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Abstract

Large language models (LLMs) acquire vast
knowledge from large text corpora, but this in-
formation can become outdated or inaccurate.
Since retraining is computationally expensive,
knowledge editing offers an efficient alterna-
tive—modifying internal knowledge without
full retraining. These methods aim to update
facts precisely while preserving the model’s
overall capabilities.

While existing surveys focus on the mechanism
of editing (e.g., parameter changes vs. exter-
nal memory), they often overlook the function
of the knowledge being edited. This survey
introduces a novel, complementary function-
based taxonomy to provide a more holistic
view. We examine how different mechanisms
apply to various knowledge types—factual,
temporal, conceptual, commonsense, and so-
cial—highlighting how editing effectiveness
depends on the nature of the target knowledge.

By organizing our review along these two
axes, we map the current landscape, outline
the strengths and limitations of existing meth-
ods, define the problem formally, survey eval-
uation tasks and datasets, and conclude with
open challenges and future directions.

1 Introduction

Large language models (LLMs) have shown re-
markable abilities in understanding and generating
human-like text (Brown et al., 2020; Achiam et al.,
2023; Anil et al., 2023; Touvron et al., 2023; Zhao
et al., 2023). However, keeping them relevant and
correcting errors efficiently remains a challenge.
Retraining entire models is computationally expen-
sive, prompting interest in model editing (Sinitsin
et al., 2020; De Cao et al., 2021), which enables
targeted updates while preserving overall function-
ality.

As shown in Figure 1, knowledge editing aims to
correct specific information in a model. When an

LLM gives an incorrect output, an editor adjusts the
model to produce a factual response, with changes
localized to avoid affecting unrelated knowledge.

Although various KE methods have emerged
(De Cao et al., 2021; Meng et al.,, 2023,
2022; Sinitsin et al., 2020; Huang et al., 2023),
most surveys classify them by their mecha-
nisms—modifying parameters or adding external
modules. This overlooks an essential aspect: the
type of knowledge being edited. Techniques that
work for simple facts (e.g., capital cities) may fall
short with complex knowledge like commonsense
reasoning or social biases.

This survey addresses the gap by proposing a
novel, complementary function-based taxonomy.
We argue that understanding KE requires examin-
ing the type of knowledge being edited. By classify-
ing methods by the functional knowledge they tar-
get—factual, temporal, conceptual, commonsense,
and social—we reveal the unique challenges and
limitations of current approaches. This framework
offers a more holistic basis for evaluating and ad-
vancing the field.

To guide the reader, Section 2 defines the prob-
lem and outlines key properties of an ideal edi-
tor. Section 3 introduces our dual-axis taxonomy,
covering both mechanism- and function-based per-
spectives. Section 4 surveys evaluation tasks and
datasets, and Section 5 highlights open challenges
and future directions.

2 Knowledge Editing

Knowledge editing (KE), also known as model
editing, was first introduced by Sinitsin et al.
(2020). The core objective is to correct a model’s
error on a specific instance while preserving its
overall behavior. For a base model fy and a specific
edit request—an input-output pair (., y.) where
the model’s current output is incorrect (fy(ze) #
ye)—the goal is to produce an edited model, fy_,
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Figure 1: An example of Knowledge Editing illustrating
efficient and localized knowledge updates in LLMs.

that satisfies the request (fy, (z.) = y.) (Mitchell
et al., 2022a; Yao et al., 2023).

The central challenge of KE lies in achieving
this correction with precision. An ideal editor must
make changes that are both specific enough to avoid
unintended side effects and general enough to be
robust. To formalize this, we define two disjoint
sets of inputs:

* Edit Scope I(z.,y.): The set of all inputs
to which the new fact should apply. This in-
cludes the original input x, and all its seman-
tic paraphrases (e.g., different ways of asking
the same question).

* Out-of-Scope O(x., y.): The set of all other
inputs, which should remain completely unaf-
fected by the edit.

A successful KE method, therefore, must satisfy
the condition outlined in Equation 1, which states
that the edited model should produce the new tar-
get output for all in-scope inputs and revert to its
original behavior for all out-of-scope inputs (Yao
et al., 2023).
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2.1 General Metrics

To measure how well a given method approximates
this ideal, the literature has established four gen-
eral properties: Reliability, Generality, Locality,
and Efficiency. While these metrics provide a foun-
dational assessment, we will later introduce more
specialized, function-specific metrics in our analy-
sis of different knowledge types

* Reliability: Reliability measures if the edit
was successful for the specific input it was

given. It is the most fundamental property of
a successful edit (Huang et al., 2023; De Cao
et al., 2021; Meng et al., 2022). Formally, it
is the success rate on the original edit pair
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In simple terms, this metric asks: After the
edit, does the model now provide the correct
target answer for the original prompt?

* Generality: Generality (or Generalization)
measures whether the edit propagates to other
semantically equivalent inputs that fall within
the edit scope (., ye). This is typically eval-
uated on a set of paraphrases or “neighboring
instances,” denoted as N (z., y.), to ensure
the updated knowledge is robust and not just
a superficial fix.
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This metric essentially asks: Does the edit
also apply to different phrasings of the same
question?

* Locality: Locality, also known as speci-
ficity (Yao et al., 2023), measures whether the
edit has had unintended effects on unrelated
knowledge (i.e., on inputs in the out-of-scope
set O(ze,ye)). High locality is critical for
preserving the model’s overall integrity.
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In other words, this checks that for unrelated
inputs, the edited model’s output distribution
is identical to the original model’s, ensuring
there are no negative side effects.

* Efficiency: The KE method must be efficient
in terms of computational resources, including
both time and memory consumption (Mazzia
et al., 2024). Efficiency is especially crucial
for practical applications involving large-scale
models or streams of sequential edits.

3 Dual-Axis Taxonomy:

To provide a comprehensive overview of Knowl-
edge Editing (KE), we analyze current techniques
along two orthogonal axes: the mechanism used to
alter the model and the function of the knowledge



being targeted. This dual-perspective approach is
essential because a method’s effectiveness is de-
fined by both its technical implementation and the
nature of the problem it is intended to solve.

We begin in Section 3.1 by reviewing the primary
editing mechanisms, which are broadly categorized
as either modifying the model’s parameters or pre-
serving them. Then, in Section 3.2, we introduce
our novel function-based taxonomy to analyze how
these mechanisms are applied to increasingly com-
plex types of knowledge.

3.1 Mechanism-Based Editing: How Is the
Model Altered?

KE techniques are most commonly distinguished
by how they alter a model’s behavior. The central
choice is whether to directly change the LLM’s
internal weights or to augment the model with
an external component that intercepts or guides
its outputs at inference time. The field’s pioneer-
ing studies, such as ROME (Meng et al., 2022),
MEMIT (Meng et al., 2023), and MEND (Mitchell
et al., 2022a), were developed to correct discrete
factual inaccuracies like (Paris, capital_of,
France) and thus established many of the founda-
tional mechanisms discussed here.

3.1.1 Parameter-Modifying Methods

These methods directly modify a model’s internal
weights to encode new or corrected knowledge and
fall into two main categories.

Locate-then-Edit methods aim for surgical pre-
cision by identifying and updating specific neu-
rons or layers responsible for a piece of knowl-
edge. ROME (Meng et al., 2022) uses causal
mediation analysis to locate factual associations
in transformer feed-forward layers, applying con-
strained optimization for edits. MEMIT (Meng
et al., 2023) scales this by editing thousands of
facts via efficient rank-one updates to the same
layer type. PMET (Li et al., 2023) extends this
approach by including attention layers for finer con-
trol. While precise, these methods are less tested
on non-factual knowledge, and the reliability of
causal localization remains uncertain (Hase et al.,
2023).

Hypernetwork/Meta-Learning approaches
use a separate model to predict weight updates.
MEND (Mitchell et al., 2022a) trains a hypernet-
work that converts gradients into low-rank updates.
MALMEN (Tan et al., 2023) improves scalabil-
ity by framing update prediction as a least-squares

problem. Though flexible, these methods can be
sensitive to domain shifts and cumulative edits.

3.1.2 Parameter-Preserving Methods

These methods keep the base LLM’s weights
frozen and instead modify its output behavior at in-
ference time, prioritizing stability and reversibility.

Memory-Based approaches store new facts
in external memory. SERAC (Mitchell et al.,
2022b) uses a classifier to decide whether to rely
on the base model or retrieve a counterfactual edit.
IKE (Zheng et al., 2023) and MeLLo (Zhong et al.,
2023) retrieve relevant examples to serve as in-
context demonstrations, effectively editing model
behavior without weight changes.

Neuron-Augmented methods insert train-
able components into the architecture. T-
Patcher (Huang et al., 2023) assigns a dedi-
cated "patch" neuron per edit, activated as needed.
GRACE (Hartvigsen et al., 2022) caches correc-
tive activations in a codebook to support sequential
edits. CaliNet (Dong et al., 2022) adds small, tun-
able modules for factual calibration. These meth-
ods trade deep integration for locality, offering
strong stability, reversibility, and minimal side ef-
fects—key benefits for real-world deployment.

A detailed performance comparison of these
mechanism-based methods on foundational bench-
marks is provided in Appendix A.

3.2 Function-Based Editing: What Kind of
Knowledge Is Targeted?

While understanding the how of editing is crucial,
a full picture only emerges when we also consider
what is being edited. Early work focused almost ex-
clusively on static, factual triples. However, as the
field has matured, researchers have begun tackling
more complex knowledge types that present unique
challenges. In this section, we analyze recent work
through this functional lens, systematically con-
necting each problem back to the mechanisms in-
troduced previously.

3.2.1 Temporal Knowledge

We begin our exploration of knowledge types
with temporal knowledge, a natural extension of
static factual editing. Real-world knowledge of-
ten evolves (e.g., “The president of the USA is
Joe Biden”), presenting a challenge for static mod-
els that require updates that reflect new informa-
tion without erasing historical context. Editing this
knowledge type introduces a unique challenge cen-



tered on Locality, as the primary goal is to update
facts without corrupting the model’s memory of
relevant historical information. To address this,
METO (Yin et al., 2023) introduces the Temporal
Knowledge Editing (TKE) task and a correspond-
ing benchmark, ATOKE. This method enhances
existing locate-then-edit approaches like ROME
and MEMIT with a multi-editing mechanism and
time-sensitive objective, enabling joint optimiza-
tion over both current and historical knowledge. To
evaluate performance, the authors introduce sev-
eral specialized metrics that map to the general
principles of KE. Edit success is measured with
a Current Question Score (CES/CRS), which
functions as a direct test of Reliability, and a Para-
phrase Score (CES-P) to ensure Generality. Most
critically, they use a Historical Question Score
(HES/HRS) to assess if the model preserves the
original fact as historical context. This offers a
more nuanced measure of Locality, focusing on
the preservation of relevant temporal facts rather
than just the absence of unrelated errors (Yin et al.,
2023). Despite improvements, reasoning over rel-
ative temporal expressions and maintaining coher-
ence across long factual chains remain open chal-
lenges.

3.2.2 Conceptual Knowledge

Conceptual knowledge includes abstract defini-
tions and category-level relationships, such as the
definition of “mammal” or the criteria for being
a “bachelor.” For this knowledge type, the central
challenge is achieving a deep, structural form of
Generality, where an edit to an abstract definition
must consistently propagate top-down’ to all of
its member instances while maintaining semantic
coherence.

* ConceptEdit (Wang et al., 2024c) pioneers
this task by establishing the first benchmark
to evaluate how existing methods handle con-
ceptual edits. Instead of proposing a new
technique, it assesses standard Parameter-
Modifying approaches, revealing a critical
gap: while methods like ROME and MEMIT
achieve high Reliability in changing a con-
cept’s definition, they demonstrate poor struc-
tural Generality in propagating these changes
to instance-level knowledge. The paper in-
troduces two tailored metrics to capture this:
Concept Consistency as a nuanced measure
of Reliability, and Instance Change to di-
rectly evaluate this top-down Generality.

* RelEdit (Niu et al., 2025) builds on prior
work by arguing that evaluating conceptual
edits requires moving beyond simple defini-
tion changes to assess the edit’s impact on the
model’s relational reasoning. It introduces
a more comprehensive benchmark, RelEdit,
with a suite of new metrics designed to test
these "ripple effects" on the relationships be-
tween both concepts and instances. These met-
rics provide a more fine-grained assessment of
general KE principles: structural Generality
is measured through metrics like Portability
(assessing if new instances correctly associate
with the edited concept) and Alignment Be-
long/Compare (checking for correct propaga-
tion through the conceptual hierarchy). Local-
ity is specifically tested with Instance Local-
ity, which ensures unrelated instance-concept
pairs remain unaffected. To address the prop-
agation challenge identified by prior work,
the paper proposes a non-parametric baseline,
MICE (Memory-based In-Context Editing),
which uses an external memory and in-context
learning. The finding that MICE outperforms
traditional parameter-modifying methods on
these complex reasoning tasks suggests that
memory-based approaches are a promising
direction for this field.

3.2.3 Commonsense Knowledge

Commonsense knowledge encompasses intuitive,
everyday reasoning about the physical and causal
world (e.g., “Rain makes the ground wet”). Edit-
ing this knowledge type pushes the boundaries of
both Generality and Locality. The challenge lies
in propagating an edit through a web of informal,
interconnected facts while preserving related but
distinct concepts, requiring a more sophisticated
evaluation framework. Unlike structured factual
knowledge, it is often expressed in free-text and is
distributed across a model’s architecture, making
it difficult to localize and edit. Early methods de-
signed for single-token, triple-based facts thus face
fundamental limitations in this domain.

To improve applicability in the commonsense
domain, recent work has focused on adapting the
Locate-then-Edit mechanism to handle this dis-
tributed knowledge:

* MEMITCSK (Gupta et al., 2023) extends
its predecessor, MEMIT, to handle the
unique challenges of commonsense knowl-
edge, which, unlike encyclopedic facts, often



involves uncertainty and multiple plausible
answers. The paper argues that for common-
sense, plausibility judgments depend on the
entire subject-verb-object triple. Accordingly,
it improves MEMIT’s locate-then-edit mech-
anism in two ways: (1) performing causal trac-
ing and editing on subject, verb, and object
tokens, and (2) using a more robust layer se-
lection strategy based on the moving average
of the Average Indirect Effect (AIE). To pro-
vide a more comprehensive evaluation, the pa-
per introduces the PROBE SET benchmark,
which includes specialized tests that map to
general KE principles. Locality is measured
via an Unaffected Neighborhood (related but
distinct facts that should not change). Gener-
ality is assessed through an Affected Neigh-
borhood (synonyms), Affected Paraphrases,
and, most notably, an Affected Reasoning set,
which tests if the edit propagates through a
simple logical chain.

* DEM (Huang et al., 2024) addresses the chal-
lenge of editing free-text commonsense knowl-
edge, which differs from factual knowledge
due to its multi-token nature and distributed
storage. The authors first use a novel analy-
sis method, KLFT, to demonstrate that com-
monsense knowledge is dispersed across both
MLP and Attention layers, unlike factual
knowledge which is more localized. Moti-
vated by this finding, they propose a dynamics-
aware editing mechanism. This method con-
sists of two parts: (1) a Dynamics-aware
Module that dynamically identifies the most
relevant layers for each specific edit, rather
than using a fixed location, and (2) a Knowl-
edge Editing Module that jointly updates pa-
rameters in both the identified MLP and Atten-
tion layers. To support evaluation, the paper
introduces the CKEBench dataset. It assesses
performance using adapted metrics for free-
text, including Score (for Reliability), Speci-
ficity (for Locality), and Generalization, all
evaluated via GPT-4 similarity. It also intro-
duces a new domain-specific Commonsense
metric to verify the edit’s underlying success.

Together, these methods illustrate diverse strate-
gies for commonsense knowledge editing: from
refined token-layer targeting (MEMITCSK), to dy-
namic structural localization (DEM). Nonetheless,
editing commonsense remains an open challenge

due to its contextuality, ambiguity, and distributed
nature. Open questions include scaling to multilin-
gual and multimodal settings, resolving conflicting
edits, and preserving coherence across related con-
cepts.

3.2.4 Social Knowledge

Social knowledge editing targets biased or harmful
associations embedded in language models, such
as gender stereotypes or toxic completions. In this
domain, the critical challenge is balancing Reli-
ability with Locality. The goal is to precisely
remove a harmful association (Reliability) while
rigorously preserving the model’s useful knowl-
edge and general capabilities (Locality), avoiding
the common failure mode of corrupting valid in-
formation in the pursuit of fairness. While early
debiasing approaches often relied on methods like
prompt engineering, they typically lacked persis-
tence and control. More recently, researchers
have explored knowledge editing as an alternative
paradigm—shifting the focus from output steering
to direct modification of the model’s internal repre-
sentations and parameters. This approach, distinct
from alignment strategies like RLHF and DPO, en-
ables more targeted and interpretable edits to the
underlying knowledge responsible for social bias.

The following works illustrate three complemen-
tary strategies within this emerging paradigm, each
adapting a different core mechanism:

* BIASEDIT (Xu et al., 2025) adapts the
Hypernetwork/Meta-Learning approach
for bias mitigation. Building on the
MEND (Mitchell et al., 2022a) architecture,
it introduces editor hypernetworks trained
to modify stereotype-related parameters.
BIASEDIT proposes a pair of objectives
that directly map to core KE principles. To
ensure Reliability, it uses a debiasing loss
to equalize the likelihoods of stereotypical
and anti-stereotypical contexts, with success
measured by the Stereotype Score (SS),
which aims for an ideal value of 50%. To
maintain Locality, it employs a retention loss
to preserve the model’s behavior on unrelated
inputs (specifically, meaningless sentences).
This is evaluated using the Language
Modeling Score (LMS), where a minimal
change indicates that the model’s general
capabilities are unharmed. The paper also
explicitly tests for Generality by evaluating
the model on a synonym-augmented test set.



e FAST (Chen et al., 2024) addresses a key fail-
ure in existing debiasing work: that enforcing
group-level parity often corrupts valid com-
monsense knowledge (e.g., making "mom"
and "dad" biologically equivalent). It pro-
poses a fine-grained approach analogous to
Neuron-Augmentation. The framework first
uses a contrastive method to localize the sin-
gle model layer most responsible for a specific
bias. Then, it inserts a lightweight, trainable
module called a Fairness-Stamp (FAST) at
that location to perform a modular correction,
while freezing the original model parameters.
To evaluate this approach, the paper intro-
duces the BiaScope benchmark with two new
metrics. The Retention Score (RS) serves as
a direct measure of Locality, quantifying how
well the model preserves non-biased common-
sense facts that should be unaffected. The
Paraphrase Stereotype Score (PS) measures
Generality, assessing if the debiasing effect
extends to semantically similar, paraphrased
sentences.

* DINM (Wang et al., 2024a) uses the Locate-
then-Edit pipeline for detoxifying generative
models from harmful behaviors triggered by
adversarial prompts. Instead of tracing spe-
cific subject tokens, which is difficult in com-
plex queries, DINM introduces a novel local-
ization method. It identifies the "toxic layer"
by finding the layer with the maximal hidden
state difference between a generated safe and
unsafe response to the same query. It then
fine-tunes only the parameters of the MLP
components within this single toxic layer us-
ing a safety-aware objective. To evaluate this
approach, the paper constructs the SafeEdit
benchmark, which includes metrics that map
directly to KE principles. Reliability is mea-
sured by Defense Success (DS) on the orig-
inal adversarial prompt. Generality is as-
sessed with a suite of Defense Generaliza-
tion (DG) metrics that test the model against
out-of-domain questions and attack prompts.
Finally, Locality is evaluated by measuring
the impact on general capabilities like Flu-
ency and performance on downstream tasks
such as Knowledge QA and Summarization.

Taken together, these works exemplify three com-
plementary angles on editing social knowledge:
parameter-space rewiring (BIASEDIT), activation-

space probing and correction (FAST), and behavior-
level detoxification through adversarial supervi-
sion (DINM). Each builds on a different base: BI-
ASEDIT on MEND-style hypernetworks, FAST
on contrastive localization and modular correc-
tion, and DINM on ROME-like causal tracing
and editing. Yet, they also highlight shared chal-
lenges—maintaining general language ability, min-
imizing unintended interference, and adapting to
multilingual or evolving social norms. These re-
main important directions for future research.

4 Tasks and Datasets

Evaluating KE methods requires well-defined tasks
and robust datasets that can assess the effective-
ness of different editing techniques. Various tasks
have been proposed to test how well models in-
corporate, retain, and generalize knowledge edits,
with a strong emphasis on factual accuracy, con-
sistency, and minimal unintended changes to unre-
lated knowledge (Wang et al., 2024b).

4.1 Tasks

KE tasks evaluate how well a model integrates fac-
tual modifications while preserving existing knowl-
edge. These tasks serve as benchmarks for measur-
ing the effectiveness of different KE approaches.
The primary tasks considered in KE research in-
clude:

* Fact-Checking (FC): Assessing the model’s
ability to verify and correct factual claims
based on external evidence or world knowl-
edge. This includes static facts, time-sensitive
claims, and social assertions (e.g., stereotypi-
cal or biased statements).

* Question Answering (QA): Evaluating how
well a model retrieves and updates factual,
temporal, or commonsense knowledge in re-
sponse to questions. This includes closed-
book QA where models must reflect the most
recent or correct version of edited knowledge.

* Natural Language Generation (NLG): Test-
ing whether edits are reflected in free-form
outputs, including summaries, descriptions,
or generative completions that involve time-
sensitive, social, or conceptual facts.

4.2 Datasets

A broad suite of public datasets evaluates KE across
functional dimensions, from factual updates to bias



Table 1: Summary of papers by knowledge type and their primary mechanism or contribution.

Functional Knowledge Paper(s)

Primary Mechanism / Contribution

ROME, MEMIT, PMET

Locate-then-Edit

Factual MeLLo, SERAC, IKE Memory
actua
CaliNet, T-Patcher, GRACE Neuron-Augmented
MEND, MALMEN Meta-Learning
Temporal METO Locate-then-Edit
ConceptEdit* —
Conceptual )
RelEdit Memory-based / In-Context (MICE)
MEMITCSK Locate-then-Edit (Extension)
Commonsense o
DEM Locate-then-Edit (Distributed)
BIASEDIT Hypernetwork / Meta-Learning
Social FAST Neuron-Augmented
DINM Locate-then-Edit

*Note: ‘ConceptEdit‘ does not propose a new editing method but evaluates existing ones on its conceptual knowledge
benchmark.

mitigation. Table 2 summarizes these benchmarks;
full descriptions appear in Appendix B.

Factual and Temporal Knowledge. Factual edit-
ing is assessed using generation-based datasets like
zsRE and CounterFact, which test precision on
isolated updates. ATOKE and MQuAKE extend
this by evaluating temporal consistency and multi-
hop reasoning for evolving or interdependent facts.

Conceptual and Commonsense Knowledge.
Editing abstract knowledge requires higher-order
reasoning benchmarks. ConceptEdit targets struc-
tural changes in definitions and their downstream
effects (Wang et al., 2024c), while RelEdit eval-
uates edits’ impact on relational reasoning (Niu
et al., 2025). CKEBench and AbstractATOMIC
assess generalization and plausibility in common-
sense contexts (Huang et al., 2024).

Social Bias and Safety. Socially aware editing
is evaluated with benchmarks like Wikibias and
BiaScope, which address stereotype correction.
SafeEdit measures the ability to neutralize harmful
outputs while preserving fluency.

5 Challenges andFuture directions

Knowledge Editing (KE) has emerged as a cru-
cial research area for refining and updating factual
knowledge in LLLMs. While significant progress

has been made, several challenges remain unad-
dressed, and future research directions must focus
on improving efficiency, scalability, and robustness.
This section outlines key challenges and promising
future directions in KE.

5.1 Challenges

5.1.1 Balancing Locality and Generalization

A central challenge in KE is balancing locality
(avoiding side effects) with generalization (ensur-
ing consistency across contexts), depending on the
knowledge function. Factual edits require high
locality to prevent corruption, while conceptual
or social edits demand broader generalization. Fu-
ture work must develop methods that adaptively
balance this tradeoff by knowledge type.

5.1.2 The Need for Theoretical Foundations

Most KE methods are empirical and lack pre-
dictability due to the absence of a formal frame-
work for how LLMs store, retrieve, and modify
knowledge. Advancing the field requires theoret-
ical foundations rooted in information theory, in-
terpretability, and optimization to guide principled
editing strategies.

5.1.3 Scalability to Mass-Edits

Scaling KE to thousands of edits introduces con-
flicts, especially across heterogeneous knowledge



Table 2: Summary of KE datasets by knowledge type.

Dataset Type
Generation-Based Datasets

zsRE Factual

CounterFact Factual

MQuAKE Factual / Temporal
WikiGen Factual

ATOKE Temporal

CKEBench Commonsense
AbsATOMIC  Conceptual / Commonsense
SafeEdit Social
Classification-Based Datasets

FEVER Factual

VitaminC Factual

ConceptEdit ~ Conceptual

RelEdit Conceptual

PROBE SET  Commonsense
Wikibias Social

BiaScope Social / Commonsense
SCOTUS Temporal

types (e.g., commonsense and factual). Address-
ing this demands scalable architectures, memory-
efficient representations, and multi-edit synchro-
nization to maintain consistency and efficiency.

5.1.4 Moving Beyond Structured Knowledge

Current KE methods focus on structured, triple-
based facts, leaving a gap in editing unstructured
sources like news. This is especially limiting for
commonsense and social knowledge. Future work
should build end-to-end pipelines to extract, vali-
date, and integrate edits from raw text, along with
more flexible evaluation benchmarks.

5.2 Future Directions

5.2.1 Towards Optimization-Free and
Runtime Editing

Optimization-based KE is often too slow for real-
time use. Future work should explore optimization-
free methods, such as in-context learning or
memory-augmented models, enabling runtime
knowledge adaptation through dynamic user feed-
back without retraining.

5.2.2 Automating the Discovery of Knowledge
to Edit

Current KE systems rely on manual error identi-
fication. Future approaches should automate edit
discovery from real-time knowledge streams using
techniques like anomaly detection—essential for
domains like healthcare and finance.

5.2.3 Enhancing Robustness and Security

KE introduces risks of malicious edits (e.g., biases,
misinformation, backdoors). Future work must de-
velop verification, auditing, and certification proto-
cols to ensure the security and trustworthiness of
edited models.

5.2.4 Developing Ethical and Fair Editing
Frameworks

Informed by social knowledge editing (see 3.2.4),
fair KE must account for the ethical implications
of deciding what to edit. Future work should build
frameworks for transparency, community oversight,
and balancing factual accuracy with societal fair-
ness.

5.2.5 Creating Unified Evaluation
Frameworks

KE evaluation is currently fragmented across iso-
lated benchmarks. A key direction is building uni-
fied evaluation suites that assess editors across
diverse knowledge types, revealing tradeoffs (e.g.,
strong factual locality vs. weak conceptual gener-
alization).

6 Conclusion

Maintaining the factual accuracy of LLMs as real-
world information evolves is a persistent challenge.
Knowledge Editing (KE) has emerged as an ef-
ficient solution, enabling targeted updates to an
LLM’s internal knowledge without requiring costly
full retraining.

This survey provided a comprehensive review
of KE by analyzing the field along two orthogo-
nal axes: the editing mechanism and the knowl-
edge function. We categorized mechanisms into
parameter-modifying and parameter-preserving ap-
proaches, then introduced our novel function-
based taxonomy. This provides a holistic per-
spective by examining how these mechanisms ap-
ply to diverse knowledge types—from factual and
temporal to conceptual, commonsense, and so-
cial—supplemented by an overview of the field’s
key properties, evaluation tasks, and datasets.

Despite remarkable progress, KE remains an
evolving field. As we highlighted, future advance-
ments must focus on developing adaptive, scalable,
and secure editors. As LLMs become increasingly
integrated into real-world applications, KE will be
crucial for maintaining their reliability and adapt-
ability, contributing to more dynamic, accurate, and
ethically responsible Al systems.



Limitations

The field of knowledge editing is evolving at an
exceptional pace. While we have strived to provide
a comprehensive overview, this survey represents a
snapshot of research primarily published by mid-
2025. New methods and preprints emerging during
the review period may not be included.

Our primary contribution is a high-level taxo-
nomic framework. To maintain this broad perspec-
tive, we prioritize the categorization and synthesis
of different approaches over a deep, technical anal-
ysis of the implementation details of every individ-
ual method cited. Furthermore, our scope is strictly
focused on knowledge editing, and we do not pro-
vide a detailed comparison with related but dis-
tinct fields such as continual learning or parameter-
efficient fine-tuning.

Finally, this survey is a work of analysis and
does not introduce new empirical results. All per-
formance metrics discussed or presented (e.g., in
Appendix A) are reported from the original publi-
cations. We did not re-run experiments to perform
a controlled, head-to-head comparison of methods
under a single, unified environment, as this is be-
yond the scope of a survey.
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A Performance of Mechanism-Based
Editors

To evaluate the performance of existing knowledge
editing (KE) techniques, we summarize reported
results on two benchmark datasets: ZsRE and
CounterFact. These evaluations focus on three
core metrics—reliability, generalization, and local-
ity—across different model architectures, specifi-
cally T5-XL and GPT-J. Note that we only include
mechanism-based methods in Table 3, as function-
based approaches are evaluated on diverse and non-
overlapping datasets, preventing fair comparison.

As shown in Table 3, different methods demon-
strate varying strengths. On ZsRE with T5-XL,
SERAC achieves the highest reliability and gen-
eralization, while MEND provides the strongest
locality. On GPT-J, IKE excels in reliability and
generalization, whereas MEMIT achieves the best
locality.

For the CounterFact dataset, SERAC again per-
forms best in reliability and generalization for T5-
XL, while KE surprisingly achieves the top score
in locality. With GPT-J, T-Patcher stands out with
perfect reliability, while SERAC leads in general-
ization and locality.

These results highlight that no single method
dominates across all criteria. Techniques like
SERAC and MEMIT provide robust general-
purpose editing, while others such as IKE and KE
offer targeted strengths depending on the task and
architecture (Yao et al., 2023).

A variety of datasets have been curated to eval-
uvate KE methods across different tasks. These
datasets assess a model’s ability to integrate new
facts, correct misinformation, and retain knowl-
edge while minimizing unintended side effects.
Based on the nature of their outputs, these datasets
can be categorized into generation-based and
classification-based datasets.

B Detailed information about datasets

B.0.1 Generation-Based Datasets

zsRE (Levy et al., 2017) The Zero-Shot Re-
lation Extraction (zsRE) dataset is widely used
in KE evaluations, particularly in QA tasks. It
consists of relation-specific templates sourced
from Wikipedia, covering a broad range of entity-
relation-object tuples. Each entry includes a valid
question and an associated factual statement, with
paraphrases that help test the robustness of KE
methods against semantically equivalent prompts.

11

CounterFact (Meng et al., 2022) CounterFact
is designed to evaluate how well KE techniques
modify a model’s underlying factual knowledge
rather than merely adapting to superficial wording
changes. It was introduced alongside the ROME
method. Each entry is derived from ParaRel Elazar
et al. (2021) and consists of a structured knowledge
triple alongside carefully crafted prompt templates.
All subjects, relations, and objects originate from
Wikidata, making it straightforward to assess con-
sistency across multiple paraphrases.

MQuAKE (Zhong et al., 2023) MQuAKE is a
benchmark dataset focusing on multi-hop reason-
ing. It includes both counterfactual and outdated
factual scenarios, requiring models to propagate ed-
its through interconnected facts. Constructed from
Wikidata, MQuAKE presents a challenging test
for KE methods to verify whether updates remain
consistent across related queries.

WikiGen (Mitchell et al., 2022a) WikiGen is
introduced in MEND to evaluate KE in a free-form
generation setting. It consists of question-answer
pairs derived from randomly sampled Wikipedia
sentences, where the answers are generated using a
pre-trained distilGPT-2 model. Fewer than 1% of
its samples align with the base model’s 10-token
greedy predictions, making it a challenging bench-
mark for measuring edit reliability and generaliza-
tion.

CKEBench CKEBench was introduced to ad-
dress the limitations of existing KE datasets in
handling commonsense knowledge expressed in
natural language. Derived from ATOMIC, it cov-
ers everyday scenarios with implications like in-
tents, reactions, and effects, framed through rela-
tions such as xIntent and oEffect. What sets
CKEBench apart is its support for multiple rea-
soning formats—open-ended generation, multi-
ple choice, and binary classification (true/false).
This makes it a versatile benchmark for evaluating
whether KE methods can edit free-text common-
sense knowledge while preserving coherence and
plausibility.

AbsATOMIC (Conceptualized Triples) To test
whether LLMs can be edited at a higher conceptual
level beyond specific instances, Abstract ATOMIC
was constructed by rephrasing ATOMIC’s knowl-
edge into generalized, abstract templates using
GPT-4. These conceptualized triples replace
surface-level details with high-level semantic roles



Table 3: Performance comparison of knowledge editing methods across datasets (ZsRE and CounterFact) and
models (T5-XL and GPT-J) on Reliability, Generalization, and Locality. Results are reported from Yao et al. (2023).

Dataset Model Metric FT-L SERAC IKE CaliNet T-Patcher KE MEND KN ROME MEMIT
Reliability 20.71  99.80 67.00 5.17 30.52 3.00 78.80 22.51 - -
T5-XL Generalization 19.68  99.66  67.11 4.81 30.53 540  89.80 22.70 - -
ZSRE Locality 89.01 98.13 63.60 7247 77.10 9643 9845 1643 - -
Reliability 5470  90.16 99.96 22.72 97.12 6.60 98.15 11.34 99.18 99.23
GPT-J  Generalization 49.20 89.96  99.87 0.12 94.95 7.80 97.66 9.40 9490 87.16
Locality 37.24 9990 59.21 12.03 96.24 94.18 97.39 90.03 99.19 99.62
Reliability 3357 99.89 97.77 7.76 80.26 1.00 8140 47.86 - -
T5-XL Generalization 23.54 9871  82.99 7.57 21.73 140 9340 46.78 - -
CounterFact Locality 7272 9993 3776  27.75 85.09 96.28 91.58 57.10 - -
Reliability 99.90 99.78 99.61  43.58 100.00 13.40 73.80 1.66 99.80 99.90
GPT-J  Generalization 97.53 9941  72.67 0.66 83.98 11.00  74.20 1.38 86.63 73.13
Locality 1.02 98.89  35.57 2.69 8.37 9438 9375 5828 93.61 97.17

(e.g., “PersonX engages in enjoyable group activ-
ities”), enabling evaluations of generalization in
knowledge editing. The abstraction also supports
compositional reasoning and robustness to para-
phrase.

ATOKE Temporal Knowledge Editing (TKE)
poses a unique challenge: modifying models to
reflect updated facts without erasing historically
valid information. To benchmark this task, ATOKE
(Assessment of Temporal Knowledge Editing) was
introduced. Built from Wikidata and curated fac-
tual timelines (e.g., U.S. presidents), ATOKE tests
if models can answer both present and past ques-
tions accurately across time-based edits. Each fact
is timestamped, and edits evolve the model’s inter-
nal timeline, ensuring consistency across temporal
transitions.

SafeEdit While detoxification has gained promi-
nence in LLM safety research, most existing
datasets target classification rather than generative
reasoning. SafeEdit was designed to fill this gap. It
consists of prompts in nine unsafe categories (e.g.,
illegal activity, self-harm) along with both safe and
unsafe completions. These were generated using
GPT-4 and manually curated. The dataset allows
for fine-grained evaluation of whether KE methods
can neutralize toxic completions without sacrific-
ing generative fluency.

B.0.2 Classification-Based Datasets

FEVER (Thorne et al., 2018) The Fact Extrac-
tion and Verification (FEVER) dataset contains
Wikipedia-based claims labeled as supported, re-
futed, or not enough info. It has been adapted for
KE by grouping claims on similar topics and intro-
ducing paraphrases and altered labels, providing a

robust test for how well models preserve or modify
factual knowledge.

VitaminC (Schuster et al., 2021) VitaminC is
a large-scale fact-checking dataset derived from
Wikipedia revisions, each labeled as entailed or
contradicted by an accompanying evidence state-
ment. It is particularly useful for testing a model’s
ability to integrate factual updates without inadver-
tently propagating errors to unrelated claims.

SCOTUS (Hartvigsen et al., 2022) SCOTUS is
adapted from a corpus of U.S. Supreme Court case
documents, categorized into 11 legal topics. Due to
changes in legal definitions and classifications over
time, it presents a unique challenge for KE, requir-
ing models to update domain-specific knowledge
while preserving historical context.

ConceptEdit ConceptEdit focuses on a novel
form of KE: modifying conceptual definitions (e.g.,
animal taxonomy) and observing their impact on
instance classification. The dataset was built us-
ing DBpedia and Wikidata by selecting concepts
(like “Camelidae”) and associating them with nat-
ural language definitions and instance lists. When
a concept’s definition is edited, models must infer
which instances still belong. ConceptEdit thus eval-
uates the downstream semantic consequences of
edits.

PROBE SET (MEMITCSK) To explore
whether KE generalizes across surface form and
reasoning depth, PROBE SET was created. Based
on commonsense datasets like PEP3k and 20Q, it
includes true/false statements with paraphrased,
contradictory, and entailment-related variations.
This setup tests whether knowledge edits propagate
semantically across related linguistic structures.

12



The evaluation is grounded in binary judgments
(true vs. false), positioning PROBE SET as a
classification-based resource.

Wikibias Addressing the growing concern of
social biases in LLMs, Wikibias offers a bench-
mark for stereotype editing. Extracted from real
Wikipedia content, the dataset pairs biased and un-
biased factual claims involving professions, gen-
der, race, and other social roles. Each example
allows comparison of the model’s preference to-
ward stereotypical vs. neutral formulations. By
design, Wikibias targets binary classification of
bias presence and factual validity.

BiaScope BiaScope was constructed to evaluate
KE methods on fine-grained social bias mitiga-
tion. It merges data from StereoSet and CrowS-
Pairs with GPT-4-generated paraphrases and hu-
man annotations. The dataset contains two parts:
(1) non-biased commonsense knowledge that must
be preserved, and (2) stereotype-laden sentences
that should be edited. This dual-purpose setup en-
ables controlled testing of bias removal without
degrading general knowledge.

RelEdit RelEdit was constructed to evaluate con-
ceptual knowledge editing, with a specific focus on
the model’s relational reasoning capabilities after
an edit. The benchmark is built upon the DBpe-
dia ontology and contains a hierarchy of concepts
and their corresponding instances. The dataset is
structured to assess the "ripple effects" of an edit
at two levels: (1) the instance level, evaluating
changes in the relationships between a concept and
its instances, and (2) the concept level, evaluat-
ing changes among related concepts. This two-
level setup enables a comprehensive assessment of
whether an edit has been deeply integrated into the
model’s knowledge structure, going beyond simple
definition recall.
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