
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAPTURING AND MITIGATING GRADIENT AGGREGA-
TION ERRORS FOR FAULT-TOLERANT DISTRIBUTED
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Capturing and recovering from hardware failures is important in fault-tolerant dis-
tributed training to guarantee system efficiency. However, some hardware-related
silent data corruption errors during gradient aggregation like bit corruptions or
communication noise, are difficult to capture and address, leading to slow or
failed convergence. To understand and mitigate these errors, we first mathemat-
ically formulate and generalize them as gradient inconsistency. Then, we theo-
retically analyze how it leads to model divergence accumulated during training
and the failed convergence. Based on the analytical study, we design PAFT, a
fault-tolerant distributed training system with dynamic and asynchronous parame-
ter synchronization. PAFT includes two parts: (1) PAFT-Sync, which mitigates
model divergence by periodically synchronizing parameters, and (2) PAFT-Dyn,
which minimizes synchronization overhead through dynamic training overlap and
synchronization frequency scheduling based on profiled error degrees. Together,
they ensure efficient model convergence at scale. The fault-tolerant synchroniza-
tion in PAFT is optimized to support commonly used optimizers, e.g., Stochastic
Gradient Descent (SGD), SGD momentum, and Adam. We implement PAFT on
PyTorch Distributed and train ResNet, GPT-2, and LLaMA-2 on 4∼ 32 GPUs.
Experimental results show that PAFT efficiently defends against gradient aggrega-
tion error degrees while maintaining training performance.

1 INTRODUCTION

To efficiently train deep learning (DL) models (He et al., 2016) and large language models
(LLMs) (Radford et al., 2018; Chung et al., 2022), high-performance and large-scale distributed
training frameworks have been proposed (Rasley et al., 2020; Narayanan et al., 2021; 2019; Tang
et al., 2023). Frequent system failures suspend training and require manual recovery from check-
points, significantly reducing system efficiency and GPU utilization (up to 43%) (Maeng et al., 2021;
Wang et al., 2023b). Approximately 178,000 GPU hours were wasted during the OPT-175B train-
ing (Zhang et al., 2022) due to various failures like MPI and CUDA errors (Humbatova et al., 2020),
and hardware failures such as GPU malfunctions (Hu et al., 2024), electronic breakdowns, and node
failures (Wang et al., 2023b; Hu et al., 2024). Many existing studies focus on improving the robust-
ness and efficiency of the system through fast recovery (Wang et al., 2023b; 2024; Narayanan et al.,
2021) or elastic training (Thorpe et al., 2022; Harlap et al.; He et al., 2023a).

However, unlike system failures, silent data corruption (SDC) errors (Wang et al., 2023a; Fiala
et al., 2012; Bacon, 2022; He et al., 2023b), which do not directly interrupt training, are increasingly
affecting model quality and convergence. As reported in LLaMA-3 pretraining cluster and Fire-Flyer
cluster, SDC errors have become the main cause of LLM convergence issues, and the secondary cost
of fault tolerance during pretraining (Dubey et al., 2024; An et al., 2024), harming the reliability and
efficiency of GPU clusters at extensive scale. (We provide more real-world error types and frequency
during LLM pretraining in Appendix B).

In this work, we consider the errors happen during gradient aggregation (GA), which are caused by
hardware failures like bit corruptions (Jeon et al., 2019; Tiwari et al., 2015; Gao et al., 2023; Hu et al.,
2024) and communication noise on network links (Hu et al., 2024; Gill et al., 2011; Tan et al., 2019;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Gao et al., 2023; Khan et al., 2023), as shown in Fig. 1. Specifically, the communicated messages
are aggregated and broadcasted with noise, leading to different gradients on workers, which results
in slow or failed convergence. To this end, we propose the following research questions.

How do silent errors in gradient aggregation influence distributed training and
how to capture and mitigate them?

Comm Errors	and	Rounding	Errors

Communication	Errors

Send	1.0

Noise

M
ac
hi
ne
	1

Send	2.0	

Receive	1.5

M
ac
hi
ne
	2

Receive	-0.98

Bit	Corruption	

Noise Ring-Allreduce

Tree-Allreduce

Noise

Figure 1: SDC errors lead to GA errors during
distributed training. We provide more discussions
about real-world cases in Appendix B.

In this work, we formulate and generalize gra-
dient inconsistency (in Section 2) errors, where
workers obtain different noisy averaged gradi-
ents instead of the accurate averages. We then
theoretically demonstrate that this gradient in-
consistency leads to accumulated model diver-
gence (in Section 3), resulting in failed conver-
gence. Additionally, we quantify the conver-
gence error theoretically concerning the degree
of gradient inconsistency.

To address the GA errors at scale, we design
PAFT, a fault-tolerant distributed training sys-
tem with two components: PAFT-Sync and
PAFT-Dyn. PAFT-Sync periodically syn-
chronizes model parameters with a frequency
H to eliminate the model divergence. Then,
PAFT-Dyn overlaps synchronization with the
training process through asynchronous com-
munication to save parameter synchronization
overhead. To further reduce unnecessary communication costs, PAFT-Dyn adjusts the synchroniza-
tion frequency H according to the signal-to-noise ratio as observed in our theoretical convergence
analysis. Our theoretical and empirical studies show that PAFT can alleviate accumulated model
divergence, ensuring training convergence.

We implement PAFT on PyTorch Distributed (Ansel et al., 2024) for real-world distributed training
and finetuning. We summarize our contributions as follows:

• We formulate and generalize gradient inconsistency caused by silent GA errors. We theo-
retically analyze how it leads to accumulated model divergence and failed convergence.

• We design PAFT, a fault-tolerant distributed training system to alleviate the gradient incon-
sistency. We theoretically prove that PAFT-Sync can illuminate the model divergence and
ensure convergence. To reduce the extra communication overhead, we design PAFT-Dyn
to overlap synchronization with training, and adjust the synchronization frequency with
respect to the profiled error degree based on the theoretical analysis.

• We conduct real-world experiments with 8-node GPU cluster with 4 ∼ 32 GPUs
to train ResNet-18 with CIFAR-10 (Krizhevsky et al., 2010), ResNet-50 with CIFAR-
100 (Krizhevsky et al.), and LLMs including GPT-2 (Radford et al., 2019) and LLaMA-
2 (Touvron et al., 2023) with OpenWebText (Gokaslan et al., 2019) and Alpaca (Taori
et al., 2023). We consider noises with different patterns to simulate the SDC errors with
different degrees. Results show that our method can successfully mitigate these errors.

2 PRELIMINARIES

We first present the preliminaries of single-device and distributed training, incorporating both im-
age classification (He et al., 2016) and language modeling tasks (Radford et al., 2019). Then, we
formulate the gradient inconsistency caused by the SDC errors during communication.

Single-device Training. With a model parameterized by θ ∈ Rd, and sampling data x ∼ D, the
object function is usually defined as (Bottou et al., 2016)

min
θ

F (θ) ≜ Ex∼Df(θ;x), (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

in which the specific definition of f(θ;x) depends on the task, and it is a general formulation in many
deep learning optimization problems (Dean et al., 2012). For image classification, the f(θ;x) =
l(ρθ(xi), xo), where xi is the data inputs, xo the labels in the data sample, x = (xi, xo), ρθ(xi) is
the output of model ρθ, l is any classification loss function, like the cross-entropy. For next-word
prediction in LLMs (Radford et al., 2019; Yang et al., 2019), the f(θ;x) = l(ρθ(x1:n), xn+1:N),
where the sequence length of the x is N . Given the seen tokens indexed by 1 : n, the model predicts
the unseen tokens indexed by n+ 1 : N .

In t-th iteration, the gradient is estimated as gt(θt;xt) = ∇fxt∼D(θt;xt). With the SGD optimiza-
tion, the model parameters are descended towards the direction gt as θt+1 = θt − ηtgt. We also
extend our algorithm to SGD momentum and Adam (Kingma & Ba, 2015) optimizer.

Distributed SGD (DSGD). In distributed training, multiple workers M = {m|m = 1, 2, ...,M}
collaboratively optimize θ. In t-th iteration, each worker calculates the local gradient gm(θmt). Then,
the training system uses collective communication (Shi et al., 2021a; Thakur et al., 2005; Tang et al.,
2020) or a parameter server (Jiang et al., 2020; Tang et al., 2020) to aggregate and broadcast the av-
eraged gradient across workers to update model parameters θ. This distributed gradient computation
and model updating can be formulated as follows.

ḡt =
1

M

∑
m∈M

gmt (θmt ;xm
t), xm

t ∼ Dm, (2)

θmt+1 = θmt − ηtḡt, (3)

where Dm represents dataset on worker m, gmt (θmt ;xm
t) represents the local gradient of f(θmt) of

worker m at iteration t, and the θmt is updated with the average of local gradients ḡt. Normally,
local dataset Dm has the same distribution as D in distributed training. We write gmt (θmt ;xm

t) as gmt
for simplicity. Note that all models are initialized as θ0, and all workers utilize the same averaged
gradient ḡt to update their local models. Thus, there is θmt = θt during the training process.

2.1 ERRORS IN DISTRIBUTED AVERAGING GRADIENTS

The SDC errors (Hu et al., 2024; Gao et al., 2023) in distributed training (Malcolm, 1971; Saad,
2020) actually add the noise on the estimated average gradient ḡt. Thus, workers finally obtain
different noised gradients g̃mt as follows.

Definition 2.1. (Inconsistent Gradient). The noised averaged gradient g̃mt is called inconsistent
gradient, if there is an individual noise ϵmt generated depending on m-th worker added on ḡt.

g̃mt = ḡt + ϵmt , ϵmt ∼ N (0, σ2), (4)

in which noise ϵmt is sampled from a Gaussian distribution N with mean of 0 and variance of σ2.

Noise Degree and Patterns. The small σ2 can represent the small communication noise and less
frequent SDC happening. On the contrary, the large σ2 can represent the larger noise like bit corrup-
tions (Jeon et al., 2019; Hu et al., 2024) and more frequent happening. We consider both of these
two patterns in our experiments.

The noises may not consistently follow the same pattern during training. We consider the burst
pattern of large noise (like bit corruption) that accidentally happen during training in experiments
(Section 5). More discussions about the SDC erros and noise simulation are provided in Appendix B.

3 ANALYSIS OF THE FAILED CONVERGENCE

Fig. 2(a) shows training ResNet-18 with CIFAR-10 dataset across 4 workers with and without noises
ϵmt with different σ2 ranging from 0.0001 ∼ 1.0. Results show that even the small noise 0.001 also
leads to failed training convergence.

3.1 ACCUMULATED MODEL DIVERGENCE

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

20

40

60

80

Te
st

 A
cc

ur
ac

y
[%

]

SGD
Noise 0.0001
Noise 0.001
Noise 0.01
Noise 0.1

(a) Convergence Gap

0 2000 4000 6000 8000 10000
ITERATIONS

0

1

2

3

4

5

6

TO
TA

L
DI

VE
RG

EN
SI

TY
 [%

]

SGD
Noise 0.0001
Noise 0.001
Noise 0.01
Noise 0.1

(b) Model Divergence

Figure 2: Training ResNet-18
with gradient inconsistency
on 4 workers.

To understand and address this problem, we theoretically and em-
pirically show how the gradient inconsistency (Eq. 4) leads to failed
convergence. With the noised averaged gradient, the model updat-
ing process becomes from Eq. 3 as:

θmt+1 = θmt − ηtg̃
m
t = θmt − ηtḡt − ηtϵ

m
t . (5)

At t-th iteration, local models {θmt |m ∈ M} are updated towards
different directions g̃mt . Thus, this leads to diverged model parame-
ters θit ̸= θjt ̸= θt, instead of the same θt in normal DSGD (Eq. 3).
With training goes on, models θmt gradually diverge from each other.
We define the averaged model θ̄t = 1

M

∑M
i=1 θ

i
t and model diver-

gence ∆m
t = ||θ̄t+1 − θmt+1|| to measure it. Fig. 2(b) shows the em-

pirical accumulated model divergence during training. Larger noise
(higher σ2) introduces more divergence. This aligns with training
convergence curves in Fig. 2(a), where larger σ2 leads to a larger
accuracy drop or failed convergence.
Lemma 3.1 (Increasing Model Divergence). With the same initial
point θm0 = θ0 across workers {m|m = 1, 2, ...,M}, DSGD with
noise ϵmt ∼ N (0, σ2) introduces accumulated model divergence
∆m

t during training:

E||θ̄t+1 − θmt+1||2 =
(M + 1)σ2

M

t∑
s=0

η2
s . (6)

Remark. Lemma 3.1 shows that the divergence ∆m
t will be accumulated with the noise during

training. This may lead to meaningless gradient estimation. Specifically, if the model θ1t is far away
from the other model θ2t , the gradient ∇f(θ1t ;x) has no useful descent information about the θ1t in
the parameter space.

3.2 CONVERGENCE ANALYSIS OF NOISED DSGD

Assumption 3.1. The following assumptions are commonly used in deep learning (Bottou et al.,
2016): (1) Bounded variance: Em||gm(θ) − ∇Fm(θ)||2 ≤ σ2

g ; (2) Bounded gradient magnitude:
Em||gmm(θ)||2 ≤ G2. The ∇Fm(θ) = Ei g

m(θ) and ∇F (θ) = 1/M
∑

m∈M ∇Fm(θ), and the
bounded variance comes from sampling bias of the dataset on worker m.

Now, we have the following theorem to show that it is difficult to tune the learning rate to have a
good convergence speed.
Theorem 3.2. (Convergence with noised training.) With object function defined in Eq. 1 satisfying
Assumption 3.1, DSGD with noise ϵmt ∼ N (0, σ2) has the following convergence bound

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤ 2E||θ̄0 − θ∗||2

T︸ ︷︷ ︸
T1

+
2(σ2

g + σ2)

TM

T−1∑
t=0

η2
t︸ ︷︷ ︸

T2

+
4Lσ2(M + 1)

TM

T−1∑
t=0

ηt

t−1∑
s=0

η2
s︸ ︷︷ ︸

T3

. (7)

Remark. In Theorem 3.2, T1, T2 converge with respect to training iteration T → ∞, T3 only
converges when setting ηt = 0. However, the zero learning rate does not have any practical ef-
fect on decreasing the object function. To alleviate the model divergence in Lemma 3.1 and T3 in
Theorem 3.2, we propose PAFT in Section 4.

4 PERIODICAL PARAMETER SYNCHRONIZATION

As discussed in Section 2.1, the root cause of the failed convergence is the optimization of local
model parameters in different directions. In this section, we begin with a straightforward but sys-
tematic solution to this issue, parameter synchronization (Section 4.1). To minimize the additional
overhead of this method, we designed PAFT-Sync to efficiently ensure training convergence (Sec-
tion 4.2 and 4.3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Local	
Gradient

Global	
Gradient

Noised	Global
Gradient

Model	
Parameter

Synchronized
Model	ParameterAverage

Parameter	Space

𝜽𝒕ା𝟏 𝟏

𝜽𝒕 𝜽𝒕ା𝟑 𝟐

𝜽𝒕ା𝟐 𝟏

𝜽𝒕ା𝟐 𝟐

𝜽𝒕ା𝟏 𝟐

𝜽ഥ𝒕ା𝟏

𝜽𝒕
𝜽ഥ𝒕ା𝟐

𝜽ഥ𝒕ା𝟑

(a)	Distributed	training	without	noise;	 (b)	With	noise	(gradient	inconsistency);	 (c)	PSyncWith	noise;

𝒈𝒕𝟏

𝒈𝒕𝟐
𝒈𝒕ା𝟏𝟐

𝒈𝒕ା𝟏𝟏

𝒈𝒕ା𝟐𝟏

𝒈𝒕ା𝟐𝟐

𝜽𝒕ା𝟏

𝜽𝒕
𝜽𝒕ା𝟐

𝜽𝒕ା𝟑

Figure 3: The trajectory of model parameters with training with two workers with/without noise and
training with PAFT.

4.1 PARAMETER SYNCHRONIZATION

Algorithm 1 Distributed training with PAFT-Sync
Input: Initialized model θ0, dataset D, workers M, total iteration
T , learning rate η, synchronization frequency H .
Output: Final trained model θT .
1: for t = 1, ..., T do
2: for worker m ∈ M in parallel do
3: gmt (θmt) = 1/B

∑B
i=1 ∇fxt,i∼D(θt;xt,i);

4: g̃mt = 1/M
∑

m∈M gmt (θmt) + ϵmt ; ▷
Communication

5: θmt+1/2 = θmt − ηtg̃
m
t ; ▷ Update model

6: if t+ 1%H = 0 then ▷ Synchronization
7: θmt+1 = 1/M

∑
m∈M θmt+1/2;

8: else
9: θmt+1 = θmt+1/2;

10: Return θmT = θT ;

To eliminate the model divergence
∆m

t , one intuitive approach is to di-
rectly synchronize model parameters
across workers. Specifically, after up-
dating the model at iteration t, work-
ers can communicate and average
their parameters θmt+1, then reload the
local models as θ̄t+1. This synchro-
nization ensures that the model di-
vergence ∆m

t is eliminated, setting it
to zero. However, given the model
size Sθ, this synchronization per it-
eration incurs additional communica-
tion costs amounting to TSθ, which
equals the original communication
costs of the gradients. Therefore,
reducing the overhead of parameter
synchronization is crucial.

To address this, we propose PAFT-Sync, as detailed in Algorithm 1. In addition to standard for-
ward and backward propagation (FP and BP), gradient averaging, and model updating, PAFT-Sync
averages model parameters after every H training iteration. The model parameters are updated as
follows:

θmt+1 =

{
θmt − ηtg̃

m
t , if t+ 1%H ̸= 0

1
M

∑
m∈M(θmt − ηtg̃

m
t), if t+ 1%H = 0

, (8)

where g̃mt = ḡt + ϵmt = 1
M

∑
m∈M gmt (θmt) + ϵmt . After H iterations, workers start training from

the same point in the parameter space. The accumulated model divergence δmt is cleared and re-
accumulated at a low level, resulting in less harmful influences on gradient estimation. We theoret-
ically and empirically demonstrate that this synchronization effectively eliminates the accumulated
model divergence, thus ensuring training convergence.

Definition 4.1. (gap). The gap of a set A := {a0, a1, ..., at} of t + 1 integers, ai ≤ ai+1 for
i = 0, ..., t− 1, is defined as gap(A) := maxi=1,...,t(ai − ai=1).

Definition 4.1 is used to generally describe the fixed and dynamic synchronization frequency in both
Algorithm 1 and 2. The timestamp in sequence {Ht} represents the synchronization point. And the
gap({Ht}) is the maximal time gap between two synchronization points.

Lemma 4.1. If gap(A) ≤ H and sequence of decreasing positive stepsizes {ηt}t≥0 satisfying ηt ≤
2ηt+H for all t ≥ 0, then. With the same initial point θm0 = θ0 across workers {m|m = 1, 2, ...,M},
DSGD with noise ϵmt ∼ N (0, σ2) introduces accumulated model divergence ∆m

t along the training
process as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

E||θ̄t+1 − θmt+1||2 ≤ 4H(M + 1)σ2η2
t

M
(9)

Remark. Lemma 4.1 shows that the model divergence is bounded with O(Hσ2η2t). Less H helps
to reduce this divergence but introduces more communication overheads. In Section 4.2 We will
show that PAFT-Dyn finds a good trade-off between the convergence and the communication in
Algorithm 2.
Theorem 4.2. (Convergence with noised training with PAFT-Sync.) With object function defined
in Eq. 1 satisfying Assumption 3.1, DSGD with PAFT (Eq. 8 or 12) noise ϵmt ∼ N (0, σ2), we have,

Ef(θ̂T)− f∗ ≤ µa3

2ST
||θ0 − θ∗||2 +

4T (T + 2a)(σ2
g + σ2)

µMST
+

256T

µ2ST

(M + 1)

M
σ2HL (10)

where θ̂T = 1
MST

∑M
m=1

∑T−1
t=0 wtθ

m
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3

Remark. Theorem 4.2 shows that PAFT ensures the convergence of DSGD with noised gradients.
And we can adjust the H with respect to the noise variance σ to trade off the convergence and
communication. And Theorem 4.2 is dependent on a heterogeneous synchronization sequence {Ht}
instead of a uniform sequence with the same gap H . Thus, it is general and can be easily extended
to different algorithms that considering adjusting synchronization frequency.

Corollary 4.3. Let θ̂T be defined as in Theorem 4.2, for parameter a = max{16κ,H}. Then

Ef(θ̂T)− f∗ = O
(κ3 +H3

µT 3

)
G2 +O

(1

µMT
+

κ+H

µMT 2

)
σ2
g

+O
((M + 1)Hκ

µMT 2
+

1

µMT
+

κ+H

µMT 2

)
σ2

(11)

Remark. Corollary 4.3 shows that the convergence rate is the same as the SGD (Bottou et al., 2016).

4.2 ADJUSTING SYNCHRONIZATION FREQUENCY

While the synchronization can completely address the model divergence problem, it introduces extra
communication overheads due to the communication of model parameters. Through the theoretical
analysis (Theorem 4.2) in Section 4.1, we adjust the synchronization frequency H detected error
degrees of ϵ to reduce the unnecessary communication costs.

In light of this, we propose PAFT-Dyn in PAFT, as detailed in Algorithm 2. Compared with
PAFT-Sync (Algorithm 2), PAFT-Dyn detects the magnitude of error degrees in training (Line
10) and adjusts Ht according to σt and the gradient norm (Line 11) to dynamically reduce commu-
nication costs.

Then, the new parameter synchronization scheme is given as follows.

θmt+1 =

{
θmt − ηtg̃

m
t , if t+ 1 /∈ HT

1
M

∑
m∈M(θmt − ηtg̃

m
t), if t+ 1 ∈ HT

, (12)

in which HT is the sequence that indicates when to synchronize parameters.

Estimating Error Degree. The naive error detection method is directly computing the average of
the gradients 1/M

∑
m∈M gmt (θmt) and compare it with g̃mt to estimate the noise degree of ϵmt ,

which introduces extra communication costs equal to synchronization. To this end, we estimate the
error degree through the accumulated model divergence ∆m

t to reduce the communication costs, as
the ∆m

t takes historical error information and need not be communicated at each iteration. Accord-
ing to Eq. 15 in Lemma 3.1, we can directly compute the accumulated model divergence ∆m

t (Line
22 in Algorithm 2).

Adjusting Synchronization Frequency. Observing the convergence rate in Theorem 4.2, the in-
tuitive way to adjust H is set H = ⌈1/σ2⌉, thus the third term in the convergence bound (Eq. 10)
becomes as O(T (M+1)L/(MST)). However, this too less H actually is set too small and, because

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Distributed training with PAFT
Input: Initial model θ0, dataset D, workers M, total iteration T , learning rate η, initial detecting time gap
Hold, initial synchronization sequence HT = {Hold}.
Output: Final trained model θT .
1: for t = 1, ..., T do
2: for worker m ∈ M in parallel do
3: gmt (θmt) = 1/B

∑B
i=1 ∇fxt,i∼D(θt;xt,i); ▷ FP and BP

4: g̃mt = 1/M
∑

m∈M gmt (θmt) + ϵmt ; ▷ Communication
5: if t ∈ HT then ▷ Launch Synchronization.
6: θmt+1 = θmt − ηtg̃

m
t ; ▷ Update before averaging

7: (Asynchronous) θ̄t+1 = 1/M
∑

m∈M θmt+1;
8: else if t− 1 ∈ HT then ▷ Wait for synchronization.
9: Wait for θ̄t = 1/M

∑
m∈M θmt ;

10: σest = ||θ̄p,s − θmp,s||;
11: Hnew = All-Reduce(||gmt ||/σest) ; ▷ Estimating New H .
12: Append t+Hnew in HT ;
13: θmt+1 = θ̄t − ηtg̃

m
t ; ▷ Update after synchronization

14: else
15: θmt+1 = θmt − ηtg̃

m
t ; ▷ Update model

16: Return {θmT |m ∈ M};

the dominant bound becomes as the second term as O(2T (T + 2a)(σ2
g + σ2)/(MST)) and cannot

be reduced by smaller H . Thus, we can set the H = σg/σ. Now, the second term and the third term
in Eq. 10 is balanced. Note that the H = ||gmt,pmax

||/σmax also represents the signal-to-noise ratio
(SNR) that is widely used in many methods to adjust hyper-parameters (Qiao et al., 2021).

4.3 OVERLAPPING SYNCHRONIZATION WITH TRAINING

Furthermore, synchronization after some training iterations still requires communication. To further
reduce this communication cost, we overlap synchronization with the normal backward propagation
process using asynchronous communication. The timeline of this overlapped communication is
shown in Fig. 4.

(a) Distributed training with gradient inconsistency

Update All-Reduce
Gradients

…

Computation

(b) Distributed training with PAFT

Time

Parameter
Sync

Time

Model
divergence

Training
process

…

Model
divergence

Training
process

Figure 4: Overlapped synchronization with train-
ing.

As detailed in Algorithm 2, if the current round
requires synchronization, the model averaging
process is initiated without waiting (Line 7).
In the next round, the model averaging can
be overlapped with the forward and backward
propagation processes. During model updating,
workers wait for the previous round’s synchro-
nization to be completed. The new model pa-
rameters are then updated using the averaged
model and the new gradients. Note that this ap-
proach introduces a trade-off, where we trade
precise gradient estimation for the benefit of
overlapping communication. We show the em-
pirical effect on eliminating the model divergence in Appendix D.

4.4 EXTENSION TO OTHER OPTIMIZERS

The analysis in Seciton 3 is mainly built on the SGD, while the most of current DL models and
LLMs are optimized with SGD momentum and Adam (Kingma & Ba, 2015). However, in the
noised distributed training, the intrinsic characteristics of these optimizers are similar to the SGD.
Specifically, the inconsistent gradients g̃mt also lead to diverge updating directions of the model
parameters, and the accumulated model divergence. Differently, the SGD momentum and Adam
introduce extra terms including the momentum and precondition, which are updated according to
the gradients. Thus, there is divergence existing in these extra terms. However, the divergence on
them may not be accumulated as the model parameters as they are updated with moving averaging.
Neverthess, we can consider to synchronize these extra terms with the model parameters to ensure

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the convergence of the model. To this end, we provides results of synchronizing the momentum and
precondition in Appendix D.

5 EXPERIMENTAL STUDIES

In this section, we conduct experiments on distributed training with varying degrees of noise to
verify our method. We compare basic distributed training without gradient inconsistency (Oracle),
distributed training with gradient inconsistency (Noised), PAFT-Sync with different H values, and
PAFT.

0 20 40 60 80 100
EPOCHS

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Oracle
2 = 0.0001
2 = 0.001
2 = 0.01

PAFT 2 = 0.0001
PAFT 2 = 0.001
PAFT 2 = 0.01

(a) Training ResNet-18 with 4 workers.

0 20 40 60 80 100
EPOCHS

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)
Oracle

2 = 0.0001
2 = 0.001
2 = 0.01

PAFT 2 = 0.0001
PAFT 2 = 0.001
PAFT 2 = 0.01

(b) Training ResNet-50 with 4 workers.

0 20 40 60 80 100
EPOCHS

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)

Oracle
2 = 0.0001
2 = 0.001
2 = 0.01

PAFT 2 = 0.0001
PAFT 2 = 0.001
PAFT 2 = 0.01

(c) Training ResNet-50 with 32 workers.

Figure 5: Different noise degrees.

0 20 40 60 80 100
EPOCHS

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Oracle
W. Noise
PAFT-Sync H = 5

PAFT-Sync H = 10
PAFT-Sync H = 50
PAFT

(a) Training ResNet-18 with 4 workers.

0 20 40 60 80 100
EPOCHS

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)

Oracle
W. Noise
PAFT-Sync H = 5

PAFT-Sync H = 10
PAFT-Sync H = 50
PAFT

(b) Training ResNet-50 with 4 workers.

0 20 40 60 80 100
EPOCHS

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)
Oracle
W. Noise
PAFT-Sync H = 5

PAFT-Sync H = 10
PAFT-Sync H = 50
PAFT

(c) Training ResNet-50 with 32 workers.

Figure 6: Different Synchronization frequency.

Table 1: Test Accuracy of ResNet-18.
Noise degree σ2 0.0001 0.001 0.01 0.1

DSGD 94.0 94.0 94.0 94.0
Noised DSGD 93.7 91.1 60.5 13.5

PAFT-Sync H = 5 93.8 93.3 85.2 32.8
PAFT-Sync H = 10 93.9 93.6 84.7 31.9
PAFT-Sync H = 50 93.9 93.4 84.3 28.5

PAFT 93.9 93.4 85.2 33.2

Table 2: Test Accuracy of ResNet-50.
Noise degree σ2 = 0.0001 σ2 = 0.001 σ2 = 0.01 σ2 = 0.1
of workers 4 32 4 32 4 32 4 32

DSGD 75.0 65.1 75.0 65.1 75.0 65.1 75.0 65.1
Noised DSGD 74.9 64.8 68.8 44.5 11.3 3.8 1.3 1.2

PAFT-Sync H = 5 75.1 62.3 74.0 63.7 53.7 44.4 1.3 3.2
PAFT-Sync H = 10 75.1 63.9 74.0 63.2 53.5 41.8 1.2 2.2
PAFT-Sync H = 50 74.7 64.9 73.8 63.2 49.5 17.2 1.1 1.1

PAFT 74.3 64.9 74.1 63.9 54.0 40.9 1.4 4.2

Cluster Configuration. We have two testbeds
including an 8-node GPU cluster, each of which
installs 4 Nvidia RTX2080Ti GPU connected
with PCIe3.0x16 with 10Gbps bandwidth, and
a single GPU machine equipped with 8 Nvidia
A6000 GPUs.

DL Models and Datasets. We train
ResNet-18 (He et al., 2016) with CIFAR-
10 (Krizhevsky et al., 2010), ResNet-50 (He
et al., 2016) with CIFAR-100 with 120 epochs,
and GPT-2 (Radford et al., 2019) with Open-
WebText (Gokaslan et al., 2019) with 3K iter-
ations. We also finetune pretrained LLaMA-
2 (Touvron et al., 2023) and GPT-2 on Al-
paca (Taori et al., 2023) using LoRA (Hu et al.,
2021) with 1 epoch. ResNet-18 and ResNet-50 are optimized with SGDm (Bottou et al., 2016) with
learning rate of 0.1 and momentum of 0.9. GPT-2 is trained with Adam (Kingma & Ba, 2015) with
learning rate of 0.001, β1 as 0.9 and β2 as 0.99.

Simulation of Gradient Inconsistency. We simulate the noise with different degrees by adjusting
σ with range {0.0001, 0.001, 0.01, 0.1}. The small noise degree {0.0001, 0.001} can represent the
small communication noises. While the larger noise {0.01, 0.1} can simulate the bit corruptions or
the large communication noise, which appears less during training.

5.1 MAIN RESULTS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
Iters

5

6

7

8

Tr
ai

n
Lo

ss

Oracle
2 = 0.0001
2 = 0.001
2 = 0.01

PAFT 2 = 0.0001
PAFT 2 = 0.001
PAFT 2 = 0.01

(a) Different noise degrees.

0 200 400 600 800 1000
Iters

5.5

6.0

6.5

7.0

7.5

Tr
ai

n
Lo

ss

Oracle
W. Noise
PAFT-Sync H = 5

PAFT-Sync H = 10
PAFT-Sync H = 50
PAFT

(b) Different Sync. frequency.

Figure 7: Training GPT-2 with OpenWebText.

0 250 500 750 1000 1250 1500
Iters

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
Lo

ss

Oracle
2 = 0.0001
2 = 0.001
2 = 0.01

PAFT 2 = 0.0001
PAFT 2 = 0.001
PAFT 2 = 0.01

(a) GPT-2 with Alpaca.

0 250 500 750 1000 1250
Iters

0.8

0.9

1.0

1.1

1.2

1.3

Tr
ai

n
Lo

ss

Oracle
2 = 0.0001
2 = 0.001
2 = 0.01

PAFT 2 = 0.0001
PAFT 2 = 0.001
PAFT 2 = 0.01

(b) LLaMA-2 with Alpaca.

Figure 8: Finetuning LLMs with different noise degrees.

0 20 40 60 80 100
EPOCHS

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Oracle
W. Noise
PAFT-Sync H = 5

PAFT-Sync H = 10
PAFT-Sync H = 50
PAFT

(a) σ2
large = 0.1.

0 20 40 60 80 100
EPOCHS

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Oracle
W. Noise
PAFT-Sync H = 5

PAFT-Sync H = 10
PAFT-Sync H = 50
PAFT

(b) σ2
large = 1.0.

Figure 9: Training ResNet-18 with accidental large noise.

Fig. 5(a) and 5(b) show conver-
gence of noised distributed training
on ResNet-18 and ResNet-50 with
4 workers. Fig. 5(c) show training
resnet-50 of noised distributed train-
ing with 32 workers. All results show
that as noise degree increases, the ac-
curacy of model declines correspond-
ingly. While PAFT can successfully
illuminate the small noise influence
and mitigate the large noise influence.

The results in all figures show that
the PAFT can successfully defend
against noise and improve the conver-
gence of noised training when σ2 =
0.0001 or 0.001. Note that there is
still gap between the normal training
(Oracle) and PAFT when σ2 ≥ 0.01.
The reason is that the noise not only
introduces gradient inconsistency, but
also the noised gradient direction that
influences gradient descend. This is
the inherent problem of the noise, like
the Byzantine Fault-tolerance prob-
lem (Guerraoui et al., 2024).

Training and Finetuning LLMs.
Fig. 7, 8(a) and 8(b) show the loss
curves of pretraining and fine-tuning
LLMs. The results show that the
PAFT can successfully defend against noise and improve the convergence. While the model size
increases from ResNets to LLMs like GPT-2 and LLaMA-2, the PAFT can significantly improve
than baselines. When the noise degree σ2 = 0.0001 or 0.001, the PAFT can almost ensure the con-
vergence as similar to the training without noise. While for the larger noise σ2 = 0.01, the PAFT can
improve the convergence compared with the noised training. The exiting performance gap between
PAFT and the normal training without noise comes from the noisy gradient itself, which leads to
an incorrect updating direction. Future works should consider combining both synchronization and
voting mechanisms like the Byzantine Fault-tolerance problem (Guerraoui et al., 2024) to address
this problem.

Table 3: Average iteration wall-
clock time (seconds) during train-
ing ResNet-50.

of workers 4 8 16 32

DSGD 0.201 0.212 0.228 0.333
PAFT-Sync 0.243 0.254 0.276 0.411

PAFT 0.237 0.244 0.253 0.373

Accidental Large Noise. We simulate accidental large noise
like bit corruptions. Specifically, in each round, the noise
is sampled from N (0, 0.0001) to simulate the normal small
noises. However, after each 500 iterations, the noise is sam-
pled from a N (0, 0.1) or N (0, 1.0) as simulated accidental
large noise. The Fig. 9(a) shows training with large noise sam-
pled from N (0, 0.1) while Fig. 9(b) shows N (0, 1.0). The
convergence curves clearly demonstrate the influence of this
accidental noise. In each iteration that the noise happens, the
test accuracy instantly drops a lot and is pulled back by PAFT from the valley. However, for a large
noise with variance of 1.0, it is hard to pull it back. Interestingly, we observe that the learning rate de-
cay at the late stage helps the model defend against the noise. Less learning rate results in less model
update and divergence, which aligns with our theoretical analysis (Lemma 3.1 and Theorem 3.2).

Wall-clock Iteration Time We provide a comparison of the average iteration wall-clock time (in
seconds) during the training of the ResNet-50 model, using different numbers of workers ranging
from 4 ∼ 32 in Table 3. By dynamic adjusted synchronization frequency and overlapped com-
munication, the PAFT reduces the extra cost than PAFT-Sync for around up to 11.0% efficiency
improvement for 32 workers. And the extra cost of PAFT than DSGD is around 18.9% for 32 work-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ers. For more workers, PAFT-Sync shows better improvement, which means the good scalability
of PAFT-Sync.

6 RELATED WORKS

Due to the limited space, we introduce the concise related works here, and leave detailed discussions
in Appendix A.

Parallelism at Scale Distributed large model (LM) training (Narayanan et al., 2021) employs
hybrid parallelism techniques, including data parallelism (DP), tensor model parallelism (TP), and
pipeline parallelism (PP). DP (Krizhevsky et al., 2017; Chen et al., 2016; Cui et al., 2016; Zhang
et al., 2017; Tang et al., 2020; 2022), which replicates models for parallel training, is central in
hybrid parallelism. It scales the training effectively by increasing the batch size to accelerate model
convergence. TP (Or et al., 2020; Narayanan et al., 2021) and PP (Narayanan et al., 2019; Rasley
et al., 2020; Tang et al., 2023) complement DP by addressing memory limitations when models
exceed a single device’s memory capacity. PAFT tackles GA errors and has been generalized to
hybrid parallel training frameworks like DeepSpeed (Rasley et al., 2020) and Megatron (Narayanan
et al., 2021) towards large-scale LLM training.

Safety and Reliability of Distributed Training Many studies focus on system reliability concern-
ing node failures, using checkpointing (Wang et al., 2023b; 2024; Narayanan et al., 2021) and elas-
ticity (Thorpe et al., 2022; Harlap et al.; He et al., 2023a) optimizations for rapid recovery. These
optimizations enhance system robustness and enable quick restarts. Also, there are many efforts
against Byzantine faults (El-Mhamdi et al., 2020; Damaskinos et al., 2018; Guerraoui et al., 2024)
by malicious node behavior. However, silent errors, represented by GA errors in the scope of this
paper, arise from unintentional issues like hardware errors or communication errors, leading to inac-
curacies in gradient updates. Unlike the other types of errors, GA errors are particularly challenging
due to their subtlety and variability, making them more difficult and resource-intensive to detect and
mitigate. To the best of our knowledge, PAFT is the first effort to improve system reliability against
GA errors at scale.

7 LIMITATIONS

Performance gap between PAFT and the oracle. In this work, as illustrated in the experiments 5,
we do not completely close the performance gap when the noise degree is large.Future works should
consider combining both parameter synchronization and voting mechanisms like the Byzantine
Fault-tolerance problem (Guerraoui et al., 2024) to address this problem.

Extra communication overheads. PAFT introduces extra communication overheads due to the
parameter synchronization. And the synchronizing optimizer states also introduce extra overheads.
While we have shown that the overheads are acceptable in the experiments, the overheads may be
significant in some scenarios like the low-bandwidth environments. Future works should consider
optimizing the synchronization frequency to reduce the overheads.

8 CONCLUSION

In this work, we address GA errors in distributed training caused by hardware issues like bit corrup-
tions and communication noise, which are challenging to capture and mitigate for fault tolerance.
We first mathematically formulate and generalize these errors as gradient inconsistency. Then, we
theoretically analyze how they lead to accumulated model divergence and failed convergence. To ad-
dress this issue, we propose PAFT, a fault-tolerant distributed training system incorporating dynamic
and asynchronous parameter synchronization optimizations. The two components of PAFT-Sync
and PAFT-Dyn work synergistically to mitigate the negative impact of GA errors. PAFT-Sync
maintains model convergence by periodically synchronizing parameters, while PAFT-Dyn mini-
mizes overhead by adjusting synchronization frequency based on the profiled error degrees. Our
implementation of PAFT on PyTorch Distributed, evaluated on ResNet-18, ResNet-50, GPT-2, and
LLaMA-2 models across 32 GPUs, demonstrates the systems robustness against a wide range of
GA errors. The evaluation results indicate that, unlike vanilla distributed training, PAFT effectively
maintains fault tolerance without compromising training throughput.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Wei An, Xiao Bi, et al. Fire-flyer ai-hpc: A cost-effective software-hardware co-design for deep
learning, 2024. URL https://arxiv.org/abs/2408.14158.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pp. 929–947, 2024.

David F. Bacon. Detection and prevention of silent data corruption in an exabyte-scale database
system. In The 18th IEEE Workshop on Silicon Errors in Logic System Effects, 2022.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60:223–311, 2016.

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed syn-
chronous sgd. In ICLR Workshop Track, 2016.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, and Eric P. Xing. GeePS:
Scalable deep learning on distributed GPUs with a gpu-specialized parameter server. In EuroSys,
2016.

Georgios Damaskinos, Rachid Guerraoui, Rhicheek Patra, Mahsa Taziki, et al. Asynchronous byzan-
tine machine learning (the case of sgd). In International Conference on Machine Learning, pp.
1145–1154. PMLR, 2018.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
Neural Information Processing Systems, pp. 1223–1231, 2012.

Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024. URL https://
arxiv.org/abs/2407.21783.

El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên Hoang, and Sébastien
Rouault. Genuinely distributed byzantine machine learning. In Proceedings of the 39th Sympo-
sium on Principles of Distributed Computing, PODC ’20, pp. 355364, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450375825. doi: 10.1145/3382734.3405695.
URL https://doi.org/10.1145/3382734.3405695.

David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron Brightwell.
Detection and correction of silent data corruption for large-scale high-performance computing. In
SC ’12: Proceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis, pp. 1–12, 2012.

Yanjie Gao, Xiaoxiang Shi, Haoxiang Lin, Hongyu Zhang, Hao Wu, Rui Li, and Mao Yang. An
empirical study on quality issues of deep learning platform. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 455–
466, 2023.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures in data
centers: measurement, analysis, and implications. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pp. 350361, New York, NY, USA, 2011. Association for Computing
Machinery.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

11

https://arxiv.org/abs/2408.14158
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3382734.3405695
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rachid Guerraoui, Nirupam Gupta, and Rafael Pinot. Byzantine machine learning: A primer. ACM
Comput. Surv., 56(7), apr 2024. ISSN 0360-0300. doi: 10.1145/3616537. URL https://doi.
org/10.1145/3616537.

Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger, and Phillip B. Gibbons. Pro-
teus: agile ML elasticity through tiered reliability in dynamic resource markets.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Tao He, Xue Li, Zhibin Wang, Kun Qian, Jingbo Xu, Wenyuan Yu, and Jingren Zhou. Unicron:
Economizing self-healing llm training at scale, 2023a. URL https://arxiv.org/abs/
2401.00134.

Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nishant Patil, and Yanjing
Li. Understanding and mitigating hardware failures in deep learning training systems. In Pro-
ceedings of the 50th Annual International Symposium on Computer Architecture, ISCA ’23, New
York, NY, USA, 2023b. Association for Computing Machinery. ISBN 9798400700958.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling Chen, Peng Sun,
Dahua Lin, Xiaolin Wang, Yingwei Luo, et al. Characterization of large language model de-
velopment in the datacenter. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), pp. 709–729, 2024.

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and
Paolo Tonella. Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ICSE ’20, pp. 11101121, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450371216.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan
Yang. Analysis of Large-Scale Multi-Tenant GPU clusters for DNN training workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pp. 947–960, Renton, WA, July 2019.
USENIX Association.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A unified archi-
tecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters. In OSDI,
2020.

Hassan Khan, Frederico Cerveira, Tiago Cruz, and Henrique Madeira. Network failures in cloud
management platforms: A study on openstack. pp. 228–235, 04 2023.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/kriz/cifar.html, 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Commun. ACM, 60(6):84–90, 5 2017.

Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram Saraph, Bor-Yiing Su, Caroline
Trippel, Jiyan Yang, Mike Rabbat, Brandon Lucia, et al. Understanding and improving failure
tolerant training for deep learning recommendation with partial recovery. Proceedings of Machine
Learning and Systems, 3:637–651, 2021.

12

https://doi.org/10.1145/3616537
https://doi.org/10.1145/3616537
https://arxiv.org/abs/2401.00134
https://arxiv.org/abs/2401.00134
http://www.cs.toronto.edu/~kriz/cifar.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael A. Malcolm. On accurate floating-point summation. Commun. ACM, 14(11):731736, nov
1971.

Jayashree Mohan, UT Austin, and Amar Phanishayee. CheckFreq: Frequent, Fine-Grained DNN
Checkpointing. pp. 15.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. PipeDream: Generalized pipeline paral-
lelism for DNN training. In SOSP, pp. 1–15, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, et al. Efficient large-scale language model
training on gpu clusters using Megatron-LM. In SC, 2021.

Andrew Or, Haoyu Zhang, and Michael Freedman. Resource elasticity in distributed deep learning.
In I. Dhillon, D. Papailiopoulos, and V. Sze (eds.), MLSys, volume 2, pp. 400–411, 2020.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger, Qirong Ho, Hao
Zhang, Gregory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning. In 15th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 21), pp. 1–18. USENIX Association, July 2021. ISBN 978-1-939133-22-9.
URL https://www.usenix.org/conference/osdi21/presentation/qiao.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/research-covers/language-unsupervised/language_understanding_paper. pdf, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In ACM SIGKDD,
2020.

Yousef Saad. Csci 5304: Computational aspects of matrix theory. Course Lecture
Notes, 2020. https://www-users.cselabs.umn.edu/classes/Fall-2020/
csci5304/FILES/LecN4.pdf.

Shaohuai Shi, Qiang Wang, Xiaowen Chu, Bo Li, Yang Qin, Ruihao Liu, and Xinxiao Zhao.
Communication-efficient distributed deep learning with merged gradient sparsification on gpus.
In IEEE INFOCOM, 2020.

Shaohuai Shi, Xiaowen Chu, and Bo Li. Exploiting simultaneous communications to accelerate data
parallel distributed deep learning. In IEEE INFOCOM, pp. 1–10, 2021a.

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao Wang, Zilin Zhu, Xue Huang, Xinan Jiang,
Feihu Zhou, Zhenyu Guo, Liqiang Xie, et al. Towards scalable distributed training of deep learn-
ing on public cloud clusters. volume 3, pp. 401–412, 2021b.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pp. 44524463, Red Hook, NY, USA, 2018. Curran Associates Inc.

Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng, Dongming Bi, and
Dong Xiang. NetBouncer: Active device and link failure localization in data center networks.
In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pp.
599–614, Boston, MA, February 2019. USENIX Association.

Zhenheng Tang, Shaohuai Shi, Xiaowen Chu, Wei Wang, and Bo Li. Communication-efficient
distributed deep learning: A comprehensive survey. arXiv preprint arXiv:2003.06307, 2020.

Zhenheng Tang, Shaohuai Shi, Bo Li, and Xiaowen Chu. Gossipfl: A decentralized federated learn-
ing framework with sparsified and adaptive communication. IEEE Transactions on Parallel and
Distributed Systems, pp. 1–13, 2022. doi: 10.1109/TPDS.2022.3230938.

13

https://www.usenix.org/conference/osdi21/presentation/qiao
https://www-users.cselabs.umn.edu/classes/Fall-2020/csci5304/FILES/LecN4.pdf
https://www-users.cselabs.umn.edu/classes/Fall-2020/csci5304/FILES/LecN4.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhenheng Tang, Yuxin Wang, Xin He, Longteng Zhang, Xinglin Pan, Qiang Wang, Rongfei Zeng,
Kaiyong Zhao, Shaohuai Shi, Bingsheng He, et al. Fusionai: Decentralized training and deploying
llms with massive consumer-level gpus. In The 32nd International Joint Conference on Artificial
Intelligence, Symposium on Large Language Models, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

TorchSnapshot team. TorchSnapshot: A performant, memory-efficient checkpointing library for
PyTorch applications. https://github.com/pytorch/torchsnapshot, 2022.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in mpich. Int. J. High Perform. Comput. Appl., 2005.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang, Ravi Ne-
travali, and Guoqing Harry Xu. Bamboo: Making Preemptible Instances Resilient for Afford-
able Training of Large DNNs, April 2022. URL http://arxiv.org/abs/2204.12013.
arXiv:2204.12013 [cs].

Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech, Sudharshan Vazhkudai,
Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe Navaux, Luigi Carro, and Arthur
Bland. Understanding gpu errors on large-scale hpc systems and the implications for system de-
sign and operation. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pp. 331–342, 2015.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, 2023.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9):
803–812, 1986.

Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang, Jiesheng Wu, and Qingchao Luo. Under-
standing silent data corruptions in a large production cpu population. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, pp. 216230, New York, NY, USA, 2023a.
Association for Computing Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613149.
URL https://doi.org/10.1145/3600006.3613149.

Yuxin Wang, Shaohuai Shi, Xin He, Zhenheng Tang, Xinglin Pan, Yang Zheng, Xiaoyu Wu,
Amelie Chi Zhou, Bingsheng He, and Xiaowen Chu. Towards fault-tolerant hybrid-parallel
training at scale with reliable and efficient in-memory checkpointing, 2024. URL https:
//arxiv.org/abs/2310.12670.

Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, TS Eugene Ng, and Yida Wang.
Gemini: Fast failure recovery in distributed training with in-memory checkpoints. In Proceedings
of the 29th Symposium on Operating Systems Principles, pp. 364–381, 2023b.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang
Wei, Pengtao Xie, and Eric P. Xing. Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters. In USENIX ATC, pp. 181–193, 2017.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

14

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/pytorch/torchsnapshot
http://arxiv.org/abs/2204.12013
https://doi.org/10.1145/3600006.3613149
https://arxiv.org/abs/2310.12670
https://arxiv.org/abs/2310.12670

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International Conference
on Machine Learning, pp. 4120–4129, 2017.

Ma gorzata Steinder and Adarshpal S. Sethi. A survey of fault localization techniques in computer
networks. Science of Computer Programming, 53(2):165–194, 2004. ISSN 0167-6423. Topics in
System Administration.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

A.1 PARALLELISM AT SCALE

Distributed large model (LM) training (Narayanan et al., 2021) employs hybrid parallelism tech-
niques, including data parallelism, tensor model parallelism, and pipeline parallelism.

Data parallelism (DP) (Krizhevsky et al., 2017; Chen et al., 2016; Cui et al., 2016; Zhang et al.,
2017; Tang et al., 2020; 2022), which replicates models for parallel training, is central in hybrid
parallelism. It scales the training effectively by increasing the batch size to accelerate model conver-
gence. However, DP is limited by memory capacity and communication overheads, especially for
large-scale LM training. This paper focuses on the GA erros in DP training.

Tensor model parallelism (TP) (Or et al., 2020; Narayanan et al., 2021) complement DP by ad-
dressing memory limitations when models exceed a single device’s memory capacity. PAFT tackles
GA errors and has been generalized to hybrid parallel training frameworks like DeepSpeed (Rasley
et al., 2020) and Megatron (Narayanan et al., 2021) towards large-scale LM training. The TP training
may also have communicatin errors, which is out of the scope of this paper. And the communication
errors in concating tensors in TP more like the computational SDC errors, which is different from
the GA errors in DP.

Pipeline parallelism (PP) (Narayanan et al., 2019; Rasley et al., 2020; Tang et al., 2023) splits the
whole model into different stages and processes them in a pipelined manner. The PP can reduce the
memory consumption and communication overheads. The communication errors happen in PP are
more like the quantization or compression errors, which is different from the GA errors either.

A.2 SAFETY AND RELIABILITY OF DISTRIBUTED TRAINING

Active Failures. Many studies focus on system reliability concerning node failures, which may
directly interrupt training processes. These studies propose fault-tolerant mechanisms using check-
pointing (Wang et al., 2023b; 2024; Narayanan et al., 2021) and elasticity (Thorpe et al., 2022; Har-
lap et al.; He et al., 2023a) optimizations for rapid recovery. These optimizations enhance system
robustness and enable quick restarts.

Silent Failures. There are other soft failures like the communication noise happen in GA, or the
workers upload the wrong gradients to the server. The typical methods to handle these failures
include gradient clip, or considering them as the Byzantine faults by malicious node behavior (El-
Mhamdi et al., 2020; Damaskinos et al., 2018; Guerraoui et al., 2024). However, the silent errors
in GA errors in the scope of this paper, arise from unintentional issues like hardware errors or
communication errors, leading to inaccuracies in gradient updates. And we mainly focus on the GA
errors happen during the broadcasting in DP training, which is different from the other types of soft
failures.

A.3 ASYNCHRONOUS OPTIMIZATIONS

To accelerate distributed training, asynchronous optimization techniques have been proposed to re-
duce the synchronization overheads (Tsitsiklis et al., 1986; Zheng et al., 2017; Damaskinos et al.,
2018). These techniques allow workers to update model parameters independently, reducing the
waiting time for synchronization. To consider accelerating synchronizing checkpoints, many works
utilize the asynchronous and heterogeneous capabilities of hardware resources for parallel process-
ing of different tasks. For example, in checkpointing optimizations, asynchronous parameter snap-
shotting can compete for memory bandwidth with training processes, potentially slowing down the
training speed (Mohan et al.; team, 2022; Wang et al., 2024). Additionally, inter-node communi-
cations asynchronous to training can introduce communication overheads (Shi et al., 2020; 2021b).
In PAFT-Sync, we also observe unavoidable asynchronous overheads during training. However,
the dynamic synchronization frequency effectively reduces the overall asynchronous overhead in the
fault-tolerant system.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B MORE DISCUSSION

B.1 SILENT DATA CORRUPTION ERRORS

Silent data corruption (SDC) errors are particularly insidious in high-performance computing
(HPC) (Wang et al., 2023a; He et al., 2023b), database (Bacon, 2022) and communication systems
because they can go undetected and lead to incorrect results. These errors can occur due to vari-
ous reasons, including hardware faults, software bugs, or cosmic radiation. In the context of HPC,
SDC errors can significantly impact the reliability and accuracy of computations, especially in large-
scale simulations and data-intensive applications. The large-scale distributed deep learning might
be severely influenced by the SDC errors (He et al., 2023b).

In communication systems, SDC errors can be introduced during data transmission between nodes
in a distributed computing environment (Fiala et al., 2012; gorzata Steinder & Sethi, 2004). These
errors can be caused by issues such as faulty network hardware, electromagnetic interference, or sig-
nal degradation over long distances. The impact of SDC errors in communication can be severe, as
they can lead to incorrect data being propagated through the system, potentially causing widespread
computational errors.

Table 4 shows the root-cause categorization of unexpected interruptions during a 54-day period of
Llama 3 405B pre-training (Dubey et al., 2024). About 78% of unexpected interruptions were at-
tributed to confirmed or suspected hardware issues, including faulty GPUs, GPU memory, and other
components. These interruptions can lead to significant downtime and data loss, affecting the overall
performance and reliability of the system. The SDC and network errors occupy a significant portion
of the interruptions, highlighting the importance of addressing these issues in distributed computing
environments. Note that the reported SDC erros belong to the explicit results that obviously ob-
served. However, there exists a large portion of silent erros with low erro degree may appear in the
training process, which is hard to detect and not reported.

Component Category Interruption Count % of Interruptions
Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%

Host Maintenance Unplanned
Maintenance 32 7.6%

GPU SRAM Memory GPU 19 4.5%
GPU System Processor GPU 17 4.1%
NIC Host 7 1.7%
NCCL Watchdog Timeouts Unknown 7 1.7%
Silent Data Corruption GPU 6 1.4%
GPU Thermal Interface + Sensor GPU 6 1.4%
SSD Host 3 0.7%
Power Supply Host 3 0.7%
Server Chassis Host 2 0.5%
IO Expansion Board Host 2 0.5%
Dependency Dependency 2 0.5%
CPU Host 2 0.5%
System Memory Host 2 0.5%

Table 4: Root-cause categorization of unexpected interruptions during a 54-day period of
Llama 3 405B pre-training. (Dubey et al., 2024) About 78% of unexpected interruptions were
attributed to confirmed or suspected hardware issues.

There is a substantial amount of SDC in data center processors (He et al., 2023b; Wang et al., 2023a),
leading to complex issues that are difficult to replicate and locate. In Fire-Flyer HPC (An et al.,
2024), various computational errors and GPU memory errors not detected by Error Correction Code
(ECC) listed in Table 5, which led to models gradnorm spikes, loss explosions and even nonconver-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Type of GPU Xid Errors and Its Causes (An et al., 2024).

Xid Errors Analysis

Software Causes:
Xid_13/31
Xid_43/45

Triggered by application programs, software-related Xid messages may
indicate anomalies in GPU memory affecting code and data segments.
However, it’s crucial to consider other information for a comprehensive
hardware functionality assessment.

NVLink Error: Xid
74

Xid74 indicates errors in NVLink. For PCIe A100, it’s mainly occurred
on the NVLink Bridge between two GPUs. Its occurrence rate is several
orders of magnitude higher than other hardware faults. Apart from stress
testing to exclude those that are constantly repeating errors, there isn’t a
good way to avoid the occurrence of Xid74 issues.

Memory ECC
Error: Xid_63/64
Xid_94/95

Triggered when the GPU handles memory ECC errors on the GPU. With
the introduction of row remapping technology in A100, most instances
can be resolved by simply resetting the GPU to retain optimal
performance.

Uncorrectable
GPU Failures:
Xid_44/48
Xid_61/62/69/79

Thease failures mean an uncorrectable error occurs on the GPU, which is
also reported back to the user application. A GPU reset or node reboot is
needed to clear this error.

Other Failures: Xid
119

Xid119 means GPU GSP module failed. These failures need to do fieldiag
test, and most need to RMA.

gence. Tackling these silent errors is crucial for ensuring the reliability and accuracy of distributed
training systems. The errors like Xid 63/64 will cause the failed convergence problems.

Table 6 shows that NVLink Erros and software errors occupy a large portion of all errors. It is crucial
to address the SDC erros in both communication and computation.

B.2 SDC ERROR SIMULATION

Fig. 10 shows the bias distribution with different noise degrees. For the σ = 0.0001, almost all
elements are less than 3e-4. Fig. 11 shows the maximal value in the noise during training with
different noise degrees. After each 500 iterations, there is a burst value happens, which is more
significant for the larger noise degree.

4 3 2 1 0 1 2 3 4
Bias ×10 4

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(a) σ = 0.0001.

4 3 2 1 0 1 2 3 4
Bias ×10 3

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(b) σ = 0.001.

4 3 2 1 0 1 2 3 4
Bias ×10 2

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(c) σ = 0.01.

Figure 10: The bias distribution for all elements in a gradient with different σ2.

Gradient Magnitude Distribution. Fig. 12 and 13 show the distribution of values in the gradients
of the ResNet-50 when training with CIFAR-100 at different iterations. Comparing the magnitudes
of gradients with the noise, we can see that even the noise with σ = 0.001 is a large noise that has
similar magnitude to the gradients. In the real-world scenarios, noises with σ ≥ 0.01 happen less.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Raw Data of GPU Xid Errors during one year in Fire-Flyer HPC (An et al., 2024)

GPU Error Type Xid Code Number Percentage

NVLink Error xid_74 5521 42.57%

Software Causes xid_13 45 0.35%

xid_31 2487 19.18%

xid_43 4342 33.48%

xid_45 240 1.85%

GPU ECC Error xid_63 245 1.89%

xid_64 2 0.02%

xid_94 13 0.10%

xid_95 17 0.13%

Uncorrectable Failures xid_44 1 0.01%

xid_48 2 0.02%

xid_61 13 0.10%

xid_62 3 0.02%

xid_69 1 0.01%

xid_79 37 0.29%

GPU GSP ERROR xid_119 1 0.01%

Total 12970 100.00%

0 1000 2000 3000 4000 5000
Iteration

1.00

1.05

1.10

1.15

1.20

1.25

M
ax

 B
ia

s

Max Bias

(a) σ = 0.001.

0 1000 2000 3000 4000 5000
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

M
ax

 B
ia

s

Max Bias

(b) σ = 0.01.

Figure 11: The maximal value in the noise during training.

For the significant larger noise error, which can be detected by the some machine learning methods
like the gradient clip, or the majority voting.

C PROOF

In this section, we provide the detailed proof of Lemma 3.1, Theorem 3.2, Lemma 4.1 and Theo-
rem 4.2. We rewrite all of them in this section for convenience of reading.

C.1 SOME DEFINITIONS AND ASSUMPTIONS

Definition C.1. (Virtual Average). In distributed stochastic gradient descend (Eq. 5) with inconsis-
tent gradient (Definition 2.1), an averaged model weight sequence {θ̄t}t≥0 is defined as

θ̄0 = θ0, θ̄t =
1

M

M∑
i=1

θit. (13)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

6 4 2 0 2 4
Gradient Magnitude ×10 1

0

500

1000

1500

2000

Fr
eq

ue
nc

y

(a) At 10-th training itertaion.

2 1 0 1 2
Gradient Magnitude ×10 2

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

(b) At 50-th training itertaion.

3 2 1 0 1 2 3 4
Gradient Magnitude ×10 4

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y

(c) At 100-th training itertaion.

Figure 12: The bias distribution for all elements of gradients of Conv layer in the first block.

2 0 2 4 6 8
Gradient Magnitude ×10 2

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

(a) At 10-th training itertaion.

1 0 1 2 3 4
Gradient Magnitude ×10 3

0

10000

20000

30000

40000

50000

Fr
eq

ue
nc

y

(b) At 50-th training itertaion.

4 2 0 2 4 6 8
Gradient Magnitude ×10 5

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

(c) At 100-th training itertaion.

Figure 13: The bias distribution for all elements of gradients of Conv layer in the second block.

From Definition 2.1, Eq. 5 and 13, we have

θ̄t+1 = θ̄t − ηtg̃t. (14)

C.2 INCREASING MODEL DIVERGENCE

Lemma C.1 (Increasing Model Divergence (Lemma 3.1)). With the same initial point θm0 = θ0
across workers {m|m = 1, 2, ...,M}, the DSGD with noise ϵmt ∼ N (0, σ2) introduces accumulated
model divergence ∆m

t along the training process as

E||θ̄t+1 − θmt+1||2 =
(M + 1)σ2

M

t∑
s=0

η2
s . (15)

Proof of Lemma 3.1. We define the θ̄t =
1
M

∑M
i=1 θ

i
t and g̃t =

1
M

∑M
i=1 g̃

i
t = 1

M

∑M
i=1(ḡt + ϵmt).

Then, we have θ̄t+1 = θ̄t − ηtg̃t. By substituting Eq. 4 and 5 into ∆m
t and iterating.

E||θ̄t+1 − θmt+1||2 =E||θ̄t − ηtg̃t − θmt + ηtg̃
m
t ||2

=E||θ̄t − θmt ||2 + η2
tE||g̃t − g̃mt ||2 + 2ηt E⟨θ̄t − θmt , g̃mt − g̃t⟩︸ ︷︷ ︸

=0

. (16)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

By iterating above equation from t → 0, we have

E||θ̄t+1 − θmt+1||2 =E||θ̄0 − θm0 ||2︸ ︷︷ ︸
=0

+

t∑
s=0

η2
sE||g̃s − g̃ms ||2

=
t∑

s=0

η2
sVar(

1

M

M∑
k=1

(ḡt + ϵkt)− (ḡt + ϵmt))

=

t∑
s=0

η2
sVar(

1

M

M∑
k=1

ϵks − ϵms)

=
(M + 1)σ2

M

t∑
s=0

η2
s

C.3 CONVERGENCE WITH NOISED TRAINING.

Firstly, we provide the Lemma C.2 before proving Theorem 3.2.

Lemma C.2. Let {θt}t≥0 and {θ̄t}t≥0 for m ∈ [M] be defined as in Equation (8), (13) and let f be
L-smooth and µ-strongly convex and ηt ≤ 1

4L . Then

E||θ̄t+1 − θ∗||2 ≤(1− µηt)E||θ̄t − θ∗||2 + η2
tE||g̃t −∇Ft||2

− 1

2
ηtE(f(θ̄t)− f∗) +

2Lηt
M

M∑
i=1

E||θ̄t − θit||2
(17)

Proof of Lemma C.2. Using the update Equation 14, we have

||θ̄t+1 − θ∗||2 =||θ̄t − ηtg̃t − θ∗||2 = ||θ̄t − ηtg̃t − θ∗ − ηt∇Ft + ηt∇Ft||2

=||θ̄t − ηt∇Ft − θ∗||2 + η2
t ||g̃t −∇Ft||2 + 2ηt⟨θ̄t − θ∗ − ηt∇Ft, g̃t −∇Ft⟩.

(18)

Observe that

||θ̄t − ηt∇Ft − θ∗||2 =||θ̄t − θ∗||2 + η2
t ||∇Ft||2 − 2⟨θ̄t − θ∗, ηt∇Ft⟩

≤||θ̄t − θ∗||2 + η2
t
1

M

M∑
i=1

||g(θit)||2 −
2ηt
M

M∑
i=1

⟨θ̄t − θit + θit − θ∗, g(θit)⟩

=||θ̄t − θ∗||2 + η2
t
1

M

M∑
i=1

||g(θit)− g(θ∗)||2

− 2ηt
M

M∑
i=1

⟨θit − θ∗, g(θit)⟩ −
2ηt
M

M∑
i=1

⟨θ̄t − θit, g(θ
i
t)⟩.

(19)

By L-smoothness, we have

||g(θit)− g(θ∗)||2 ≤ 2L(f(θit)− f∗). (20)

By µ-strong convexity, we have

−⟨θit − θ∗, g(θit)⟩ ≤ −(f(θit)− f∗)− µ

2
||θit − θ∗||2. (21)

To estimate the last term in (19), we use 2⟨a, b⟩ ≤ γ||a||2 + γ−1||b||2 for γ > 0, thus

−2⟨θ̄t − θit, g(θ
i
t)⟩ ≤2L||θ̄t − θit||2 +

1

2L
||g(θit)||2

=2L||θ̄t − θit||2 +
1

2L
||g(θit)− g(θ∗)||2

≤2L||θ̄t − θit||2 + (f(θit)− f∗).

(22)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

By applying these estimates to (19), we get

||θ̄t − θ∗ − ηt∇Ft||2 ≤||θ̄t − θ∗||2 + 2ηtL

M

M∑
i=1

||θ̄t − θit||2

+
2ηt
M

M∑
i=1

((ηtL− 1

2
)(f(θit)− f∗)− µ

2
||θit − θ∗||2)

(23)

For ηt ≤ 1
4L it holds (ηtL− 1

2) ≤ − 1
4 . By convexity of a(f(θ)− f∗) + b||θ − θ∗||2 for a, b ≥ 0,

− 1

M

M∑
i=1

(a(f(θit)− f∗) + b||θit − θ∗||2) ≤ −(a(f(θ̄t)− f∗) + b||θ̄t − θ∗||2). (24)

Hence, we can continue in (23) and obtain

||θ̄t − θ∗ − ηt∇Ft||2 ≤ (1− µηt)||θ̄t − θ∗||2 − 1

2
ηt(f(θ̄t)− f∗) +

2ηtL

M

M∑
i=1

||θ̄t − θit||2 (25)

Finally, we can combine (25) with (18). By taking expectation we get
E||θ̄t+1 − θ∗||2 ≤(1− µηt)E||θ̄t − θ∗||2 + η2

tE||g̃t −∇Ft||2

− 1

2
ηtE(f(θ̄t)− f∗) +

2Lηt
M

M∑
i=1

E||θ̄t − θit||2
(26)

Now, we can prove Theorem 3.2 with help of Lemma C.2.
Theorem C.3 (Convergence with noised training (Theorem 3.2.). With object function defined in
Eq. 1 satisfying Assumption 3.1, DSGD with noise ϵmt ∼ N (0, σ2) has the following convergence
bound

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤2E||θ̄0 − θ∗||2

T
+

2(σ2
g + σ2)

TM

T−1∑
t=0

η2
t

+
4Lσ2(M + 1)

TM

T−1∑
t=0

ηt

t−1∑
s=0

η2
s .

C.4 BOUNDED MODEL DIVERGENCE

Lemma C.4 (Bounded Model Divergence (Lemma 4.1). If gap(A) ≤ H and sequence of decreas-
ing positive stepsizes {ηt}t≥0 satisfying ηt ≤ 2ηt+H for all t ≥ 0, then. With the same initial point
θm0 = θ0 across workers {m|m = 1, 2, ...,M}, the DSGD with noise ϵmt ∼ N (0, σ2) introduces
accumulated model divergence ∆m

t along the training process as

E||θ̄t+1 − θmt+1||2 ≤ 4H(M + 1)σ2η2
t

M
(27)

Proof of Lemma 4.1. By Lemma 3.1, and observing that all θmt+1 will be synchronized at the syn-
chronization point as Eq. 8 or Eq. 12, we have

E||θ̄r − θmr ||2 = 0,

where r = Ht ≤ ⌊t/H⌋ represents the last synchronization timestamp until iteration t. Thus, we
have the following equation by iterating Eq. 16 from t → r,

E||θ̄t+1 − θmt+1||2 =E||θ̄r − θmr ||2︸ ︷︷ ︸
=0

+

t∑
s=r

η2
sE||g̃s − g̃ms ||2

=

t∑
s=r

η2
sVar(

1

M

M∑
k=1

ϵks − ϵms)

=
(M + 1)σ2

M

t∑
s=r

η2
sE||θ̄t+1 − θmt+1||2

=
(M + 1)σ2

M

t∑
s=r

η2
s ≤ 4H(M + 1)σ2η2

t

M
,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We use ηt ≤ ηr for t ≥ r and learning rate decay assumption ηr ≤ 2ηr+H . Note that different
learning rate schedule methods do not influence the order of this bound too much.

Proof of Theorem 3.2. By Equation (26), when µ = 0, and f is convex, we have

E||θ̄t+1 − θ∗||2 ≤E||θ̄t − θ∗||2 + η2
tE||g̃t −∇Ft||2

− 1

2
ηtE(f(θ̄t)− f∗) +

2Lηt
M

M∑
i=1

E||θ̄t − θit||2
(28)

Rearranging Eq. 35, we have

ηtE(f(θ̄t)− f∗) ≤2(E||θ̄t − θ∗||2 − E||θ̄t+1 − θ∗||2) + 2η2
tE||g̃t −∇Ft||2

+
4ηtL

M

M∑
i=1

E||θ̄t − θit||2
(29)

By summing t from 0 to T − 1,

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤2E||θ̄0 − θ∗||2

T
+

2

T

T−1∑
t=0

η2
tE||g̃t −∇Ft||2

+
4L

MT

T−1∑
t=0

ηt

M∑
i=1

E||θ̄t − θit||2.

(30)

For gradient estimation error from the noise, we have

E||g̃t −∇Ft||2 =E|| 1
M

M∑
i=1

gi(θ
i
t) +

1

M

M∑
i=1

ϵit −
1

M

M∑
i=1

g(θit)||2

=E|| 1
M

M∑
i=1

gi(θ
i
t)−

1

M

M∑
i=1

g(θit)||2 + E|| 1
M

M∑
i=1

ϵit||2

+
1

M

M∑
i=1

E⟨gi(θit)− g(θit), ϵ
i
t⟩︸ ︷︷ ︸

=0

=
1

M2

M∑
i=1

E||gi(θit)− g(θit)||2 +
1

M2

M∑
i=1

E||ϵit||2

≤
σ2
g + σ2

M

(31)

Combining Eq. 31 and Lemma 4.1 into Eq. 30, we have

1

T

T−1∑
t=0

ηtE(f(θ̄t)− f∗) ≤2E||θ̄0 − θ∗||2

T
+

2(σ2
g + σ2)

TM

T−1∑
t=0

η2
t

+
4Lσ2(M + 1)

TM

T−1∑
t=0

ηt

t−1∑
s=0

η2
s ,

(32)

which completes the proof.

C.5 CONVERGENCE WITH NOISED TRAINING WITH PAFT-SYNC .

Here, we use the Martingale Lemma (Lemma 3.3 in (Stich et al., 2018)) to help our proof.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma C.5. Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0 be sequences satisfying

at+1 ≤ (1− µηt)at − ηtetA+ η2
tB + η3

tC, (33)

for ηt = 4
µ(a+t) and constants A > 0, B, C ≥ 0, µ > 0, a > 1. Then we have

A

ST

T−1∑
t=1

wtet ≤
µa3

4ST
a0 +

2T (T + 2a)

µST
B +

16T

µ2ST
C, (34)

for wt = (a+ t)2 and ST ≜
∑T−1

t=0 wt =
T
6 (2T

2 + 6aT − 3T + 6a2 − 6a+ 1) ≥ 1
3T

3.

Theorem C.6 (Convergence with noised training with PAFT-Sync (4.2).). With object function
defined in Eq. 1 satisfying Assumption 3.1, DSGD with PAFT (Eq. 8 or 12) noise ϵmt ∼ N (0, σ2),
we have,

Ef(θ̂T)− f∗ ≤ µa3

2ST
||θ0 − θ∗||2 +

4T (T + 2a)(σ2
g + σ2)

µMST

+
256T

µ2ST

(M + 1)

M
σ2HL

where θ̂T = 1
MST

∑M
m=1

∑T−1
t=0 wtθ

m
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3

Proof of Theorem 4.2. Using Lemma C.2, Eq. 31, Lemma 4.1 we get

E||θ̄t+1 − θ∗||2 ≤(1− µηt)E||θ̄t − θ∗||2 +
σ2
g + σ2

M
η2
t

− 1

2
ηtE(f(θ̄t)− f∗) +

8LHσ2(M + 1)

M
η3
t

(35)

By Lemma C.5 and the convexity of f , rearranging Eq. 35, we have

Ef(θ̂T)− f∗ ≤ µa3

2ST
||θ0 − θ∗||2 +

4T (T + 2a)(σ2
g + σ2)

µMST

+
256T

µ2ST

(M + 1)

M
σ2HL

(36)

D MORE EXPERIMENTAL RESULTS

D.1 ELIMINATE MODEL DIVERGENCE

Fig. 14 shows that the in noised DSGD, the model divergence is accumulated during trainig, thus
severely influencing convergence. While the PAFT can effectively illuminate the model divergence
periodically, thus improving the convergence.

0 20 40 60 80 100
EPOCHS

30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
[%

]

SGD
Noise 0.0001
Noise 0.01
Noise 0.0001(H5)
Noise 0.01(H5)
Noise 0.0001(H50)
Noise 0.01(H50)

(a) Test accuracy.

0 200 400 600 800 1000
ITERATIONS

0.00

0.01

0.02

0.03

0.04

0.05

0.06

TO
TA

L
DI

VE
RG

EN
SI

TY
 [%

]

SGD
Noise 0.0001
Noise 0.01
Noise 0.0001(H5)
Noise 0.01(H5)
Noise 0.0001(H50)
Noise 0.01(H50)

(b) Model divergence

Figure 14: Training ResNet-18 with 4 workers.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.2 CONVERGENCE UNDER LARGER NOISE

Fig. 15 and 16 show results of training ResNet-18, ResNet-50 and LLMs with larger noise degrees
(σ2 = 0.1 or 1.0). Under the more severe noises, the convergence of LLMs is significantly influ-
enced. And it is more difficult for PAFT to mitigate these erros. Nevertheless, such a large noise
degree is not common in practice.

0 20 40 60 80 100
EPOCHS

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

) Oracle
2 = 0.1
2 = 1.0

PAFT 2 = 0.1
PAFT 2 = 1.0

(a) Training ResNet-18 with 4 workers.

0 20 40 60 80 100
EPOCHS

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

) Oracle
2 = 0.1
2 = 1.0

PAFT 2 = 0.1
PAFT 2 = 1.0

(b) Training ResNet-50 with 4 workers.

0 20 40 60 80 100
EPOCHS

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

) Oracle
2 = 0.1
2 = 1.0

PAFT 2 = 0.1
PAFT 2 = 1.0

(c) Training ResNet-50 with 32 workers.

Figure 15: Training computer vision models with larger noises.

0 500 1000 1500 2000 2500 3000
Iters

5

6

7

8

Tr
ai

n
Lo

ss

Oracle
2 = 0.1
2 = 1.0

PAFT 2 = 0.1
PAFT 2 = 1.0

(a) Training GPT-2 with OpenWebText.

0 250 500 750 1000 1250 1500
Iters

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

Oracle
2 = 0.1
2 = 1.0

PAFT 2 = 0.1
PAFT 2 = 1.0

(b) Finetuning GPT-2 with Alpaca.

0 250 500 750 1000 1250
Iters

0.8

1.0

1.2

1.4

Tr
ai

n
Lo

ss

Oracle
2 = 0.1

PAFT 2 = 0.1

(c) Finetuning LLaMA-2 with Alpaca.

Figure 16: Training LLMs with larger noises.

D.3 COMPARING SYNCHRONIZING OPTIMIZER STATES

Fig. 17 provides results of comparing PAFT with synchronizing model or all parameters (including
optimizer states). The results show that synchronizing all parameters can improve the convergence
than synchronizing model only. However, the improvement is limited, and the overhead of synchro-
nizing all parameters is much higher than synchronizing model only. Thus, synchronizing model
only is more practical in distributed training.

0 20 40 60 80 100
EPOCHS

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)

Oracle
2 = 0.01

PAFT Sync. Model
PAFT Sync. All

(a) Training ResNet-50.

0 500 1000 1500 2000 2500 3000
Iters

5.0

5.5

6.0

6.5

Tr
ai

n
Lo

ss

Oracle
2 = 0.0001

PAFT Sync. Model
PAFT Sync. All

(b) Training GPT-2 with OpenWebText.

0 500 1000 1500
Iters

0.35

0.40

0.45

0.50

Tr
ai

n
Lo

ss

Oracle
2 = 0.001

PAFT Sync. Model
PAFT Sync. All

(c) Training GPT-2 with Alpaca.

Figure 17: Comparing PAFT with synchronizing model or all parameters (including optimizer
states). The “Sync. All” denotes synchronizing all parameters including optimzier states.

25

	Introduction
	Preliminaries
	Errors in Distributed Averaging Gradients

	Analysis of the Failed Convergence
	Accumulated Model Divergence
	Convergence Analysis of Noised DSGD

	Periodical Parameter Synchronization
	Parameter Synchronization
	Adjusting Synchronization Frequency
	Overlapping Synchronization with Training
	Extension to Other Optimizers

	Experimental Studies
	Main Results

	Related Works
	Limitations
	Conclusion
	More Related Works
	Parallelism at Scale
	Safety and Reliability of Distributed Training
	Asynchronous Optimizations

	More Discussion
	Silent Data Corruption Errors
	SDC Error Simulation

	Proof
	Some Definitions and Assumptions
	Increasing Model Divergence
	Convergence with noised training.
	Bounded Model Divergence
	Convergence with noised training with PAFT-Sync.

	More Experimental Results
	Eliminate Model Divergence
	Convergence under Larger Noise
	Comparing Synchronizing Optimizer States

