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ABSTRACT

Standard Sparse Autoencoders (SAEs) excel at discovering a dictionary of a
model’s learned features, offering a powerful observational lens. However, the
ambiguous and ungrounded nature of these features makes them unreliable in-
struments for the active, causal probing of model behavior. To solve this, we
introduce Concept-SAE, a framework that forges semantically grounded concept
tokens through a novel hybrid disentanglement strategy. We first quantitatively
demonstrate that our dual-supervision approach produces tokens that are remark-
ably faithful and spatially localized, outperforming alternative methods in disen-
tanglement. This validated fidelity enables two critical applications: (1) we probe
the causal link between internal concepts and predictions via direct intervention,
and (2) we probe the model’s failure modes by systematically localizing adversar-
ial vulnerabilities to specific layers. Concept-SAE provides a validated blueprint
for moving beyond correlational interpretation to the mechanistic, causal probing
of model behavior.

1 INTRODUCTION

The ultimate goal of mechanistic interpretability (Olah et al., 2018; 2020) is to reverse-engineer
neural networks, moving from observing their behavior to understanding their internal algorithms. A
dominant approach, exemplified by Sparse Autoencoders (SAEs) (Huben et al., 2023; Ramaswamy
et al., 2023; Yeh et al., 2020), decomposes a model’s internal activations into a dictionary of learned
features. This technique has been widely applied in both vision (Zhang & Zhu, 2018; Stevens et al.,
2025; Lim et al., 2024; Olson et al., 2025) and natural language (Shu et al., 2025; Huben et al.,
2023), providing a powerful observational lens. However, this paradigm remains fundamentally
correlational; it provides a list of a model’s computational parts but lacks the instruments needed to
actively probe how these parts causally interact to produce the model’s behavior.

The primary barrier to a causal science of interpretability is the lack of semantically grounded and
disentangled features. The dominant paradigm for analyzing SAEs requires subjective, post-hoc in-
spection of latent tokens and their corresponding activation maps (Gao et al., 2024; Paulo & Belrose,
2025; Marks et al., 2024; Härle et al., 2025). While one can perform interventions on these learned
features, their ambiguous and potentially entangled nature makes it difficult to isolate specific causal
factors. This ambiguity undermines the scientific rigor of resulting causal claims, preventing the for-
mation of reliable, falsifiable hypotheses. Other attempts to enforce conceptual alignment also fall
short. Concept Bottleneck Models (Koh et al., 2020), for instance, while powerful for final layer
analysis, impose a restrictive low-dimensional bottleneck that is often unsuitable for preserving
the rich, high-dimensional information present in intermediate layers. Meanwhile, concept embed-
dings (Espinosa Zarlenga et al., 2022; 2023), lacking direct supervision on their values and spatial
locations, suffer from semantic drift and fail to disentangle from background features, once again
precluding the clean interventions required for rigorous causal probing.

To bridge this gap, we introduce Concept-SAE, a framework that upgrades SAEs from passive
dictionaries into instruments for active causal probing. Our core contribution is a hybrid disen-
tanglement strategy that forges clean, semantically grounded handles necessary for reliable experi-
mentation. We anchor concept tokens to human-defined concepts using a robust dual-supervision
mechanism on both their existence and spatial localization, ensuring they are faithful and disen-
tangled. Simultaneously, we retain unsupervised free tokens to capture residual information and
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preserve the capacity for open-ended discovery. This design transforms the SAE into a validated
instrument, enabling the direct, mechanistic probing of a model’s causal structure. The main contri-
butions of this work are as follows:

• We introduce Concept-SAE, a novel framework that fundamentally advances sparse au-
toencoders from passive observational tools into instruments for the active causal probing
of visual model behavior.

• We provide extensive experimental validation showing that our dual-supervision strategy
produces concept representations that are remarkably faithful, spatially localized, and
cleanly disentangled, demonstrating superiority over alternative concept-based methods.

• We demonstrate that the high fidelity of our concept representations unlocks new capabili-
ties for probing model behavior, including establishing causal links via direct intervention
on predictions and systematically localizing adversarial vulnerabilities.

2 RELATED WORKS

Model Interpretability with Sparse Autoencoders. Sparse Autoencoders (SAEs) have emerged
as powerful tools for mechanistic interpretability, building on the sparse coding hypothesis (Ol-
shausen & Field, 1997) to address feature superposition. By training an SAE to sparsely reconstruct
model activations, polysemantic signals can be disentangled into interpretable, monosemantic fea-
tures (Sharkey et al., 2022; Huben et al., 2023). SAEs have been applied to MLPs and attention
heads (Kissane et al., 2024) in visual (Gorton, 2024) and textual (Kantamneni et al., 2025; Mudide
et al., 2025; Minegishi et al., 2025) models, with improvements in training stability and feature qual-
ity (Rajamanoharan et al., 2024). Extracted features now support tasks like discovering computa-
tional circuits (O’Neill & Bui, 2024) and model control for AI safety (Marks et al., 2023). However,
previous SAE-based methods rely on passive, manual inspection of latent tokens, often yielding
concepts that are sparse, unstable, and semantically entangled, with little control over which con-
cepts are analyzed. In contrast, our approach actively test whether specific concepts are represented
in the model. Our method explicitly disentangles concept tokens from free tokens through dual su-
pervision and staged training, enabling precise and faithful concept representation while preserving
the exploratory capacity of traditional SAEs.

Incorporating Predefined Concepts into SAE. Our approach extends sparse autoencoders by
explicitly incorporating predefined concepts into their latent space. Since SAEs are trained to re-
construct internal features, constraining certain tokens to represent human concepts parallels prior
efforts that inject concepts into the prediction process. A representative example is the Concept
Bottleneck Model (CBM) (Koh et al., 2020; Rao et al., 2024), which supervises latent features to
align with predefined concepts and forces predictions to pass through these human-understandable
variables. Another line of work encodes concepts as latent embeddings (Espinosa Zarlenga et al.,
2022; 2023). However, these approaches are primarily designed for the output layer. In intermediate
feature spaces, binary bottlenecks struggle to disentangle fine-grained concepts and often cause se-
mantic overlap (Espinosa Zarlenga et al., 2022), while embeddings easily drift from their intended
semantics without direct supervision (Espinosa Zarlenga et al., 2022). To address these challenges,
we supervise the values of concept tokens, anchoring them to visual evidence that captures both exis-
tence and spatial localization. A staged training strategy further enforces this separation, preventing
leakage into free tokens while preserving their exploratory capacity.

3 METHODOLOGY

Concept-SAE endows SAE-based interpretability models with the capability of incorporating pre-
defined concepts. The overall procedure begins with concept label generation, where ground-truth
annotations are derived in the form of segmentation masks and existence scores for a predefined set
of concepts. We then train a Concept Autoencoder, composed of a Concept Tokenizer and a Concept
Aggregator: the tokenizer learns to extract concept representations from intermediate feature maps,
while the aggregator reconstructs those features from the concept embeddings, thereby forming a
fully invertible, concept-centric representation of the model’s internal state. To capture residual in-
formation beyond the predefined concept space, we further introduce a Free Autoencoder, which
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Figure 1: Overall training pipeline of our proposed method.

functions analogously to a conventional sparse autoencoder. The overall model training pipeline
with four steps is shown in Fig. 1.

3.1 CONCEPT LABEL & SEGMENTATION GENERATION

To incorporate predefined concepts without constraining the SAE’s ability to discover novel fea-
tures, we adopt a minimal representation for each concept, consisting of its existence and spatial
extent. This ensures that concept supervision anchors interpretation without injecting unnecessary
information that could interfere with the SAE. We leverage two plug-and-play models to provide
precise ground-truth annotations of these two signals: A vision-language model (VLM) determines
whether each concept is present in the image, yielding a binary existence score. In parallel, a seg-
mentation model produces an initial spatial mask. The two outputs are then fused: if the VLM
judges a concept absent, its mask is suppressed to zero; otherwise, the original mask is preserved.
This refinement yields clean and reliable annotations for training the concept-based modules. We
provide more details of this process in App. C and App. D.

3.2 CONCEPT TOKENIZER

The Concept Tokenizer Tconcept maps the hidden representations of the target model onto a con-
strained concept space. With the generated annotations, it is trained to predict two signals for each
concept: a binary existence score and a spatial mask. As shown in the left part of Fig. 2, for each
concept, the tokenizer first projects the internal feature maps into a dedicated latent space through
a learnable transformation, producing concept-specific embeddings. Each embedding is aggregated
to form holistic concept representations, which integrate evidence distributed over different chan-
nels or patches. Based on this unified representation, the tokenizer predicts two outputs: a binary
existence score and a spatial mask localizing the concept within the input. We use two linear layers
to compute the concept segmentation and the concept score separatedly. The formulation of this
process is shown in Eq. 1 and Eq. 2.

si = Sigmoid
(
z
(dt)
i ·W (dt)

score,i + bscore,i

)
, 1 ≤ i ≤ n (1)

m
(ds)
i = z

(dt)
i ·W (dt×ds)

seg,i + b
(ds)
seg,i, 1 ≤ i ≤ n (2)

where s ∈ Rn is the predicted concept score for the internal feature, and m ∈ Rn×ds is the predicted
concept mask. The training loss is designed as the mean squared error (MSE) between the predicted
concept score s, predicted concept mask m and the true concept score S, concept masks M. We also
apply an L1 penalty to Wmerge to encourage sparsity, ensuring that each concept’s representation is
derived from a minimal set of channels or patches. The loss is formulated as Eq. 3.

Ltokenizer = λ1||S − s||22 + λ2||M−m||22 + λ3||Wmerge||1 (3)
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Figure 2: Computation process of concept tokenizer and concept aggregator.
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Figure 3: Concept score example for an image. The y-axis is the layer of the model and x-axis is the
concepts. The name of the concepts with high concepts score is shown at the bottom.

By doing so, Tconcept enforces a direct alignment between intermediate features and human-
interpretable concepts. An example of the predicted concept scores for different layers of a model
is shown in Fig. 3.

3.3 CONCEPT AGGREGATOR

With the trained Tconcept, we freeze its parameters and further train a Concept Aggregator Aconcept,
which is the decoder that reconstructs the original feature maps h from the predicted concept repre-
sentations. The right part of Fig. 2 shows its computation process in two steps. Firstly, it combines
the information from the predicted concept score and segmentation by element-wise multiplication.
The segmentation features of concepts absent from the image will be masked by low concept scores.
Then, we utilize an MLP to fuse the predicted concept score s and segmentation m into a unified
feature vector f ∈ Rn×dm . Finally, we combines these concept features with a fully connected
layer to produce the reconstructed feature map ĥconcept. The training loss is designed as the MSE
between the predicted feature ĥconcept and the truth feature h. Meanwhile, we want to encourage
that every concept contributes to the channels or patches where it is retrieved. Therefore, we add
a KL divergence loss between Waggr in Aconcept and Wmerge in Tconcept, so that concept-channel
distributions of the two parameters are aligned. We also add the L1 loss to Waggr to encourage
sparsity: each concept only contributes to the reconstruction of a few channels or patches. The loss
function of Aconcept is shown in Eq. 4, where sm(·) is the softmax function.

Laggr = λ1||ĥconcept − h||22 + λ2KL(sm(Wmerge)||sm(W⊤
aggr)) + λ3||Waggr||1 (4)

3.4 FREE TOKENIZER & FREE AGGREGATOR

We introduce a Free Tokenizer and a Free Aggregator to discover features not covered by the
predefined concept space. These two modules share the same architecture as the concept tok-
enizer–aggregator pair, but differ in training strategies: unlike the concept modules, they are trained
jointly under the objective of the SAE with no external supervision. The training loss for the free to-
kenizer and the free aggregrator is designed to encode implicit concepts absent from the predefined
concept pool and reconstruct the original features jointly with Tconcept and Aconcept. The combi-
nation of the reconstructed features from the concept module and the free module is performed by
a simple adding operation. Meanwhile, the L1 loss is added to the output of the free tokenizer to
preserve sparsity. The detailed loss is formulated in Eq. 5, with Tfree and Afree as the free tokenizer
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Figure 4: Reconstruction examples of our proposed method on ResNet features.

and the free aggregator separately. A comparison on reconstruction performance between the joint
modules and the concept modules alone are shown in Fig. 4. We provide more visualization results
of the reconstructed features at App. G. We provide some concept analysis of free tokens at App. F.

Lfree = λ1||Afree(Tfree(h)) + ĥconcept − h||22 + λ2||Tfree(h)||1 (5)

4 EXPERIMENTS

To validate our proposed method, we conduct a series of experiments to investigate (1) whether the
representations of concepts derived by Concept-SAE are faithful and distangled, and (2) Concept-
SAE’s capabilities in model interpretation, error correction, and robustness analysis. Our evaluation
is guided by the following research questions:

• RQ1: Concept Focus & Faithfulness. Do concept tokens faithfully capture
model-internal, human-interpretable concepts—while remaining sparse and disentan-
gled—compared to standard SAEs and concept-embedding baselines?

• RQ2: Failure Diagnosis & Causal Correction. Can Concept-SAE (1) identify concept
patterns that differentiate correct vs. incorrect predictions, and (2) causally correct errors
by intervening on concept scores/maps?

• RQ3: Vulnerability Localization & Robustness Gains. Can Concept-SAE accurately
localize layers most susceptible to adversarial perturbations, and does targeting these layers
for fine-tuning yield stronger robustness than standard choices?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on two datasets: (1) CelebA (Liu et al., 2015), we focus on the
binary classification of the Gender attribute as the target label; and (2) ImageNet-1k (Deng et al.,
2009), which involves classification across 1000 object categories.

Models. We consider two representative vision architectures: (1) ResNet-18 (He et al., 2016),
which is trained on CelebA and ImageNet-1k separately and subsequently analyzed; and (2) Vision
Transformer (ViT-B/32) (Dosovitskiy et al., 2020; Radford et al., 2021), which is pre-trained on
the LAION-2B dataset, and we evaluate the model with Concept-SAE in a zero-shot setting on both
CelebA and ImageNet-1k.

4.2 EXPERIMENTS ON RESEARCH QUESTIONS

RQ1: Concept Focus & Faithfulness. We evaluate the purity of our learned concepts by comparing
them with a concept-embedding baseline (CEM) (Espinosa Zarlenga et al., 2022), which represents
each concept with two complementary embeddings supervised only by concept existence. For this
experiment, we focus on concepts related to human appearance, with the full list provided in Table. 6
(Appendix). As shown in Fig. 5, our method reconstructs only the image regions directly associ-
ated with the target concepts. In contrast, the CEM baseline also reconstructs irrelevant background
content (e.g., the text behind the person), indicating that its embeddings entangle unintended fea-
tures. We further evaluate the localization ability of the concept tokens derived from our proposed
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Figure 5: The difference between the vision model feature reconstruted by our concept module and
concept embedding model.
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Figure 6: Two examples of free token visualizations, each with 8 most activated images from the
CelebA dataset.

Concept-SAE model quantitatively. For the CelebA dataset, we construct two binary masks that
separately cover the face region and the background. We then compute the reconstruction error of
the vision model features within each region. To quantitatively measure localization, we define the
Localization Ratio as the ratio between the MSE of the background and that of the face:

LocR =
MSE

(
(h− ĥconcept)⊙Mbackground

)
MSE

(
(h− ĥconcept)⊙Mface

) . (6)

where Mbackground and Mface are the binary masks for background and face part respectively.
Since only facial concepts are used to train the SAE, a higher Localization Ratio shows the facial
part is reconstructed better than the background part, which indicates a stronger ability to disentan-
gle concepts and preserve their spatial localization. We compare our Concept-SAE with the CEM
on shallow layers of ResNet, where localization information is still preserved. Deeper layers are
excluded from evaluation, as their features are spatially fused and lack clear localization. As shown
in Table 1, our Concept-SAE consistently achieves higher localization ratios than CEM, demon-
strating superior concept localization. This highlights our method’s superior ability to isolate and
faithfully represent localized, semantically meaningful concepts. Moreover, introducing supervised
concept tokens does not diminish the capacity of free tokens. As shown in Fig. 6, we can still
get free tokens with rich semantic information through manual search (more examples in App. F).
Therefore, in our proposed Concept-SAE framework, the free tokenizer and aggregator continue to
capture residual, unconstrained features, enabling semantic analysis beyond predefined concepts.

RQ2: Failure Diagnosis & Causal Correction. By explicitly introducing concept scores, our
method enables not only interpretability but also additional diagnostic capabilities. These scores
can be used both to analyze model behavior and to directly adjust predictions. For failure diagno-
sis, we examine the difference patterns of concept scores for correctly predicted and mispredicted
images. We interpret each concept score as the probability that the specific concept is represented
internally by the model. To quantify reliability, we compute the entropy of concept scores across
layers. Higher entropy indicates that the extracted feature of the vision model is ambiguous and less
reliable, while lower entropy reflects more confident concept usage of the vision model. As shown in
Table 2, for each layer of the vision model, incorrect predictions consistently exhibit higher entropy
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Table 1: Localization ratio of our proposed Concept-SAE and CEM. Higher localization ratio indi-
cates the concept derived has better localization characteristic and is better distangled.

Model layer LocR (Concept-SAE) LocR (CEM)
ResNet-18 layer 5 1.472 1.019
ResNet-18 layer 7 1.402 0.982
ResNet-18 layer 9 1.395 1.002

Table 2: Information entropy of the concept score for different layers of the vision models. Higher
information entropy indicates the output feature of that layer is more ambiguous. Red and blue
numbers show the increase and decrease in entropy compared to the average of the original samples.

Dataset Model layer Concept score entropy
All pred. Correct pred. Incorrect pred. Adversarial pred.

CelebA

ViT layer 0 0.249 0.248 0.273 (+0.024 ↑) 0.320 (+ 0.071 ↑)
ViT layer 2 0.234 0.234 0.257 (+ 0.023 ↑) 0.353 (+ 0.119 ↑)
ViT layer 4 0.223 0.222 0.246 (+ 0.023 ↑) 0.379 (+ 0.156 ↑)
ViT layer 6 0.216 0.216 0.235 (+ 0.019 ↑) 0.346 (+ 0.130 ↑)
ViT layer 8 0.197 0.197 0.212 (+ 0.015 ↑) 0.291 (+ 0.094 ↑)

ViT layer 10 0.197 0.196 0.203 (+ 0.007 ↑) 0.256 (+ 0.059 ↑)
ViT layer 11 0.208 0.207 0.221 (+ 0.013 ↑) 0.284 (+ 0.076 ↑)

ResNet-18 layer 5 0.289 0.287 0.320 (+ 0.031 ↑) 0.298 (+ 0.009 ↑)
ResNet-18 layer 7 0.284 0.281 0.313 (+ 0.029 ↑) 0.294 (+ 0.010 ↑)
ResNet-18 layer 9 0.279 0.277 0.307 (+ 0.028 ↑) 0.315 (+ 0.036 ↑)

ResNet-18 layer 12 0.277 0.274 0.304 (+ 0.027 ↑) 0.305 (+ 0.028 ↑)
ResNet-18 layer 14 0.274 0.271 0.302 (+ 0.028 ↑) 0.324 (+ 0.050 ↑)
ResNet-18 layer 17 0.253 0.249 0.289 (+ 0.036 ↑) 0.304 (+ 0.051 ↑)

Imagenet

ViT layer 0 0.225 0.225 0.217 (- 0.008 ↓) 0.171 (- 0.054 ↓)
ViT layer 2 0.210 0.210 0.213 (+ 0.003 ↑) 0.170 (- 0.040 ↓)
ViT layer 4 0.198 0.198 0.207 (+ 0.009 ↑) 0.213 (+ 0.015 ↑)
ViT layer 6 0.180 0.180 0.206 (+ 0.026 ↑) 0.187 (+ 0.007 ↑)
ViT layer 8 0.163 0.163 0.184 (+ 0.021 ↑) 0.174 (+ 0.011 ↑)

ViT layer 10 0.158 0.158 0.160 (+ 0.002 ↑) 0.165 (+ 0.007 ↑)
ViT layer 11 0.166 0.166 0.186 (+ 0.020 ↑) 0.192 (+ 0.026 ↑)

ResNet-18 layer 5 0.224 0.224 0.226 (+ 0.002 ↑) 0.235 (+ 0.011 ↑)
ResNet-18 layer 7 0.215 0.214 0.219 (+ 0.004 ↑) 0.227 (+ 0.012 ↑)
ResNet-18 layer 9 0.185 0.185 0.191 (+ 0.006 ↑) 0.186 (+ 0.001 ↑)

ResNet-18 layer 12 0.190 0.188 0.196 (+ 0.006 ↑) 0.192 (+ 0.002 ↑)
ResNet-18 layer 14 0.188 0.188 0.195 (+ 0.007 ↑) 0.203 (+ 0.015 ↑)
ResNet-18 layer 17 0.169 0.169 0.175 (+ 0.006 ↑) 0.182 (+ 0.013 ↑)

in concept scores, suggesting that uncertain concept activations are a key factor of model failures.
For causal correction, we intervene directly on the learned concept scores to modify the final output
of the vision model. Specifically, we adjust selected concept scores to form a modified concept score
vector, for instance, set the concept score of beard to zero. Then, the modified concept scores are
passed through the aggregator with the original concept tokens to generate a counterfactual feature
representation. We further substitute the original model feature with this generated counterfactual
feature as the input so that we can modify the final output of the vision model. On CelebA mis-
classifications, for example, male images incorrectly predicted as female often exhibit insufficient
activations of male-associated concepts such as beard, mustache, and adam’s apple. By increasing
the scores of these concepts, the prediction is corrected to male; conversely, reducing them cor-
rects the opposite errors. As shown in Fig. 7, we find that interventions on deeper ViT layers are
more effective, while in ResNet both shallow and deep layers yield strong corrections. These results
demonstrate that Concept-SAE not only identifies ambiguous concept activations as the cause of
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Table 3: Accuracy of the model on adversarial samples after finetuning. JS distance indicates the
difference between the concept scores of the original samples and those of the adversarial samples
in each layer. Red numbers show the increase in accuracy for adversarial samples after adversarial
finetuning. Blue numbers show the decrease in JS distance for each layer of vision models before
and after adversarial finetuning. Yellow background shows the top-3 values in that column.

Dataset Finetuned
Model Layer

Adv Sample
Accuracy

JS distance
(before finetune)

JS distance
(after finetune)

CelebA

None (ViT) 70.05 % - -

ViT layer 0 87.67% (+ 17.62% ↑) 0.178 0.172 (- 0.006 ↓)
ViT layer 2 80.03% (+ 9.98% ↑) 0.137 0.103 (- 0.034 ↓)
ViT layer 4 87.03% (+ 16.98% ↑) 0.225 0.173 (- 0.052 ↓)
ViT layer 6 83.06% (+ 13.01% ↑) 0.160 0.125 (- 0.035 ↓)
ViT layer 8 80.36% (+ 10.31% ↑) 0.129 0.100 (- 0.029 ↓)

ViT layer 10 76.88% (+ 6.83% ↑) 0.121 0.064 (- 0.057 ↓)
ViT layer 11 74.33% (+ 4.28% ↑) 0.119 0.062 (- 0.057 ↓)

All layers (ViT) 93.32% (+ 23.27% ↑) - -

None (ResNet) 39.75% - -

ResNet-18 layer 5 55.45% (+ 15.70% ↑) 0.066 0.035 (- 0.031 ↓)
ResNet-18 layer 7 61.19% (+ 21.44% ↑) 0.080 0.049 (- 0.031 ↓)
ResNet-18 layer 9 60.51% (+ 20.76% ↑) 0.087 0.054 (- 0.033 ↓)
ResNet-18 layer 12 63.53% (+ 23.78% ↑) 0.095 0.072 (- 0.023 ↓)
ResNet-18 layer 14 67.09% (+ 27.34% ↑) 0.098 0.087 (- 0.012 ↓)
ResNet-18 layer 17 68.08% (+ 28.33% ↑) 0.109 0.106 (- 0.003 ↓)

All layers (ResNet) 80.52% (+ 40.77% ↑) - -

Imagenet

None (ViT) 11.78 % - -

ViT layer 0 28.24% (+ 16.46% ↑) 0.070 0.052 (- 0.018 ↓)
ViT layer 2 29.23% (+ 17.45% ↑) 0.065 0.054 (- 0.011 ↓)
ViT layer 4 29.78% (+ 18.00% ↑) 0.067 0.043 (- 0.024 ↓)
ViT layer 6 24.81% (+ 13.03% ↑) 0.052 0.040 (- 0.012 ↓)
ViT layer 8 25.77% (+ 13.99% ↑) 0.051 0.041 (- 0.010 ↓)

ViT layer 10 27.84% (+ 16.06% ↑) 0.053 0.045 (- 0.008 ↓)
ViT layer 11 25.24% (+ 13.46% ↑) 0.048 0.040 (- 0.008 ↓)

All layers (ViT) 34.98% (+ 23.20% ↑) - -

None (ResNet) 9.51% - -

ResNet-18 layer 5 13.87% (+ 4.36% ↑) 0.030 0.017 (- 0.013 ↓)
ResNet-18 layer 7 15.67% (+ 6.16% ↑) 0.034 0.022 (- 0.012 ↓)
ResNet-18 layer 9 17.20% (+ 7.69% ↑) 0.039 0.027 (- 0.012 ↓)
ResNet-18 layer 12 16.59% (+ 7.08% ↑) 0.036 0.026 (- 0.010 ↓)
ResNet-18 layer 14 14.89% (+ 5.38% ↑) 0.038 0.027 (- 0.011 ↓)
ResNet-18 layer 17 17.33% (+ 7.82% ↑) 0.047 0.041 (- 0.006 ↓)

All layers (ResNet) 34.71% (+ 25.20% ↑) - -

errors but also enables direct, causal interventions to repair predictions—capabilities not possible in
prior SAE methods without explicit concept scores.

RQ3: Vulnerability Localization & Robustness Gains. We further leverage concept scores to
systematically analyze how adversarial perturbations distort internal representations and to explore
targeted defenses. Since adversarial attacks exploit weaknesses in feature representations, faithful
concept scores should reveal both where and how these perturbations destabilize the model. To
investigate this, we generate adversarial examples using FGSM (Goodfellow et al., 2014) and mon-
itor changes in concept scores across the model hierarchy. An entropy-based analysis reveals two
complementary effects: (1) some layers become excessively confident in a small set of concepts,
as evidenced by reduced entropy, suggesting that the model latches onto spurious signals amplified
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Input Image Clip output with synthetic modified feature at specific layers Input Image ResNet output with synthetic modified feature at specific layers

Figure 7: We modify the concept score and generate synthetic features through aggregator at dif-
ferent layers of the vision model. For male figures, we increase the concept score of beard, adam’s
apple to 1.0. For female figures, we decrease the the concept score of beard, adam’s apple to 0.0.
Then we examine how the vision models perform with these new features on failure images.

by the perturbation; (2) other layers display the opposite behavior, with increased entropy reflecting
heightened uncertainty and confusion in concept extraction. These opposing tendencies, confidence
collapse and semantic diffusion, jointly illustrate how adversarial perturbations erode the consis-
tency of internal representations and disrupt the alignment between concepts and predictions. To
more precisely quantify such changes, we compute the Jensen–Shannon (JS) distance (Lin, 2002)
between the concept score distributions of clean and adversarial samples. Larger JS distances in-
dicate stronger distributional shifts encountering adversarial samples and thus higher vulnerability.
Based on this observation, we hypothesize that layers with higher JS distances are most fragile un-
der attack. We validate this hypothesis through layer-wise finetuning. For each layer, we freeze the
rest layers and retrain the chosen layer using mixed clean and adversarial samples for two epochs.
As shown in Table 3, layers identified with larger JS distances consistently yield greater robustness
improvements after finetuning compared to less vulnerable layers. These findings establish a di-
rect link between our proposed vulnerability metric and effective defense strategies. Our analysis is
both diagnostic and prescriptive: it not only identifies where adversarial perturbations compromise
semantic integrity but also provides guidance for targeted interventions that significantly enhance
robustness.

5 LIMITATIONS

Despite its effectiveness, Concept-SAE has several limitations. First, the accuracy of interpretation
depends on the quality of the generated concept supervision. Noise or inaccuracies from the vision-
language model (VLM) or the segmentation model may lead to imprecise concept identification
and risk imposing misaligned interpretations onto the target model, though this issue is expected to
diminish as foundation models continue to improve. Second, the reliance on spatial masks makes
the framework particularly suited for concepts corresponding to localizable objects. Extending this
approach to more abstract, textural, or globally distributed concepts—where spatial segmentation is
inherently difficult—remains an important direction for future research.

6 CONCLUSION

Our work provides a blueprint for transforming mechanistic interpretability from a passive, corre-
lational practice into an active, causal science. At the heart of this shift is Concept-SAE, whose
hybrid disentanglement design produces high-fidelity, semantically validated concept tokens. These
tokens enable rigorous experimentation: they establish direct causal links between internal con-
cepts and predictions, diagnose failure modes by revealing unstable or ambiguous activations, and
expose adversarial vulnerabilities that can be precisely targeted for intervention. By anchoring in-
terpretability to faithful, localized representations, Concept-SAE elevates sparse autoencoders into
reliable instruments for probing the inner causal mechanisms of neural networks. Looking forward,
this framework represents more than a technical advance—it marks a foundational step toward a
scientific paradigm in which neural networks are not merely observed but are actively probed, diag-
nosed, and debugged as systems governed by causal principles.
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A USAGE OF LARGE LANGUAGE MODEL

We used Large language model (LLM) to aid and polish writing. We did not use LLM for other
purposes.

B DETAILED TRAINING SETUP AND HYPERPARAMETERS

We adopt a three–stage training strategy for our proposed framework: (1) training the Concept Tok-
enizer, (2) training the Concept Aggregator, and (3) training the Free Tokenizer and Free Aggregator.
All experiments are conducted on an Ubuntu 22.04 server equipped with an AMD EPYC 7K62 CPU
and an NVIDIA A100-64G GPU. Below we describe each training stage in detail.

• Concept Tokenizer Training. The Concept Tokenizer is trained with dual supervision
from concept existence scores and spatial masks. We use Adam as optimizer with an initial
learning rate of 1× 10−3, scheduled by step learning rate scheduler with γ = 0.1 and step
size 20, and train for 30 epochs. A batch size of 64 is applied. The loss function is shown
below, combining existence score error, mask error, and an L1 sparsity penalty, weighted
by coefficients (λ1, λ2, λ3) = (1, 1, 0.1).

Ltokenizer = λ1||S − s||22 + λ2||M−m||22 + λ3||Wmerge||1 (7)

• Concept Aggregator Training. After freezing the tokenizer, we optimize the Concept
Aggregator to reconstruct original features from predicted concept scores and masks. This
stage uses Adam as optimizer with learning rate 1× 10−3, scheduled by Step learning rate
scheduler with γ = 0.1 and step size 30, with batch size 64. It is trained for 50 epochs. The
loss function is shown below. Our proposed loss combines feature reconstruction error,
KL divergence aligning Wmerge and Waggr, and an L1 penalty on aggregator weights,
weighted by coefficients (λ1, λ2, λ3) = (1, 0.01, 1).

Laggr = λ1||ĥconcept − h||22 + λ2KL(sm(Wmerge)||sm(W⊤
aggr)) + λ3||Waggr||1 (8)

• Free Tokenizer and Free Aggregator Training. Finally, the Free Tokenizer and Free
Aggregator are trained jointly to capture residual features not represented by predefined
concepts. We set the number of free tokens to be 36 for both the CelebA and the ImageNet
dataset. We use Adam optimizer with a learning rate of 1 × 10−3. It is trained for 30
epochs with batch size 64. The loss function is shown below. The loss objective combines
reconstruction error with an L1 sparsity penalty, weighted by (λ1, λ2) = (1, 1).

Lfree = λ1||ĥfree + ĥconcept − h||22 + λ2||Tfree(h)||1 (9)

For clarity, Table 4 summarizes the hyperparameters across all training stages.

Table 4: Summary of hyperparameters for all training stages.

Stage Optimizer Learning Rate Epochs Batch Size Loss Weights

Concept Tokenizer Adam 1× 10−3 30 64 (1, 1, 0.1)
Concept Aggregator Adam 1× 10−3 50 64 (1, 0.01, 1)

Free Modules Adam 1× 10−3 30 64 (1, 1)
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C CONCEPT LABEL GENERATION DETAILS

In concept label generation, we query a large language model (LLM, GPT-4o (Achiam et al., 2023)
in this paper) to generate a list of concepts and respective labels for each dataset. Specifically, we
generate a list of attributes shared among multiple image categories in the dataset as concepts, and
generate a list of tags for each attribute as the label set for the concept. We formulate detailed
instructions to the LLM such that:

• The generated attributes are applicable to multiple categories in the dataset (though not
necessarily related to all categories).

• The generated attributes are visually descriptive and can be clearly segmented within the
image.

• The generated tags are descriptive, generalized, and not category-specific.

For the ImageNet dataset, we divide possible concepts into “animals”, “plants”, “man-made ob-
jects”, and “background”, and generate a concept set for each group. For the CelebA dataset with
relatively simple settings, we generate the concept set directly for “human faces”.

The instruction for ImageNet concept label generation is as follows:

You are given the names of all image categories in the ImageNet dataset.

You need to generate a list of attributes for these categories.

- The generated attributes should be applicable to multiple categories. For example, “fur” is an appropriate
attribute since it applies to multiple animal categories.

- The generated attributes should focus on physical regions and properties that are visually descriptive and
can be clearly segmented within the image by image segmentation models like SAM (the Segment Anything
Model). For example, attributes such as “color” and “texture” are too broad and subjective, making them
less suitable for precise segmentation tasks. Instead, you should focus on specific, tangible features that
can be distinctly identified and segmented in images.

You also need to generate a list of tags for each attribute.

- The generated tags should be descriptive and generalized. They should describe features like shapes,
colors, textures, or structures that SAM can identify as distinct regions in the images, rather than class-
specific terms.

Generate the attributes and tags for the “animal” categories / “plant” categories / “object” categories /
“background” in the ImageNet dataset.

- The generated attributes and tags should be in the following JSON format:

{

“attribute 1”: [“tag11”, “tag12”, ...],

“attribute 2”: [“tag21”, “tag22”, ...],
...

}

- You should output the results in JSON format only, without any additional explanations or text.

- The total number of tags for all attributes should be around 50.

The list of generated concept labels for ImageNet and CelebA are respectively shown in Table 5
and 6. The generated concepts provide highly comprehensive and fine-grained summarizations of
core image characteristics in the datasets.
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Table 5: The generated concept labels for the ImageNet dataset.

Concepts Concept Labels

Animal skin or fur soft fur, coarse fur, short fur, long fur, fluffy fur, textured fur, striped fur,
spotted fur, dotted fur, camouflage fur, zebra stripes fur, mottled fur,
blotched fur, checkered fur, swirled fur, black animal, white animal,
brown animal, gray animal, green animal, yellow animal, red animal,
blue animal, orange animal, smooth skin, rough skin, slimy skin, scaly
skin, wrinkled skin

Animal eyes large eyes, small eyes, round eyes, oval eyes, wide-set eyes, bright eyes,
piercing eyes, beady eyes, blue eyes, green eyes, brown eyes, red eyes,
black eyes, white eyes

Animal mouth sharp teeth, flat mouth, wide mouth, small mouth, open mouth, pointed
mouth, sharp teeth, pointed teeth, flat teeth, large teeth, small teeth,
sharp beak, curved beak, pointed beak, wide beak, red mouth, pink
mouth, black mouth, white mouth, brown mouth

Animal nose pointed nose, long nose, round nose, flat nose, snout, nostrils
Animal ears pointed ears, large ears, small ears, floppy ears, curved ears, round ears
Animal limbs muscular legs, long legs, short legs, slender legs, four legs, bipedal,

quadrupedal, jointed legs, thick limbs, slender limbs, feathered wings,
bat wings, large wings, small wings, flapping wings, folded wings,
open wings

Animal tail long tail, short tail, fluffy tail, curved tail, pointed tail, furry tail, lashing
tail, thick tail, thin tail

Animal claws and feet padded paws, webbed feet, hooved feet, clawed feet, sharp claws, large
paws, small paws, sharp claws, curved claws, long claws, short claws

Plant leaves green leaves, broad leaves, narrow leaves, small leaves, large leaves,
serrated edges, smooth edges, pointed leaves, oval leaves, heart-shaped
leaves, round leaves, lance-shaped leaves, needle-like leaves, palm-
shaped leaves

Plant flowers bright flowers, petaled flowers, yellow flowers, red flowers, white flow-
ers, purple flowers, pink flowers, blue flowers, large flowers, small
flowers, orange flowers, flower buds, open flowers, closed flowers

Plant branches branching, straight branches, curved branches, dense branches, sparse
branches, long branches, short branches

Plant stems and trunks woody stem, green stem, branched trunk, straight trunk, thick trunk,
thin trunk

Man-made objects round object, oval object, rectangular object, square object, elongated
object, curved object, triangular object, angular object, smooth surface,
rough texture, polished surface, matte finish, glossy surface, shiny tex-
ture, coarse surface, grainy texture, slippery surface, bumpy texture,
wood material, metal material, plastic material, stone material, fab-
ric material, rubber material, glass material, ceramic material, paper
material, leather material, striped object pattern, dotted object pattern,
checkered object pattern, plaid object pattern, swirled object pattern,
zigzag object pattern, camouflage object pattern, polka-dotted object
pattern, geometric object pattern, floral object pattern, red object, blue
object, green object, yellow object, orange object, purple object, pink
object, black object, white object, gray object, brown object

Background blurred background, sky background, mountain background, forest
background, river background, lake background, sea background, ur-
ban background, beach background, desert background, snow back-
ground, greenery background, indoor background
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Table 6: The generated concept labels for the CelebA dataset.

Concepts Concept Labels

Hair blond hair, brown hair, black hair, red hair, gray hair, white hair, straight hair,
wavy hair, curly hair, coily hair, receding hairline

Beard beard, mustache, goatee
Eyes blue eyes, brown eyes, green eyes, hazel eyes, gray eyes, eyelashes
Eyebrows arched eyebrows, straight eyebrows, thick eyebrows, thin eyebrows
Nose roman nose, button nose, aquiline nose, upturned nose
Mouth thin lips, full lips, cupid’s bow, dimples
Freckles freckles
Scars scars
Adam’s apple adam’s apple
Forehead forehead
Wrinkles wrinkles
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D CONCEPT SEGMENTATION GENERATION DETAILS

We leverage ClipSeg (Lüddecke & Ecker, 2022) as the image segmentation model. We use image
and concept label as input, then it will output the segmentation of the concept label on the image.
As shown in Fig. 8 and Fig. 9, we provided some segmentation results provided by ClipSeg.

Adam's apple

Beard

Eyebrows

Eyes

Forehead

Freckles

Hair

Mouth

Nose

Scars

Wrinkles

Figure 8: Examples of segmentation results provided by ClipSeg from the CelebA dataset.
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Animal fur

Animal mouth

Animal nose

Animal ears

Animal limbs

Animal tails

Animal feet

Plant leaves

Plant flowers

Plant branches

Plant stems

Man-made 
objects

Background

Animal eyes

Figure 9: Examples of segmentation results provided by ClipSeg from the ImageNet dataset.
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E INSPECTING THE INFLUENCE OF IRRELEVANT CONCEPTS

We evaluate our model using a set of irrelevant concepts and analyze the results on both datasets.
Here, irrelevant concepts refer to those whose concept scores s remain nearly zero across most
images in the dataset. To assess their effect, we compute the entropy of the concept scores produced
by our model at each layer. As shown in Table. 7, the entropy values for irrelevant concepts are
consistently close to zero, indicating that these concepts provide no meaningful information about
the model’s internal computation. This finding suggests that incorporating irrelevant concepts leads
to non-informative, non-analyzable results and should therefore be avoided in practice.

Table 7: Information entropy of the concept score for different layers of the vision models calculated
with relevant and irrelevant concepts.

Dataset Model layer Relevant concept score entropy Irrelevant concept score entropy

CelebA

ViT layer 0 0.249 9.95 × 10−5

ViT layer 2 0.234 3.75 × 10−5

ViT layer 4 0.223 9.16 × 10−5

ViT layer 6 0.216 2.67 × 10−4

ViT layer 8 0.197 9.15 × 10−5

ViT layer 10 0.197 5.87 × 10−6

ViT layer 11 0.208 4.35 × 10−6

ResNet-18 layer 5 0.289 9.35 × 10−5

ResNet-18 layer 7 0.284 1.61 × 10−4

ResNet-18 layer 9 0.279 2.11 × 10−4

ResNet-18 layer 12 0.277 1.19 × 10−4

ResNet-18 layer 14 0.274 6.53 × 10−4

ResNet-18 layer 17 0.253 2.63 × 10−5

Imagenet

ViT layer 0 0.225 1.37 × 10−4

ViT layer 2 0.210 5.93 × 10−5

ViT layer 4 0.198 9.63 × 10−5

ViT layer 6 0.180 1.56 × 10−5

ViT layer 8 0.163 3.23 × 10−5

ViT layer 10 0.158 9.31 × 10−5

ViT layer 11 0.166 8.24 × 10−4

ResNet-18 layer 5 0.224 1.72 × 10−4

ResNet-18 layer 7 0.215 6.19 × 10−5

ResNet-18 layer 9 0.185 3.71 × 10−5

ResNet-18 layer 12 0.190 6.54 × 10−5

ResNet-18 layer 14 0.188 3.89 × 10−4

ResNet-18 layer 17 0.169 3.45 × 10−4
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F CONCEPT OF FREE TOKENS

We mannually find some free tokens trained in our framework that have visible semantic concepts.
For each free token, we select the 16 most activated images from the dataset for visualization. The
visulization is shown in Fig. 10 and Fig. 11.

Token 29: Sunglasses

Token 20: Face turing right

Token 22: Face turing left

Token 10: Open mouth

Figure 10: More examples of free token visualizations, each with 16 most activated images from the
CelebA dataset.
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Token 3: Top-left to bottom-right diagonal

Token 5: Dark background

Token 17: Black border

Token 22: Regular pattern

Token 26: Alphabets

Figure 11: More examples of free token visualizations, each with 16 most activated images from the
ImageNet dataset.
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G EXTENDED RESULTS OF FEATURE RECONSTRUCTION

As shown in Fig. 12 and Fig. 13, we provide some more reconstruction examples using our proposed
model.

Original 
Image

Reconstruction
w/ Concept

Reconstruction
w/ Concept + Free

Resnet 
Feature

Original 
Image

Reconstruction
w/ Concept

Reconstruction
w/ Concept + Free

Resnet 
Feature

Figure 12: Reconstruction examples for the CelebA dataset.
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Original 
Image

Reconstruction
w/ Concept

Reconstruction
w/ Concept + Free

Resnet 
Feature

Original 
Image

Reconstruction
w/ Concept

Reconstruction
w/ Concept + Free

Resnet 
Feature

Figure 13: Reconstruction examples for the ImageNet dataset.
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