10) and adjusts Ht according to σt and the gradient norm (Line 11) to dynamically reduce commu-
nication costs.

Then, the new parameter synchronization scheme is given as follows.

θmt+1 =

{
θmt − ηtg̃

m
t , if t+ 1 /∈ HT

1
M

∑
m∈M(θmt − ηtg̃

m
t ), if t+ 1 ∈ HT

, (12)

in which HT is the sequence that indicates when to synchronize parameters.

Estimating Error Degree. The naive error detection method is directly computing the average of
the gradients 1/M

∑
m∈M gmt (θmt ) and compare it with g̃mt to estimate the noise degree of ϵmt ,

which introduces extra communication costs equal to synchronization. To this end, we estimate the
error degree through the accumulated model divergence ∆m

t to reduce the communication costs, as
the ∆m

t takes historical error information and need not be communicated at each iteration. Accord-
ing to Eq. 15 in Lemma 3.1, we can directly compute the accumulated model divergence ∆m

t (Line
22 in Algorithm 2).

Adjusting Synchronization Frequency. Observing the convergence rate in Theorem 4.2, the in-
tuitive way to adjust H is set H = ⌈1/σ2⌉, thus the third term in the convergence bound (Eq. 10)
becomes as O(T (M+1)L/(MST )). However, this too less H actually is set too small and, because

6
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Algorithm 2 Distributed training with PAFT
Input: Initial model θ0, dataset D, workers M, total iteration T , learning rate η, initial detecting time gap
Hold, initial synchronization sequence HT = {Hold}.
Output: Final trained model θT .
1: for t = 1, ..., T do
2: for worker m ∈ M in parallel do
3: gmt (θmt ) = 1/B

∑B
i=1 ∇fxt,i∼D(θt;xt,i); ▷ FP and BP

4: g̃mt = 1/M
∑

m∈M gmt (θmt ) + ϵmt ; ▷ Communication
5: if t ∈ HT then ▷ Launch Synchronization.
6: θmt+1 = θmt − ηtg̃

m
t ; ▷ Update before averaging

7: (Asynchronous) θ̄t+1 = 1/M
∑

m∈M θmt+1;
8: else if t− 1 ∈ HT then ▷ Wait for synchronization.
9: Wait for θ̄t = 1/M

∑
m∈M θmt ;

10: σest = ||θ̄p,s − θmp,s||;
11: Hnew = All-Reduce(||gmt ||/σest) ; ▷ Estimating New H .
12: Append t+Hnew in HT ;
13: θmt+1 = θ̄t − ηtg̃

m
t ; ▷ Update after synchronization

14: else
15: θmt+1 = θmt − ηtg̃

m
t ; ▷ Update model

16: Return {θmT |m ∈ M};

the dominant bound becomes as the second term as O(2T (T + 2a)(σ2
g + σ2)/(MST )) and cannot

be reduced by smaller H . Thus, we can set the H = σg/σ. Now, the second term and the third term
in Eq. 10 is balanced. Note that the H = ||gmt,pmax

||/σmax also represents the signal-to-noise ratio
(SNR) that is widely used in many methods to adjust hyper-parameters (Qiao et al., 2021).

4.3 OVERLAPPING SYNCHRONIZATION WITH TRAINING

Furthermore, synchronization after some training iterations still requires communication. To further
reduce this communication cost, we overlap synchronization with the normal backward propagation
process using asynchronous communication. The timeline of this overlapped communication is
shown in Fig. 4.

(a) Distributed training with gradient inconsistency

Update All-Reduce
Gradients

…

Computation

(b) Distributed training with PAFT

Time

Parameter 
Sync

Time

Model 
divergence

Training 
process

…

Model 
divergence

Training 
process

Figure 4: Overlapped synchronization with train-
ing.

As detailed in Algorithm 2, if the current round
requires synchronization, the model averaging
process is initiated without waiting (Line 7).
In the next round, the model averaging can
be overlapped with the forward and backward
propagation processes. During model updating,
workers wait for the previous round’s synchro-
nization to be completed. The new model pa-
rameters are then updated using the averaged
model and the new gradients. Note that this ap-
proach introduces a trade-off, where we trade
precise gradient estimation for the benefit of
overlapping communication. We show the em-
pirical effect on eliminating the model divergence in Appendix D.

4.4 EXTENSION TO OTHER OPTIMIZERS

The analysis in Seciton 3 is mainly built on the SGD, while the most of current DL models and
LLMs are optimized with SGD momentum and Adam (Kingma & Ba, 2015). However, in the
noised distributed training, the intrinsic characteristics of these optimizers are similar to the SGD.
Specifically, the inconsistent gradients g̃mt also lead to diverge updating directions of the model
parameters, and the accumulated model divergence. Differently, the SGD momentum and Adam
introduce extra terms including the momentum and precondition, which are updated according to
the gradients. Thus, there is divergence existing in these extra terms. However, the divergence on
them may not be accumulated as the model parameters as they are updated with moving averaging.
Neverthess, we can consider to synchronize these extra terms with the model parameters to ensure
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the convergence of the model. To this end, we provides results of synchronizing the momentum and
precondition in Appendix D.

5 EXPERIMENTAL STUDIES

In this section, we conduct experiments on distributed training with varying degrees of noise to
verify our method. We compare basic distributed training without gradient inconsistency (Oracle),
distributed training with gradient inconsistency (Noised), PAFT-Sync with different H values, and
PAFT.
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(a) Training ResNet-18 with 4 workers.
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(b) Training ResNet-50 with 4 workers.
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(c) Training ResNet-50 with 32 workers.

Figure 5: Different noise degrees.
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(a) Training ResNet-18 with 4 workers.
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(b) Training ResNet-50 with 4 workers.
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(c) Training ResNet-50 with 32 workers.

Figure 6: Different Synchronization frequency.

Table 1: Test Accuracy of ResNet-18.
Noise degree σ2 0.0001 0.001 0.01 0.1

DSGD 94.0 94.0 94.0 94.0
Noised DSGD 93.7 91.1 60.5 13.5

PAFT-Sync H = 5 93.8 93.3 85.2 32.8
PAFT-Sync H = 10 93.9 93.6 84.7 31.9
PAFT-Sync H = 50 93.9 93.4 84.3 28.5

PAFT 93.9 93.4 85.2 33.2

Table 2: Test Accuracy of ResNet-50.
Noise degree σ2 = 0.0001 σ2 = 0.001 σ2 = 0.01 σ2 = 0.1
# of workers 4 32 4 32 4 32 4 32

DSGD 75.0 65.1 75.0 65.1 75.0 65.1 75.0 65.1
Noised DSGD 74.9 64.8 68.8 44.5 11.3 3.8 1.3 1.2

PAFT-Sync H = 5 75.1 62.3 74.0 63.7 53.7 44.4 1.3 3.2
PAFT-Sync H = 10 75.1 63.9 74.0 63.2 53.5 41.8 1.2 2.2
PAFT-Sync H = 50 74.7 64.9 73.8 63.2 49.5 17.2 1.1 1.1

PAFT 74.3 64.9 74.1 63.9 54.0 40.9 1.4 4.2

Cluster Configuration. We have two testbeds
including an 8-node GPU cluster, each of which
installs 4 Nvidia RTX2080Ti GPU connected
with PCIe3.0x16 with 10Gbps bandwidth, and
a single GPU machine equipped with 8 Nvidia
A6000 GPUs.

DL Models and Datasets. We train
ResNet-18 (He et al., 2016) with CIFAR-
10 (Krizhevsky et al., 2010), ResNet-50 (He
et al., 2016) with CIFAR-100 with 120 epochs,
and GPT-2 (Radford et al., 2019) with Open-
WebText (Gokaslan et al., 2019) with 3K iter-
ations. We also finetune pretrained LLaMA-
2 (Touvron et al., 2023) and GPT-2 on Al-
paca (Taori et al., 2023) using LoRA (Hu et al.,
2021) with 1 epoch. ResNet-18 and ResNet-50 are optimized with SGDm (Bottou et al., 2016) with
learning rate of 0.1 and momentum of 0.9. GPT-2 is trained with Adam (Kingma & Ba, 2015) with
learning rate of 0.001, β1 as 0.9 and β2 as 0.99.

Simulation of Gradient Inconsistency. We simulate the noise with different degrees by adjusting
σ with range {0.0001, 0.001, 0.01, 0.1}. The small noise degree {0.0001, 0.001} can represent the
small communication noises. While the larger noise {0.01, 0.1} can simulate the bit corruptions or
the large communication noise, which appears less during training.

5.1 MAIN RESULTS
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(a) Different noise degrees.
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Figure 7: Training GPT-2 with OpenWebText.
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(a) GPT-2 with Alpaca.
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(b) LLaMA-2 with Alpaca.

Figure 8: Finetuning LLMs with different noise degrees.
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(a) σ2
large = 0.1.
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Figure 9: Training ResNet-18 with accidental large noise.

Fig. 5(a) and 5(b) show conver-
gence of noised distributed training
on ResNet-18 and ResNet-50 with
4 workers. Fig. 5(c) show training
resnet-50 of noised distributed train-
ing with 32 workers. All results show
that as noise degree increases, the ac-
curacy of model declines correspond-
ingly. While PAFT can successfully
illuminate the small noise influence
and mitigate the large noise influence.

The results in all figures show that
the PAFT can successfully defend
against noise and improve the conver-
gence of noised training when σ2 =
0.0001 or 0.001. Note that there is
still gap between the normal training
(Oracle) and PAFT when σ2 ≥ 0.01.
The reason is that the noise not only
introduces gradient inconsistency, but
also the noised gradient direction that
influences gradient descend. This is
the inherent problem of the noise, like
the Byzantine Fault-tolerance prob-
lem (Guerraoui et al., 2024).

Training and Finetuning LLMs.
Fig. 7, 8(a) and 8(b) show the loss
curves of pretraining and fine-tuning
LLMs. The results show that the
PAFT can successfully defend against noise and improve the convergence. While the model size
increases from ResNets to LLMs like GPT-2 and LLaMA-2, the PAFT can significantly improve
than baselines. When the noise degree σ2 = 0.0001 or 0.001, the PAFT can almost ensure the con-
vergence as similar to the training without noise. While for the larger noise σ2 = 0.01, the PAFT can
improve the convergence compared with the noised training. The exiting performance gap between
PAFT and the normal training without noise comes from the noisy gradient itself, which leads to
an incorrect updating direction. Future works should consider combining both synchronization and
voting mechanisms like the Byzantine Fault-tolerance problem (Guerraoui et al., 2024) to address
this problem.

Table 3: Average iteration wall-
clock time (seconds) during train-
ing ResNet-50.

# of workers 4 8 16 32

DSGD 0.201 0.212 0.228 0.333
PAFT-Sync 0.243 0.254 0.276 0.411

PAFT 0.237 0.244 0.253 0.373

Accidental Large Noise. We simulate accidental large noise
like bit corruptions. Specifically, in each round, the noise
is sampled from N (0, 0.0001) to simulate the normal small
noises. However, after each 500 iterations, the noise is sam-
pled from a N (0, 0.1) or N (0, 1.0) as simulated accidental
large noise. The Fig. 9(a) shows training with large noise sam-
pled from N (0, 0.1) while Fig. 9(b) shows N (0, 1.0). The
convergence curves clearly demonstrate the influence of this
accidental noise. In each iteration that the noise happens, the
test accuracy instantly drops a lot and is pulled back by PAFT from the valley. However, for a large
noise with variance of 1.0, it is hard to pull it back. Interestingly, we observe that the learning rate de-
cay at the late stage helps the model defend against the noise. Less learning rate results in less model
update and divergence, which aligns with our theoretical analysis (Lemma 3.1 and Theorem 3.2).

Wall-clock Iteration Time We provide a comparison of the average iteration wall-clock time (in
seconds) during the training of the ResNet-50 model, using different numbers of workers ranging
from 4 ∼ 32 in Table 3. By dynamic adjusted synchronization frequency and overlapped com-
munication, the PAFT reduces the extra cost than PAFT-Sync for around up to 11.0% efficiency
improvement for 32 workers. And the extra cost of PAFT than DSGD is around 18.9% for 32 work-
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ers. For more workers, PAFT-Sync shows better improvement, which means the good scalability
of PAFT-Sync.

6 RELATED WORKS

Due to the limited space, we introduce the concise related works here, and leave detailed discussions
in Appendix A.

Parallelism at Scale Distributed large model (LM) training (Narayanan et al., 2021) employs
hybrid parallelism techniques, including data parallelism (DP), tensor model parallelism (TP), and
pipeline parallelism (PP). DP (Krizhevsky et al., 2017; Chen et al., 2016; Cui et al., 2016; Zhang
et al., 2017; Tang et al., 2020; 2022), which replicates models for parallel training, is central in
hybrid parallelism. It scales the training effectively by increasing the batch size to accelerate model
convergence. TP (Or et al., 2020; Narayanan et al., 2021) and PP (Narayanan et al., 2019; Rasley
et al., 2020; Tang et al., 2023) complement DP by addressing memory limitations when models
exceed a single device’s memory capacity. PAFT tackles GA errors and has been generalized to
hybrid parallel training frameworks like DeepSpeed (Rasley et al., 2020) and Megatron (Narayanan
et al., 2021) towards large-scale LLM training.

Safety and Reliability of Distributed Training Many studies focus on system reliability concern-
ing node failures, using checkpointing (Wang et al., 2023b; 2024; Narayanan et al., 2021) and elas-
ticity (Thorpe et al., 2022; Harlap et al.; He et al., 2023a) optimizations for rapid recovery. These
optimizations enhance system robustness and enable quick restarts. Also, there are many efforts
against Byzantine faults (El-Mhamdi et al., 2020; Damaskinos et al., 2018; Guerraoui et al., 2024)
by malicious node behavior. However, silent errors, represented by GA errors in the scope of this
paper, arise from unintentional issues like hardware errors or communication errors, leading to inac-
curacies in gradient updates. Unlike the other types of errors, GA errors are particularly challenging
due to their subtlety and variability, making them more difficult and resource-intensive to detect and
mitigate. To the best of our knowledge, PAFT is the first effort to improve system reliability against
GA errors at scale.

7 LIMITATIONS

Performance gap between PAFT and the oracle. In this work, as illustrated in the experiments 5,
we do not completely close the performance gap when the noise degree is large.Future works should
consider combining both parameter synchronization and voting mechanisms like the Byzantine
Fault-tolerance problem (Guerraoui et al., 2024) to address this problem.

Extra communication overheads. PAFT introduces extra communication overheads due to the
parameter synchronization. And the synchronizing optimizer states also introduce extra overheads.
While we have shown that the overheads are acceptable in the experiments, the overheads may be
significant in some scenarios like the low-bandwidth environments. Future works should consider
optimizing the synchronization frequency to reduce the overheads.

8 CONCLUSION

In this work, we address GA errors in distributed training caused by hardware issues like bit corrup-
tions and communication noise, which are challenging to capture and mitigate for fault tolerance.
We first mathematically formulate and generalize these errors as gradient inconsistency. Then, we
theoretically analyze how they lead to accumulated model divergence and failed convergence. To ad-
dress this issue, we propose PAFT, a fault-tolerant distributed training system incorporating dynamic
and asynchronous parameter synchronization optimizations. The two components of PAFT-Sync
and PAFT-Dyn work synergistically to mitigate the negative impact of GA errors. PAFT-Sync
maintains model convergence by periodically synchronizing parameters, while PAFT-Dyn mini-
mizes overhead by adjusting synchronization frequency based on the profiled error degrees. Our
implementation of PAFT on PyTorch Distributed, evaluated on ResNet-18, ResNet-50, GPT-2, and
LLaMA-2 models across 32 GPUs, demonstrates the systems robustness against a wide range of
GA errors. The evaluation results indicate that, unlike vanilla distributed training, PAFT effectively
maintains fault tolerance without compromising training throughput.
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A MORE RELATED WORKS

A.1 PARALLELISM AT SCALE

Distributed large model (LM) training (Narayanan et al., 2021) employs hybrid parallelism tech-
niques, including data parallelism, tensor model parallelism, and pipeline parallelism.

Data parallelism (DP) (Krizhevsky et al., 2017; Chen et al., 2016; Cui et al., 2016; Zhang et al.,
2017; Tang et al., 2020; 2022), which replicates models for parallel training, is central in hybrid
parallelism. It scales the training effectively by increasing the batch size to accelerate model conver-
gence. However, DP is limited by memory capacity and communication overheads, especially for
large-scale LM training. This paper focuses on the GA erros in DP training.

Tensor model parallelism (TP) (Or et al., 2020; Narayanan et al., 2021) complement DP by ad-
dressing memory limitations when models exceed a single device’s memory capacity. PAFT tackles
GA errors and has been generalized to hybrid parallel training frameworks like DeepSpeed (Rasley
et al., 2020) and Megatron (Narayanan et al., 2021) towards large-scale LM training. The TP training
may also have communicatin errors, which is out of the scope of this paper. And the communication
errors in concating tensors in TP more like the computational SDC errors, which is different from
the GA errors in DP.

Pipeline parallelism (PP) (Narayanan et al., 2019; Rasley et al., 2020; Tang et al., 2023) splits the
whole model into different stages and processes them in a pipelined manner. The PP can reduce the
memory consumption and communication overheads. The communication errors happen in PP are
more like the quantization or compression errors, which is different from the GA errors either.

A.2 SAFETY AND RELIABILITY OF DISTRIBUTED TRAINING

Active Failures. Many studies focus on system reliability concerning node failures, which may
directly interrupt training processes. These studies propose fault-tolerant mechanisms using check-
pointing (Wang et al., 2023b; 2024; Narayanan et al., 2021) and elasticity (Thorpe et al., 2022; Har-
lap et al.; He et al., 2023a) optimizations for rapid recovery. These optimizations enhance system
robustness and enable quick restarts.

Silent Failures. There are other soft failures like the communication noise happen in GA, or the
workers upload the wrong gradients to the server. The typical methods to handle these failures
include gradient clip, or considering them as the Byzantine faults by malicious node behavior (El-
Mhamdi et al., 2020; Damaskinos et al., 2018; Guerraoui et al., 2024). However, the silent errors
in GA errors in the scope of this paper, arise from unintentional issues like hardware errors or
communication errors, leading to inaccuracies in gradient updates. And we mainly focus on the GA
errors happen during the broadcasting in DP training, which is different from the other types of soft
failures.

A.3 ASYNCHRONOUS OPTIMIZATIONS

To accelerate distributed training, asynchronous optimization techniques have been proposed to re-
duce the synchronization overheads (Tsitsiklis et al., 1986; Zheng et al., 2017; Damaskinos et al.,
2018). These techniques allow workers to update model parameters independently, reducing the
waiting time for synchronization. To consider accelerating synchronizing checkpoints, many works
utilize the asynchronous and heterogeneous capabilities of hardware resources for parallel process-
ing of different tasks. For example, in checkpointing optimizations, asynchronous parameter snap-
shotting can compete for memory bandwidth with training processes, potentially slowing down the
training speed (Mohan et al.; team, 2022; Wang et al., 2024). Additionally, inter-node communi-
cations asynchronous to training can introduce communication overheads (Shi et al., 2020; 2021b).
In PAFT-Sync, we also observe unavoidable asynchronous overheads during training. However,
the dynamic synchronization frequency effectively reduces the overall asynchronous overhead in the
fault-tolerant system.
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B MORE DISCUSSION

B.1 SILENT DATA CORRUPTION ERRORS

Silent data corruption (SDC) errors are particularly insidious in high-performance computing
(HPC) (Wang et al., 2023a; He et al., 2023b), database (Bacon, 2022) and communication systems
because they can go undetected and lead to incorrect results. These errors can occur due to vari-
ous reasons, including hardware faults, software bugs, or cosmic radiation. In the context of HPC,
SDC errors can significantly impact the reliability and accuracy of computations, especially in large-
scale simulations and data-intensive applications. The large-scale distributed deep learning might
be severely influenced by the SDC errors (He et al., 2023b).

In communication systems, SDC errors can be introduced during data transmission between nodes
in a distributed computing environment (Fiala et al., 2012; gorzata Steinder & Sethi, 2004). These
errors can be caused by issues such as faulty network hardware, electromagnetic interference, or sig-
nal degradation over long distances. The impact of SDC errors in communication can be severe, as
they can lead to incorrect data being propagated through the system, potentially causing widespread
computational errors.

Table 4 shows the root-cause categorization of unexpected interruptions during a 54-day period of
Llama 3 405B pre-training (Dubey et al., 2024). About 78% of unexpected interruptions were at-
tributed to confirmed or suspected hardware issues, including faulty GPUs, GPU memory, and other
components. These interruptions can lead to significant downtime and data loss, affecting the overall
performance and reliability of the system. The SDC and network errors occupy a significant portion
of the interruptions, highlighting the importance of addressing these issues in distributed computing
environments. Note that the reported SDC erros belong to the explicit results that obviously ob-
served. However, there exists a large portion of silent erros with low erro degree may appear in the
training process, which is hard to detect and not reported.

Component Category Interruption Count % of Interruptions
Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%

Host Maintenance Unplanned
Maintenance 32 7.6%

GPU SRAM Memory GPU 19 4.5%
GPU System Processor GPU 17 4.1%
NIC Host 7 1.7%
NCCL Watchdog Timeouts Unknown 7 1.7%
Silent Data Corruption GPU 6 1.4%
GPU Thermal Interface + Sensor GPU 6 1.4%
SSD Host 3 0.7%
Power Supply Host 3 0.7%
Server Chassis Host 2 0.5%
IO Expansion Board Host 2 0.5%
Dependency Dependency 2 0.5%
CPU Host 2 0.5%
System Memory Host 2 0.5%

Table 4: Root-cause categorization of unexpected interruptions during a 54-day period of
Llama 3 405B pre-training. (Dubey et al., 2024) About 78% of unexpected interruptions were
attributed to confirmed or suspected hardware issues.

There is a substantial amount of SDC in data center processors (He et al., 2023b; Wang et al., 2023a),
leading to complex issues that are difficult to replicate and locate. In Fire-Flyer HPC (An et al.,
2024), various computational errors and GPU memory errors not detected by Error Correction Code
(ECC) listed in Table 5, which led to models gradnorm spikes, loss explosions and even nonconver-
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Table 5: Type of GPU Xid Errors and Its Causes (An et al., 2024).

Xid Errors Analysis

Software Causes:
Xid_13/31
Xid_43/45

Triggered by application programs, software-related Xid messages may
indicate anomalies in GPU memory affecting code and data segments.
However, it’s crucial to consider other information for a comprehensive
hardware functionality assessment.

NVLink Error: Xid
74

Xid74 indicates errors in NVLink. For PCIe A100, it’s mainly occurred
on the NVLink Bridge between two GPUs. Its occurrence rate is several
orders of magnitude higher than other hardware faults. Apart from stress
testing to exclude those that are constantly repeating errors, there isn’t a
good way to avoid the occurrence of Xid74 issues.

Memory ECC
Error: Xid_63/64
Xid_94/95

Triggered when the GPU handles memory ECC errors on the GPU. With
the introduction of row remapping technology in A100, most instances
can be resolved by simply resetting the GPU to retain optimal
performance.

Uncorrectable
GPU Failures:
Xid_44/48
Xid_61/62/69/79

Thease failures mean an uncorrectable error occurs on the GPU, which is
also reported back to the user application. A GPU reset or node reboot is
needed to clear this error.

Other Failures: Xid
119

Xid119 means GPU GSP module failed. These failures need to do fieldiag
test, and most need to RMA.

gence. Tackling these silent errors is crucial for ensuring the reliability and accuracy of distributed
training systems. The errors like Xid 63/64 will cause the failed convergence problems.

Table 6 shows that NVLink Erros and software errors occupy a large portion of all errors. It is crucial
to address the SDC erros in both communication and computation.

B.2 SDC ERROR SIMULATION

Fig. 10 shows the bias distribution with different noise degrees. For the σ = 0.0001, almost all
elements are less than 3e-4. Fig. 11 shows the maximal value in the noise during training with
different noise degrees. After each 500 iterations, there is a burst value happens, which is more
significant for the larger noise degree.
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(a) σ = 0.0001.
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(b) σ = 0.001.
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(c) σ = 0.01.

Figure 10: The bias distribution for all elements in a gradient with different σ2.

Gradient Magnitude Distribution. Fig. 12 and 13 show the distribution of values in the gradients
of the ResNet-50 when training with CIFAR-100 at different iterations. Comparing the magnitudes
of gradients with the noise, we can see that even the noise with σ = 0.001 is a large noise that has
similar magnitude to the gradients. In the real-world scenarios, noises with σ ≥ 0.01 happen less.
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Table 6: Raw Data of GPU Xid Errors during one year in Fire-Flyer HPC (An et al., 2024)

GPU Error Type Xid Code Number Percentage

NVLink Error xid_74 5521 42.57%

Software Causes xid_13 45 0.35%

xid_31 2487 19.18%

xid_43 4342 33.48%

xid_45 240 1.85%

GPU ECC Error xid_63 245 1.89%

xid_64 2 0.02%

xid_94 13 0.10%

xid_95 17 0.13%

Uncorrectable Failures xid_44 1 0.01%

xid_48 2 0.02%

xid_61 13 0.10%

xid_62 3 0.02%

xid_69 1 0.01%

xid_79 37 0.29%

GPU GSP ERROR xid_119 1 0.01%

Total 12970 100.00%
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(a) σ = 0.001.
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(b) σ = 0.01.

Figure 11: The maximal value in the noise during training.

For the significant larger noise error, which can be detected by the some machine learning methods
like the gradient clip, or the majority voting.

C PROOF

In this section, we provide the detailed proof of Lemma 3.1, Theorem 3.2, Lemma 4.1 and Theo-
rem 4.2. We rewrite all of them in this section for convenience of reading.

C.1 SOME DEFINITIONS AND ASSUMPTIONS

Definition C.1. (Virtual Average). In distributed stochastic gradient descend (Eq. 5) with inconsis-
tent gradient (Definition 2.1), an averaged model weight sequence {θ̄t}t≥0 is defined as

θ̄0 = θ0, θ̄t =
1

M

M∑
i=1

θit. (13)
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(a) At 10-th training itertaion.
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(b) At 50-th training itertaion.
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(c) At 100-th training itertaion.

Figure 12: The bias distribution for all elements of gradients of Conv layer in the first block.
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(a) At 10-th training itertaion.
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(c) At 100-th training itertaion.

Figure 13: The bias distribution for all elements of gradients of Conv layer in the second block.

From Definition 2.1, Eq. 5 and 13, we have

θ̄t+1 = θ̄t − ηtg̃t. (14)

C.2 INCREASING MODEL DIVERGENCE

Lemma C.1 (Increasing Model Divergence (Lemma 3.1)). With the same initial point θm0 = θ0
across workers {m|m = 1, 2, ...,M}, the DSGD with noise ϵmt ∼ N (0, σ2) introduces accumulated
model divergence ∆m

t along the training process as

E||θ̄t+1 − θmt+1||2 =
(M + 1)σ2

M

t∑
s=0

η2
s . (15)

Proof of Lemma 3.1. We define the θ̄t =
1
M

∑M
i=1 θ

i
t and g̃t =

1
M

∑M
i=1 g̃

i
t = 1

M

∑M
i=1(ḡt + ϵmt ).

Then, we have θ̄t+1 = θ̄t − ηtg̃t. By substituting Eq. 4 and 5 into ∆m
t and iterating.

E||θ̄t+1 − θmt+1||2 =E||θ̄t − ηtg̃t − θmt + ηtg̃
m
t ||2

=E||θ̄t − θmt ||2 + η2
tE||g̃t − g̃mt ||2 + 2ηt E⟨θ̄t − θmt , g̃mt − g̃t⟩︸ ︷︷ ︸

=0

. (16)
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By iterating above equation from t → 0, we have

E||θ̄t+1 − θmt+1||2 =E||θ̄0 − θm0 ||2︸ ︷︷ ︸
=0

+

t∑
s=0

η2
sE||g̃s − g̃ms ||2

=
t∑

s=0

η2
sVar(

1

M

M∑
k=1

(ḡt + ϵkt )− (ḡt + ϵmt ))

=

t∑
s=0

η2
sVar(

1

M

M∑
k=1

ϵks − ϵms )

=
(M + 1)σ2

M

t∑
s=0

η2
s

C.3 CONVERGENCE WITH NOISED TRAINING.

Firstly, we provide the Lemma C.2 before proving Theorem 3.2.

Lemma C.2. Let {θt}t≥0 and {θ̄t}t≥0 for m ∈ [M ] be defined as in Equation (8), (13) and let f be
L-smooth and µ-strongly convex and ηt ≤ 1

4L . Then

E||θ̄t+1 − θ∗||2 ≤(1− µηt)E||θ̄t − θ∗||2 + η2
tE||g̃t −∇Ft||2

− 1

2
ηtE(f(θ̄t)− f∗) +

2Lηt
M

M∑
i=1

E||θ̄t − θit||2
(17)

Proof of Lemma C.2. Using the update Equation 14, we have

||θ̄t+1 − θ∗||2 =||θ̄t − ηtg̃t − θ∗||2 = ||θ̄t − ηtg̃t − θ∗ − ηt∇Ft + ηt∇Ft||2

=||θ̄t − ηt∇Ft − θ∗||2 + η2
t ||g̃t −∇Ft||2 + 2ηt⟨θ̄t − θ∗ − ηt∇Ft, g̃t −∇Ft⟩.

(18)

Observe that

||θ̄t − ηt∇Ft − θ∗||2 =||θ̄t − θ∗||2 + η2
t ||∇Ft||2 − 2⟨θ̄t − θ∗, ηt∇Ft⟩

≤||θ̄t − θ∗||2 + η2
t
1

M

M∑
i=1

||g(θit)||2 −
2ηt
M

M∑
i=1

⟨θ̄t − θit + θit − θ∗, g(θit)⟩

=||θ̄t − θ∗||2 + η2
t
1

M

M∑
i=1

||g(θit)− g(θ∗)||2

− 2ηt
M

M∑
i=1

⟨θit − θ∗, g(θit)⟩ −
2ηt
M

M∑
i=1

⟨θ̄t − θit, g(θ
i
t)⟩.

(19)

By L-smoothness, we have

||g(θit)− g(θ∗)||2 ≤ 2L(f(θit)− f∗). (20)

By µ-strong convexity, we have

−⟨θit − θ∗, g(θit)⟩ ≤ −(f(θit)− f∗)− µ

2
||θit − θ∗||2. (21)

To estimate the last term in (19), we use 2⟨a, b⟩ ≤ γ||a||2 + γ−1||b||2 for γ > 0, thus

−2⟨θ̄t − θit, g(θ
i
t)⟩ ≤2L||θ̄t − θit||2 +

1

2L
||g(θit)||2

=2L||θ̄t − θit||2 +
1

2L
||g(θit)− g(θ∗)||2

≤2L||θ̄t − θit||2 + (f(θit)− f∗).

(22)
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By applying these estimates to (19), we get

||θ̄t − θ∗ − ηt∇Ft||2 ≤||θ̄t − θ∗||2 + 2ηtL

M

M∑
i=1

||θ̄t − θit||2

+
2ηt
M

M∑
i=1

((ηtL− 1

2
)(f(θit)− f∗)− µ

2
||θit − θ∗||2)

(23)

For ηt ≤ 1
4L it holds (ηtL− 1

2 ) ≤ − 1
4 . By convexity of a(f(θ)− f∗) + b||θ − θ∗||2 for a, b ≥ 0,

− 1

M

M∑
i=1

(a(f(θit)− f∗) + b||θit − θ∗||2) ≤ −(a(f(θ̄t)− f∗) + b||θ̄t − θ∗||2). (24)

Hence, we can continue in (23) and obtain

||θ̄t − θ∗ − ηt∇Ft||2 ≤ (1− µηt)||θ̄t − θ∗||2 − 1

2
ηt(f(θ̄t)− f∗) +

2ηtL

M

M∑
i=1

||θ̄t − θit||2 (25)

Finally, we can combine (25) with (18). By taking expectation we get
E||θ̄t+1 − θ∗||2 ≤(1− µηt)E||θ̄t − θ∗||2 + η2

tE||g̃t −∇Ft||2

− 1

2
ηtE(f(θ̄t)− f∗) +

2Lηt
M

M∑
i=1

E||θ̄t − θit||2
(26)

Now, we can prove Theorem 3.2 with help of Lemma C.2.
Theorem C.3 (Convergence with noised training (Theorem 3.2.). With object function defined in
Eq. 1 satisfying Assumption 3.1, DSGD with noise ϵmt ∼ N (0, σ2) has the following convergence
bound

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤2E||θ̄0 − θ∗||2

T
+

2(σ2
g + σ2)

TM

T−1∑
t=0

η2
t

+
4Lσ2(M + 1)

TM

T−1∑
t=0

ηt

t−1∑
s=0

η2
s .

C.4 BOUNDED MODEL DIVERGENCE

Lemma C.4 (Bounded Model Divergence (Lemma 4.1). If gap(A) ≤ H and sequence of decreas-
ing positive stepsizes {ηt}t≥0 satisfying ηt ≤ 2ηt+H for all t ≥ 0, then. With the same initial point
θm0 = θ0 across workers {m|m = 1, 2, ...,M}, the DSGD with noise ϵmt ∼ N (0, σ2) introduces
accumulated model divergence ∆m

t along the training process as

E||θ̄t+1 − θmt+1||2 ≤ 4H(M + 1)σ2η2
t

M
(27)

Proof of Lemma 4.1. By Lemma 3.1, and observing that all θmt+1 will be synchronized at the syn-
chronization point as Eq. 8 or Eq. 12, we have

E||θ̄r − θmr ||2 = 0,

where r = Ht ≤ ⌊t/H⌋ represents the last synchronization timestamp until iteration t. Thus, we
have the following equation by iterating Eq. 16 from t → r,

E||θ̄t+1 − θmt+1||2 =E||θ̄r − θmr ||2︸ ︷︷ ︸
=0

+

t∑
s=r

η2
sE||g̃s − g̃ms ||2

=

t∑
s=r

η2
sVar(

1

M

M∑
k=1

ϵks − ϵms )

=
(M + 1)σ2

M

t∑
s=r

η2
sE||θ̄t+1 − θmt+1||2

=
(M + 1)σ2

M

t∑
s=r

η2
s ≤ 4H(M + 1)σ2η2

t

M
,
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We use ηt ≤ ηr for t ≥ r and learning rate decay assumption ηr ≤ 2ηr+H . Note that different
learning rate schedule methods do not influence the order of this bound too much.

Proof of Theorem 3.2. By Equation (26), when µ = 0, and f is convex, we have

E||θ̄t+1 − θ∗||2 ≤E||θ̄t − θ∗||2 + η2
tE||g̃t −∇Ft||2

− 1

2
ηtE(f(θ̄t)− f∗) +

2Lηt
M

M∑
i=1

E||θ̄t − θit||2
(28)

Rearranging Eq. 35, we have

ηtE(f(θ̄t)− f∗) ≤2(E||θ̄t − θ∗||2 − E||θ̄t+1 − θ∗||2) + 2η2
tE||g̃t −∇Ft||2

+
4ηtL

M

M∑
i=1

E||θ̄t − θit||2
(29)

By summing t from 0 to T − 1,

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤2E||θ̄0 − θ∗||2

T
+

2

T

T−1∑
t=0

η2
tE||g̃t −∇Ft||2

+
4L

MT

T−1∑
t=0

ηt

M∑
i=1

E||θ̄t − θit||2.

(30)

For gradient estimation error from the noise, we have

E||g̃t −∇Ft||2 =E|| 1
M

M∑
i=1

gi(θ
i
t) +

1

M

M∑
i=1

ϵit −
1

M

M∑
i=1

g(θit)||2

=E|| 1
M

M∑
i=1

gi(θ
i
t)−

1

M

M∑
i=1

g(θit)||2 + E|| 1
M

M∑
i=1

ϵit||2

+
1

M

M∑
i=1

E⟨gi(θit)− g(θit), ϵ
i
t⟩︸ ︷︷ ︸

=0

=
1

M2

M∑
i=1

E||gi(θit)− g(θit)||2 +
1

M2

M∑
i=1

E||ϵit||2

≤
σ2
g + σ2

M

(31)

Combining Eq. 31 and Lemma 4.1 into Eq. 30, we have

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤2E||θ̄0 − θ∗||2

T
+

2(σ2
g + σ2)

TM

T−1∑
t=0

η2
t

+
4Lσ2(M + 1)

TM

T−1∑
t=0

ηt

t−1∑
s=0

η2
s ,

(32)

which completes the proof.

C.5 CONVERGENCE WITH NOISED TRAINING WITH PAFT-SYNC .

Here, we use the Martingale Lemma (Lemma 3.3 in (Stich et al., 2018)) to help our proof.
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Lemma C.5. Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0 be sequences satisfying

at+1 ≤ (1− µηt)at − ηtetA+ η2
tB + η3

tC, (33)

for ηt = 4
µ(a+t) and constants A > 0, B, C ≥ 0, µ > 0, a > 1. Then we have

A

ST

T−1∑
t=1

wtet ≤
µa3

4ST
a0 +

2T (T + 2a)

µST
B +

16T

µ2ST
C, (34)

for wt = (a+ t)2 and ST ≜
∑T−1

t=0 wt =
T
6 (2T

2 + 6aT − 3T + 6a2 − 6a+ 1) ≥ 1
3T

3.

Theorem C.6 (Convergence with noised training with PAFT-Sync ( 4.2).). With object function
defined in Eq. 1 satisfying Assumption 3.1, DSGD with PAFT (Eq. 8 or 12) noise ϵmt ∼ N (0, σ2),
we have,

Ef(θ̂T )− f∗ ≤ µa3

2ST
||θ0 − θ∗||2 +

4T (T + 2a)(σ2
g + σ2)

µMST

+
256T

µ2ST

(M + 1)

M
σ2HL

where θ̂T = 1
MST

∑M
m=1

∑T−1
t=0 wtθ

m
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3

Proof of Theorem 4.2. Using Lemma C.2, Eq. 31, Lemma 4.1 we get

E||θ̄t+1 − θ∗||2 ≤(1− µηt)E||θ̄t − θ∗||2 +
σ2
g + σ2

M
η2
t

− 1

2
ηtE(f(θ̄t)− f∗) +

8LHσ2(M + 1)

M
η3
t

(35)

By Lemma C.5 and the convexity of f , rearranging Eq. 35, we have

Ef(θ̂T )− f∗ ≤ µa3

2ST
||θ0 − θ∗||2 +

4T (T + 2a)(σ2
g + σ2)

µMST

+
256T

µ2ST

(M + 1)

M
σ2HL

(36)

D MORE EXPERIMENTAL RESULTS

D.1 ELIMINATE MODEL DIVERGENCE

Fig. 14 shows that the in noised DSGD, the model divergence is accumulated during trainig, thus
severely influencing convergence. While the PAFT can effectively illuminate the model divergence
periodically, thus improving the convergence.
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(b) Model divergence

Figure 14: Training ResNet-18 with 4 workers.
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D.2 CONVERGENCE UNDER LARGER NOISE

Fig. 15 and 16 show results of training ResNet-18, ResNet-50 and LLMs with larger noise degrees
(σ2 = 0.1 or 1.0). Under the more severe noises, the convergence of LLMs is significantly influ-
enced. And it is more difficult for PAFT to mitigate these erros. Nevertheless, such a large noise
degree is not common in practice.
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(a) Training ResNet-18 with 4 workers.
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(b) Training ResNet-50 with 4 workers.
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(c) Training ResNet-50 with 32 workers.

Figure 15: Training computer vision models with larger noises.
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(a) Training GPT-2 with OpenWebText.
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(b) Finetuning GPT-2 with Alpaca.
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(c) Finetuning LLaMA-2 with Alpaca.

Figure 16: Training LLMs with larger noises.

D.3 COMPARING SYNCHRONIZING OPTIMIZER STATES

Fig. 17 provides results of comparing PAFT with synchronizing model or all parameters (including
optimizer states). The results show that synchronizing all parameters can improve the convergence
than synchronizing model only. However, the improvement is limited, and the overhead of synchro-
nizing all parameters is much higher than synchronizing model only. Thus, synchronizing model
only is more practical in distributed training.
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(a) Training ResNet-50.
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(b) Training GPT-2 with OpenWebText.
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(c) Training GPT-2 with Alpaca.

Figure 17: Comparing PAFT with synchronizing model or all parameters (including optimizer
states). The “Sync. All” denotes synchronizing all parameters including optimzier states.
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