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ABSTRACT

We present chain-of-knowledge (CoK) , a novel framework that augments large
language models (LLMs) by dynamically incorporating grounding information
from heterogeneous sources. It results in more factual rationales and reduced
hallucination in generation. Specifically, CoK consists of three stages: reason-
ing preparation, dynamic knowledge adapting, and answer consolidation. Given
a knowledge-intensive question, CoK first prepares several preliminary rationales
and answers while identifying the relevant knowledge domains. If there is no ma-
jority consensus among the answers from samples, CoK corrects the rationales
step by step by adapting knowledge from the identified domains. These corrected
rationales can plausibly serve as a better foundation for the final answer consolida-
tion. Unlike prior studies that primarily use unstructured data, CoK also leverages
structured knowledge sources such as Wikidata and tables that provide more re-
liable factual information. To access both unstructured and structured knowledge
sources in the dynamic knowledge adapting stage, we propose an adaptive query
generator that allows the generation of queries for various types of query lan-
guages, including SPARQL, SQL, and natural sentences. Moreover, to minimize
error propagation between rationales, CoK corrects the rationales progressively
using preceding corrected rationales to generate and correct subsequent rationales.
Extensive experiments show that CoK consistently improves the performance of
LLMs on knowledge-intensive tasks across different domains. Our code is avail-
able at https://github.com/DAMO-NLP-SG/chain-of-knowledge.

1 INTRODUCTION

In recent years, large language models (LLMs) such as ChatGPT (OpenAI, 2023) have demonstrated
impressive language generation capabilities (Cheng et al., 2023; Ding et al., 2023; Chen et al., 2024).
However, one major challenge of LLMs lies in hallucination, which is their tendency to confidently
generate plausible but factually incorrect texts (Ji et al., 2023; Zhao et al., 2023b). As shown in
Figure 1, given a question, “What year was the Argentine actor who directed El Tio Disparate born?”
which requires factual knowledge to answer, the most advanced LLMs often provide an incorrect
answer. While LLMs have the remarkable capability to recall information from their training data,
effectively updating or controlling the factual knowledge within these models remains challenging
(Luo et al., 2023).

∗ Equal contribution.
† Xingxuan Li, Yew Ken Chia, and Bosheng Ding are under the Joint Ph.D. Program between DAMO

Academy and their corresponding universities.
‡ Ruochen Zhao is under the AISG Ph.D. Fellowship Programme.

1

https://github.com/DAMO-NLP-SG/chain-of-knowledge


Published as a conference paper at ICLR 2024

What year was the Argentine actor who directed El Tio 
Disparate born?

Identified domains: factual (Wikidata, Wikipedia)

Rationale 1: First, the Argentine actor who directed El Tio Disparate is Fernando Birri.
Retrieve (Wikidata) 1: SELECT ?answer WHERE { wd:El Tio Disparate wdt:director 
?answer . } -> Palito Ortega
Retrieve (Wikipedia) 1: Who directed El Tio Disparate? -> 
El Tio Disparate is directed by Palito Ortega.
Corrected rationale 1: the Argentine actor who directed El Tio Disparate is Palito 
Ortega.

Rationale 2: Second, Palito Ortega was born in 1941.
Retrieve (Wikidata) 2: SELECT ?answer WHERE { wd:Palito Ortega wdt:date of birth 
?answer . } -> 8 March 1941
Retrieve (Wikipedia) 2: When was Palito Ortega born? -> Palito Ortega was born in 8 
Match 1941.
Corrected rationale 2: Palito Ortega was born in 8 Match 1941.

Corrected rationales: First, the Argentine actor who directed El Tio Disparate is Palito 
Ortega. Second, Palito Ortega was born in 8 Match 1941.

The answer is 1941.

Question
(c) Chain-of-Knowledge with Dynamic Knowledge Adapting

(a) Chain of Thought & Self-Consistency

Rationales: First, the Argentine actor who directed El Tio 
Disparate is Fernando Birri. 
Second, Fernando Birri was born in 1925.
The answer is 1925.

Verifying questions: Who directed El Tio Disparate? 
When was Fernando Birri born?
Retrieved & Edit once: Palito Ortega directed El Tio 
Disparate. Fernando Birri was born in 1925.
The answer is 1925.

(b) Retrieval-Based Methods (Verify-and-Edit)
Less 
than 

majority 
agree

Error 
propagation

Figure 1: Comparison of different methods: (a) chain-of-thought with self-consistency (Wei et al.,
2022), (b) verify-and-edit (Zhao et al., 2023c), and (c) chain-of-knowledge or CoK (this work).
CoK incorporates heterogeneous sources for knowledge retrieval and performs dynamic knowledge
adapting. For clarity and succinct presentation, only pivotal steps are shown in the figure. Refer to
Appendix A for the prompt design of each method.

A promising direction to address hallucination in generation is to augment the LLMs with external
knowledge (Mialon et al., 2023). These methods involve incorporating LLMs with a retrieval sys-
tem, which seeks to utilize external factual knowledge to guide the generation process. Instead of
relying solely on the internal training knowledge of LLMs, these methods can fetch relevant infor-
mation from external knowledge sources, such as web documents (Shi et al., 2023) and knowledge
bases (Xie et al., 2022). Furthermore, to tackle more complex questions that require intricate rea-
soning, Zhao et al. (2023c) recently proposed a Verify-and-Edit (VE) framework, which improves
chain-of-thought (CoT) reasoning (Wei et al., 2022) of LLMs by incorporating a retrieval system.

However, these methods have three inherent limitations. First, they use a fixed knowledge source for
all questions, which may fail to retrieve specialized and domain-specific knowledge. For instance, it
may not be effective to query Wikipedia for a medical question. Second, to generate retrieval queries,
existing methods primarily rely on LLMs, which are predominantly pre-trained on natural language
sentences, and thus may not be effective in generating structured queries like SPARQL, which is
used to query knowledge graphs. Third, existing retrieval-augmented methods lack progressive
correction capability, leading to potential error propagation. For example, in Figure 1, we define
each rationale to be a thought step (sentence) within the CoT. Verify-and-Edit retrieves knowledge
for each rationale in parallel and independently. Since the second rationale depends on the first,
errors can carry over from the verification step to the edit step, making the retrieved knowledge
misaligned with each other and the actual question, resulting in an incorrect final answer. Similarly,
ReAct (Yao et al., 2023) also leaves errors from prior (reason or act) steps in the prompt, causing
potential noise and bias for LLM inference.

To address these limitations, we propose chain-of-knowledge (CoK), a framework that augments
LLMs dynamically using heterogeneous knowledge sources. An example of how CoK functions is
shown in Figure 1, for the question, “What year was the Argentine actor who directed El Tio Dis-
parate born?”, CoT with self-consistency (Wei et al., 2022) is first utilized to generate preliminary
rationales, pinpoint the relevant knowledge domains, and select answers that lack a majority consen-
sus for further processing. In the subsequent dynamic knowledge adapting stage, an adaptive query
generator (AQG) is employed to generate queries for the knowledge sources within the selected do-
mains. To effectively retrieve knowledge with heterogeneous formats, AQG can adaptively generate
queries of the corresponding types, such as SPARQL and natural sentence (see Figure 2). Subse-
quently, by executing the generated queries, supporting knowledge is obtained and utilized to edit
the first rationale (i.e., rectify the director from Fernando Birri to Palito Ortega); it ensures mistakes
do not propagate into the subsequent generation of the second rationale. The same process is then
applied to edit the second rationale. Finally, with the corrected chain of rationales, CoK derives the
final answer.
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Figure 2: Our proposed chain-of-knowledge (CoK) framework, consisting of (I) Reasoning prepa-
ration, (II) Dynamic knowledge adapting, and (III) Answer consolidation. n.s.: natural sentence.

Given that different knowledge sources require distinct query languages, AQG holds a crucial role
in generating queries. AQG is versatile and can either be a fine-tuned model like Llama-2 (Touvron
et al., 2023) with LoRA (Hu et al., 2021) or an off-the-shelf LLM like ChatGPT. By leveraging both
unstructured and structured knowledge sources, CoK allows for better factual accuracy, improved
reliability, and easier information updates.

To summarize, our key contributions are the following: (1) We introduce chain-of-knowledge (CoK),
a novel framework to enhance the factual correctness of LLMs with heterogeneous knowledge
sources; (2) We propose an adaptive query generator (AQG), specially designed to generate queries
tailored to each knowledge source. AQG is versatile and can seamlessly transition between fine-
tuned models and black-box LLMs; (3) CoK corrects the rationales progressively, ensuring that
inaccuracies from preceding rationales do not propagate into the subsequent steps; (4) We perform
extensive experiments on knowledge-intensive tasks spanning a range of domains, including factual,
medical, physical, and biological. CoK outperforms the CoT baseline by 4.3% on average.

2 THE CHAIN-OF-KNOWLEDGE FRAMEWORK

As shown in Figure 2, the CoK framework consists of three stages: (1) reasoning preparation, (2)
dynamic knowledge adapting, and (3) answer consolidation. In the first stage, given a knowledge-
intensive question, CoK generates preliminary rationales, i.e., reasoning units/sentences in the rea-
soning chain of CoT, and answers while identifying the relevant knowledge domains. Questions that
do not yield a majority consensus in their answers enter the dynamic knowledge adapting stage, in
which an adaptive query generator (AQG) is employed to generate queries to retrieve knowledge
from the knowledge sources of the identified domain. The rationales are progressively revised and
generated based on the retrieved knowledge. The final answer is then derived based on the corrected
rationales. Refer to Appendix A.1 for the prompts used for each step of our framework.

2.1 REASONING PREPARATION STAGE

In real-world scenarios, when facing a complex knowledge-intensive question, it is necessary to
generate intermediate rationales before producing the final answer (Wei et al., 2022). Moreover,
before delving into external knowledge sources to address the question, it is crucial to identify the
relevant knowledge domains for effective retrieval. Thus, the reasoning preparation stage consists
of two essential components, namely, reasoning generation and knowledge domain selection.
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Table 1: An example of generated query, execution results, and formatted knowledge for rationales
of SPARQL. Knowl. stands for knowledge.

SPARQL
Rationale Souleyman Sané’s son, Leroy Sané, is a professional football player.
Generated query SELECT ?answer WHERE { wd:/Souleymane Sané/ wdt:/child/ ?answer . }
Execution results Leroy Sané
Formatted knowl. The fact entity of the sentence “Souleyman Sané’s son, Leroy Sané, is a professional football player” is Leroy Sané.

Reasoning Generation Previous studies have demonstrated the importance of intermediate ratio-
nales for LLMs to answer complex reasoning questions (Wei et al., 2022). In this work, we utilize the
few-shot chain-of-thought (CoT) prompting to generate rationales (Wei et al., 2022). Moreover, we
employ the self-consistency method (Wang et al., 2023) to determine whether external knowledge is
necessary to answer the question. In sampling various reasoning paths and answers, self-consistency
is found to be highly correlated with accuracy. Thus, predictions with high consistency are preserved
without modification. Only questions with “uncertain” answers, i.e., their consistency falls below
a specified threshold, undergo further stages of processing. Such filtering technique is found to be
useful in identifying incorrect predictions by previous works (Yao et al., 2023; Zhao et al., 2023c).

Knowledge Domain Selection To ensure the retrieval of the most pertinent knowledge to the
question, we introduce the knowledge domain selection step. As shown in Figure 2, CoK inte-
grates four distinct knowledge domains: factual, medical, physics, and biology. Moreover, multiple
domains can be identified for answering a single question. To illustrate, when presented with the
question “Who proposed the theory which explains the cause of tides?”, both physics (gravitational
force of the Moon causes tides) and factual (Isaac Newton first proposed the universal gravitation
and explained tidal forces exerted by celestial bodies) domain knowledge are required to answer the
question. The knowledge domain selection is completed through in-context learning.

2.2 DYNAMIC KNOWLEDGE ADAPTING STAGE

Once the preliminary rationales and the identified knowledge domains are obtained, the next stage
is dynamic knowledge adapting, i.e., rectifying rationales based on the retrieved knowledge. To
minimize error propagation, CoK conducts knowledge retrieval and correction of the rationales se-
quentially. The preceding corrected rationales are used to generate the next rationale, which then
undergoes the same knowledge retrieval and correction step.

Knowledge Retrieval Upon identifying relevant domains to the question in the reasoning prepa-
ration stage, all knowledge sources within these domains are utilized for knowledge retrieval. The
knowledge retrieval consists of two steps: query generation and execution.

A) Query Generation Depending on the nature of the knowledge sources, each source is linked
to the most appropriate query language, which could either be structured, such as SPARQL or SQL,
or unstructured, such as natural language sentences. For instance, Wikidata is linked to the SPARQL
query as it consists of knowledge graphs. The flashcard source is linked to the natural sentence query
as it takes the format of natural sentence pairs. An example of generated queries for SPARQL is
shown in Table 1. 1 For instance, given a sentence “Souleyman Sané’s son, Leroy Sané, is a pro-
fessional football player”, a SPARQL query, “SELECT ?answer WHERE {wd:/Souleymane
Sané/ wdt:/child/ ?answer.}”, is generated to retrieve relevant knowledge from Wiki-
data. To facilitate the generation of both structured and unstructured queries, an adaptive query gen-
erator (AQG) is used. AQG is a versatile plug-in component, which can be either a tailor-finetuned
model or an off-the-shelf LLM. Details of AQG will be elaborated in Section 3.

B) Query Execution Once the queries are generated, the subsequent step is their execution to
acquire and convert the knowledge into formatted knowledge (see Table 1). A specialized method
is devised to execute queries and format the results for each query language. For SPARQL queries,
entity linking is initially performed to substitute entity spans with IDs, followed by acquiring results
by invoking the API of wikidata.org. Regarding SQL queries, they are executed directly to

1Examples of generated queries for each querying language are in Appendix D.5.
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fetch the results, which could be a singular value or a subset of the original table. The outcomes
from both SPARQL and SQL are then formatted into markdown text. For natural sentence queries,
knowledge is retrieved from domain-specific knowledge sources either through sentence similarity
matching or by utilizing a search engine. 2

Rationale Correction Existing methods such as ReAct (Yao et al., 2023) and Verify-and-Edit
(Zhao et al., 2023c) keep all retrieved information in the context throughout the process, no matter
if it contains reasoning mistakes. This often leads to error propagation and misguides further gener-
ations. To overcome this weakness, CoK involves a progressive rationale correction step. Given the
current rationale and the formatted knowledge from various knowledge sources, a corrected ratio-
nale is generated to replace the current one. This step helps in rectifying any factual incorrectness
and preventing error propagation.

Next Rationale Generation Using the question and preceding corrected rationales, the next ratio-
nale is generated, and the process is reiterated for the new rationale until a final answer is produced.

2.3 ANSWER CONSOLIDATION STAGE

Ultimately, the LLM is prompted with the question and corrected rationales to generate a consol-
idated answer, which is expected leading to a more accurate answer. This hypothesis is further
examined through a series of experiments, as detailed in Section 4.

3 THE ADAPTIVE QUERY GENERATOR

CoK incorporates heterogeneous knowledge sources from four different domains, including factual,
medical, physics, and biology. Each of these knowledge sources necessitates the use of a unique
query language for retrieval, which could be either structured or unstructured. Therefore, we design
the adaptive query generator (AQG) to facilitate query generation for different knowledge sources.

Unstructured Query Languages Natural language sentences are the most natural way that hu-
man beings search for information. AQG utilizes two distinct approaches for generating unstruc-
tured queries based on the knowledge sources. A) For general factual knowledge sources, such as
Wikipedia, ChatGPT is utilized. B) For domain-specific knowledge sources (e.g., Flashcard, Sci-
enceQA Physics, and ScienceQA Biology), using ChatGPT may lead to hallucination as it may not
have comprehensive knowledge of the specific domains. Therefore, we instruction-tune LLaMA-
2-7B using LoRA with pairs of input texts and output queries. Furthermore, the domain of the
training data is on par with the respective knowledge source. Consequently, the AQG is equipped
with the requisite knowledge for generating queries with greater precision.

Structured Query Languages Querying unstructured knowledge sources often leads to the re-
trieval of irrelevant and redundant information. On the other hand, structured knowledge sources
(e.g., Wikidata and tables) provide direct factual results. To generate structured queries, AQG uti-
lizes two approaches based on the query languages. A) When generating commonly used query
languages like SQL, we employ ChatGPT. It is empirically inferred that ChatGPT included SQL
during its pre-training, providing it with advantages in generating SQL queries (OpenAI, 2023).
All pertinent details are incorporated into the prompt to enhance the precision of query generation.
For instance, when generating SQL queries, we include both the table schema and data snippets.
B) For less common languages like SPARQL, we instruction-tune LLaMA-2-7B using LoRA with
sentence-SPARQL pairs. The training data is collected to match the logical granularity of the ratio-
nales, thereby facilitating more accurate query generation. For example in SPARQL, both training
data and rationales contain single entity and relation within each sentence. Inspired by chain-of-
hindsight (Liu et al., 2023), besides giving the correct queries, we also append negative examples
such as “incorrect queries:..” during instruction-tuning.

Detailed query language, model, and training datasets of each knowledge source are in Table 8 of
Appendix. The constructions of instruction-tuning datasets and training details are in Appendix D.
We also evaluate the performances of AQG in Appendix F.2.

2Details of the execution process for each knowledge source is in Appendix C.
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Table 2: Main experimental results across various domains. Acc.: accuracy. E.M.: exact match.

Factual Medical Physics Biology

Method FEVER HotpotQA FeTaQA MedMCQA MMLU Physics MMLU Biology
Acc. E.M. BLEU Acc. Acc. Acc.

Standard (3-shot) 51.8% 22.7% 20.7 61.6% 44.3% 80.6%
CoT (3-shot) 57.8% 29.9% 17.3 59.6% 41.9% 81.5%

CoT-SC (3-shot) 59.9% 30.8% - 60.3% 42.7% 81.1%
VE (3-shot) 60.6% 31.8% 21.6 67.8% 39.9% 81.9%

CoK (3-shot) 63.4% 34.1% 25.0 70.5% 45.5% 83.0%
Standard (6-shot) 53.4% 24.0% 23.1 64.4% 44.7% 81.1%

CoT (6-shot) 55.6% 34.4% 19.4 66.4% 43.5% 81.7%
CoT-SC (6-shot) 56.2% 33.4% - 65.8% 42.7% 82.2%

VE (6-shot) 57.2% 34.4% 23.1 67.1% 43.1% 78.9%
CoK (6-shot) 58.5% 35.4% 26.0 73.3% 47.0% 84.4%

4 EXPERIMENTS

4.1 SETUP

Models In our experiments, we utilize ChatGPT (gpt-3.5-turbo-0613) as the black-box
LLM for the reasoning preparation and answer consolidation stages. To ensure reproducibility, we
fixed the decoding temperature to 0 for all generations. Except for the self-consistency step, we set
the temperature to 0.7, allowing for the sampling of five rationales and answers, as recommended
by Wang et al. (2023). When less than half of the answers agree 3, we edit the results with CoK.

Knowledge Sources We choose authoritative knowledge sources for each domain. Specifically,
for the factual domain, we use Wikidata, Wikipedia, and Wikitables; for the medical domain, we
use medical Flashcard and UpToDate; for physics, we refer to ScienceQA Physics and PhysicsClass-
room; and for biology, we utilize ScienceQA Biology and CK-12. Details are in Appendix C, D.

Tasks We collect a set of knowledge-intensive tasks from various domains, including FEVER
(Thorne et al., 2018), HotpotQA (Yang et al., 2018), and FeTaQA (Nan et al., 2022) in the fac-
tual domain; MedMCQA (Pal et al., 2022) in the medical domain; Physics and Biology tests from
MMLU (Hendrycks et al., 2021) in the physics and biology domains. Details are in Appendix E.

Baselines We compare CoK with both widely used baselines and state-of-the-art methods to pro-
vide a more comprehensive overview: A) Standard prompting (Standard) directly predicts the an-
swer (Ouyang et al., 2022). B) Chain-of-thought (CoT) (Wei et al., 2022) generates several inter-
mediate rationales before the final answer to improve the complex reasoning capability of LLMs.
C) CoT with self-consistency (CoT-SC) (Wang et al., 2023) replaces the naive greedy decoding in
CoT with sampling a diverse set of rationales and outputs the most consistent 4 answers. D) Verify-
and-Edit (VE) (Zhao et al., 2023c) is a state-of-the-art, CoT-based framework that seeks to improve
the prediction factuality by post-editing rationales with external knowledge. E) ReAct (Yao et al.,
2023) combines agent thoughts and open-domain knowledge search to reach a final answer. 5 Fol-
lowing the baselines, we evaluate using the few-shot setting and ensure that all methods use the same
number of demonstration samples. 6

4.2 RESULTS

CoK Consistently Outperforms CoT As shown in Table 2, CoK consistently outperforms CoT
and CoT-SC on each dataset. On factual-domain tasks, the average improvement on 3-shot and

3On FEVER, as the output space is limited to 3 answer choices, we always have high consistency. Thus, we
use less than 4 out of 5 of the answers agree.

4Note that self-consistency is not applicable for FeTaQA as it is an open-ended generation task, and we can
have near-equivalent generations that are nevertheless not exact matches. More details are in Appendix B.

5We report the results for ReAct separately in Table 3 as it uses the PaLM model (Chowdhery et al., 2022).
6Detailed prompts for baselines are in Appendix A. Our work focuses on few-shot settings, thus not includ-

ing supervised methods as baselines.
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Table 3: Results of retrieval-based methods on
FEVER and HotpotQA. ReAct results are adapted
from Yao et al. (2023).

FEVER (3-shot) HotpotQA (6-shot)
Method Acc. ∆ Acc. E.M. ∆E.M.

CoT-SC→ReAct 64.6% +4.2% 34.2% +0.8%
ReAct→CoT-SC 62.0% +1.6% 35.1% +1.7%

CoT-SC 59.9% - 33.4% -
Verify-and-Edit 60.6% +0.7% 34.4% +1.0%

CoK (ours) 63.4% +3.5% 35.4% +2.0%

Table 4: Results of using single or multiple
knowledge domains and sources on MedM-
CQA (3-shot).

Knowl.
Method Domains Knowl. Sources Acc.

CoT - - 59.6%

CoK Medical Flashcard 67.1%

CoK Medical Flashcard, UpToDate 69.2%

CoK Medical,
Biology

Flashcard, UpToDate,
ScienceQA, CK-12 70.5%

6-shot is prominent on HotpotQA and FEVER, registering at 2.6% and 4.3% respectively. This
suggests that CoK is not only effective on multi-step reasoning datasets (HotpotQA), but benefits
less single-hop datasets (FEVER) as well with its accurate retrieval abilities. On domain-specific
datasets, such as MedMCQA, and MMLU Physics and Biology, CoK achieves an average accuracy
improvement of 4.9% over the CoT baseline on 3-shot and 6-shot settings. We notice that CoT
has worse performances than standard prompting on FetaQA, MedMCQA, and MMLU Physics.
This illustrates that, while CoT is effective for addressing complex reasoning tasks, it struggles
with hallucination in its rationales when handling knowledge-intensive tasks, leading to incorrect
answers. This outcome aligns with the findings of Yao et al. (2023) and Zhao et al. (2023c) as well.
With dynamic knowledge adapting, CoK can effectively reduce hallucination in the rationales and
we include analysis on the factual accuracy in Section 5.3.

CoK vs. Other Retrieval-based Methods As shown in Table 2, CoK consistently outperforms
state-of-the-art retrieval-based method Verify-and-Edit (VE) (Zhao et al., 2023c). For FEVER and
HotpotQA, we additionally compare with the results reported in ReAct (Yao et al., 2023) in Table 3.
Since the results in ReAct are reported on the PaLM model (Chowdhery et al., 2022), to add a more
justified perspective, we report the performance improvement gained on top of the CoT-SC baseline.
Compared with ReAct, CoK demonstrates a more substantial improvement over CoT-SC, especially
on HotpotQA. More specifically, for HotpotQA, CoK exhibits improvements of 2.0% compared to
0.8% by ReAct. On FEVER, CoK shows a 3.5% improvement, which is on par with the 4.2%
improvement gained by ReAct. This is attributed to the fact that FEVER is less multi-hop compared
to HotpotQA, thus benefitting less from an improved CoT. VE conducts knowledge retrieval and
editing for all rationales in parallel, and ReAct leaves past errors in the prompt, potentially leading
to error propagation. CoK alleviates this issue with progressive knowledge adapting. It is also worth
noting that CoK costs much less than ReAct, shown with a detailed cost analysis in Appendix I
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Figure 3: A heatmap on distributions
of identified domains of each dataset.

Effect of Number of Demonstrations As shown in Table
2, CoK consistently exhibits enhanced performance across
multiple datasets under both 3-shot and 6-shot settings. Sev-
eral studies show that increasing the number of demonstra-
tions (shots) in the prompt can potentially lead to better per-
formances on reasoning tasks (Wei et al., 2022). However,
this is not universally true for knowledge-intensive tasks. For
example, as shown in Table 2, the performance of CoT on
MMLU Biology with six shots (81.7%) is nearly identical to
that with three shots (81.5%). This occurs because the bottle-
neck for LLMs in answering knowledge-intensive questions
accurately is their insufficient knowledge, not their reasoning
capability. The performance on FEVER for all reasoning-
based methods decrease with six shots. This is likely due
to the fact that FEVER questions are single-hop and require
less reasoning. Thus, increased guidance on reasoning could
lead to potential noise. This finding is consistent with ReAct (Yao et al., 2023), where the authors
state that increasing beyond 3-shot for FEVER does not lead to better performance.
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Table 5: Parallel vs. dynamic
knowledge adapting.

Method HotpotQA (3-shot)
CoT 29.9%

Verify-and-Edit 31.8%
CoK (parallel) 31.2%
CoK (dynamic) 34.1%

Table 6: Comparison of the
factual accuracy of rationales
on HotpotQA.

Method Rationale 1 Rationale 2
CoT-SC 54.3% 52.1%

CoK 66.3% 69.5%

Table 7: Human study results
on the factuality of reasoning
chains.

Predictions CoK CoT-SC Tie
Correct predictions 68% 4% 28%

Incorrect predictions 44% 24% 32%
All predictions 56% 14% 30%

5 ANALYSIS

5.1 SINGLE VS. MULTIPLE KNOWLEDGE DOMAINS AND SOURCES

As outlined in Section 2.1, CoK integrates a step to select the appropriate knowledge domains for
each question. This step is crucial to ensure that CoK can retrieve the most pertinent knowledge to
correct the rationales and answer the questions accurately. It is possible that multiple knowledge
domains can be chosen for one question, and within each domain, there are several knowledge
sources. In this subsection, we investigate the necessity of utilizing multiple knowledge domains
and sources. We also include an evaluation of the domain selection performance in Appendix F.1.

Single vs. Multiple Knowledge Domains We show the domain distributions identified for each
dataset in Figure 3. Notably, we find that CoK predominantly selects one knowledge domain for
each dataset, while a small number of cases call for multiple domains. For instance, the primary
knowledge domain for MedMCQA is Medical, and 17.8% of the questions identify Biology as a rel-
evant domain as well. Furthermore, we conduct ablation experiments to demonstrate the necessity
of utilizing multiple domains. As shown in Table 4, compared to only using Medical domain knowl-
edge, CoK using additional knowledge from the Biology domain further improves the performance
by 1.3%. This indicates that knowledge spanning multiple domains is needed for answering some
questions, underscoring the necessity of incorporating various knowledge domains.

Single vs. Multiple Knowledge Sources Within one domain, numerous credible knowledge
sources exist, and it is unfeasible for a single source to encompass all knowledge from the domain.
Therefore, it is important to utilize multiple knowledge sources within one domain. For instance,
as shown in Table 4, the performance of CoK improves by 2.1% when utilizing both Flashcard and
UpToDate as medical knowledge sources, compared to using only Flashcard. 7

5.2 PARALLEL VS. DYNAMIC KNOWLEDGE ADAPTING

As aforementioned, dynamic knowledge adapting helps CoK prevent error propagation, here we take
a closer look at how much improvement it brings in. As shown in Table 5, the performance of CoK
improves by 4.2% compared with CoT when dynamic knowledge adapting is applied. However,
parallel editing leads to poorer performance due to error propagation for rationales.

5.3 EVALUATING FACTUALITY IMPROVEMENT OF THE RATIONALES

While the main results have shown that CoK effectively improves the performance of LLMs in
knowledge-intensive tasks, we are also interested in reducing hallucination for the generated ratio-
nales. Hence, we conduct quantitative and qualitative evaluations to assess the factual accuracy.

Quantitative Evaluation To automatically evaluate how CoK can reduce hallucination in the
model outputs, we employ an existing fact-checking method to compare the original and corrected
rationales. Specifically, we use ProgramFC (Pan et al., 2023) which is a state-of-the-art method for
judging the factuality of claims with respect to Wikipedia. As shown in Table 6, we observe that
CoK has improved factual accuracy compared to the CoT-SC baseline on the HotpotQA dataset. No-
tably, the factual accuracy of CoT-SC decreases for rationale 2 compared to rationale 1, which could

7Note that using external sources may have limitations such as noise or conflicts between different sources.
We mainly address this by selecting authoritative knowledge sources, and discuss this further in Appendix G
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be due to error propagation. On the other hand, the factual accuracy of CoK improves slightly for
the second rationale, which indicates that correcting previous rationales helps the LLM to generate
more factual rationales in future steps.

Human Evaluation To qualitatively examine whether CoK could output factually consistent rea-
soning chains, we also conducted a human study. Specifically, two volunteers are given 100 outputs
randomly selected from HotpotQA and FEVER datasets. The selected outputs are balanced, where
50 CoK outputs resulted in incorrect answers, and the other 50 resulted in correct answers. The vol-
unteers are asked to select which reasoning chain is factually correct, or if there is a tie. Then, they
are asked to answer whether the better CoT should lead to better results. Details on the instructions
and setup can be found in Appendix H.1. The results are given in Table 7. We could observe that
volunteers consistently confirm that CoK-generated reasoning chains are factually consistent while
the CoT-SC chains are not. For incorrect predictions, humans still believe that 44% of the time, the
CoK-generated CoT is improved on factual consistency, although it may not contain the necessary
information for a correct answer. Among these instances, humans believe 73% of the time that these
improved CoTs should have led to better answers. This implies that, even though the CoT quality
has been improved, many failure cases are caused by reasoning errors. Case studies can be found in
Appendix H.2. In general, the two volunteers show a Cohen Kappa’s agreement of 0.43, which is
considered moderate agreement (Landis & Koch, 1977).

6 RELATED WORK

Knowledge-Intensive NLP While language models can generate highly coherent text and demon-
strate reasoning abilities, many real-world tasks require knowledge beyond the local context. For
example, fact-checking tasks may require models to locate suitable evidence on the internet or refer
to external knowledge (Thorne et al., 2018). In the realm of natural language processing (NLP), a
task is deemed to be knowledge-intensive when it exceeds the reasonable expectation of human capa-
bility to solve it without access to external knowledge. The resolution of such knowledge-intensive
NLP tasks typically involves the utilization of retriever-reader systems. Initially, a retriever extracts
a limited collection of pertinent documents from the knowledge source, after which a reader employs
the context extracted to generate an appropriate response (Chen et al., 2017; Lewis et al., 2020; Guu
et al., 2020). Hence, there is an urgent need to develop effective models for knowledge-intensive
tasks (Petroni et al., 2021).

Augmented Language Models The discipline of augmented language models (ALMs) addresses
hallucinations of traditional LLMs by equipping them with improved reasoning capabilities and
the capacity to utilize external resources (Chung et al., 2022). Furthermore, LLMs can learn to
leverage external tools or models to accomplish the relevant tasks (Schick et al., 2023; Shen et al.,
2023). ALMs can employ these enhancements independently or combine them in a specific order
to complete a given task, ultimately resulting in enhanced capabilities (Mialon et al., 2023; Zhao
et al., 2023a). However, previous works do not consider knowledge from multiple domains and lack
progressive editing throughout the generation process, which could lead to error propagation. In
this work, we propose an efficient framework to solve knowledge-intensive tasks by progressively
augmenting them with diverse sources of external knowledge.

7 CONCLUSIONS

In this paper, we introduce chain-of-knowledge (CoK), a novel framework designed to enhance the
factual correctness of large language models (LLMs). CoK represents a promising and comprehen-
sive solution to progressive knowledge-grounded generation by incorporating heterogeneous sources
in multiple domains. We address the challenge of accurate query generation by proposing the adap-
tive query generator (AQG) which supports both unstructured and structured query languages. The
AQG can be easily transitioned between fine-tuned models and black-box LLMs. Our experimental
results on knowledge-intensive tasks demonstrate the substantial improvement achieved by CoK.
Furthermore, the modularity of CoK allows its application to various LLMs and different formats of
knowledge sources, which addresses important challenges, including privacy concerns, knowledge
source reliance, and rapid information updates.
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A PROMPTS USED IN DIFFERENT METHODS

A.1 CHAIN-OF-KNOWLEDGE (HOTPOTQA)

A.1.1 REASONING GENERATION

Q: This British racing driver came in third at the 2014 Bahrain GP2 Series round and was born in
what year
A: First, at the 2014 Bahrain GP2 Series round, DAMS driver Jolyon Palmer came in third. Second,
Jolyon Palmer (born 20 January 1991) is a British racing driver. The answer is 1991.

Q: [Question]
A:

A.1.2 KNOWLEDGE DOMAIN SELECTION

Follow the below example, select relevant knowledge domains from Available Domains to the Q.
Available Domains: factual, medical, physical, biology
Q: This British racing driver came in third at the 2014 Bahrain GP2 Series round and was born in
what year
Relevant domains: factual
Q: Which of the following drugs can be given in renal failure safely?
Relevant domains: medical
Q: Which object has the most thermal energy?
Relevant domains: factual, physical
Q: Is the following trait inherited or acquired? Barry has a scar on his left ankle.
Relevant domains: biology

Q: [Question]
Relevant domains:

A.1.3 RATIONALE CORRECTION

Strictly follow the format of the below examples. The given sentence may have factual errors,
please correct them based on the given external knowledge.
Sentence: the Alpher-Bethe-Gamow paper was invented by Ralph Alpher.
Knowledge: discoverer or inventor of Alpher-Bethe-Famow paper is Ralph Alpher.
Edited sentence: the Alpher-Bethe-Gamow paper was invented by Ralph Alpher.

Sentence: Ralph Alpher was advised by Hans Bethe.
Knowledge: doctoral advisor of Ralph Alpher is George Gamow.
Edited sentence: Ralph Alpher was advised by George Gamow.

Sentence: [Ratioanle]
Knowledge: [Knowledge]
Edited sentence:

A.1.4 NEXT RATIONALE GENERATION

Q: This British racing driver came in third at the 2014 Bahrain GP2 Series round and was born in
what year
A: First, at the 2014 Bahrain GP2 Series round, DAMS driver Jolyon Palmer came in third. Second,
Jolyon Palmer (born 20 January 1991) is a British racing driver. The answer is 1991.

Q: [Question]
A: First, [Corrected first rationale]. Second,
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A.1.5 ANSWER CONSOLIDATION

Q: This British racing driver came in third at the 2014 Bahrain GP2 Series round and was born in
what year
A: First, at the 2014 Bahrain GP2 Series round, DAMS driver Jolyon Palmer came in third. Second,
Jolyon Palmer (born 20 January 1991) is a British racing driver. The answer is 1991.

Q: [Question]
A: First, [Corrected first rationale]. Second, [Corrected second rationale]. The answer is

A.2 COT, COT-SC

Q: This British racing driver came in third at the 2014 Bahrain GP2 Series round and was born in
what year
A: First, at the 2014 Bahrain GP2 Series round, DAMS driver Jolyon Palmer came in third. Second,
Jolyon Palmer (born 20 January 1991) is a British racing driver. The answer is 1991.

Q: [Question]
A:

A.3 VERIFY-AND-EDIT

A.3.1 VERIFYING QUESTION GENERATION

Write a question that asks about the answer to the overall question.
Overall Question: The Sentinelese language is the language of people of one of which Islands in
the Bay of Bengal?
Answer: The language of the people of North Sentinel Island is Sentinelese.
Question: What peopleś language is Sentinelese?

Overall Question: [Question]
Answer: [Rationale]
Question:

A.3.2 VERIFYING ANSWER GENERATION (RATIONALE EDITING)

Barnes House (born 20 January 1969) is a British racing driver, currently driving for Renault Sport
F1 Team in the Formula One World Championship.
Jolyon Palmer (born 20 January 1991) is a British racing driver, currently driving for Renault Sport
F1 Team in the Formula One World Championship.
Ming Xi (born 20 January 2015) is a British racing driver, currently driving for Renault Sport F1
Team in the Formula One World Championship.
The 2014 Bahrain GP2 Series round was a pair of motor races held on 6 and 7 April 2014 at the
Bahrain International Circuit in Sakhir, Bahrain as part of the GP2 Series. Julián Leal finished
second for the Carlin team and DAMS driver Jolyon Palmer came in third.
Q: This British racing driver came in third at the 2014 Bahrain GP2 Series round and was born in
what year
A: This British racing driver came in third at the 2014 Bahrain GP2 Series round and was born in
1991.

Knowledge
Q: [Verifying question]
A:
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B FURTHER EXPERIMENT DETAILS

B.1 FETAQA

Although CoK and several baseline methods including CoT-SC and VE rely on self-consistency for
other tasks, we note that self-consistency is not applicable for FeTaQA as it is an open-ended gen-
eration task. As a result, it is possible to have near-equivalent generations that are nevertheless not
exact matches, and self-consistency becomes less useful. Therefore, we do not use self-consistency
for VE and CoK, instead opting to retrieve from external knowledge sources for every question in
FeTaQA. We also do not include CoT-SC results for FeTaQA in Table 2.

C QUERY EXECUTION OF KNOWLEDGE SOURCES

C.1 WIKIDATA (SPARQL)

As shown in Table 1, the SPARQL query generated by AQG contains entity and relation spans. To
make the query executable, we conduct entity linking, replacing the spans with entity and relation
IDs. We utilize the GENRE model for entity linking (Cao et al., 2021). GENRE is the first system
that retrieves entities by generating their unique names in an autoregressive fashion. Consequently,
GENRE is capable of performing entity linking without ambiguities. Next, the query is executed
on Wikidata to retrieve the results. Finally, we transform the reasoning step and the results into a
natural sentence format, which serves as the final supporting knowledge.

C.2 WIKIPEDIA (NATURAL SENTENCE)

We directly query generated natural language sentence within the domain wikipedia.org.

C.3 TABLE (SQL)

Given a generated SQL query, we execute the query on the given table to obtain the result, which
may be a single value or a sub-selection of the table. Thereafter, we consolidate the query result with
the original question which is provided to the LLM for generating the final answer. As the query
may be inaccurate in some cases, we also provide the original table to the LLM when generating the
final answer.

C.4 FLASHCARD (NATURAL SENTENCE)

Given a medical reasoning step, AQG generates a sentence of relevant medical knowledge as the
query. Subsequently, we compare the embeddings of this query with sentences from the Medical
Flashcards knowledge base and select the sentence with the highest cosine similarity as the final
supporting knowledge. Hence, this ensures that the supporting knowledge is factually correct.

C.5 UPTODATE (NATURAL SENTENCE)

We directly query generated natural language sentence within the domain uptodate.com, which
is an authoritative medical website.

C.6 SCIENCEQA PHYSICS (NATURAL SENTENCE)

Given a physics reasoning step, AQG generates a sentence of relevant physics knowledge as the
query. Subsequently, we compare the embeddings of this query with sentences from the ScienceQA
Physics knowledge source and select the sentence with the highest cosine similarity as the final
supporting knowledge. Hence, this ensures that the supporting knowledge is factually correct.

C.7 PHYSICSCLASSROOM (NATURAL SENTENCE)

We directly query generated natural language sentence within the domain
physicsclassroom.com, which is an authoritative physics website.
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Table 8: Query language, AQG model, and training datasets of each knowledge source. Knowl.
stands for knowledge. Lang. stands for language.

Knowl. Domain Knowl. Source Query Lang. AQG Model Dataset Source Train. Set Eval. Set
Factual Wikidata SPARQL LLaMA-2-7B-LoRA LC-quad & KQA-pro 19,010 4,779
Factual Wikipedia n.s. gpt-3.5-turbo-0613 - - -
Factual Table SQL gpt-3.5-turbo-0613 - - -
Medical Flashcard n.s. LLaMA-2-7B-LoRA Medical Flashcard 34,000 -
Medical UpToDate n.s. gpt-3.5-turbo-0613 - - -
Physics ScienceQA Physics n.s. LLaMA-2-7B-LoRA ScienceQA Physics 810 -
Physics Physicsclassroom n.s. gpt-3.5-turbo-0613 - - -
Biology ScienceQA Biology n.s. LLaMA-2-7B-LoRA ScienceQA Physics 1,596 -
Biology CK-12 n.s. gpt-3.5-turbo-0613 - - -

C.8 SCIENCEQA BIOLOGY (NATURAL SENTENCE)

Given a biology reasoning step, AQG generates a sentence of relevant biology knowledge as the
query. Subsequently, we compare the embeddings of this query with sentences from the ScienceQA
Biology knowledge source and select the sentence with the highest cosine similarity as the final
supporting knowledge. Hence, this ensures that the supporting knowledge is factually correct.

C.9 CK-12 (NATURAL SENTENCE)

We directly query generated natural language sentence within the domain
ck12.org/c/biology/, which is an authoritative biology website.

D ADAPTIVE QUERY GENERATOR

D.1 WIKIDATA (SPARQL)

D.1.1 INSTRUCTION-TUNING DATASET

To create the instruction-tuning dataset, we utilize a filtered version of LC-quad (Trivedi et al., 2017)
and KQA-pro (Cao et al., 2022) datasets. This dataset consists of natural questions as inputs and
their corresponding SPARQL queries as outputs. Before training, we replace the entity and relation
IDs in the SPARQL queries with entity and relation spans. This modification allows the model to
learn the semantic meaning of the SPARQL queries more effectively. During the inference phase,
we utilize entity linking to convert the spans back into IDs. The size of the dataset is provided in
Table 8.

D.1.2 DATA EXAMPLE

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.
### Instruction:
Generate a correct SPARQL query that returns the answer of the following question. Generate four
incorrect SPARQL queries of different types.
### Input:
What periodical literature does Delta Air Lines use as a mouthpiece?
### Output:
Correct query: select distinct ?obj where { wd:/Delta Air Lines/ wdt:/house publication/ ?obj . ?obj
wdt:/instance of/ wd:/periodical/ }
Incorrect query 1: select distinct ?obj where { Delta Air Lines wdt:/house publication/ ?obj . ?obj
wdt:/instance of/ wd:/periodical/ }
Incorrect query 2: select distinct ?obj { wd:/Delta Air Lines/ wdt:/house publication/ ?obj . ?obj
wdt:/instance of/ wd:/magazine/ }
Incorrect query 3: select distinct ?obj where { wd:/Delta Airlines/ wdt:/house publication/ ?obj .
?obj wdt:/instance of/ wd:/periodical/ }
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Incorrect query 4: select distinct ?obj where { ?obj wdt:/instance of/ wd:/magazine/ . wd:/Delta Air
Lines/ wdt:/house publication/ ?obj . }

D.2 FLASHCARDS (NATURAL SENTENCE)

D.2.1 INSTRUCTION-TUNING DATASET

We employ a natural sentence format for querying Medical knowledge. To instruction-tune our
AQG specifically for this purpose, we utilize the Medical Flashcards dataset (Han et al., 2023). This
dataset consists of question-answering pairs covering various subjects in the medical source, such
as anatomy, physiology, pathology, and pharmacology. It contains summaries and mnemonics of
crucial medical concepts, making it an ideal choice for instruction-tuning the AQG to effectively
handle medical knowledge queries. The size of the dataset is provided in Table 8.

D.2.2 DATA EXAMPLE

Answer the question truthfully.
### Instruction:
Answer this question truthfully.
### Input:
What is the relationship between very low Mg2+ levels, PTH levels, and Ca2+ levels?
### Output:
Very low Mg2+ levels correspond to low PTH levels which in turn results in low Ca2+ levels.

D.3 SCIENCEQA PHYSICS (NATURAL SENTENCE)

D.3.1 INSTRUCTION-TUNING DATASET

To instruction-tune our AQG for physics knowledge, we utilize the physics segment of the Sci-
enceQA dataset (Lu et al., 2022). Each entry in this dataset consists of a question, options, context,
answer, lecture, and explanation. The lecture contains necessary knowledge to answer the question.
We use the question and the options as input and the lecture as the output for instruction-tuning the
model.

D.3.2 DATA EXAMPLE

Answer the question truthfully.
### Instruction:
Answer this question truthfully.
### Input:
The objects are identical except for their temperatures. Which object has less thermal energy?
Choose from: a 300-gram glass of water at a temperature of 75°F, a 300-gram glass of water at a
temperature of 80°F.
### Output:
The two glasses of water have the same mass but different temperatures. Since the 75°F glass of
water is colder than the 80°F glass of water, it has less thermal energy.

D.4 SCIENCEQA BIOLOGY (NATURAL SENTENCE)

D.4.1 INSTRUCTION-TUNING DATASET

To instruction-tune our AQG for biology knowledge, we utilize the biology segment of the Sci-
enceQA dataset (Lu et al., 2022).

D.4.2 DATA EXAMPLE

Answer the question truthfully.
### Instruction:
Answer this question truthfully.
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Table 9: Examples of generated query, execution results, and formatted knowledge for rationales of
each query language. Knowl. stands for knowledge.

SPARQL
Rationale Souleyman Sané’s son, Leroy Sané, is a professional football player.
Generated query SELECT ?answer WHERE { wd:/Souleymane Sané/ wdt:/child/ ?answer . }
Execution results Leroy Sané
Formatted knowl. The fact entity of the sentence “Souleyman Sané’s son, Leroy Sané, is a professional football player” is Leroy Sané.

SQL
Rationale Does Oklahoma have any indoor football teams?
Generated query SELECT * FROM table WHERE Type = ’Indoor Football’;
Execution results Club Type Venue

Oklahoma Defenders Indoor Football Tulsa Convention Center

Formatted knowl. [[‘Club’, ‘Type’, ‘Venue’], [‘Oklahoma Defenders’, ‘Indoor Football’, ‘Tulsa Convention Center’]]
Natural Sentence

Rationale Splenomegaly is a condition in which the spleen is enlarged.
Generated query What conditions may feature splenomegaly?
Execution results Normocytic anemia with extravascular hemolysis is associated with enlargement of the spleen.
Formatted knowl. Normocytic anemia with extravascular hemolysis is associated with enlargement of the spleen (splenomegaly),

as the spleen plays a role in removing damaged red blood cells from circulation.

### Input:
In a group of sheep, some individuals have white wool and others have black wool. In this group,
the gene for the wool color trait has two alleles. The allele L is for white wool, and the allele l is for
black wool. Flicka, a sheep from this group, has white wool. Flicka has one allele for white wool
and one allele for black wool. Based on this information, what is Flicka’s phenotype for the wool
color trait? Choose from: Ll, white wool.
### Output:
An organism’s phenotype for a trait is its observable version of that trait. Flicka’s observable version
of the wool color trait is white wool. So, Flicka’s phenotype for the wool color trait is white wool.

D.5 EXAMPLES OF EACH QUERYING LANGUAGE

We include examples of generated query, execution results, and formatted knowledge for rationales
of each query language in Table 9.

D.6 CONTRASTIVE INSTRUCTION-TUNING

We implement a simple approach to train the model for SPARQL with a contrastive objective, where
the correct query and wrong queries are modeled autoregressively in the same sequence. Concretely,
given a sequence x which includes the input tokens, correct query tokens and wrong query tokens,
the query model is trained with the log-likelihood loss:

log p(x) = log
n∏

i=1

1(xi)p(xi|x<i) (1)

where 1(xi) = 1 if the i-th token xi is part of a query and 0 otherwise.

D.7 TRAINING DETAILS

We employ Llama-2 (meta-llama/Llama-2-7b-hf) as the base model. We utilize LoRA for
parameter-efficient fine-tuning, and load the weights in 8-bit format. For each knowledge source,
the model is trained for 3 epochs, utilizing an NVIDIA A40 GPU. We maintain a training batch
size of 32, with a gradient accumulation step set at 2. All the other parameters are left at their
default values.
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Table 10: Details of the evaluation datasets.

Domain Dataset # of Samples
Factual FEVER 1000
Factual HotpotQA 308
Factual FeTaQA 500
Medical MedMCQA 146
Physics MMLU Physics 253
Biology MMLU Biology 454

Table 11: Evaluation of domain selection performance.

Domain Precision Recall F1
Factual 96.0% 96.0% 96.0%
Medical 94.3% 96.1% 95.2%
Physics 89.9% 100.0% 94.6%
Biology 100.0% 92.8% 96.2%

E EVALUATION DATASETS

The evaluation datasets collect datasets from four different domains, including factaul, medical,
physics, and biology. Details of the dataset are in Table 10. We adopt exact match as the evaluation
metrics for HotpotQA, which is a more strict evaluation.

F ANALYSIS

F.1 DOMAIN SELECTION

As CoK relies on selecting relevant knowledge domains, it is important that the domain selection
step is of high quality. Hence, we randomly sample 50 questions from each domain and compare
the predicted domains with our manually annotated domains. As each question may be relevant for
more than one domain, we report the precision, recall, and F1 scores. As shown in Table 11, we find
that while the domain selection is not perfect, the overall F1 scores are more than 94% across all the
domains. Hence, we believe that the current domain selection process is adequate.

F.2 MODELS OF ADAPTIVE QUERY GENERATOR

Table 12 demonstrates the performances of ChatGPT and instruction-tuned LlaMA-2-7B on SQL
and SPARQL generation. SPARQL is evaluated on 4,779 samples from LC-quad and KQA-pro.
SQL is evaluated on 15,900 samples from WikiSQL and we use the exact-match metric to evaluate
the generated queries with gold queries.

G DISCUSSION OF LIMITATIONS

Knowledge Sources As CoK relies on external knowledge sources, there are some ethical im-
plications. Notably, LLMs using CoK may still generate inaccurate information if the knowledge
sources contain unreliable information. Hence, this could cause misinformation or manipulation of
public opinion. Another limitation is that there may be conflict between different knowledge sources
in theory. To address the two limitations, we selected authoritative knowledge sources such as Wiki-
data which are unlikely to contain inaccurate or conflicting information. As a result, the risk from
the knowledge sources are reduced.

Knowledge Retrieval On the other hand, CoK may not produce useful outputs if the knowledge
retrieval step is unable to retrieve facts that are relevant to the given question. However, we believe
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Table 12: Performances of ChatGPT and instruction-tuned LlaMA-2-7B on SQL and SPARQL
generation.

Method SQL Eval. Acc. SPARQL Eval. Acc.
ChatGPT 57.1% 8.9%

Finetuned Model 38.6% 41.1%

Figure 4: Human evaluation instructions.

that this is a general limitation of retrieval methods, as retrieval results inevitably contain some noise
due to lack of relevant data or inaccurate queries. To address this challenge, we have designed the
CoK framework to be modular and flexible. Hence, the adaptive query generator models can be
easily swapped for other models that may be more suitable for the given task. Rather than focusing
on using specific query generator models, our focus is that heterogeneous knowledge sources can
be effectively incorporated with LLMs to improve their factual correctness and performance on
knowledge-intensive tasks.

Reasoning Capability of LLMs As CoK relies on the reasoning capability of LLMs, failure cases
may stem from reasoning failures of LLMs. We believe this is a general limitation of generative
models, as LLMs inevitably generate reasoning errors. Case studies of such failures can be found
in Appendix H.2. To address this challenge, CoK is designed to be modular and flexible. And the
black-box LLM can be easily swapped for more advanced models possessing enhanced reasoning
capabilities.
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Figure 5: Human evaluation questions.

H HUMAN STUDY

H.1 SETUP

In the human study, volunteers are proficient English speakers in relevant disciplines. The instruction
specifically asks the volunteers to verify their knowledge from Google, especially the Wikipedia
data source. The specific instructions given to the users are shown in 4. The questions given to
the users are shown in 5. First, the user is asked which reasoning chain is factually consistent in
his/her opinion. Here, we use a direct assessment rather than a comparative measure (for example,
is one more factually correct than the other). Intuitively, factual consistency should not be “more” or
“less”. Similar direct measures are also preferred by the community, such as the direct assessment
in Machine Translation (Kocmi et al., 2022; Graham et al., 2017). If they are both incorrect or
both correct, the user could choose “Tie”. Then, the user is asked whether he/she thinks the better
reasoning chain will lead to better answer predictions. In scenarios where the user answers “Tie” to
the first question, he/she will also answer “Tie” for the second question.

For evaluation, 100 samples are randomly chosen from HotpotQA and Fever datasets. The order of
the reasoning chains (produced by CoK or CoT-SC) is randomly perturbed for each question.

H.2 EXAMPLES

As mentioned in section 5.3, even when we improve the factual consistency of the CoTs, the outputs
could still be false due to LLM’s reasoning errors. We copy three such examples below:

Example 1:

Prompt: [3-shot CoT prompt]

Q: Anne Sullivan was born in June of 1866.

A: First, Anne Sullivan was born on April 14, 1866 in Feeding Hills, Agawam, Massachusetts,
United States. Second, Anne Sullivan was born on April 14, 1866 in Feeding Hills, Agawam,
Massachusetts, United States. The answer is

ChatGPT: SUPPORTS.

Example 2:

Prompt: [3-shot CoT prompt]
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Table 13: Details on costs (by tokens).

Method Dataset tokens
ReAct HotpotQA 1638

Verify-and-Edit HotpotQA 630
CoK HotpotQA 787

ReAct FEVER 848
Verify-and-Edit FEVER 286

CoK FEVER 329

Q: Practical Magic is based on a French novel that was written by Alice Hoffman.

A: First, Practical Magic is a 1998 American fantasy romantic drama film based on the 1995 novel
of the same name by Alice Hoffman. Second, Alice Hoffman is an American author. The answer is

ChatGPT: SUPPORTS.

Example 3:

Prompt: [3-shot CoT prompt]

Q: Saturn Corporation has no other names.

A: First, The Saturn Corporation, also known as Saturn LLC, was a registered trademark established
on January 7, 1985, as a subsidiary of General Motors. Second, There is no information available
on any other names for Saturn Corporation, but it is also known as Saturn LLC. The answer is

ChatGPT: SUPPORTS.

In the first example, it is mentioned twice in the prompt that Anne Sullivan was born in April.
However, the LLM still supports the claim that she was born in June. In the second example, the
CoT specifies that the novel is American. However, ChatGPT overlooks the nationality and supports
the claim that it is based on a French novel. In the third example, the CoT mentions repetitively that
Saturn Corporation is also known as Saturn LLC. However, ChatGPT supports the claim that it has
no other names.

These examples show that, even though the CoT is successfully improved in terms of factual con-
sistency, the final answer may still be incorrect due to reasoning errors inherent to LLM itself. In
the human study for wrong predictions, 44% of the time humans claim that CoK still generates im-
proved CoTs. Among these 44% instances, 73% of the time humans think these CoTs should have
led to better answers.

I COST ANALYSIS

As CoK always edits instances below a certain consistency threshold, there is a cost advantage
compared to other methods such as ReAct. The costs are on par with methods such as Verify-and-
Edit.

A table of the costs is shown in 13. The costs are calculated based on tokens used per instance.
Overall, the costs for CoK are on par with Verify-and-Edit. The extra costs are incurred by the
dynamic knowledge editing stage, which is shown to boost performance in the main results. CoK
also costs much less than ReAct, incurring only around 40% of ReAct’s costs. Specifically, it costs
787 compared to 1638 for HotpotQA, and 329 compared to 848 for FEVER.

The API cost for gpt-3.5-turbo is currently $0.0015 / 1K tokens for input, and $0.002 / 1K
tokens for output.

For details of the cost calculations, as the output length is the same for all methods, we only calculate
the input tokens. Following the original ReAct paper(Yao et al., 2023), we calculate based on 3-shot
prompts for FEVER and 6-shot prompts for HotpotQA. Verify-and-Edit and CoK tokens per instance
are calculated based on the CoT-SC threshold, which results in editing 86 out of 308 instances for
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HotpotQA 6-shot, and 127 out of 1,000 instances for FEVER 3-shot. The plain ReAct method, on
the other hand, applies the ReAct prompt to every instance.
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