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Abstract001

Large language models (LLMs) acquire vast002
knowledge from large text corpora, but this in-003
formation can become outdated or inaccurate.004
Since retraining is computationally expensive,005
knowledge editing offers an efficient alterna-006
tive—modifying internal knowledge without007
full retraining. These methods aim to update008
facts precisely while preserving the model’s009
overall capabilities.010

While existing surveys focus on the mechanism011
of editing (e.g., parameter changes vs. exter-012
nal memory), they often overlook the function013
of the knowledge being edited. This survey014
introduces a novel, complementary function-015
based taxonomy to provide a more holistic016
view. We examine how different mechanisms017
apply to various knowledge types—factual,018
temporal, conceptual, commonsense, and so-019
cial—highlighting how editing effectiveness020
depends on the nature of the target knowledge.021

By organizing our review along these two022
axes, we map the current landscape, outline023
the strengths and limitations of existing meth-024
ods, define the problem formally, survey eval-025
uation tasks and datasets, and conclude with026
open challenges and future directions.027

1 Introduction028

Large language models (LLMs) have shown re-029

markable abilities in understanding and generating030

human-like text (Brown et al., 2020; Achiam et al.,031

2023; Anil et al., 2023; Touvron et al., 2023; Zhao032

et al., 2023). However, keeping them relevant and033

correcting errors efficiently remains a challenge.034

Retraining entire models is computationally expen-035

sive, prompting interest in model editing (Sinitsin036

et al., 2020; De Cao et al., 2021), which enables037

targeted updates while preserving overall function-038

ality.039

As shown in Figure 1, knowledge editing aims to040

correct specific information in a model. When an041

LLM gives an incorrect output, an editor adjusts the 042

model to produce a factual response, with changes 043

localized to avoid affecting unrelated knowledge. 044

Although various KE methods have emerged 045

(De Cao et al., 2021; Meng et al., 2023, 046

2022; Sinitsin et al., 2020; Huang et al., 2023), 047

most surveys classify them by their mecha- 048

nisms—modifying parameters or adding external 049

modules. This overlooks an essential aspect: the 050

type of knowledge being edited. Techniques that 051

work for simple facts (e.g., capital cities) may fall 052

short with complex knowledge like commonsense 053

reasoning or social biases. 054

This survey addresses the gap by proposing a 055

novel, complementary function-based taxonomy. 056

We argue that understanding KE requires examin- 057

ing the type of knowledge being edited. By classify- 058

ing methods by the functional knowledge they tar- 059

get—factual, temporal, conceptual, commonsense, 060

and social—we reveal the unique challenges and 061

limitations of current approaches. This framework 062

offers a more holistic basis for evaluating and ad- 063

vancing the field. 064

To guide the reader, Section 2 defines the prob- 065

lem and outlines key properties of an ideal edi- 066

tor. Section 3 introduces our dual-axis taxonomy, 067

covering both mechanism- and function-based per- 068

spectives. Section 4 surveys evaluation tasks and 069

datasets, and Section 5 highlights open challenges 070

and future directions. 071

2 Knowledge Editing 072

Knowledge editing (KE), also known as model 073

editing, was first introduced by Sinitsin et al. 074

(2020). The core objective is to correct a model’s 075

error on a specific instance while preserving its 076

overall behavior. For a base model fθ and a specific 077

edit request—an input-output pair (xe, ye) where 078

the model’s current output is incorrect (fθ(xe) ̸= 079

ye)—the goal is to produce an edited model, fθe , 080
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Q: Who is the CEO of 
Twitter?

A: Elon Musk is the CEO 
of Twitter.

Q: Who is the CEO of 
Twitter?

A: Linda Yaccarino is the 
CEO of Twitter as of mid-

2023

Leadership change in 2023

Un-edited LLM Edited LLMKnowledge Editing

Figure 1: An example of Knowledge Editing illustrating
efficient and localized knowledge updates in LLMs.

that satisfies the request (fθe(xe) = ye) (Mitchell081

et al., 2022a; Yao et al., 2023).082

The central challenge of KE lies in achieving083

this correction with precision. An ideal editor must084

make changes that are both specific enough to avoid085

unintended side effects and general enough to be086

robust. To formalize this, we define two disjoint087

sets of inputs:088

• Edit Scope I(xe, ye): The set of all inputs089

to which the new fact should apply. This in-090

cludes the original input xe and all its seman-091

tic paraphrases (e.g., different ways of asking092

the same question).093

• Out-of-Scope O(xe, ye): The set of all other094

inputs, which should remain completely unaf-095

fected by the edit.096

A successful KE method, therefore, must satisfy097

the condition outlined in Equation 1, which states098

that the edited model should produce the new tar-099

get output for all in-scope inputs and revert to its100

original behavior for all out-of-scope inputs (Yao101

et al., 2023).102

fθe(x) =

{
ye if x ∈ I(xe, ye),

fθ(x) if x ∈ O(xe, ye)
(1)103

2.1 General Metrics104

To measure how well a given method approximates105

this ideal, the literature has established four gen-106

eral properties: Reliability, Generality, Locality,107

and Efficiency. While these metrics provide a foun-108

dational assessment, we will later introduce more109

specialized, function-specific metrics in our analy-110

sis of different knowledge types111

• Reliability: Reliability measures if the edit112

was successful for the specific input it was113

given. It is the most fundamental property of 114

a successful edit (Huang et al., 2023; De Cao 115

et al., 2021; Meng et al., 2022). Formally, it 116

is the success rate on the original edit pair 117

(xe, ye). 118

Ex′
e,y

′
e∼{(xe,ye)}I

{
argmaxy fθe

(
y | x′e

)
= y′e

}
(2) 119

In simple terms, this metric asks: After the 120

edit, does the model now provide the correct 121

target answer for the original prompt? 122

• Generality: Generality (or Generalization) 123

measures whether the edit propagates to other 124

semantically equivalent inputs that fall within 125

the edit scope I(xe, ye). This is typically eval- 126

uated on a set of paraphrases or “neighboring 127

instances,” denoted as N(xe, ye), to ensure 128

the updated knowledge is robust and not just 129

a superficial fix. 130

Ex′
e,y

′
e∼N(xe,ye)I

{
argmaxy fθe

(
y | x′e

)
= y′e

}
(3) 131

This metric essentially asks: Does the edit 132

also apply to different phrasings of the same 133

question? 134

• Locality: Locality, also known as speci- 135

ficity (Yao et al., 2023), measures whether the 136

edit has had unintended effects on unrelated 137

knowledge (i.e., on inputs in the out-of-scope 138

set O(xe, ye)). High locality is critical for 139

preserving the model’s overall integrity. 140

Ex′
e,y

′
e∼O(xe,ye)I

{
fθe

(
y | x′e

)
= fθ

(
y | x′e

)}
(4) 141

In other words, this checks that for unrelated 142

inputs, the edited model’s output distribution 143

is identical to the original model’s, ensuring 144

there are no negative side effects. 145

• Efficiency: The KE method must be efficient 146

in terms of computational resources, including 147

both time and memory consumption (Mazzia 148

et al., 2024). Efficiency is especially crucial 149

for practical applications involving large-scale 150

models or streams of sequential edits. 151

3 Dual-Axis Taxonomy: 152

To provide a comprehensive overview of Knowl- 153

edge Editing (KE), we analyze current techniques 154

along two orthogonal axes: the mechanism used to 155

alter the model and the function of the knowledge 156
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being targeted. This dual-perspective approach is157

essential because a method’s effectiveness is de-158

fined by both its technical implementation and the159

nature of the problem it is intended to solve.160

We begin in Section 3.1 by reviewing the primary161

editing mechanisms, which are broadly categorized162

as either modifying the model’s parameters or pre-163

serving them. Then, in Section 3.2, we introduce164

our novel function-based taxonomy to analyze how165

these mechanisms are applied to increasingly com-166

plex types of knowledge.167

3.1 Mechanism-Based Editing: How Is the168

Model Altered?169

KE techniques are most commonly distinguished170

by how they alter a model’s behavior. The central171

choice is whether to directly change the LLM’s172

internal weights or to augment the model with173

an external component that intercepts or guides174

its outputs at inference time. The field’s pioneer-175

ing studies, such as ROME (Meng et al., 2022),176

MEMIT (Meng et al., 2023), and MEND (Mitchell177

et al., 2022a), were developed to correct discrete178

factual inaccuracies like (Paris, capital_of,179

France) and thus established many of the founda-180

tional mechanisms discussed here.181

3.1.1 Parameter-Modifying Methods182

These methods directly modify a model’s internal183

weights to encode new or corrected knowledge and184

fall into two main categories.185

Locate-then-Edit methods aim for surgical pre-186

cision by identifying and updating specific neu-187

rons or layers responsible for a piece of knowl-188

edge. ROME (Meng et al., 2022) uses causal189

mediation analysis to locate factual associations190

in transformer feed-forward layers, applying con-191

strained optimization for edits. MEMIT (Meng192

et al., 2023) scales this by editing thousands of193

facts via efficient rank-one updates to the same194

layer type. PMET (Li et al., 2023) extends this195

approach by including attention layers for finer con-196

trol. While precise, these methods are less tested197

on non-factual knowledge, and the reliability of198

causal localization remains uncertain (Hase et al.,199

2023).200

Hypernetwork/Meta-Learning approaches201

use a separate model to predict weight updates.202

MEND (Mitchell et al., 2022a) trains a hypernet-203

work that converts gradients into low-rank updates.204

MALMEN (Tan et al., 2023) improves scalabil-205

ity by framing update prediction as a least-squares206

problem. Though flexible, these methods can be 207

sensitive to domain shifts and cumulative edits. 208

3.1.2 Parameter-Preserving Methods 209

These methods keep the base LLM’s weights 210

frozen and instead modify its output behavior at in- 211

ference time, prioritizing stability and reversibility. 212

Memory-Based approaches store new facts 213

in external memory. SERAC (Mitchell et al., 214

2022b) uses a classifier to decide whether to rely 215

on the base model or retrieve a counterfactual edit. 216

IKE (Zheng et al., 2023) and MeLLo (Zhong et al., 217

2023) retrieve relevant examples to serve as in- 218

context demonstrations, effectively editing model 219

behavior without weight changes. 220

Neuron-Augmented methods insert train- 221

able components into the architecture. T- 222

Patcher (Huang et al., 2023) assigns a dedi- 223

cated "patch" neuron per edit, activated as needed. 224

GRACE (Hartvigsen et al., 2022) caches correc- 225

tive activations in a codebook to support sequential 226

edits. CaliNet (Dong et al., 2022) adds small, tun- 227

able modules for factual calibration. These meth- 228

ods trade deep integration for locality, offering 229

strong stability, reversibility, and minimal side ef- 230

fects—key benefits for real-world deployment. 231

A detailed performance comparison of these 232

mechanism-based methods on foundational bench- 233

marks is provided in Appendix A. 234

3.2 Function-Based Editing: What Kind of 235

Knowledge Is Targeted? 236

While understanding the how of editing is crucial, 237

a full picture only emerges when we also consider 238

what is being edited. Early work focused almost ex- 239

clusively on static, factual triples. However, as the 240

field has matured, researchers have begun tackling 241

more complex knowledge types that present unique 242

challenges. In this section, we analyze recent work 243

through this functional lens, systematically con- 244

necting each problem back to the mechanisms in- 245

troduced previously. 246

3.2.1 Temporal Knowledge 247

We begin our exploration of knowledge types 248

with temporal knowledge, a natural extension of 249

static factual editing. Real-world knowledge of- 250

ten evolves (e.g., “The president of the USA is 251

Joe Biden”), presenting a challenge for static mod- 252

els that require updates that reflect new informa- 253

tion without erasing historical context. Editing this 254

knowledge type introduces a unique challenge cen- 255
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tered on Locality, as the primary goal is to update256

facts without corrupting the model’s memory of257

relevant historical information. To address this,258

METO (Yin et al., 2023) introduces the Temporal259

Knowledge Editing (TKE) task and a correspond-260

ing benchmark, ATOKE. This method enhances261

existing locate-then-edit approaches like ROME262

and MEMIT with a multi-editing mechanism and263

time-sensitive objective, enabling joint optimiza-264

tion over both current and historical knowledge. To265

evaluate performance, the authors introduce sev-266

eral specialized metrics that map to the general267

principles of KE. Edit success is measured with268

a Current Question Score (CES/CRS), which269

functions as a direct test of Reliability, and a Para-270

phrase Score (CES-P) to ensure Generality. Most271

critically, they use a Historical Question Score272

(HES/HRS) to assess if the model preserves the273

original fact as historical context. This offers a274

more nuanced measure of Locality, focusing on275

the preservation of relevant temporal facts rather276

than just the absence of unrelated errors (Yin et al.,277

2023). Despite improvements, reasoning over rel-278

ative temporal expressions and maintaining coher-279

ence across long factual chains remain open chal-280

lenges.281

3.2.2 Conceptual Knowledge282

Conceptual knowledge includes abstract defini-283

tions and category-level relationships, such as the284

definition of “mammal” or the criteria for being285

a “bachelor.” For this knowledge type, the central286

challenge is achieving a deep, structural form of287

Generality, where an edit to an abstract definition288

must consistently propagate ’top-down’ to all of289

its member instances while maintaining semantic290

coherence.291

• ConceptEdit (Wang et al., 2024c) pioneers292

this task by establishing the first benchmark293

to evaluate how existing methods handle con-294

ceptual edits. Instead of proposing a new295

technique, it assesses standard Parameter-296

Modifying approaches, revealing a critical297

gap: while methods like ROME and MEMIT298

achieve high Reliability in changing a con-299

cept’s definition, they demonstrate poor struc-300

tural Generality in propagating these changes301

to instance-level knowledge. The paper in-302

troduces two tailored metrics to capture this:303

Concept Consistency as a nuanced measure304

of Reliability, and Instance Change to di-305

rectly evaluate this top-down Generality.306

• RelEdit (Niu et al., 2025) builds on prior 307

work by arguing that evaluating conceptual 308

edits requires moving beyond simple defini- 309

tion changes to assess the edit’s impact on the 310

model’s relational reasoning. It introduces 311

a more comprehensive benchmark, RelEdit, 312

with a suite of new metrics designed to test 313

these "ripple effects" on the relationships be- 314

tween both concepts and instances. These met- 315

rics provide a more fine-grained assessment of 316

general KE principles: structural Generality 317

is measured through metrics like Portability 318

(assessing if new instances correctly associate 319

with the edited concept) and Alignment Be- 320

long/Compare (checking for correct propaga- 321

tion through the conceptual hierarchy). Local- 322

ity is specifically tested with Instance Local- 323

ity, which ensures unrelated instance-concept 324

pairs remain unaffected. To address the prop- 325

agation challenge identified by prior work, 326

the paper proposes a non-parametric baseline, 327

MICE (Memory-based In-Context Editing), 328

which uses an external memory and in-context 329

learning. The finding that MICE outperforms 330

traditional parameter-modifying methods on 331

these complex reasoning tasks suggests that 332

memory-based approaches are a promising 333

direction for this field. 334

3.2.3 Commonsense Knowledge 335

Commonsense knowledge encompasses intuitive, 336

everyday reasoning about the physical and causal 337

world (e.g., “Rain makes the ground wet”). Edit- 338

ing this knowledge type pushes the boundaries of 339

both Generality and Locality. The challenge lies 340

in propagating an edit through a web of informal, 341

interconnected facts while preserving related but 342

distinct concepts, requiring a more sophisticated 343

evaluation framework. Unlike structured factual 344

knowledge, it is often expressed in free-text and is 345

distributed across a model’s architecture, making 346

it difficult to localize and edit. Early methods de- 347

signed for single-token, triple-based facts thus face 348

fundamental limitations in this domain. 349

To improve applicability in the commonsense 350

domain, recent work has focused on adapting the 351

Locate-then-Edit mechanism to handle this dis- 352

tributed knowledge: 353

• MEMITCSK (Gupta et al., 2023) extends 354

its predecessor, MEMIT, to handle the 355

unique challenges of commonsense knowl- 356

edge, which, unlike encyclopedic facts, often 357
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involves uncertainty and multiple plausible358

answers. The paper argues that for common-359

sense, plausibility judgments depend on the360

entire subject-verb-object triple. Accordingly,361

it improves MEMIT’s locate-then-edit mech-362

anism in two ways: (1) performing causal trac-363

ing and editing on subject, verb, and object364

tokens, and (2) using a more robust layer se-365

lection strategy based on the moving average366

of the Average Indirect Effect (AIE). To pro-367

vide a more comprehensive evaluation, the pa-368

per introduces the PROBE SET benchmark,369

which includes specialized tests that map to370

general KE principles. Locality is measured371

via an Unaffected Neighborhood (related but372

distinct facts that should not change). Gener-373

ality is assessed through an Affected Neigh-374

borhood (synonyms), Affected Paraphrases,375

and, most notably, an Affected Reasoning set,376

which tests if the edit propagates through a377

simple logical chain.378

• DEM (Huang et al., 2024) addresses the chal-379

lenge of editing free-text commonsense knowl-380

edge, which differs from factual knowledge381

due to its multi-token nature and distributed382

storage. The authors first use a novel analy-383

sis method, KLFT, to demonstrate that com-384

monsense knowledge is dispersed across both385

MLP and Attention layers, unlike factual386

knowledge which is more localized. Moti-387

vated by this finding, they propose a dynamics-388

aware editing mechanism. This method con-389

sists of two parts: (1) a Dynamics-aware390

Module that dynamically identifies the most391

relevant layers for each specific edit, rather392

than using a fixed location, and (2) a Knowl-393

edge Editing Module that jointly updates pa-394

rameters in both the identified MLP and Atten-395

tion layers. To support evaluation, the paper396

introduces the CKEBench dataset. It assesses397

performance using adapted metrics for free-398

text, including Score (for Reliability), Speci-399

ficity (for Locality), and Generalization, all400

evaluated via GPT-4 similarity. It also intro-401

duces a new domain-specific Commonsense402

metric to verify the edit’s underlying success.403

Together, these methods illustrate diverse strate-404

gies for commonsense knowledge editing: from405

refined token-layer targeting (MEMITCSK), to dy-406

namic structural localization (DEM). Nonetheless,407

editing commonsense remains an open challenge408

due to its contextuality, ambiguity, and distributed 409

nature. Open questions include scaling to multilin- 410

gual and multimodal settings, resolving conflicting 411

edits, and preserving coherence across related con- 412

cepts. 413

3.2.4 Social Knowledge 414

Social knowledge editing targets biased or harmful 415

associations embedded in language models, such 416

as gender stereotypes or toxic completions. In this 417

domain, the critical challenge is balancing Reli- 418

ability with Locality. The goal is to precisely 419

remove a harmful association (Reliability) while 420

rigorously preserving the model’s useful knowl- 421

edge and general capabilities (Locality), avoiding 422

the common failure mode of corrupting valid in- 423

formation in the pursuit of fairness. While early 424

debiasing approaches often relied on methods like 425

prompt engineering, they typically lacked persis- 426

tence and control. More recently, researchers 427

have explored knowledge editing as an alternative 428

paradigm—shifting the focus from output steering 429

to direct modification of the model’s internal repre- 430

sentations and parameters. This approach, distinct 431

from alignment strategies like RLHF and DPO, en- 432

ables more targeted and interpretable edits to the 433

underlying knowledge responsible for social bias. 434

The following works illustrate three complemen- 435

tary strategies within this emerging paradigm, each 436

adapting a different core mechanism: 437

• BIASEDIT (Xu et al., 2025) adapts the 438

Hypernetwork/Meta-Learning approach 439

for bias mitigation. Building on the 440

MEND (Mitchell et al., 2022a) architecture, 441

it introduces editor hypernetworks trained 442

to modify stereotype-related parameters. 443

BIASEDIT proposes a pair of objectives 444

that directly map to core KE principles. To 445

ensure Reliability, it uses a debiasing loss 446

to equalize the likelihoods of stereotypical 447

and anti-stereotypical contexts, with success 448

measured by the Stereotype Score (SS), 449

which aims for an ideal value of 50%. To 450

maintain Locality, it employs a retention loss 451

to preserve the model’s behavior on unrelated 452

inputs (specifically, meaningless sentences). 453

This is evaluated using the Language 454

Modeling Score (LMS), where a minimal 455

change indicates that the model’s general 456

capabilities are unharmed. The paper also 457

explicitly tests for Generality by evaluating 458

the model on a synonym-augmented test set. 459
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• FAST (Chen et al., 2024) addresses a key fail-460

ure in existing debiasing work: that enforcing461

group-level parity often corrupts valid com-462

monsense knowledge (e.g., making "mom"463

and "dad" biologically equivalent). It pro-464

poses a fine-grained approach analogous to465

Neuron-Augmentation. The framework first466

uses a contrastive method to localize the sin-467

gle model layer most responsible for a specific468

bias. Then, it inserts a lightweight, trainable469

module called a Fairness-Stamp (FAST) at470

that location to perform a modular correction,471

while freezing the original model parameters.472

To evaluate this approach, the paper intro-473

duces the BiaScope benchmark with two new474

metrics. The Retention Score (RS) serves as475

a direct measure of Locality, quantifying how476

well the model preserves non-biased common-477

sense facts that should be unaffected. The478

Paraphrase Stereotype Score (PS) measures479

Generality, assessing if the debiasing effect480

extends to semantically similar, paraphrased481

sentences.482

• DINM (Wang et al., 2024a) uses the Locate-483

then-Edit pipeline for detoxifying generative484

models from harmful behaviors triggered by485

adversarial prompts. Instead of tracing spe-486

cific subject tokens, which is difficult in com-487

plex queries, DINM introduces a novel local-488

ization method. It identifies the "toxic layer"489

by finding the layer with the maximal hidden490

state difference between a generated safe and491

unsafe response to the same query. It then492

fine-tunes only the parameters of the MLP493

components within this single toxic layer us-494

ing a safety-aware objective. To evaluate this495

approach, the paper constructs the SafeEdit496

benchmark, which includes metrics that map497

directly to KE principles. Reliability is mea-498

sured by Defense Success (DS) on the orig-499

inal adversarial prompt. Generality is as-500

sessed with a suite of Defense Generaliza-501

tion (DG) metrics that test the model against502

out-of-domain questions and attack prompts.503

Finally, Locality is evaluated by measuring504

the impact on general capabilities like Flu-505

ency and performance on downstream tasks506

such as Knowledge QA and Summarization.507

Taken together, these works exemplify three com-508

plementary angles on editing social knowledge:509

parameter-space rewiring (BIASEDIT), activation-510

space probing and correction (FAST), and behavior- 511

level detoxification through adversarial supervi- 512

sion (DINM). Each builds on a different base: BI- 513

ASEDIT on MEND-style hypernetworks, FAST 514

on contrastive localization and modular correc- 515

tion, and DINM on ROME-like causal tracing 516

and editing. Yet, they also highlight shared chal- 517

lenges—maintaining general language ability, min- 518

imizing unintended interference, and adapting to 519

multilingual or evolving social norms. These re- 520

main important directions for future research. 521

4 Tasks and Datasets 522

Evaluating KE methods requires well-defined tasks 523

and robust datasets that can assess the effective- 524

ness of different editing techniques. Various tasks 525

have been proposed to test how well models in- 526

corporate, retain, and generalize knowledge edits, 527

with a strong emphasis on factual accuracy, con- 528

sistency, and minimal unintended changes to unre- 529

lated knowledge (Wang et al., 2024b). 530

4.1 Tasks 531

KE tasks evaluate how well a model integrates fac- 532

tual modifications while preserving existing knowl- 533

edge. These tasks serve as benchmarks for measur- 534

ing the effectiveness of different KE approaches. 535

The primary tasks considered in KE research in- 536

clude: 537

• Fact-Checking (FC): Assessing the model’s 538

ability to verify and correct factual claims 539

based on external evidence or world knowl- 540

edge. This includes static facts, time-sensitive 541

claims, and social assertions (e.g., stereotypi- 542

cal or biased statements). 543

• Question Answering (QA): Evaluating how 544

well a model retrieves and updates factual, 545

temporal, or commonsense knowledge in re- 546

sponse to questions. This includes closed- 547

book QA where models must reflect the most 548

recent or correct version of edited knowledge. 549

• Natural Language Generation (NLG): Test- 550

ing whether edits are reflected in free-form 551

outputs, including summaries, descriptions, 552

or generative completions that involve time- 553

sensitive, social, or conceptual facts. 554

4.2 Datasets 555

A broad suite of public datasets evaluates KE across 556

functional dimensions, from factual updates to bias 557
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Table 1: Summary of papers by knowledge type and their primary mechanism or contribution.

Functional Knowledge Paper(s) Primary Mechanism / Contribution

Factual

ROME, MEMIT, PMET Locate-then-Edit
MeLLo, SERAC, IKE Memory
CaliNet, T-Patcher, GRACE Neuron-Augmented
MEND, MALMEN Meta-Learning

Temporal METO Locate-then-Edit

Conceptual
ConceptEdit∗ —
RelEdit Memory-based / In-Context (MICE)

Commonsense
MEMITCSK Locate-then-Edit (Extension)
DEM Locate-then-Edit (Distributed)

Social
BIASEDIT Hypernetwork / Meta-Learning
FAST Neuron-Augmented
DINM Locate-then-Edit

∗Note: ‘ConceptEdit‘ does not propose a new editing method but evaluates existing ones on its conceptual knowledge
benchmark.

mitigation. Table 2 summarizes these benchmarks;558

full descriptions appear in Appendix B.559

Factual and Temporal Knowledge. Factual edit-560

ing is assessed using generation-based datasets like561

zsRE and CounterFact, which test precision on562

isolated updates. ATOKE and MQuAKE extend563

this by evaluating temporal consistency and multi-564

hop reasoning for evolving or interdependent facts.565

Conceptual and Commonsense Knowledge.566

Editing abstract knowledge requires higher-order567

reasoning benchmarks. ConceptEdit targets struc-568

tural changes in definitions and their downstream569

effects (Wang et al., 2024c), while RelEdit eval-570

uates edits’ impact on relational reasoning (Niu571

et al., 2025). CKEBench and AbstractATOMIC572

assess generalization and plausibility in common-573

sense contexts (Huang et al., 2024).574

Social Bias and Safety. Socially aware editing575

is evaluated with benchmarks like Wikibias and576

BiaScope, which address stereotype correction.577

SafeEdit measures the ability to neutralize harmful578

outputs while preserving fluency.579

5 Challenges andFuture directions580

Knowledge Editing (KE) has emerged as a cru-581

cial research area for refining and updating factual582

knowledge in LLMs. While significant progress583

has been made, several challenges remain unad- 584

dressed, and future research directions must focus 585

on improving efficiency, scalability, and robustness. 586

This section outlines key challenges and promising 587

future directions in KE. 588

5.1 Challenges 589

5.1.1 Balancing Locality and Generalization 590

A central challenge in KE is balancing locality 591

(avoiding side effects) with generalization (ensur- 592

ing consistency across contexts), depending on the 593

knowledge function. Factual edits require high 594

locality to prevent corruption, while conceptual 595

or social edits demand broader generalization. Fu- 596

ture work must develop methods that adaptively 597

balance this tradeoff by knowledge type. 598

5.1.2 The Need for Theoretical Foundations 599

Most KE methods are empirical and lack pre- 600

dictability due to the absence of a formal frame- 601

work for how LLMs store, retrieve, and modify 602

knowledge. Advancing the field requires theoret- 603

ical foundations rooted in information theory, in- 604

terpretability, and optimization to guide principled 605

editing strategies. 606

5.1.3 Scalability to Mass-Edits 607

Scaling KE to thousands of edits introduces con- 608

flicts, especially across heterogeneous knowledge 609

7



Table 2: Summary of KE datasets by knowledge type.

Dataset Type

Generation-Based Datasets
zsRE Factual
CounterFact Factual
MQuAKE Factual / Temporal
WikiGen Factual
ATOKE Temporal
CKEBench Commonsense
AbsATOMIC Conceptual / Commonsense
SafeEdit Social

Classification-Based Datasets
FEVER Factual
VitaminC Factual
ConceptEdit Conceptual
RelEdit Conceptual
PROBE SET Commonsense
Wikibias Social
BiaScope Social / Commonsense
SCOTUS Temporal

types (e.g., commonsense and factual). Address-610

ing this demands scalable architectures, memory-611

efficient representations, and multi-edit synchro-612

nization to maintain consistency and efficiency.613

5.1.4 Moving Beyond Structured Knowledge614

Current KE methods focus on structured, triple-615

based facts, leaving a gap in editing unstructured616

sources like news. This is especially limiting for617

commonsense and social knowledge. Future work618

should build end-to-end pipelines to extract, vali-619

date, and integrate edits from raw text, along with620

more flexible evaluation benchmarks.621

5.2 Future Directions622

5.2.1 Towards Optimization-Free and623

Runtime Editing624

Optimization-based KE is often too slow for real-625

time use. Future work should explore optimization-626

free methods, such as in-context learning or627

memory-augmented models, enabling runtime628

knowledge adaptation through dynamic user feed-629

back without retraining.630

5.2.2 Automating the Discovery of Knowledge631

to Edit632

Current KE systems rely on manual error identi-633

fication. Future approaches should automate edit634

discovery from real-time knowledge streams using635

techniques like anomaly detection—essential for636

domains like healthcare and finance.637

5.2.3 Enhancing Robustness and Security 638

KE introduces risks of malicious edits (e.g., biases, 639

misinformation, backdoors). Future work must de- 640

velop verification, auditing, and certification proto- 641

cols to ensure the security and trustworthiness of 642

edited models. 643

5.2.4 Developing Ethical and Fair Editing 644

Frameworks 645

Informed by social knowledge editing (see 3.2.4), 646

fair KE must account for the ethical implications 647

of deciding what to edit. Future work should build 648

frameworks for transparency, community oversight, 649

and balancing factual accuracy with societal fair- 650

ness. 651

5.2.5 Creating Unified Evaluation 652

Frameworks 653

KE evaluation is currently fragmented across iso- 654

lated benchmarks. A key direction is building uni- 655

fied evaluation suites that assess editors across 656

diverse knowledge types, revealing tradeoffs (e.g., 657

strong factual locality vs. weak conceptual gener- 658

alization). 659

6 Conclusion 660

Maintaining the factual accuracy of LLMs as real- 661

world information evolves is a persistent challenge. 662

Knowledge Editing (KE) has emerged as an ef- 663

ficient solution, enabling targeted updates to an 664

LLM’s internal knowledge without requiring costly 665

full retraining. 666

This survey provided a comprehensive review 667

of KE by analyzing the field along two orthogo- 668

nal axes: the editing mechanism and the knowl- 669

edge function. We categorized mechanisms into 670

parameter-modifying and parameter-preserving ap- 671

proaches, then introduced our novel function- 672

based taxonomy. This provides a holistic per- 673

spective by examining how these mechanisms ap- 674

ply to diverse knowledge types—from factual and 675

temporal to conceptual, commonsense, and so- 676

cial—supplemented by an overview of the field’s 677

key properties, evaluation tasks, and datasets. 678

Despite remarkable progress, KE remains an 679

evolving field. As we highlighted, future advance- 680

ments must focus on developing adaptive, scalable, 681

and secure editors. As LLMs become increasingly 682

integrated into real-world applications, KE will be 683

crucial for maintaining their reliability and adapt- 684

ability, contributing to more dynamic, accurate, and 685

ethically responsible AI systems. 686
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Limitations687

The field of knowledge editing is evolving at an688

exceptional pace. While we have strived to provide689

a comprehensive overview, this survey represents a690

snapshot of research primarily published by mid-691

2025. New methods and preprints emerging during692

the review period may not be included.693

Our primary contribution is a high-level taxo-694

nomic framework. To maintain this broad perspec-695

tive, we prioritize the categorization and synthesis696

of different approaches over a deep, technical anal-697

ysis of the implementation details of every individ-698

ual method cited. Furthermore, our scope is strictly699

focused on knowledge editing, and we do not pro-700

vide a detailed comparison with related but dis-701

tinct fields such as continual learning or parameter-702

efficient fine-tuning.703

Finally, this survey is a work of analysis and704

does not introduce new empirical results. All per-705

formance metrics discussed or presented (e.g., in706

Appendix A) are reported from the original publi-707

cations. We did not re-run experiments to perform708

a controlled, head-to-head comparison of methods709

under a single, unified environment, as this is be-710

yond the scope of a survey.711
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A Performance of Mechanism-Based884

Editors885

To evaluate the performance of existing knowledge886

editing (KE) techniques, we summarize reported887

results on two benchmark datasets: ZsRE and888

CounterFact. These evaluations focus on three889

core metrics—reliability, generalization, and local-890

ity—across different model architectures, specifi-891

cally T5-XL and GPT-J. Note that we only include892

mechanism-based methods in Table 3, as function-893

based approaches are evaluated on diverse and non-894

overlapping datasets, preventing fair comparison.895

As shown in Table 3, different methods demon-896

strate varying strengths. On ZsRE with T5-XL,897

SERAC achieves the highest reliability and gen-898

eralization, while MEND provides the strongest899

locality. On GPT-J, IKE excels in reliability and900

generalization, whereas MEMIT achieves the best901

locality.902

For the CounterFact dataset, SERAC again per-903

forms best in reliability and generalization for T5-904

XL, while KE surprisingly achieves the top score905

in locality. With GPT-J, T-Patcher stands out with906

perfect reliability, while SERAC leads in general-907

ization and locality.908

These results highlight that no single method909

dominates across all criteria. Techniques like910

SERAC and MEMIT provide robust general-911

purpose editing, while others such as IKE and KE912

offer targeted strengths depending on the task and913

architecture (Yao et al., 2023).914

A variety of datasets have been curated to eval-915

uate KE methods across different tasks. These916

datasets assess a model’s ability to integrate new917

facts, correct misinformation, and retain knowl-918

edge while minimizing unintended side effects.919

Based on the nature of their outputs, these datasets920

can be categorized into generation-based and921

classification-based datasets.922

B Detailed information about datasets923

B.0.1 Generation-Based Datasets924

zsRE (Levy et al., 2017) The Zero-Shot Re-925

lation Extraction (zsRE) dataset is widely used926

in KE evaluations, particularly in QA tasks. It927

consists of relation-specific templates sourced928

from Wikipedia, covering a broad range of entity-929

relation-object tuples. Each entry includes a valid930

question and an associated factual statement, with931

paraphrases that help test the robustness of KE932

methods against semantically equivalent prompts.933

CounterFact (Meng et al., 2022) CounterFact 934

is designed to evaluate how well KE techniques 935

modify a model’s underlying factual knowledge 936

rather than merely adapting to superficial wording 937

changes. It was introduced alongside the ROME 938

method. Each entry is derived from ParaRel Elazar 939

et al. (2021) and consists of a structured knowledge 940

triple alongside carefully crafted prompt templates. 941

All subjects, relations, and objects originate from 942

Wikidata, making it straightforward to assess con- 943

sistency across multiple paraphrases. 944

MQuAKE (Zhong et al., 2023) MQuAKE is a 945

benchmark dataset focusing on multi-hop reason- 946

ing. It includes both counterfactual and outdated 947

factual scenarios, requiring models to propagate ed- 948

its through interconnected facts. Constructed from 949

Wikidata, MQuAKE presents a challenging test 950

for KE methods to verify whether updates remain 951

consistent across related queries. 952

WikiGen (Mitchell et al., 2022a) WikiGen is 953

introduced in MEND to evaluate KE in a free-form 954

generation setting. It consists of question-answer 955

pairs derived from randomly sampled Wikipedia 956

sentences, where the answers are generated using a 957

pre-trained distilGPT-2 model. Fewer than 1% of 958

its samples align with the base model’s 10-token 959

greedy predictions, making it a challenging bench- 960

mark for measuring edit reliability and generaliza- 961

tion. 962

CKEBench CKEBench was introduced to ad- 963

dress the limitations of existing KE datasets in 964

handling commonsense knowledge expressed in 965

natural language. Derived from ATOMIC, it cov- 966

ers everyday scenarios with implications like in- 967

tents, reactions, and effects, framed through rela- 968

tions such as xIntent and oEffect. What sets 969

CKEBench apart is its support for multiple rea- 970

soning formats—open-ended generation, multi- 971

ple choice, and binary classification (true/false). 972

This makes it a versatile benchmark for evaluating 973

whether KE methods can edit free-text common- 974

sense knowledge while preserving coherence and 975

plausibility. 976

AbsATOMIC (Conceptualized Triples) To test 977

whether LLMs can be edited at a higher conceptual 978

level beyond specific instances, AbstractATOMIC 979

was constructed by rephrasing ATOMIC’s knowl- 980

edge into generalized, abstract templates using 981

GPT-4. These conceptualized triples replace 982

surface-level details with high-level semantic roles 983

11



Table 3: Performance comparison of knowledge editing methods across datasets (ZsRE and CounterFact) and
models (T5-XL and GPT-J) on Reliability, Generalization, and Locality. Results are reported from Yao et al. (2023).

Dataset Model Metric FT-L SERAC IKE CaliNet T-Patcher KE MEND KN ROME MEMIT

ZsRE

T5-XL
Reliability 20.71 99.80 67.00 5.17 30.52 3.00 78.80 22.51 - -
Generalization 19.68 99.66 67.11 4.81 30.53 5.40 89.80 22.70 - -
Locality 89.01 98.13 63.60 72.47 77.10 96.43 98.45 16.43 - -

GPT-J
Reliability 54.70 90.16 99.96 22.72 97.12 6.60 98.15 11.34 99.18 99.23
Generalization 49.20 89.96 99.87 0.12 94.95 7.80 97.66 9.40 94.90 87.16
Locality 37.24 99.90 59.21 12.03 96.24 94.18 97.39 90.03 99.19 99.62

CounterFact

T5-XL
Reliability 33.57 99.89 97.77 7.76 80.26 1.00 81.40 47.86 - -
Generalization 23.54 98.71 82.99 7.57 21.73 1.40 93.40 46.78 - -
Locality 72.72 99.93 37.76 27.75 85.09 96.28 91.58 57.10 - -

GPT-J
Reliability 99.90 99.78 99.61 43.58 100.00 13.40 73.80 1.66 99.80 99.90
Generalization 97.53 99.41 72.67 0.66 83.98 11.00 74.20 1.38 86.63 73.13
Locality 1.02 98.89 35.57 2.69 8.37 94.38 93.75 58.28 93.61 97.17

(e.g., “PersonX engages in enjoyable group activ-984

ities”), enabling evaluations of generalization in985

knowledge editing. The abstraction also supports986

compositional reasoning and robustness to para-987

phrase.988

ATOKE Temporal Knowledge Editing (TKE)989

poses a unique challenge: modifying models to990

reflect updated facts without erasing historically991

valid information. To benchmark this task, ATOKE992

(Assessment of Temporal Knowledge Editing) was993

introduced. Built from Wikidata and curated fac-994

tual timelines (e.g., U.S. presidents), ATOKE tests995

if models can answer both present and past ques-996

tions accurately across time-based edits. Each fact997

is timestamped, and edits evolve the model’s inter-998

nal timeline, ensuring consistency across temporal999

transitions.1000

SafeEdit While detoxification has gained promi-1001

nence in LLM safety research, most existing1002

datasets target classification rather than generative1003

reasoning. SafeEdit was designed to fill this gap. It1004

consists of prompts in nine unsafe categories (e.g.,1005

illegal activity, self-harm) along with both safe and1006

unsafe completions. These were generated using1007

GPT-4 and manually curated. The dataset allows1008

for fine-grained evaluation of whether KE methods1009

can neutralize toxic completions without sacrific-1010

ing generative fluency.1011

B.0.2 Classification-Based Datasets1012

FEVER (Thorne et al., 2018) The Fact Extrac-1013

tion and Verification (FEVER) dataset contains1014

Wikipedia-based claims labeled as supported, re-1015

futed, or not enough info. It has been adapted for1016

KE by grouping claims on similar topics and intro-1017

ducing paraphrases and altered labels, providing a1018

robust test for how well models preserve or modify 1019

factual knowledge. 1020

VitaminC (Schuster et al., 2021) VitaminC is 1021

a large-scale fact-checking dataset derived from 1022

Wikipedia revisions, each labeled as entailed or 1023

contradicted by an accompanying evidence state- 1024

ment. It is particularly useful for testing a model’s 1025

ability to integrate factual updates without inadver- 1026

tently propagating errors to unrelated claims. 1027

SCOTUS (Hartvigsen et al., 2022) SCOTUS is 1028

adapted from a corpus of U.S. Supreme Court case 1029

documents, categorized into 11 legal topics. Due to 1030

changes in legal definitions and classifications over 1031

time, it presents a unique challenge for KE, requir- 1032

ing models to update domain-specific knowledge 1033

while preserving historical context. 1034

ConceptEdit ConceptEdit focuses on a novel 1035

form of KE: modifying conceptual definitions (e.g., 1036

animal taxonomy) and observing their impact on 1037

instance classification. The dataset was built us- 1038

ing DBpedia and Wikidata by selecting concepts 1039

(like “Camelidae”) and associating them with nat- 1040

ural language definitions and instance lists. When 1041

a concept’s definition is edited, models must infer 1042

which instances still belong. ConceptEdit thus eval- 1043

uates the downstream semantic consequences of 1044

edits. 1045

PROBE SET (MEMITCSK) To explore 1046

whether KE generalizes across surface form and 1047

reasoning depth, PROBE SET was created. Based 1048

on commonsense datasets like PEP3k and 20Q, it 1049

includes true/false statements with paraphrased, 1050

contradictory, and entailment-related variations. 1051

This setup tests whether knowledge edits propagate 1052

semantically across related linguistic structures. 1053
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The evaluation is grounded in binary judgments1054

(true vs. false), positioning PROBE SET as a1055

classification-based resource.1056

Wikibias Addressing the growing concern of1057

social biases in LLMs, Wikibias offers a bench-1058

mark for stereotype editing. Extracted from real1059

Wikipedia content, the dataset pairs biased and un-1060

biased factual claims involving professions, gen-1061

der, race, and other social roles. Each example1062

allows comparison of the model’s preference to-1063

ward stereotypical vs. neutral formulations. By1064

design, Wikibias targets binary classification of1065

bias presence and factual validity.1066

BiaScope BiaScope was constructed to evaluate1067

KE methods on fine-grained social bias mitiga-1068

tion. It merges data from StereoSet and CrowS-1069

Pairs with GPT-4-generated paraphrases and hu-1070

man annotations. The dataset contains two parts:1071

(1) non-biased commonsense knowledge that must1072

be preserved, and (2) stereotype-laden sentences1073

that should be edited. This dual-purpose setup en-1074

ables controlled testing of bias removal without1075

degrading general knowledge.1076

RelEdit RelEdit was constructed to evaluate con-1077

ceptual knowledge editing, with a specific focus on1078

the model’s relational reasoning capabilities after1079

an edit. The benchmark is built upon the DBpe-1080

dia ontology and contains a hierarchy of concepts1081

and their corresponding instances. The dataset is1082

structured to assess the "ripple effects" of an edit1083

at two levels: (1) the instance level, evaluating1084

changes in the relationships between a concept and1085

its instances, and (2) the concept level, evaluat-1086

ing changes among related concepts. This two-1087

level setup enables a comprehensive assessment of1088

whether an edit has been deeply integrated into the1089

model’s knowledge structure, going beyond simple1090

definition recall.1091
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