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Figure 1: We propose ErrorAug as a simple and reliable approach for pixel-wise error detection.
ErrorAug allows us to artificially generate more examples of errors which are also of a higher de-
gree of difficulty. ErrorAug improves relative performance of key error detection metrics by over
7.8%/11.2% for in-domain/out-of-domain scenarios versus previous state-of-the-art approach Syn-
thCP.

ABSTRACT

In order to develop trustworthy downstream applications for semantic segmenta-
tion models, it is important to not only understand the performance of a model on
datasets, but to localize areas where the model may produce errors. Pixel-wise er-
ror prediction of semantic segmentation maps is a challenging problem in which
prior work relies on complicated image resynthesis pipelines. We introduce er-
ror augmentation, a framework which enables us to learn robust error detectors
by applying data transformations independently on the predicted segmentation
maps. This approach enables direct prediction of pixel-wise error in semantic
segmentation maps, an approach explored as a naive baseline in prior works, to
achieve state of the art performance. As a proof-of-concept we propose a series
of three simple transformations that generate challenging segmentation errors by
swapping pixel predictions within a segmentation map. Our approach outper-
forms previous methods of error detection for semantic segmentation across all
metrics and improves performance by over 7.8% on AUPR-Error. Additionally,
we show that our approach not only generalizes to unseen test examples, but re-
mains reliable despite significant shifts in the target domain.

1 INTRODUCTION

Understanding when machine learning models are producing inaccurate predictions is essential for
improving the reliability of systems that build upon these models. Recent works in performance
prediction have made strides in predicting the performance of classification systems in novel en-
vironments Garg et al. (2022); Chen et al. (2021); Guillory et al. (2021). However for complex
computer vision tasks like semantic segmentation, its important to not only identify when a model
produces and inaccurate prediction but also where the models predictions have failed. For instance,
in a robotics setting a misclassification far away from the action space of the robot may be less rel-
evant than one in the immediate pathway. As such the task of pixel-wise error detection becomes
increasingly important as we strive to produce AI systems that can safely interact with ever-changing
real world environments.

We propose Error Augmentation (ErrorAug), a process for synthesizing challenging localization
errors by applying data transformations on predicted class probabilities independent of any transfor-
mations on the input images, as a step for training high-quality pixel-wise error detectors. In order
to demonstrate the effectiveness of this process, we propose three swapping operations that when
applied to a segmentation map allow us to treat error detection as a supervised learning task and
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Figure 2: Error augmentation allows use to directly train an error detection network with supervised
learning. Applying ErrorAug over the model’s prediction allows us to create a challenging and
diverse set of example errors. Training according to this pipeline leads to error detection model
which performs reliably on novel examples.
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Figure 3: The top row illustrates a semantic segmentation task where a segmentation map is pre-
dicted from an image. The difference between the top row prediction and the top row label is the
error map, depicted in the bottom right. The goal of our approach, ErrorAug, is to accurately predict
the error map on the bottom right, based on the image and the prediction. We see that despite the
model‘s simplicity, ErrorAug does a much better job at locating large misclassified regions, like the
moving truck in this example, than the previous state-of-the-art approach SynthCP.

directly train a model to predict pixel-wise error maps for semantic segmentation systems. Most
prior works in this space have attempted to directly train error detectors , but due to their tendency
to overfit in this problem setting, they are most frequently presented as naive baselines to motivate
more complicated approaches. In this work we show that by including our ErrorAug process into
previous pipelines we bypass the complications of previous approaches and can produce state-of-
the-art results using prior codebases direct prediction implementations. Our training procedure is
illustrated in figure 2.

The most prominent prior work in this space built upon the success of conditional generative models
by using the predicted segmentation map to condition a model whose goal it is the recreate the input
image Xia et al. (2020)Di Biase et al. (2021). The discrepancies between this reconstruction and the
original input image are then used to detect errors. These approaches are not only expensive, but
are overly-sensitive to the training dataset as the behavior of these generative models on changing
domains remains or poorly understood. Our approach does not require complicated auxiliary tasks
or networks. We dramatically improve upon state-of-the-art approach, SynthCP, by simplifying the
modeling pipeline into a single neural network, optimizing with a standard binary cross entropy
loss, and extending the set of errors observed in training. Figure 1 and 3 illustrate the apple-to-apple
comparison between SynthCP (SOTA) and ErrorAug (ours).

Error Augmentation, in the context of error detection, can be used to describe any data transforma-
tion applied independently to the label predictions in the training pipeline of an error detector that
allows the derivation of novel target error maps. In this work, we explore three swapping data trans-
formations (ShiftSwap, ClassSwap, and MapSwap) which generate different types of challenging
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errors. ShiftSwap involves a spatial shifting of predictions in a segmentation map and thus induces
errors over areas where class boundaries exist. ClassSwap involves a swapping of the prediction
probabilities between classes in an image, inducing misclassification errors. The last swapping op-
eration is meant to induce errors of all types, as it involves swapping the predicted segmentation map
of one image with that of another image, MapSwap. Figure 4 illustrates all these operations over
the segmentation maps of a single image. While some of the changes are drastic and immediately
noticeable, others are more subtle but still contribute novel examples for training.

Our work shows that each of these shifts alone is powerful enough to learn a direct prediction model
which outperforms prior art. When all shifts are introduced to the same training pipeline we show
that we are able to train a model that improves on prior art by a margin of > 7% on error detection
on the Cityscapes Cordts et al. (2016) benchmark. More importantly, we demonstrate that this
approach is considerably more robust when dealing with instances of domain shift, as demonstrated
by outperforming image re-synthesis approaches by > 13% when models trained over the European
benchmark of Cityscapes are evaluated over the largely North American dataset, BDD100K Yu et al.
(2020).

2 RELATED WORK

We focus on the task of pixel-wise error detection for semantic segmentation which can be de-
scribed as identifying erroneously label pixels over objects with known classes. Anomaly detection
for semantic segmentation is a closely related task that instead focuses on identifying pixel of ob-
jects with unknown classes Di Biase et al. (2021). Some approaches in prior literature attempt
propose solutions to both of these tasks, we instead focus on the pixel-wise error detection tasks and
also extend our analysis to error-detection performance over domain shifts. A popular baseline in
this space is MSP-CRF Hendrycks et al. (2019a), which extends the maximum softmax probability
method Hendrycks & Gimpel (2016) for outlier detection. In order to better account for the spa-
tial element of pixel-wise error detection, they chose to include a conditional random field Lafferty
et al. (2001) component which can better account for locality. Other predictive uncertainty-based
approaches such as MC-Dropout Gal & Ghahramani (2016), deep ensembles Lakshminarayanan
et al. (2017), and Bayesian SegNet Kendall et al. (2015) have been explored for pixel-wise error
detection, but fail to consistently detect misclassification.

More recent works in this space have used conditional generative models to attempt to resynthe-
size the original image based on the predicted segmentation map Di Biase et al. (2021); Lis et al.
(2019); Xia et al. (2020). A separate module is then developed to determine where the resynthesized
image and the original image substantially differ and these regions are estimated as likely contain-
ing erroneous predictions. These approaches rely on complicated auxiliary tasks, such as image
reconstruction, in order to prevent their error detection model from becoming overly reliant of the
predicted probabilities generated by the segmentation model. The approach introduce a substantial
amount of computational overhead, and produce methods which do not generalize well to novel
domains.

By introducing error augmentation as a framework for learning to directly predict error maps for
semantic segmentation, we forgo the issues of predictive uncertainty methods which are too reliant
on model confidences and do not properly account of spatial structure. As our error augmenta-
tion approach is not dependent on a generative model, we are also able to avoid the computational
complexity and sensitivity to domain shift observed in image resynthesis approaches.

Our additional focus on evaluating under domain shift stems from several lines of recent works
showing that existing model architectures struggle to maintain consistent performance across data
shifts where existing model architectures struggle to maintain consistent performance Recht et al.
(2019); Koh et al. (2021); Madras & Zemel (2021); Peng et al. (2018); Bashkirova et al. (2021). Sev-
eral works have demonstrated the ability to predict model performance in these new environments
Deng & Zheng (2021); Guillory et al. (2021); Rabanser et al. (2019); Garg et al. (2022); Chen et al.
(2021), however these approaches do not readily translate to the complex task of pixel-wise error
detection.

Outside of error detection, the machine learning community has experienced an explosion in re-
search concerned with various forms of data augmentation Shorten & Khoshgoftaar (2019) of which
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error augmentation can be viewed as a special case. Data augmentations have been central to the
development of state-of-the-art methods in self-supervised learning Doersch et al. (2015); Misra &
Maaten (2020), semi-supervised learning Sohn et al. (2020), domain adaptation Sun et al. (2020),
and uncertainty quantification Hendrycks et al. (2019b). Data augmentation strategies have pri-
marily been deployed in one of two ways in prior work. First is as a method of insuring model
consistency with respect to certain data transformations. Augmentation strategies which aim for
model consistency must take care to ensure that the data transformations they expose the model to
do not alter the underlying task. Other approaches use data augmentations to learn auxiliary tasks.
Learning over well-motivated auxiliary tasks can lead to improved downstream model performance.
The data transformations in error augmentation are only applied to one of the inputs and their ap-
plication changes the target labels in a non-symmetric manner. This produces an approach in which
model consistency is not the goal of the augmentations since they lead to a changing set of labels,
and the auxiliary task produced by the labels happens to be the same task as the primary task.

3 ERROR AUGMENTATION

In this section we introduce Error Augmentation, ErrorAug, as a framework for learning more re-
liable error detectors for semantic segmentation. ErrorAug contributes two new components to the
training pipeline for direct error prediction, synthetic segmentation maps and automatically derived
error maps.

We first discuss the formulation and motivation of the proposed error detection framework, Erro-
rAug. Next, we describe three types of error augmentations (ShiftSwap, ClassSwap, MapSwap), all
of which are quick and easy to implement. Lastly, wediscuss the neural network architectures used
to represent the error detectors that we train and how they differ from prior approaches.

3.1 ERROR SYNTHESIS

Our semantic segmentation task consist of L distinct semantic labels. An image x of size w × h
could be labeled with a semantic segmentation map y ∈ {0, 1}L×w×h A semantic segmentation
model P , works by operating over image x to produce a estimate of the semantic segmentation map
P (x) = ŷ ∈ {0, 1}L×w×h. We define an error map e ∈ {0, 1}w×h such that :

ei,j = max
0≤l≤L

yl,i,j ̸= ŷl,i,j (1)

The goal of error detection algorithms is to learn a model F such that the error map e can be esti-
mated with F from the image x and predicted segmentation map ŷ, thus ê = F (x, ŷ), as described
in algorithm 1. Error detection can be formulated as a supervised learning problem where the target
labels are error maps e and the input instances are images x and predicted segmentation maps ŷ.
Letting L represent a loss function, such as binary cross entropy, our error detector F can be learned
as a minimization of the following equation:

min
F
LBCE(F (x, ŷ), e) (2)

Following standard procedure in supervised learning, datasets are split into a training subset and a
test subset with the test subset being used to assess the models performance on previously unseen
examples.

Due to high levels of correlation between the segmentation map ŷ and the error map e, it is possible
to learn direct error detectors F which perform well on the training set, with little comprehension
about the image x or the label space L. Prior work uses the auxiliary task of image synthesis to
encourage the error detection model to learn non-trival information about the images and/or the
segmentation task. Instead of synthesizing images, our framework aims to ensure the error detection
model is based on a sufficient understanding of the segmentation task by synthesizing challenging
examples with less correlation between the segmentation map ŷ and the error map e.

We define Error Augmentation as the process of applying a data transformation T to the predicted
segmentation map ŷ such that it generates a new predicted segmentation map ŷ′ = T (ŷ). Unlike
traditional data augmentation strategies, the transformation T is intentionally not applied to the input
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Figure 4: Error augmentation works by applying data transforms directly on the prediction of a seg-
mentation model. Illustrated above, ShiftSwap, ClassSwap, and MapSwap are the data transforms
we propose for error augmentation. By comparing the prediction and transformed predictions with
the target label map, on the far right, we can see how each transform contribute unique errors to the
training set of our error detector.

image x. As such, it is not enough for model P to be equivariant to transformation T , and the error
detection model F must attempt recover the relationship between ŷ′ and the input image x. From
the transformed segmentation map ŷ′ and the known segmentation map y, a new error map e′ can
be derived:

e′i,j = max
0≤l≤L

yl,i,j ̸= ŷ′l,i,j (3)

The relationship between T and the new error map e′ is dependent upon the ground truth label map
y, and can be complex even for simple data transforms. In traditional data augmentation settings,
care must be taken when choosing the set of data transforms as certain transformations may alter
the relationship between the transformed image x′ ← T (x) and observed label y. For instance,
synthetically changing the colors of an observed snake, may lead to a meaningful change in classi-
fication of the observed animal. However, since our input image remains unaltered, as long as the
transformed map ŷ′ is a valid segmentation map, the derived error map e′ is well-defined. We will
take advantage of this in later sections by proposing transforms that would be nonsensical if applied
to the input image. This formulation allows us to rewrite the minimization objective as operating
over ŷ′ and e′ and allows us to arbitrarily scale the number and complexity of training examples by
adjust our transformation function T .

min
F
LBCE(F (x, ŷ′), e′) (4)

The quality of the learned error detector, F , will be largely dependent upon the nature of the trans-
formation function T and the architecture of the model. In this work we explored three relatively
straightforward data transformations and observe they all have a strong positive impact, motivating
future work exploration of error augmentation strategies and their relationship with robust machine
learning.

3.2 SWAPPING TRANSFORMATIONS FOR ERROR DETECTION

In order to better understand the utility of our proposed framework for Error Augmentation, we im-
plemented three swapping data transformations (ShiftSwap, ClassSwap, MapSwap) which increase
the expected delta δ between the predicted segmentation map ŷ and the transformed map ŷ′

δ = ∥ŷ − ŷ′∥ (5)

Our proposed transformations where to designed to generate specific forms of errors, such as mis-
classifications and errors at object boundaries. In figure ??, we visualize these these three transfor-
mations over the same image, illustrating how the prediction maps change and the subsequent new
error maps that result from the transformations. For our learned model, ErrorAug, we stochasti-
cally compose all three transformations. In ablation studies, we investigate the contribution of each
one independently.

ShiftSwap is a positional swapping operation which selects a spatial window of the predicted
label map ŷ and shifts this window by certain horizontal δx and vertical δy directions, overwriting
all previous predictions in this new location. For all following swapping operations, we assume that
ŷ′ is initialized with the values from ŷ. Given a, b and c, d as the horizontal and vertical boundaries
for the spatial window and assuming that all indices are valid, this operation could be represented as
follows:

ŷ′:,a+δx:b+δx,c+δy,d+δy ← ŷ:,a:b,c:d (6)
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Algorithm 1 ErrorAug: Making Errors to Find Errors

Given dataset D, semantic segmentation model P , error detection network F
for input batch (xB , yB) ∈ D do ▷ Operate over images xB and labels yB

ŷB ← ErrorAug(P (xB)) ▷ ShiftSwap, ClassSwap, MapSwap
eB ← 1(yB ̸= ŷB) ▷ Derive error map
êB ← F (xB , ŷB) ▷ Predict error map
Optimize network F by back-propagating LBCE(e

B , êB)
end for

This approach results in shifted prediction boundaries and encourages the error detection module to
learn the correct boundary of positions.

ClassSwap is a semantic swapping operation which arbitrarily chooses two semantic classes in
a label map and swaps their predictions throughout at each pixel location in the label map. Given
classes p and q as the intended swapping pair, the ClassSwap operation could be represented as
follows:

ŷ′p,:,: ← ŷq,:,:; (7)

ŷ′q,:,: ← ŷp,:,: (8)

Since this approach respects the spatial predictions of the model P it may result in regions with
correct segmentation boundaries but incorrect semantic classes.

MapSwap is the last and most drastic transformation we propose. It is designed to swap the
predicted pixel-level label maps between images. Letting x(i) and x(j) represent two distinct images
and ŷ(i) and ŷ(j) represent the predicted segmentation maps of these images, respectively. Then
MapSwap operation could be represented as follows:

ŷ′(i) ← ŷ(j); (9)

ŷ′(j) ← ŷ(i) (10)

This results in segmentation maps which are not derived from the input image and thus encode
no information about the segmentation models properties over this particular input image P (x).
While this approach has severed the causal relationship between the input image x and the synthetic
segmentation map ŷ′, it is still likely to produce an informative error map e′, which is neither all
ones or all zeros due to structural similarities between scenes. These structural similarities such as
roads being likely to occur near the bottom an image and the sky being likely to be near the top of
an image are illustrated in Figure 4 or through more examples in the supplementary materials. This
is an example of a data transformation which would be degenerative if applied over the input image
x but yields challenge and useful information when employed for error detection.

4 EXPERIMENTS

4.1 DATASET

We intensively evaluate our method on two semantic segmentation benchmarks for autonomous
driving, Cityscapes Cordts et al. (2016) and BDD100K Yu et al. (2020).

Cityscapes With 2975 high-resolution training images and 500 validation, the Cityscapes dataset,
is a large-scale semantic segmentation datasets which prior works have used to validate the quality
of error detectors. The dataset consist of images captured from vehicles in various European cities
for the task of improving visual systems for self-driving. The pre-defined train IDs contains 19
semantic classes, and also contains out-of-context labeling upon which errors and accuracy are not
counted.

BDD100K We look at the semantic segmentation setting for the BDD100K dataset, which consist
of 7000 training images, and 1000 validation images for semantic segmentation. The dataset consist
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Figure 5: MSP, SynthCP, and our ErrorAug are representative algorithms for approaches based
on predictive uncertainity, image resynthesis, and direct prediction. We visualize the predicted error
maps and the actual error maps for each of these algorithms across multiple images from both the in-
distribution Cityscapes dataset and BDD100k which represented a shifted target domain. ErrorAug
is able to outperform SynthCP and MSP across both domains and the results above illustrate how
this improvement is noticeable on the more challenging setting of error detection over domain shift.

of images captured from vehicles throughout cities, highways, and rural landscape in North Amer-
ica. In addition to supporting the same 19 semantic classes as Cityscapes, it also contains various
attribute annotations for the images, such as weather conditions and environmental settings. As we
are interested in how our models perform when exposed to novel environmental settings we evaluate
the quality of our error detectors trained on Cityscapes in the BDD100K dataset.

4.2 SETUP

Implementation We title our error detection model as ErrorAug because it is trained over the
proposed set of swapping error augmentations. To build our training dataset for ErrorAug follow
the formulation used in Xia et al. (2020), where they use four-fold cross validation in order to
address the smaller size of the validation dataset and ensure there exists an held-out set not seen by
either the segmentation model or the error detection model. The held-out set for each fourfold cross
validation step is annotated with the prediction probabilities for the segmentation model trained
at this step. The final error detector can then be validated over the held-out test set and an error
detector and segmentation model both trained over the entirety of the training set. The ErrorAug
transformations used in our model are the composed set our three swapping operators (ShiftSwap,
ClassSwap, MapSwap), each implement with a p = 1

3 chance of being activated.

Architecture Since our approach presents a more challenging error detection problem than those
explored in previous works, we require an error detection architecture with sufficient capacity. Our
architecture consist of two ResNet-18 He et al. (2016) branches, one for the image input x and one
for the predicted label map ŷ. The image ResNet is initialized by ImageNet-pretrained weights,
while 19-channel segmentation map ResNet is trained from scratch with Kaiming Initialization He
et al. (2015). Features are extracted from the siamese neural networks, concatenated with each
other and then upsampled to allow for direct pixel-wise prediction of errors. Prior direct predic-
tion approaches concatenated the segmentation map and image prior to passing it through a neural
network, we observe that this approach is unable to adequate capture the complex relation between
the segmentation map and input image required to learn an adequate detector under the ErrorAug
framework, as shown in the ablation experiments in table 3.
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Table 1: Experiments on Cityscape Dataset. We detect pixel-wise failures on the results of FCN-8
and Deeplab-v2. We report our results of ErrorAug and several baselines error detectors. ErrorAug
outperforms all prior approaches across all observed metrics, indicating that when properly trained
direct prediction strategies are a promising underexplored approach for error detection. ErrorAug
offers > 7.5% relative improvement on AUPR-Error over the more computationally intensive prior
state-of-the-art SynthCP for both models explored.

FCN-8 Deeplab-v2
Method Ap-Err ↑ Ap-Suc ↑ AUC ↑ FPR95 ↓ mIoU ↑ Ap-Err ↑ Ap-Suc ↑ AUC ↑ FPR95 ↓ mIoU ↑
MSP 50.31 99.02 91.54 25.34

51.15

48.36 99.12 91.68 27.27

58.27
MCDropout 49.23 99.02 91.47 25.16 47.85 99.23 92.19 24.68
TCP 48.54 98.82 90.29 32.21 45.57 98.84 89.14 36.98
SynthCP 55.53 99.18 92.92 22.47 49.99 99.34 92.98 21.69
ErrorAug (ours) 59.84 99.31 93.94 20.23 53.84 99.40 93.77 20.38

Table 2: Experiments on BDD Dataset which models and Error Detectors trained on Cityscapes.
We detect pixel-wise failures on the results of FCN-8 . ErrorAug outperforms all prior approaches
across all observed metrics and offers a 13.6% relative improvement on AUPR-Error over the more
computationally intensive prior state-of-the-art SynthCP. An interesting observation is that the much
less sophisticated MSP approach outperforms SynthCP on our primary metric AUPR-Error over
BDD Dataset.

Method Ap-Err↑ Ap-Suc ↑ AUC ↑ FPR95 ↓ mIoU

MSP 59.05 94.79 84.52 42.07
25.82SynthCP 58.26 95.34 85.34 39.69

ErrorAug (ours) 66.21 96.49 88.98 34.58

Baselines To replicate prior work, we choose FCN-8s Shelhamer et al. (2016) and Deeplab-
V2 Chen et al. (2017) as our default semantic segmentation models to predict the error map. The
primarily goal of our work is to improve the capability of performing pixel-level error map predic-
tion for the given segmentation model. We compare the proposed ErrorAug with MSP Hendrycks
& Gimpel (2016), MCDropout Gal & Ghahramani (2016), TCP Corbière et al. (2019), and Syn-
thCP Xia et al. (2020). Following the experimental setup of SynthCP, we also implement a fairly
comparable baseline, leveraging regression head to directly predict the pixel-level failures given
both input image and the corresponding predicted label map. All these baselines share the same
backbone and training strategies. We further ablate the sensitivity of some hyper-parameters in the
proposed ErrorAug system.

Metrics In order to evaluate the effectiveness of our approaches, we use the following four metrics:
AUPR-Error (denoted as Ap-Err, higher is better), AUPR-Success (denoted as Ap-Suc, higher is
better), AUROC (denoted as AUC, higher is better), and FPR at 95% TPR (denoted as FPR95, lower
is better) as in Liu et al. (2019) and Xia et al. (2020). The main metric we concern ourselves with
in this work is AUPR-Error, which computes the area under the precision-recall curve by treating
errors as the positive class.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Cityscapes In table 1, we observe that ErrorAug substantially outperforms prior methods over
all observed metrics. Improving relative performance on the main metric of AUPR-Error by > 7.5%,
we show that this model can outperform models with considerably more parameters and a more com-
plex evaluation cycle. In figure 5, we visualize some of the results and observe that our method does
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Table 3: Ablation Experiments on Cityscape Dataset. We evaluate each proposed swapping oper-
ation in our approach as well as a variant which uses the proposed architecture to directly predict
errors with no swapping. We highlight results which outperform previous state-of-the-art methods
and show that each variant of our approach independently outperforms prior methods, with Map-
Swap providing the largest improvement. Without error augmentation our proposed architecture still
out performs other direct prediction methods such as that found the Old Arch from Xia et al. (2020).
When exposed to the full set of error augmentations, the performance of the prior architecture suf-
fers due to its limited capacity.

Method Ap-Err ↑ Ap-Suc ↑ AUC ↑ FPR95 ↓
Old Arch - NoAug 52.17 99.15 92.55 22.34
ErrorAug-Old Arch 54.31 99.18 92.85 21.91
ErrorAug-NoAug 57.63 99.14 92.75 23.72
ErrorAug-MisClass 58.50 99.21 93.30 21.69
ErrorAug-Shift 58.83 99.21 93.25 21.78
ErrorAug-Image 59.39 99.30 93.80 20.86
ErrorAug 59.84 99.31 93.94 20.23

a better job at identifying region-level misclassifications that other approaches. Furthermore, we
note that this ability becomes more important as contexts shift such as in the BDD100K examples.

BDD100K In table 2, we compare the performance of error detectors on data obtained from a new
domain (train on Cityscapes, test on BDD100K). We observe an even larger relative improvement of
13.6% in our primary metric AUPR-Error. Furthermore, we observed that in continues to outperform
all other approaches in all four of the metrics. An interesting observation, is that parameter-free MSP
approach outperforms the expensive SynthCP approach in this new domain over our primary metric
of AUPR-Error. In the supplemental material we visualize the results of these approaches.

4.4 ABLATION STUDY OF KEY COMPONENTS

In order to understand the impact of different elements of our approach we run ablation experiments
as reported in table 3. We note that an error detector trained on any of the 3 swapping operations
proposed in this paper would outperform all prior work across all reported metrics. Additional we
observe, that while our new error detection architecture would outperform prior approaches over
AUPR-Error without using error augmentation. However, it would not improve across all metrics
and it‘s performance is significantly increased when paired with our challenging error augmentation
settings. Lastly, we see that when attempting to train a direct prediction model which concatenates
the segmentation map with the image before input, the model performs worse that if trained without
error augmentation. This result indicates the importance of high-capacity models to solve this more
challenging direct prediction task.

5 CONCLUSIONS

We develop a framework for learning high-quality and robust error detectors for semantic segmen-
tation. Our ErrorAug method performs independent data transformations over predicted semantic
segmentation maps and is able to generate arbitrarily many novel and challenging error detection
tasks. Using this to directly learn an error detection model leads to state-of-the-art error detection
results for each swapping transformation we explored. ErrorAug produces substantially better error
detection models with a significantly simpler approach than prior methods. Each augmentation op-
eration we explored has consistently improved results, yet we have only investigated the three swap
operations reported above. We believe there is ample opportunity for future exploration of further
improved data transformations and error detection architectures.
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