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ABSTRACT

Generalization across the domains is not possible without asserting a structure
that constrains the unseen target domain w.r.t. the source domain. Building on
causal transportability theory, we design an algorithm for zero-shot compositional
generalization which relies on access to qualitative domain knowledge in form
of a causal graph for intra-domain structure and discrepancies oracle for inter-
domain mechanism sharing. Circuit-TR learns a collection of modules (i.e., local
predictors) from the source data, and transport/compose them to obtain a circuit
for prediction in the target domain if the causal structure licenses. Furthermore,
circuit transportability enables us to design a supervised domain adaptation scheme
that operates without access to an explicit causal structure, and instead uses limited
target data. Our theoretical results characterize classes of few-shot learnable
tasks in terms of graphical circuit transportability criteria, and connects few-shot
generalizability with the established notion of circuit size complexity; controlled
simulations corroborate our theoretical results.

1 INTRODUCTION

Machine learning deals with generalizing patterns from finite samples to the distribution that generates
these samples. The classical sample-to-population guarantees (Vapnik, 1991; 1998) rely on the
assumption that target domain, where the solution would be evaluated, entails a data distribution
identical to the source domain, where the training happens. However, in practice the performance
would take a serious even under small qualitative differences between source and target domains.
This problem is known broadly as a distribution shift in ML, and generalizability or external validity
in a broader scientific context. In particular, the domain generalization task refers to a situation where
the learner has access to typically large data collected from one or multiple source domains and no
data from the target domain. This is an extreme case of the domain adaptation problem where the
learner also has access to a small amount of labeled data collected from the target domain.

Theoretical understanding of generalization across domains is challenging. Arbitrary differences
between the source and target domains inevitably imposes a barrier for learning, as there would be
no basis for usefulness of source data in the target learning task. Thus, a formal approach to this
problem necessitates establishing a notion of structure that specifies what the target domain can be in
relation to the source domains. Then, one can imagine a carefully designed algorithm that leverages
this structure and uses only the statistical associations present in the source data that would provably
remain stable/invariant in the target, thus achieve a prediction rule with out-of-distribution guarantees
(Peters et al., 2016; Rojas-Carulla et al., 2018; Rothenhäusler et al., 2021).

Domain adaptation in prediction tasks involving covariates X and label Y has been studied in the
literature (Ben-David et al., 2006; Blitzer et al., 2007; Mansour et al., 2009a; Ben-David et al., 2010;
Yang et al., 2010; Hanneke and Kpotufe, 2019; 2024), where various notions of divergence between
the source and target X distribution are used as proxies for domain-relatedness. Other work in
this area leverages distributional assumptions relating source and target, e.g., Blitzer et al. (2011);
Ben-David and Schuller (2003); Baxter (2000; 1997) where learning in the source yields smaller
complexity for learning in the target, e.g., through learning a shared representation.

Humans are particularly effective in transferring knowledge across domains (Lake et al., 2017; Marcus,
2001; Tenenbaum et al., 2011), and causality is known to be the pillar of human understanding and
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decision making, especially under changing circumstances (Gopnik et al., 2004; Schulz and Gopnik,
2004). Principles of generalization to the unseen from a causal perspective has been extensively
studied under the rubrics of transportability (Pearl and Bareinboim, 2011; Bareinboim et al., 2013;
Correa and Bareinboim, 2019; 2020; Jalaldoust and Bareinboim, 2024; Jalaldoust et al., 2024), and
also through the lens of statistical invariances entailed by an implicit causal structure (Peters et al.,
2016; Magliacane et al., 2018; Koyama and Yamaguchi, 2021; Li et al., 2018). In DA, since some
target data is available, the learner would always have the choice of discarding the source data entirely,
and relying solely on the target data. Thus, the theoretical question in DA is not whether it is possible
to learn, but how fast learning can take place and how to best leverage the data from the source
domains. In this paper, we seek to characterize the situations where certain aspects of the source data
deems generalizable, thus allowing zero-shot/few-shot learning of the target (i.e., fast adaptation),
and when learning from the source data hinders learning in the target (i.e., slow adaptation), and what
lies in between these two extremes. Our contributions are the following:

1. Circuit Transportability. In Section 2, we define module-transportability which extends the
transportability machinery to account for a domain knowledge that specifies shared modules
across different positions/variables. We introduce module-TR algorithm (Algorithm 1) to
decide module-transportability using a more fine-grained causal graph and richer notion of
domain discrepancies that expand the traditional transportability toolbox. Furthermore, we
introduce the notion of circuit-transportability, which not only accounts for shared modules
across the positions and domains, but also considers sequential composition of the modules
in form of circuits, to enable transport in some cases that module-TR fails. We devise
circuit-TR algorithm (Algorithm 2) that operates using the causal graphs and discrepancy
oracle (Definition 2.5) as a recipe for computing target predictor from the source data.

2. Adaptation. In Section 3 we consider a situations where such elaborate structural knowledge
is not available, and instead, the learner has access to labeled target data. We introduce
circuit-AD, a learning scheme that uses circuit-TR as a subroutine to compute a class of
candidate predictors from the source data alone, and then uses the labeled target data to
choose the best-in-class predictor. We prove a performance guarantee for circuit-AD; it

achieves fast adaptation with error rate Op

b

polypT q

n q using only n target samples, if the
ground truth is circuit-transportable with a graph of size OpT q. Our findings draw a natural
connection between few-shot learnability and circuit complexity – a well-studied topic in
theoretical computer science. Since the symbolic circuit-AD is computationally inefficient,
in Section 4 we provide a gradient-based heuristic to approximate its solution, and show it’s
effectiveness in controlled synthetic experiments.

Preliminaries. We use capital letters to denote variables (X), small letters for their values (x), bold
letters for sets of variables (X) and their values (x), and use caligraphic letters (X ) to denote their
support. A conditional independence statement in distribution P is written as pX KK Y | ZqP . A
d-separation statement in some graph G is written as pX KKd Y | Zq. To denote P pY “ y | X “ xq,
we use the shorthand P py | xq. The basic semantic framework of our analysis relies on Structural
Causal Models (SCMs) (Pearl, 2009, Definition 7.1.1), which are defined below.
Definition 1.1. An SCM M is a tuple M “ xV,U,F , P y where each observed variable V P V
is a deterministic function of a subset of variables PaV Ă V and latent variables UV Ă U, i.e.,
v :“ fV ppaV ,uV q, fV P F . The unobserved variables U follow a distribution P puq. ˝

We assume the model to be recursive, i.e. that there are no cyclic dependencies among the variables.
SCM M entails a probability distribution PMpvq over the set of observed variables V such that

PMpvq “

ż

U

ź

V PV

PMpv | paV ,uV q ¨ P puq ¨ du, (1)

where the term P pv | paV ,uV q corresponds to the function fV P F in the underlying structural
causal model M. It also induces a causal diagram GM in which each V P V is associated with a
vertex, and we draw a directed edge between two variables Vi Ñ Vj if Vi appears as an argument
of fVj

in the SCM, and a bi-directed edge Vi Ø Vj if UVi
X UVj

‰ H or P pUVi
,UVj

q ‰

P pUVi
q ¨ P pUVj

q, that is Vi and Vj are confounded (Bareinboim et al., 2022).

Throughout this paper, we only consider discrete-valued variable, and assume the observational
distributions entailed by the SCMs satisfy strict positivity assumption, that is, PMpvq ą ϵ, for every
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v and a known constant ϵ. We will also operate non-parametrically, i.e., making no assumption about
the particular functional form or the distribution of the unobserved variables.

2 CIRCUIT TRANSPORTABILITY

X1 X2 X3

Y

X :

Figure 1: Causal diagrams
corresponding to Exam-
ple 2.1. Color-coded edges
show parents of Y in each
domain: blue for M1,
orange for M˚. Single
edges are the first parent
and double edges are the
second parent.

We consider a classification problem where X “ tX1, X2, ..., XMu,
and Y are discrete-valued variables that take value in a shared fi-
nite vocabulary V . The objective is predicting the label Y us-
ing covariates X, i.e., learning P˚py | x1:M q. There is a loss
function ℓpµ; y,xq, and the risk is defined as the expected loss
RP˚ pµq :“ EP˚ rℓpµ;Y,Xqs. The true risk minimizer is denoted as
µ˚ P argminµ:VMX Ñsimplexp|V|MY q RP˚ pµq, and the empirical risk
minimizer w.r.t. data D is denoted as,

P̂ py | x;Dq P argmin
µ:VMX Ñsimplexp|V|MY q

ÿ

y,xPD

ℓpµ; y,xq. (2)

We consider the loss to be the negative log-likelihood ℓpµ; y,xq :“
´ logµpy | xq in this work, and the objective is to minimize the
excess risk denoted by RP˚ pµq ´RP˚ pµ˚q.

We have access to large source data drawn from a set of source
domains M1,M2, ...,MK that entail the source distributions
P 1px, yq, P 2px, yq, . . . , PKpx, yq, and our predictions are to be evaluated in the target domain
M˚ that entails P˚px, yq. We assume strictly positive mass for every combination of the variables,
i.e., P jpx, yq ą ϵ for all j P rKs Y t˚u. The data is denoted by D1, D2, . . . , DK , D˚ from the
corresponding source and target distributions, where |D˚| “ n and |Dj | “ N for j P rKs, and
typically N " n. Below is a simple instance of the problem.

Example 2.1 (Motivating example). Suppose X1, X2, X3, Y P t0, 1, ..., 9u. There is a single source
domain M1 and a target domain M˚, described as follows:

UX1
, . . . , UXM

„ P puX1
, . . . , uXm

q

UY „ Multinomialpprob : t0.91, 0.01, ..., 0.01uq

Xm Ð UXm
, @m P rM s

Y Ð

"

X1 ´X2 ` UY pmod 10q in M1

X3 ´X2 ` UY pmod 10q in M˚

The causal diagram corresponding to these SCMs is shown in Figure 1. The causal parents of Y are a
different subset of covariates in the source and target domains, but the mechanism that decides Y
based on these parents is shared between M˚ and M1; it is a noisy subtraction of second parent
from the first parent.

Suppose we know the parents of Y in both source and target, i.e., we have access to the ordered sets
Pa1Y “ xPa1Y r1s,Pa1Y r2sy “ xX1, X2y and Pa˚

Y “ xPa˚
Y r1s,Pa˚

Y r2sy “ xX3, X2y. Moreover,
suppose we know that the causal module that generates Y is shared between the two domains,
i.e., f˚

Y pa, b, uY q “ f1Y pa, b, uY q for all a, b P t0, 1, ..., 9u, and P˚puY q “ P 1puY q. Using this
information, we can train a modular predictor for Y using data from M1, i.e, µ1py | a, bq “ P̂ py |

X1 “ a,X2 “ b;D1q, and then, because we know the parents of Y in the target, we can plug them
into this predictor in the appropriate order and predict Y in the target with small error; this is due to
accurate module estimation from the source data. In fact, with large source data, no target data is
needed (i.e., zero-shot generalization) once we have such qualitative knowledge about causal structure
shared between the domains.

Note that in this case P 1pY | Sq ‰ P˚pY | Sq for any subset S Ă tX1, X2, X3u, i.e., no
distributional invariance holds. However, once we unfold X into tX1, X2, X3u, the elaborate
structure of the parents of Y in each domain and the mechanism sharing enables transport. ˝

To encode mechanism sharing between the domains, we use the following notation by Correa and
Bareinboim (2019); Bareinboim and Pearl (2014).
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X1 X2 Y

max,min,´

(a) G1,G2,G3

V1 V2 V3 V4 V5 ¨ ¨ ¨ V3|V|

repeat |V| timesX “ tX1, X2u Y

max min ´

(b) G˚

Figure 2: Causal graphs corresponding to Example 2.4. In the sources, the mechanisms determining
Y are three noisy operators. The target SCM implements a GCD algorithm via the same three
operators through a repeated structure. The query of interest is P˚pv3|V| | v1, v2q

Definition 2.2 (Domain discrepancy sets). The collection of subsets of observable variables ∆ “

t∆j,j1 uKj,j1PrKsYt˚u
where ∆j,j1 contains a variable V P V if there is a possible mismatch between

the causal mechanism of V in domains Mj ,Mj1

, i.e., either f jV ‰ f j
1

V or P jpuV q ‰ P j
1

puV q. ˝

Algorithm 1 Module-TR

Require: D1, D2, . . . , DK , D˚; ∆, tPajY u

Ensure: µTRpy | xq « P˚py | xq

1: J Ð tj P rKs and Y R ∆j,˚u

2: c Ð |Pa˚
Y |

3: DTR
R Ð

Ť

jPJ D
jrY,R1:c “ pajY r1 : css

4: D˚
R Ð D˚rY,R1:c “ Pa˚

Y r1 : css

5: µpy | rq Ð P̂ py | r1:c;D
TR
R YD˚

Rq

6: Return µTR Ð µpy | r “ pa˚
Y q

Notably, because the parents of Y are differ-
ent between the domains, the existing notions
of transportability (e.g., Correa and Bareinboim
(2019); Lee et al. (2020)) do not license transport
in Example 2.1.

Module-TR (Algorithm 1) is the procedure that
generalizes the approach in Example 2.1. First,
we identify the source domains J that share the
Y mechanism with the target domain. Next, we
pool the data from these relevant sources and
reordering the parents to ensure a matching scope
for training the predictive module.
Proposition 2.3 (Module-TR). In Algorithm 1 with high probability,

RP˚ pµTRq ´RP˚ pµ˚q “

#

Op
|X |

c
¨|Y|

ϵ2¨N q if J ‰ H

Op
|X |

c
¨|Y|

ϵ¨n q otherwise
(3)

where c “ |Pa˚
Y | ď M . ˝

All proofs are in Appendix C. In words, if J is empty, it means that Y P ∆j,˚ for all source domains
Mj , thus no source data can help learning in the target, and in fact, the mechanism of Y in the target
domain can be any function. Thus, the best error rate decays with n that corresponds to ERM on the
target Dj . On the other hand, if there are any sources where the mechanism of Y matches with the
target, then knowledge of the domain discrepancies and the parent sets allows us to pool the data
from relevant sources, reorder the covariates to match with the parents of Y in the target, and train a
single predictor using large data of size at least N pooled from the sources and target. In this case,
what allows zero-shot generalization is large source data supplemented with domain knowledge about
the causal structure within each of the domains and the mechanism discrepancies across the domains.
Example 2.4 (Beyond module-transportability). Consider three source domain represented by the
SCM M1,M2,M2, and the target domain represented by M˚, all defined over X1, X2, Y . The
variables have a support of t0, 1, . . . , Cu,X1, X2 are independent in all domains and follow a uniform
distribution. Suppose the ground truth mechanisms are noisy operators below:

f1Y px1, x2, uq « maxpx1, x2q, f2Y px1, x2, uq « minpx1, x2q,

f3Y px1, x2, uq « x1 ´ x2, f˚
Y px1, x2, uq « GCDpx1, x2q

Here, GCD denotes the greatest common divisor operator. We require them to be noisy to avoid
violating the positivity assumption (cf. Preliminaries). Notice that given the parents of Y in both
domains and the domain discrepancies, module-TR (Algorithm 1) shall not transport P˚py | x1, x2q

from the source data, as the function f˚
Y is shared with neither of the source domains.

Interestingly, it is possible to construct a noisy GCD operator by composition of the modules
that are learnable from the source domains. In particular, one can think of an alternative SCM

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

M̃˚ over variables V1, V2, . . . , V3|V| specified as follows: V1, V2 „ unifpt0, 1, . . . , |V|uq, and for
i P t1, 2, . . . , |V|u

V3i Ð maxpV3i´1, V3i´2q, V3i`1 Ð minpV3i´1, V3i´2q, V3i`2 Ð V3i ´ V3i`1. (4)

This SCM in fact corresponds to an algorithm that computes GCD using the min,max,´ operators,
i.e.,

PM̃˚

pv3|V| | v1, v2q « 1rv3|V| “ GCDpv1, v2qs. (5)
If our domain knowledge was so rich to encode this compositional structure and the shared causal
mechanisms with the source domains, we could learn the base operators and compose them in the
appropriate order to obtain the noisy GCD function. In fact, the query P˚py | x1, x2q above is
transportable from source data in a broad sense, only with a richer domain knowledge. ˝

Example 2.4 motivates us to take a more general approach for transportability strategies involving
such compositional structures.

Let V “ tV1, V2, ..., VTj u denotes the observable variables in SCM Mj , for j P rKs Y t˚u, each
having a possibly different number of variables. Every Vi takes value in a finite set V , shared across
all positions and domains. We assume a causal order V1 ă V2 ă ... ă VTj , and that there exists no
unobserved confounding. Let Gj “ tPaji u

T
i“1 be the causal diagram induced by the SCM Mj (e.g.,

Figure 2). The label is Y : VT˚
and the covariates are X : tV1, V2, . . . , VMu in the target domain

domain M˚. The goal is still learning P˚py | xq “ P˚pvT˚
| v1:M q using N labeled data from each

of the source domains and n target data. For the especial case of T˚ “ M ` 1, this coincides with
the module transportability task.

As seen in Example 2.4, the domain discrepancies structure may be more complicated in the se-
quential setting, allowing a match between mechanisms from different positions i, i1 and across
different domains j, j1. Below is an extension of domain discrepancies useful to accommodate such
commonalities.
Definition 2.5 (Discrepancy oracle). Let ∆pi, j; i1, j1q be a boolean function that returns one if either
f ji ‰ f j

1

i1 or P jpuiq ‰ P j
1

pui1 q, and returns zero otherwise. ˝

Now we can formally define Circuit transportability.
Definition 2.6. The query P˚pvT˚

| v1:M q is circuit-transportable from the source distributions
P 1pvq, . . . , PKpvq given the discrepancy oracle ∆ and the causal diagrams G1, . . . ,GK ,G˚, if for
every tuple of source SCMs M1, . . . ,MK and target SCM M˚ that induce the causal diagrams and
∆, and also entail the source distributions, we have a unique distribution PM˚

pvT˚
| v1:M q.

Algorithm 2 Circuit-TR

Require: D1, D2, . . . , DK , D˚; ∆; tGj : tPaji uu

Ensure: µTRpvT˚
| v1:M q « P˚pvT˚

| v1:M q

1: for i P tM ` 1, ..., T˚u do
2: Ji Ð tpi1, j1q : ∆pi, ˚; i1, j1q “ 0 and j P rKsu

3: DTR
i Ð

Ť

i1,j1PJiYtpi,˚qu D
j1

rY : Vi1 ,X1:c : Paj
1

i1 s

4: end for
5: µTR “

śT˚

i“M`1 P̂ pY “ vi | X “ pa˚
i ;D

TR
i q

6: Return µTRpvT˚
| v1:M q Ð

ř

vM`1:T˚´1
µTR

In the context of Example 2.4, once
we rename X1, X2, Y to V1, V2, V3
in the source domains, we have
∆p3, 3; 5, ˚q “ ∆p3, 1; 3|V|, ˚q “ 0
and ∆p3, 2; 6, ˚q “ 1.

Circuit-TR (Algorithm 2) is a general
procedure for circuit-transportability
task. The structure encoded by
the discrepancy oracle ∆ and the
domain-specific causal diagrams
G1, . . . ,GK ,G˚ are used to pool data
that is causally relevant to each of
the variables in the target domain, aking to module-TR procedure. Next, this pooled data is used
to learn the set of conditional distribution P˚pvi | pa˚

i q. These conditional distributions are then
composed to yield an estimator of P˚pvM`1:T˚

| v1:M q, and finally the variables VM`1, ..., VT˚´1

are marginalized out to obtain an estimation of the target quantity P˚pvT˚
| v1:M q.

Remark that in module transportability, Algorithm 1 either achieves zero-shot generalization (i.e.,
rates in terms of N ) or uses only the target data (rates in terms of n) (Lemma B.3 and Proposition 2.3).
However, in transporting circuits, the predictor µTR returned by Algorithm 2 may lie in between the
two extremes; in particular, if all conditional distributions tP˚pvi | Pa˚

i qu
T˚

i“M`1 are transported,

5
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i.e., data from at least one of the sources is pooled for estimation of each module, then all of them
would have low error, resulting in a target risk guarantee for µTR that depends on N . On the other
hand, if none of the modules tP˚pvi | Pa˚

i qu
T˚

i“M`1 can be transported, then the guarantee would
be in terms of the target data size n only. One can imagine in-between situations where some of the
conditionals are transported and others must be learned with target data only; in these situations, the
risk bound would have a fast and slow components which decay with n and N , respectively. Below
is an upper-bound for the target risk of structure-informed DA in sequential prediction.
Theorem 2.7 (Circuit-TR error rate). In Algorithm 2 with high probability,

RP˚ pµTRq ´RP˚ pµ˚q “

#

Op
|V|

T˚

ϵ2N q if @i P tM ` 1, ..., T˚u : Ji ‰ H

Op
|V|

M`1

ϵn q otherwise
(6)

where T˚ is the size of the target SCM.

In words, the guarantee offered by Theorem 2.7 decays with N (i.e., zero-shot generalization) if all
components of the sequence from M ` 1 to T can be transported from one of the sources; for a more
refined analysis, cf. Appendix E). A transportable circuit can be interpreted as a causal/mechanistic
interpolation of the source domains, since each target mechanism f˚

i must be present in at least one
position of one of the source domains. On the other hand, when at least one component cannot be
transported, then the rate would involve a term which decays with n, i.e., a slow adaptation.

Generalization to an unseen target domain necessarily relies on some form of domain knowledge or
structural assumptions. A natural challenge is that in most realistic settings, such elaborate structural
knowledge is not available, however, it is possible to obtain relatively small amount of labeled target
data. Can we leverage an implicit structure to transport predictions from the sources to the target for
few-shot generalizations? In the next section we investigate this challenge.

3 FEW-SHOT LEARNING VIA CIRCUIT TRANSPORTABILITY

Algorithm 3 Circuit-AD

Require: D1, D2, . . . , DK , D˚; ∆; tGju
Ensure: Target classifier Êp˚ rY | xs

1: Let E “ tpi, jq : i P rTjs, j P rKs Y t˚uu and H Ð tu

2: D˚
tr, D

˚
te Ð partitionpD˚q

3: for every partition of E into subsets S “ tElul do

4: ∆pi, j; i1, j1q Ð

"

0 if DEl P S s.t. P pi, jq, pi1, j1q P El
1 otherwise

5: for every set of graphs tG1,G2, ...,GK ,G˚u do
6: H Ð HY tcircuitTRpD1, ..., DK , D˚

tr; ∆; tGjuqu

7: end for
8: end for
9: Return µAD Ð argminµPH ℓpµ;D˚

teq

Suppose we do not have access to
a domain knowledge comprised of
a collection of causal graphs and
the discrepancy oracle. The next ex-
ample depicts a situation where we
can still make accurate predictions
in the target domain.
Example 3.1. In the context of Ex-
ample 2.1, suppose we do not have
access to domain discrepancy sets
∆ and the parent sets Pa1Y ,Pa˚

Y .
To compensate for this lack of
knowledge, we take the following
approach: we train a collection
of predictors that would contain at
least one candidate whose risk in the target is as good as what is achievable through module-TR, and
then we use held-out target data to find the best performing one among these candidates, hopefully
identifying the best-performing one with few target samples. In particular, for every c P t0, 1, 2, 3u,
we take two ordered set of the covariates of size c, and regress Y on these c variables in the specified
order, once using target data alone and once using source and target data combined. this results in a
total of at most

ř3
c“0p

`

3
c

˘

¨ c!q2 `
`

3
c

˘

¨ c! “ 98 predictors. Notice that this number does not depend
on dimensionality of X,Y , and is only a function of the number of variables. Finally, we use held-out
target data to choose the best performing one in this pool of predictors. This imposes a fixed excess
risk on top of what is achievable through module-TR, and since we know that this example is in fact
module-transportable, we can guarantee a small total risk with only a few target samples. ˝

As seen in the example above, each hypothetical domain knowledge yields an estimator for
P˚pvT˚

| v1:M q trained using a combination of the source and target data (Algorithm 2). Since the
domain knowledge ∆, tGjujPrKsYt˚u is a discrete object, by fixing T˚ which is the size of the target
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SCM, there exists finitely many distinct candidate estimators for P˚pvT˚
| v1:M q, considering all

possibilities. We can partition the target data into training and validation sets of size n
2 , and use the

training part along with the source data to obtain the set of possible estimators of P˚pvT˚
| v1:M q.

Finally, we can use the target validation data to pick the best performing estimator from the pool.
Circuit-AD (Algorithm 3) summarizes this approach, and what follows is its performance guarantee.
Theorem 3.2 (Circuit-adaptation rate). Let µTR, µAD be learned by the circuit-TR (Algorithm 2) and
circuit-AD (Algorithms 2 and 3). We have,

RP˚ pµADq “ OpRP˚ pµTRq `

c

K ¨ T 3
˚ ¨ log T˚

n
q (7)

where K is the number of sources, and T˚ is the size of the target SCM.

Notably, circuit-AD would have a guarantee that is only marginally worse than what it achievable
through the circuit-TR procedure which leverages an elaborate domain knowledge. An important
consideration in employing circuit-AD (Algorithm 5) is the choice of T˚, that is the number of
modules in the target SCM. The example below emphasizes the subtleties of this matter.
Example 3.3 (Slow rate for GCD). Recall Example 2.4, where GCD deems circuit-transportable
from max,min,´, given, e.g., the causal graph in Figure 2b. Now suppose we do not have access
to the causal graphs and domain discrepancies, so we need to use Circuit-AD. We need to make a
choice of T˚, and circuit-AD offers no basis for this. In hindsight, we can ensure that T˚ “ 3|V| is
large enough, since there exists a recipe of this length (i.e., causal graph and discrepancies oracle)
that licenses circuit-transportability. Due to Theorem 3.2, this choice offers the following guarantee:

RP˚ pµADq “ OpRP˚ pµTRq `

c

|V|3 ¨ log |V|

n
q. (8)

This is indeed an slow rate, since n “ Ωp|V|3q is needed for a constant excess risk; in fact, the regular
ERM on target yields similar error rate. ˝

How many modules should the target domain have for P˚py | xq to be circuit-transportable?

This is known as Minimum Circuit Size Problem (MCSP) (Shannon, 1949; Lupanov, 1958; Furst
et al., 1981; Arora and Barak, 2009; Murray and Williams, 2017; Allender et al., 2018). The modules
considered in this circuit complexity theory are often deterministic boolean functions, but, there are
also probabilistic extensions too, cf. Adleman (1978); Yao (1977); Håstad (1986). Clone membership
problem (CMP) (Post, 1941; Lau, 2006; Vollmer, 2009) concerns whether it is even possible to
transport a circuit from a fixed set of modules. CMP is indeed decidable in time and space polynomial
in size of the conditional distribution table (exponential in vocabulary size |V|). In fact, if the source
domains offer a functionally complete basis, then its clone contains all functions, meaning that every
conditional distribution is circuit transportable with some circuit size, but still, adaptation rates
depends on the size of the circuit and simply being complete doesn’t offer advantage in adaptation.
Below is an example that illustrates how a circuit can be adaptable with different error rates from
difference source domains.
Example 3.4 (Fast rate for GCD). In the context of Example 2.4, suppose we also have access to
source M4 where, f4Y « a mod b. An algorithm/circuit for GCD using max,min,mod is identical
to the one constructed with max,min,´, with just replacing ´ operator with mod. This change
reduces the number of modules needed to 3rlog2p|V|qs, thus, circuit-AD for GCD using the new
source domain has a much better guaranteed excess risk compared to Equation (8), though the
guarantee still depends on the vocabulary size. ˝

Motivated by this observation, we have the following statement.
Corollary 3.5 (Fast/slow). Suppose L is the the minimum circuit size for computing P˚py | xq from
the basis of modules. if L is constant, then it is possible to achieve very fast adaptation rates. Also,
L “ Op 3

a

n
k q is the threshold of fast/slow adaptability with a fix target dataset of size n.

4 ARCHITECTURE, OPTIMIZATION SCHEME, AND SIMULATIONS

Circuit-AD (Algorithm 3) iterates over all combinations of discrepancy oracle and graphs, and this
makes it computationally intractable. Here, we introduce a gradient-based alternative.
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4.1 THE ARCHITECTURE AND PRETRAINING

For simplicity, suppose the same number of variables are observed in all domains, i.e., Tj “ T . Also,
here we discuss the case of |Paji | ď 1 for all i P rT s, j P rKs Y t˚u, though we remove this condition
in Appendix G. The goal of pretraining is to use the large source data and learn a set of mappings
that satisfy desired properties:

1. The mechanism indicator ϕ : rT s ˆ rKs Ñ rds, such that,

Φpi, jq ‰ Φpi1, j1q if and only if ∆pi, j; i1, j1q “ 1 (9)

2. The parent matrix: Aj P r0, 1sTˆT for all j P T is lower-diagonal, such that,

Aji,i1 “ 1 iff Paji “ Vi1 (10)

3. Universal predictor Ψ : V ˆ V ˆ rds Ñ r0, 1s:

@y, x P V, i P rT s, j P rKs : Ψpy | x;ϕ “ Φpi, jqq “ P jpVi “ y | Paji “ xq (11)

In words, it is desirable that Φpi, jq encodes the discrepancy oracle by clustering the position-domain
pair into the categories t1, ..., du, and tAjuKj“1 encode the causal diagram in each domain. It is clear
that once the mappings satisfy the properties Equations (9) to (11), we can have optimal prediction in
the source domains: for predicting vi in domain Mj take, v̂i „ Ψpvi | X “ Aji,¨ ¨ v1:T ; Φpi, jqq. By
design, any instantiation of Φ, tAju,Ψ that maximizes a penalized likelihood on source populations
satisfies the above properties, as stated below.
Proposition 4.1 (Pretraining). Let θsrc be a set of parameters for the mappings above such that,

θsrc P argmin
θPΘ

`

ÿ

|V|T

K
ÿ

j“1

P jpvtq
T

ÿ

i“1

´ logΨθpvi | Ajθi,¨ ¨ v1:T ; Φθpi, jqq
˘

` λpd` }A¨}1q, (12)

where Θ denotes all parameterizations for the mappings, rds is the range of Φ, and }A¨}1 denotes
sum of the entries of the parent matrices. Φθsrc , tA

j
θsrcu,Ψθsrc satisfy Equations (9) to (11). ˝

(a) Learned graph (b) True graph

Figure 3: Implicit causal discovery in pretraining.

We experiment with a synthetic example
with T1, T˚ “ 10, and validate that the
parent matrices are indeed learned during
the pretraining, cf. Figure 3. Notably,
Nichani et al. (2024) illustrates a simi-
lar phenomenon, where the transformer
architecture learns such sequential depen-
dencies. Here, we show that this custom
architecture captures not only the causal
dependencies, but also the source-source
discrepancy oracle.

4.2 FINE-TUNING

We partition the target data D˚ into D˚
tr, D

˚
ft, D

˚
te of proportionate size. Recall rds as the range of

the mapping Φ. Once pretrained, each ϕ P rds corresponds to a subset of position-domain pairs in
the source that share the causal mechanism; this is due to Proposition 4.1 that ensures Equation (9).
Suppose for a position i P rT s, it holds that ∆pi, ˚; i1, j1q “ 0. Thus, for all x, y P V ,

P˚pVi “ y | Pa˚
i “ xq “ P j

1

pVi1 “ y | Paj
1

i “ xq (∆pi, ˚; i1, j1q “ 0) (13)

“ ΨθsrcpVi1 “ y | X “ x;ϕ “ Φpi1, j1qq (Equation (11)) (14)

Notably, Ψθsrc is learned in the pretraining stage, yet we need to discover ϕ,Pa˚
i at each position

i P rT s. To this end, we take a target parent matrix A˚ P r0, 1sTˆT to encode Pa˚
i via A˚

i,i1 “ 1 if
Pa˚

i “ Vi1 , and also a target mechanism indicator Φ˚ : rT s Ñ rds. Next, we use D˚
ft to learn,

θtrg P argmin
θPΘ

ÿ

v1:T PD˚
ft

T
ÿ

i“1

´ logΨθsrcpY “ vi | X “ A˚
θ i,¨ ¨ v1:T ; Φ

˚
θ piqq. (15)

8
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(a) Adapting fast due to process supervision (b) Adapting slow due to no process supervision

Figure 4: The performance of our method which is based on structure agnostic domain adaptation, in
comparison with the baselines that train jointly on source and target data, either by discarding the
domain indices (ERM-pool) or by keeping them (ERM-joint).

This optimization considered at each position i P rT s is equivalent to using |D˚
ft| target data to pick

the best-performing predictor for Vi in M˚ among a pool of d ¨ pi´ 1q candidates from the sources.

We use D˚
tr to learn a separate target-only model at every position i; in particular, let µ˚

i :“ P̂ pvi |

v1:i´1;D
˚
trq. Finally, at each position i, we choose a linear interpolation of the best transported

predictor and µ˚
i . This is performed via learning the transport indicators s˚

1 , . . . , s
˚
T P r0, 1s through,

s˚
i P argmin

sPr0,1sT

ÿ

vPD˚
te

T
ÿ

i“1

´ logpsi ¨Ψθsrcpvi | A˚
θtrg i,¨ ¨v1:T ; Φ

˚
θtrgpiqq`p1´s1q¨µ˚

i pvi | v1:i´1qq (16)

In words, si « 0 indicates that the target-only model performs best on the held-out data D˚
te, thus we

decide on no transport from the sources. On the other hand, si « 1 indicates a decision to transport.
Finally, we compute the estimation of the query of interest P˚pvt | v1:M q:

µ̂ftpvT | v1:M q “
ÿ

vM`1:T´1

T
ź

i“M`1

si ¨Ψθsrcpvi | A˚
θtrg i,¨ ¨ v1:T ; Φ

˚
θtrgpiqq ` p1´ siq ¨µ˚

i pvi | v1:i´1q

What follows justifies equivalence of two-stage adaptation with Algorithm 3.
Proposition 4.2 (Fine-tuning rate). Let µAD be learned by Algorithm 3 and µft (Section 4.2) be the
result of the two-stage adaptation. We have, RP˚ pµftq “ OpRP˚ pµADqq

We consider our method in comparison with two baselines:

1. ERM-pool. We drop the domain indices and pool data from all domains.
2. ERM-joint. We keep the domain indices, and treat the target as another source in pretraining.

We use the same architecture for both baselines to isolate adaptability. The goal is learning P˚pv10 |

v1:5q, and we deliberately picked a circuit-transportable instance; see the graphs in Appendix F.
Witnessed by Figure 4a, circuit-AD surpasses the baselines when the circuit size matches with a
ground truth (i.e., T˚ “ 10), however, for a restrictive choice of T˚ “ 6 (i.e., module-TR), the task is
not transportable anymore, thus, circuit-AD achieves a poor performance, as predicted by the theory.

5 CONCLUSIONS

We proposed a causal framework for learning from different domains. Circuit-TR is an extension
to the causal transportability theory for compositional generalization task. We devise circuit-AD, a
supervised domain adaptation scheme that uses circuit-TR as a subroutine to mitigate challenges
of missing domain knowledge. Our findings draw a connection between minimum circuit size
problem and error rates associated with circuit-AD algorithm. To address intractability of the
symbolic algorithms, we introduced a transformer-like architecture and training agenda that mimics
an exhaustive search procedure of circuit-AD, and show its validity with controlled experiments.
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A LLM USAGE DISCLOSURE

In this work, we used Chat-gpt and Claude, and Cursor for the following purposes:

• Ideation, choice of notation, and structuring the paper.

• Literature overview and references.

• Developement of the codebase, and illustration/visualization.

• Content on reproducibility and implementation details in Appendix F.1.

B SIMPLIFIED UNI-CAUSE TRANSPORTABILITY AND ADAPTATION

Algorithm 4 simple-AD (X Ñ Y )

Require: D1, D2, . . . , DK , D˚; ∆
Ensure: µTR « P˚py | xq

1: J Ð tj P rKs and Y R ∆j,˚u

2: DTR Ð
Ť

jPrKs s.t. Y R∆j,˚
Dj

3: Return µTR Ð P̂ py | x;DTR YD˚q

Consider the classification task where Y takes value
in a finite support Y , and the covariate X that takes
value in a finite support X ; in particular the objective
is learning P˚pY “ y | X “ xq within the hypoth-
esis class containing all functions µpy | xq : X Ñ

simplex|Y|. There is a loss function ℓpµ; y,xq, and
the risk is defined as the expected loss RP˚ pµq :“
EP˚ rℓpµ;Y,Xqs. The true risk minimizer is de-
noted as µ˚ P argminµ:XÑsimplex|Y| RP˚ pµq, and
the empirical risk minimizer w.r.t. dataD is denoted
as,

P̂ py | x;Dq P argmin
µ:XÑsimplex|Y|

ÿ

y,xPD

ℓpµ; y,xq. (17)

We consider the loss to be the negative log-likelihood ℓpµ; y, xq :“ ´ logµpy | xq in this work, and
the objective is to minimize the excess risk denoted by RP˚ pµq ´RP˚ pµ˚q.

Suppose we have access to target dataD˚ drawn i.i.d. from the target domain π˚ that entails the target
distribution P˚px, yq, as well as source data D1, D2, . . . , DK from a set of source domains Πsrc “

tπ1, π2, ..., πKu that entail the source distributions P src “ tP 1px, yq, P 2px, yq, . . . , PKpx, yqu. Let
n “ |D˚| and N “ |Dj | for all j P rKs, and suppose N " n. We assume strictly positive mass for
every combination of the variables, i.e., P jpx, yq ą ϵ for all j P rKs Y t˚u.

Example B.1 (Classification in X Ñ Y case). Suppose the source domains are governed by SCMs
M1,M2, ...,MK , and the target domain π˚ is governed by the SCM M˚; For domain πj the SCM
Mj is denoted as follow:

UX , UY „ unifpr0, 1sq

X Ð f jXpUXq

Y Ð f jY pX,UY q.

The source and target SCMs all induce the same causal diagram X Ñ Y , which indicates that
X is the cause of Y , and no unobserved confounders are present. Notice that without further
assumptions the source data is unrelated to classification in the target; for example, in a case of
X P t0, 1u it is possible that f1Y “ f2y “ ... “ fKY : 1tUY ą0.5u, which means that Y KK X across
all sources, but f˚

Y px, uY q “ X ‘ 1tUY ą0.9u, which means that P˚pY “ 1 | X “ 0q “ 0.1 and
P˚pY “ 1 | X “ 1q “ 0.9 in the target domain. ˝

In the next example we use the domain discrepancy sets in an instance of the domain adaptation task.

Example B.2 (∆ might allow direct-transport, or suggest no transport). In the context of Example B.1,
suppose we have access to ∆. If there exists j P rKs such that Y R ∆j,˚, then f˚

Y “ f jY and

15
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P˚puY q “ P jpuY q, and therefore,

P˚py | xq “
ÿ

uY PY
P˚py | uY , xq ¨ P˚puY | xq (introduce UY )

“
ÿ

uY PY
1tf˚

Y px,uY q“yu ¨ P˚puY q (defn. of f˚
Y & UY KK X)

“
ÿ

uY PY
1

tfj
Y px,uY q“yu

¨ P jpuY q “ P jpY | xq (Y R ∆j,˚)

Thus, to predict the label in the target, it suffices to estimate P jpY | xq using large source data
available from πj . However, if Y P ∆j,˚ for all j P rKs, then domain discrepancy sets reject use of
any source data, as the real SCMs may be similar to what was discussed in Example B.1. ˝

A simple procedure in Algorithm 4 describes the above approach, and below is a guarantee.
Lemma B.3 (Simple-TR; X Ñ Y case). In Algorithm 4 with high probability,

RP˚ pµTRq ´RP˚ pµ˚q “

#

Op
|X |¨|Y|

ϵ2¨N q if J ‰ H

Ωp
|X |¨|Y|

ϵ¨n q otherwise
(18)

where J is obtained through Algorithm 4. ˝

In words, if the mechanism of Y in the target matches with that of any of the sources, then because of
support overlap (due P px, yq ě ϵ) simple-TR can achieve fast rates that depend on the source data
size N which is typically large. This case is called transportable in the causal inference literature,
or domain generalization or zero-shot learning in the literature. In the other cases (i.e., the non-
transportable scenario), even with access to the structure ∆, there might exist vastly different realities
(i.e., a tuple of source and target SCMs) which admit the structural assumption encoded in ∆ but they
do not agree on the classification rule in the target domain, thus, no adaptation is possible. These
two extreme cases happen as a byproduct of the discrete nature of the domain discrepancy sets; if
Y R ∆j,˚ then the mechanism determining Y matches perfectly between π˚, πj , and since there
is no confounding between Y and X (i.e., U variable pointing to both X and Y ), we ensure that
P˚py | xq “ P py | xq. Note that not having a confounder is critical to this conclusion based on the
structure ∆; in Appendix D, we discuss how confounders can complicate simple-TR.

Notably, the risk upper-bound provided in Lemma B.3 is not tight, e.g., ϵ2 in the denominator of the
transportable case can be improved through adaptive procedures. Since we are assuming that ϵ is
a constant and N " n, the bounds serve the purpose for this work. Our main focus throughout is
identifying which source domains contain useful information for prediction in the target, and how
that information can be incorporated in learning, given the structure ∆, thus we rely on the covariates
overlap. On the other hand, in many theoretical work on domain adaptation, it is presumed that the
sources are all useful for prediction in target, e.g., there exists a unique best hypothesis h˚ for all
domains Ben-David et al. (2006); Mansour et al. (2009b), thus, in these work the main complexity of
DA comes from lack of overlap between the covariate distributions across the domains.

Algorithm 5 simple-AD

Require: D1, D2, . . . , DK , D˚

Ensure: µADpy | xq « P˚py | xq

1: D˚
D, D

˚
Dtest

Ð partitionpD˚q

2: ψS Ð P̂ py | x;D˚
D Y

Ť

jPS D
jq for all S Ď rKs

3: Return µAD Ð argminSĎrKs ℓpψS ;D
˚
Dtest

q

We treat the simple-TR procedures (such as
Algorithm 4) as the best one can do given
knowledge of the structural properties of the
problem. In reality, access to such structure
may not be viable, and in the next exam-
ple we would like to consider adaptation in
situations where ∆ is unknown.
Example B.4 (Agnostic approach; X Ñ Y
case). In the context of Example B.1, sup-
pose we the structure ∆ is unknown, yet
we would like to achieve guarantees not much worse than what is achievable using ∆. Note that
simple-AD (Algorithm 4) pools data from the source domain πj with the target data whenever ∆
implies that P˚py | xq “ P jpy | xq. If any of the source data is pooled, then the error decays with N
which is typically very large, otherwise, it would decay with n, the number of target data points.

We can take the following approach to benefit from the source data even without the structure.
Partition the target data into D˚ “ D˚

D \ D˚
Dtest

of equal size n
2 . Then, for each subset of the
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sources such as S Ď rKs, learn a predictor ψSpy | xq :“ P̂ py | x;D˚
D Y

Ť

jPS D
jq. Finally, use

D˚
Dtest

to choose the best of the 2K predictors learned from each of the domains, i.e., µAD Ð

argmaxψS :SĎrKs

ř

y,xPD˚
Dtest

ℓpψS ; y, xq. The best error achievable using the structure ∆ can be

achieved by at least one of the 2K predictors we have learned. Thus, the extra risk of the above
procedure compared to the simple-TR is equivalent to learning from a finite hypothesis class of size

2K using D˚
Dtest

data, which is bounded by Op

b

K
n q. ˝

Example B.4 shows that through a simple training-validation procedure, without access to the domain
discrepancies, it is possible to achieves rates that are only slightly worse than what is achievable
through explicit access to the domain discrepancies ∆. We call such strategies Agnostic throughout
this work, and Algorithm 5 summarizes this approach. What follows is a formal statement.

Theorem B.5 (simple-AD error rate). Let µTR, µAD be learned using simple-TR and simple-AD
(Algorithms 4 and 5), respectively. We have,

RP˚ pµADq “ OpRP˚ pµTRq `

c

K

n
q, (19)

where K is the number of source domains, and n is the number of target data. ˝

C PROOFS

Definition C.1 (strongly convex functions). A function fpxq is m-strongly convex if,

fpx1q ě fpxq ` ∇fpxqT px1 ´ xq `
m

2
}x1 ´ x}2, @x, x1 P X , (20)

˝

Next, we show that the risk in our problem is strongly convex under strict positivity assumption
P˚px, yq ą ϵ.

Lemma C.2 (strongly convex risk.). RP˚ pµq is ϵ-strongly convex w.r.t. µ under the assumption of
P˚px, yq ą ϵ.

Proof. Recall the loss function ℓpµ; y, xq “ ´ logµpy | xq. Thus, the true risk of µTR can be
expressed as:

RP˚ pµTRq “ EP˚ r´ logµTRpY | Xqs (21)

“
ÿ

x

P˚pxq ¨
ÿ

y

P˚py | xq ¨ log
1

µTRpy | xq
(22)

“
ÿ

x

P˚pxq ¨DDKL

`

P˚p¨ | xq}µTRp¨ | xq
˘

. (23)

For a fixed x P X , the KL loss DDKL

`

P˚p¨ | xq}µTRp¨ | xq
˘

is 1-strongly convex for the interior of
the simplex, i.e., under positivity. Thus, the weighted sum

ř

x P
˚pxq ¨DDKL

`

P˚p¨ | xq}µTRp¨ | xq
˘

.
with P˚pxq ą ϵ would be ϵ-strongly convex Boyd and Vandenberghe (2004).

What follows is standard high-probability bound for excess risk of ERM with strongly convex risk,
adapted from Kakade and Tewari (2009).

Corollary C.3. Let the ERM solution be,

µERM :“ P̂ py | x;D˚q P argmin
µ:XÑsimplex|Y|

ÿ

x,yPD˚

´ logµpy | xq, (24)

and let the true risk minimizer be,

µ˚ “ argmin
µ:XÑsimplex|Y|

EY,X„P˚ r´ logµpy | xqs. (25)
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Under P˚px, yq ą ϵ, for any δ ą 0 the following holds with probability 1 ´ δ:

RP˚ pµERMq ´RP˚ pµ˚q ď
8 ¨

`

ln 1
δ ` |X | ¨ |Y| ¨ lnp1 ` n

|X |¨|Y|
q
˘

ϵ ¨ n
“ Op

|X | ¨ |Y|

ϵ ¨ n
q, (26)

where n “ |D˚|. ˝

We also show the following bound for the risk of the transported estimators.

Lemma C.4. Suppose P˚py | xq “ P py | xq. Define the transported predictor as the ERM over
D „ P px, yq:

µTR :“ P̂ py | x;Dq P argmin
µ:XÑsimplex|Y|

ÿ

x,yPD

´ logµpy | xq, (27)

and let the true risk minimizer be defined in Equation (25). Suppose P˚px, yq, P px, yq ą ϵ. For any
δ ą 0 the following holds with probability 1 ´ δ:

RP˚ pµTRq ´RP˚ pµ˚q “ Op
|X | ¨ |Y|

ϵ2 ¨N
q, (28)

where N “ |D|.

Proof. Equal conditionals, i.e., P˚py | xq “ P py | xq, implies that the true risk minimizer matches
under both distributions, i.e.,

µ˚ P argmin
µ

EP˚ rℓpµ; y, xqs ðñ µ˚ P argmin
µ

EP rℓpµ; y, xqs. (29)

Since µTR is the solution of ERM under P , based on Corollary C.3, we have:

RP pµTRq ´RP pµ˚q “ Op
|X | ¨ |Y|

ϵ ¨N
q. (30)

Let α “ maxxPX
P˚

pxq

P pxq
. For any µ : X Ñ simplex|Y|, we related the risk under P and P˚:

RP˚ pµTRq ´RP˚ pµ˚q “
ÿ

x

P˚pxq ¨
ÿ

y

P py|xq ¨ plogµ˚py|xq ´ logµTRpy|xqq (31)

“
ÿ

x

P˚pxq

P pxq
¨ P pxq ¨

ÿ

y

P py|xq ¨ plogµ˚py|xq ´ logµTRpy|xqq (32)

“ EpX,Y q„P

„

P˚pXq

P pXq
¨ plogµ˚py|xq ´ logµTRpy|xqq

ȷ

(33)

ď α ¨ EpX,Y q„P rlogµ˚py|xq ´ logµTRpy|xqs (34)

“ α ¨
`

RP pµTRq ´RP pµ˚q
˘

(35)

“ Op
α ¨ |X | cot |Y|

ϵ ¨N
q “ Op

|X | cot |Y|

ϵ2 ¨N
q. (36)

The last line follows from strict positivity:

α “ max
xPX

P˚pxq

P pxq
ď

maxxPX P
˚pxq

minxPX P pxq
ď

1

ϵ
(37)

C.1 PROOF OF LEMMA B.3

If J “ H, then the algorithm learns µTR Ð P̂ py | x;D˚q, i.e., ERM on the target data only.
Followed from Corollary C.3, we obtain the desired guarantee.

If J ‰ H, then there exists at least one source domain j P J for which P jpy | xq “ P˚py | xq,
and we transport the predictor from that domain. Since |Dj | “ N , using Lemma C.4, we obtain the
desired result.

18
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C.2 PROOF OF THEOREM B.5

In Algorithm 5 we first compute a collection of predictors tψSuSĎrKs. Then we use held-out target
data to choose the one with smallest risk. Let,

µ̃ P argmin
µPtψSuSĎrKs

RP˚ pµq, (38)

And let µTR be obtained from Algorithm 4. Firstly, consider the following cases:

1. J “ H: In this case, µTR is obtained through ERM on the target data, i.e., µTR “ P̂ py |

x;D˚q, achieving the following guarantee (Corollary C.3):

RP˚ pµTRq ´RP˚ pµ˚q “ Op
|X | ¨ |Y|

ϵ ¨ n
q. (39)

Notably, for S “ H, we have ψS “ P̂ py | x;D˚
Dq, where |D˚

D| “ n
2 . Thus,

RP˚ pµ̃q ´RP˚ pµ˚q ď RP˚ pψHq ´RP˚ pµ˚q (40)

“ Op
|X | ¨ |Y|

ϵ ¨ n
q. (41)

2. J ‰ H: In this case, µTR is obtained through ERM on source data from domains πj for
j P J , which would achieving the following guarantee (Lemma C.4):

RP˚ pµTRq ´RP˚ pµ˚q “ Op
|X | ¨ |Y|

ϵ2 ¨N
q. (42)

Notably, for S “ J , we have ψS trained using the same pooled data as µTR, where
|D˚

D| “ n
2 . Thus,

RP˚ pµ̃q ´RP˚ pµ˚q ď RP˚ pψJ q ´RP˚ pµ˚q (43)

“ Op
|X | ¨ |Y|

ϵ2 ¨N
q. (44)

Comapring these rates with Lemma B.3 confirms:

RP˚ pµ̃q “ OpRP˚ pµTRqq. (45)

Next, we show that empirical version of µ̃, namely µAD, achieves the desirable excess compared to
µ̃.

µAD in Algorithm 5 is achieved by minimizing the empirical risk over the finite collection tψSuSĎrKs

using data D˚
Dtest

of size n
2 . Standard uniform convergence guarantees of finite hypothesis classes

(Vapnik and Chervonenkis (1971); Shalev-Shwartz and Ben-David (2014)) imply that for any δ ą 0,
with probability 1 ´ δ the excess risk can be upper-bounded as:

RP˚ pµADq ´RP˚ pµ̃q ď

d

log |tψSuSĎrKs|

2 ¨ n2
`

d

logp1{δq

2 ¨ n2
. (46)

This is due to the fact that |tψSuSĎrKs| “ Op2Kq. Finally, Equation (45) implies,

RP˚ pµADq ď RP˚ pµ̃q `

d

log |tψSuSĎrKs|

2 ¨ n2
`

d

logp1{δq

2 ¨ n2
(47)

“ OpRP˚ pµTRq `

c

K

n
q (48)

C.3 PROOF OF PROPOSITION 2.3

Proof follows the logic of the proof of Lemma B.3 (Appendix C.1). In the transportable case we
would have J ‰ H in Algorithm 1. Thus, the data used for estimation of µTR is pooled from at least
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one source domain πj for j P J , where |Dj | “ N . The conditional distribution to be estimated is
µTRpy | pa˚

Y q, and for c “ |Pa˚
Y |, following Lemma C.4, we get the bound,

RP˚ pµTRq ´RP˚ pµ˚q “ Op
|X |c ¨ |Y|

ϵ2 ¨N
q. (49)

On the other hand, in the non-transportable case, we would have J “ H, thus µTR is trained using
only data from the target domain, and due to Corollary C.3, achieves,

RP˚ pµTRq ´RP˚ pµ˚q “ Op
|X |c ¨ |Y|

ϵ ¨ n
q. (50)

C.4 PROOF OF THEOREM 2.7

The query of interest P˚pvT | v1:M q can be computed through the following formula by introducing
the intermediate variables VM`1:T´1 and then marginalizing them out:

P˚pvT | v1:M q “
ÿ

vM`1:T´1

P˚pvM`1:T | v1:M q. (51)

Following the causal order, and the causal diagram of the target domain, we can write P˚pvM`1:T |

v1:M q as a product of conditionals on the parents:

P˚pvT | v1:M q “
ÿ

vM`1:T´1

T
ź

i“M`1

P˚pvi | pa˚
i q. (52)

To transport the above, we attempt a multi-cause problem instance at every position i: for i P tM `

1, ¨ ¨ ¨ ,Ku if there exists a position i1 P rT s and domain index j1 P rKs such that ∆pi, ˚; i1, j1q “ 0,

P˚pVi “ y | Pa˚
i “ xq “ P jpVi1 “ y | Paji1 “ xq. (53)

This allows us to pool data from all position-domain pairs i1, j1 such that ∆pi, ˚; i1, j1q “ 0, and use
it to estimate P˚pVi “ y | Pa˚

i “ xq. In Algorithm 1 Ji denotes this subset of position-domain
pairs. Next, based on the parents in each of the source domains, we pool the data corresponding to
Ji, namely DTR

i , with the size of |Ji| ¨ N ` n; the n term is due to the fact that ∆pi, ˚; i, ˚q “ 0

is guaranteed. Next, compute the ERM using DTR
i to obtain µiTR :“ P̂ py | x;DTR

i q. Finally, we
compose all these predictors, and marginalize out the intermediate variables to achieve an estimation
of P˚pvT | v1:M q:

µTRpvT | v1:M q “
ÿ

vM`1:T´1

T
ź

i“M`1

µiTRpY “ vi | X “ paiq. (54)
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Next, we decompose the risk of µTR in terms of the risk of the predictors different positions:

RP˚ pµTRq “ EP˚ r´ logµTRpvT | v1:M qs pℓpµ; y,xq “ ´ logµpy | xqq

(55)

“ EP˚

“

EP˚ r´ logµTRpvT | v1:M q | vM`1:T´1s
‰

plaw of iterated expectation.q
(56)

“ EP˚

“

EP˚ r´ log
ÿ

vM`1:T´1

T
ź

i“M`1

µiTRpvi | pa˚
i q | vM`1:T´1s

‰

pintermediate variables.q

(57)

ď EP˚

“

EP˚ r
ÿ

vM`1:T´1

´ log
T

ź

i“M`1

µiTRpvi | pa˚
i q | vM`1:T´1s

‰

pconcavity of log & Jensen ineq.q

(58)

“ EP˚

“

ÿ

vM`1:T´1

T
ÿ

i“M`1

EP˚ r´ logµiTRpvi | pa˚
i q | vM`1:T´1s

‰

plinearity of expectationq

(59)

“

T
ÿ

i“M`1

EP˚

“

ÿ

vM`1:i´1

EP˚ r´ logµiTRpvi | pa˚
i q | vM`1:is

‰

pMarkovianityq

(60)

“

T
ÿ

i“M`1

EP˚ r´ logµiTRpvi | pa˚
i qs pmarginalize interm. vars.q

(61)

“

T
ÿ

i“M`1

RP˚ pµiTRq prisk of sub-taskq

(62)

Let µi˚ :“ P˚pvi | pa˚
i q, so that,

µ˚pvt | v1:M q “
ÿ

vM`1:T´1

T
ź

i“M`1

µi˚pvi | pa˚
i q. (63)

Due to Lemma C.4 and Corollary C.3, we have the following risk bound for the predictor at position
i:

RP˚ pµiTRq ´RP˚ pµi˚q ď Op
|V||Pa˚

i |`1

|Ji| ¨ ϵ2 ¨N ` ϵ ¨ n
q. (64)

Therefore, we have the bound,

RP˚ pµTRq ´RP˚ pµ˚q ď

T
ÿ

i“M`1

RP˚ pµiTRq ´RP˚ pµi˚q (65)

“ O
`

T
ÿ

i“M`1

|V||Pa˚
i |`1

|Ji| ¨ ϵ2 ¨N ` ϵ ¨ n

˘

. (66)

Let,
I “ ti P rT s s.t. Ji ‰ Hu, (67)

denote the positions for which P˚pvi | pa˚
i q is transportable. Also, let c “ maxiPrT s |Pa˚

i |. We
have,

RP˚ pµTRq ´RP˚ pµ˚q “ O
` |I| ¨ |V|c`1

ϵ2 ¨N
`

pT ´M ´ |I|q ¨ |V|c`1

ϵ ¨ n

˘

. (68)

The latter justifies the claim of Theorem 2.7. We discuss the different rates achievable above in
Appendix E.
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C.5 PROOF OF THEOREM 3.2

The proof follows the logic the proof of Theorem B.5 (Appendix C.2). The circuit-TR procedure
(Algorithm 2) partitions the position-domain pairs i, j into clusters. The pairs pi, ˚q each fall into
a cluster, and we use the pooled data corresponding to the position-domain pairs in that cluster to
estimate P˚pvi | pa˚

j q. In particular, S “ tElu in Algorithm 3 denotes these clusters, and we iterate
over all of them. Next, we consider all combination of causal diagrams for the source and target
domains; this allows the circuit-TR procedure to match the scope of the parents across the domains.
For each combination above that corresponds to a selection diagram (i.e., ∆, tGjujPrKsYt˚u), we use
Algorithm 2 as a subroutine (StrInf) to compute a an estimation of P˚pvT | v1:M q.

Notably, for all possible structures encoded as ∆, tGjujPrKsYt˚u, we have a candidate in H. Thus,
the rate achieved by the circuit-TR procedure is matched by the minimum risk in H, i.e.,

RP˚ pµ̃ P argmin
µPH

RP˚ pµqq “ OpRP˚ pµTRqq. (69)

Computing µ̃ is only possible with large target data, however, we can compute an empirical risk
minimzer within H using held-out target data to achieve similar rates. Let,

µAD P argmin
µPH

1

|D˚
Dtest

|
¨

ÿ

x,yPD˚
Dtest

ℓpµ; y, xq. (70)

In computing µAD we used held-out target data D˚
Dtest

of size n
2 , thus, we have,

RP˚ pµADq ´RP˚ pµ̃q “ Op

c

log |H|

n
q. (71)

We can bound the size of H as,

|H| ď pKT qKT
looomooon

different partitions S

¨ pp2T q!q
TK`1

loooooomoooooon

causal diagrams for all domains

(72)

which gives,

log |H| ď KT ¨ plogK ` log T q ` pK ` 1qT ¨ T log T “ OpKT 3 log T q. (73)

The latter justifies the claim of Theorem 3.2:

RP˚ pµADq “ OpRP˚ pµTRq `

c

K ¨ T 3 log T

n
q. (74)

C.6 PROOF OF PROPOSITION 4.1

Define,
µθpvi | v1:i´1; jq :“ Ψθpvi | Ajθi,¨ ¨ v1:T ; Φθpi, jqq. (75)

We can rewrite the objective of Equation (12) as,

Lpθq :“ λ ¨ pdθ `

K
ÿ

j“1

T
ÿ

i,i1“1

Ajθi,i1 q

loooooooooooomoooooooooooon

penalty

`

K
ÿ

j“1

T
ÿ

i“1

EP j

“

DDKL

`

P jp¨ | V1:i´1q}µθp¨ | V1:i´1; jq
˘‰

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

match with source distributions

. (76)

In words, the objective in Equation (12) ensures that the solution entails a distribution that matches
the sources at all conditionals and all domains, while preferring parameters with smaller mechanism
indicator range d and fewer edges in the graphs encoded by tAju.

The score can be decomposed into K objectives as follows:

Lpθq “ λ ¨ dθ `

K
ÿ

j“1

Ljpθq, (77)
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where,

Ljpθq “ λ ¨ }Ajθ} `

T
ÿ

i“1

EP j

“

DDKL

`

P jp¨ | V1:i´1q}µθp¨ | V1:i´1; jq
˘‰

. (78)

For small enough λ ą 0, maximizing Ljpθq ensures that the parent matrix Aj has a one entry at
the position of the true parents in each row, since P jp¨ | v1:i´1q “ P jp¨ | paji q. Also, the penalty
λ ¨ }Aj} ensures that no additional one entries are kept in the parent matrix, thus, Equation (10)
would be satisfied. Recall that d is the size of the range of the mechanism indicator mapping
Φ : rT s ˆ rKs Ñ rds.

If ∆pi, j; i1, j1q “ 0, we would have P jpvi | paji q “ P j
1

pvi1 | paj
1

i1 q. To satisfy Equation (9), the
mechanism indicator Φ : rT s ˆ rKs Ñ rds must map pi, jq and pi1, j1q to the same value in the
range rds, which makes µθpvi | paji ; jq “ µθpvi1 | paj

1

i1 ; jq. By minimizing λ ¨ d, we ensure that
this happens, satisfying Equation (9). Finally, note that once Equations (9) and (10) are satisfied,
minimizing the divergence between the true distribution P˚pvi | v1:i´1q and µθpvi | v1:i´1; jq occurs
only when Equation (11) is satisfied.

C.7 PROOF OF PROPOSITION 4.2

The parameters to be learned in fine-tuning stage are:

1. The target mechanism indicator Φ˚ : rT s Ñ rdθsrcs.
2. The target parent matrix A˚ P r0, 1sTˆT .
3. The target-only predictors µ˚

i pvi | v1:i´1q.
4. The transport indicators s1, ..., sT P r0, 1s

Once the pretrained parameters θsrc satisfy Equations (9) to (11), consider the following values for the
parameters of fine-tuning stage: Let A˚ encode the true causal diagram G˚, and for the transported
conditionals P˚pvi | pa˚

i q we set si “ 1, and Φ˚piq “ Φpi1, j1q for some pi1, j1q which satisfies
∆pi, ˚; i1, j1q “ 0. For the non-transportable conditionals, we set si “ 0 to use µ˚

i pvi | v1:i´1q that
is trained using the target data D˚

D of size proportionate to n. Let θ̃ encode the parameters for this
assignment of the fine-tuning parameters. We have,

RP˚ pµθ̃ftpvT | v1:M q “ OpRP˚ pµTRpvT | v1:M qq, (79)

Since this set of values for the parameters corresponds to the circuit-TR solution. We discretize the
fine-tuning parameter space into a set H of points , and consider only binary parent matrices and
binary transport indicators. We can ensure that θ̃ lies on this grid, among

|H| ď T 2
loomoon

parent matrix

¨ pKT qT
loomoon

target mech. ind.

¨ 2T
loomoon

TR indicator

(80)

We use the held-out target data to obtain the best of these candidates,

θ˚ P argmin
θPH

1

|D˚
Dtest

|
¨

ÿ

vT ,v1:MPD˚
Dtest

´ logµθftpvT | v1:T q (81)

Compared to the best in class parameter set θ̃, we would have an excess risk bounded as,

RP˚ pµθ
˚

ft q ´RP˚ pµθ̃ftq “ Op

c

log |H|

n
q “ Op

c

T ¨ plogK ` log T q

n
q. (82)

This proves,

RP˚ pµθ
˚

ft q “ OpRP˚ pµTRq `

c

T ¨ plogK ` log T q

n
q (83)

“ OpRP˚ pµTRq `

c

K ¨ T 3 ¨ log T

n
q “ OpRP˚ pµADqq (84)
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D CHALLENGES DUE TO UNOBSERVED CONFOUNDERS

In this section we discuss how presence of confounders raises challenges in structure-informed
and agnostic DA. We show that even in a very simple case, despite having the same causal func-
tions generating Y from X and the unobserved variables between a source and target, transport is
impossible.

Figure 5: Selection diagram G∆

Let X be a single binary covariate, and Y be a binary label. Consider two source domains defined by
the following SCMs:

M1 :

$

’

’

’

’

’

&

’

’

’

’

’

%

P 1pUq :

$

&

%

UX „ Bernp0.2q

UY „ Bernp0.05q

UXY „ Bernp0.95q

F1 :

"

X Ð UX ‘ UXY
Y Ð pX ‘ UXY q ‘ UY

M2 :

$

’

’

’

’

’

&

’

’

’

’

’

%

P 2pUq :

$

&

%

UX „ Bernp0.9q

UY „ Bernp0.05q

UXY „ Bernp0.95q

F2 :

"

X Ð UX ‘ UXY
Y Ð pX ‘ UXY q _ UY

Suppose the target domain is represented by the following SCM:

M˚ :

$

’

’

’

’

’

&

’

’

’

’

’

%

P˚pUq :

$

&

%

UX „ Bernp0.9q

UY „ Bernp0.05q

UXY „ Bernp0.95q

F˚ :

"

X Ð UX ‘ UXY
Y Ð pX ‘ UXY q ‘ UY

This setup induces the domain discrepancy sets ∆1,˚ “ tXu,∆2,˚ “ tY u; the corresponding
selection diagram G∆ is shown in Figure 5. Although the mechanism of Y is invariant between
π˚, π1, we can not transport P˚py | xq; this follows from completeness results in transportability
Pearl and Bareinboim (2011); Correa and Bareinboim (2020), that there exist source and target SCMs
compatible with G∆, however, we would have P˚py | xq ‰ P 1py | xq, e.g., P˚pY “ 1 | x “ 1q «

0.34 but P 1pY “ 1 | x “ 1q « 0.06.

Nonetheless, one can derive a tight bound for P˚py | xq Balke and Pearl (1997); in particular, we can
compute ly|x, uy|x such that,

P˚py | xq P rly|x, uy|xs. (85)

Moreover, this bound is tight, in the sense that for every q P rly|x, uy|xs, there exist source and
target SCMs that entail P 1, P 2 over X,Y , induce the selection diagram G∆, such that we have
P˚py | xq “ q. Deriving these bounds is called partial-transportability, and is studied in Jalaldoust
et al. (2024). Even without any target data, although P˚py | xq is not transportable, we can compute
a subset of conditional distributions that contains it through partial-transportability methods. In
particular, let

P˚ “ tPM˚
0 px, yq s.t. M1

0,M2
0,M˚

0 entail P 1px, yq, P 2px, yq, and induce G∆u. (86)

By definition, P˚px, yq P P˚py | xq holds under the structural assumptions encoded in G∆. Thus,
even without any target data, we can achieve non-trivial risk by solving the following min-max
problem:

µpTR :“ argmin
µ:XÑsimplex|Y|

max
P̃PP˚

RP̃ pµq. (87)
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Figure 6: Risk of ERM on target data alone compared to ERM constrained to the partially transported
set P˚ constructed from P 1px, yq, P 2px, yq,G∆. As shown here, for smaller target data size there is
a meaningful gap between the risk of the two estimators, but for larger n this gap closes.

Risk

All-TR

pT´Mq¨|V |
C`1

ε2N

pT ´ 1q-TR

pT´M´1q¨|V |
C`1

ε2N `
|V |

C`1

ε¨n

. . .

. . .

1-TR

|V |
C`1

ε2N `
pT´M´1q¨|V |

C`1

ε¨n

None-TR

T ¨|V |
C`1

ε¨n

Figure 7: A schematic of risks obtained via the structure-informed procedure (Algorithm 2. In cases
where all conditionals P˚pvi | v1:i´1q are transportable, we obtain a rate proportionate to T´M

ϵ¨N .
As more and more conditionals are non-transportable, they need to be estimated from the target
data, adding a cost proportionate to 1

n for every non-transportable term. In the extreme case that no
conditional is transportable, i.e., all target mechanisms are novel, we incur a risk proportionate to T

n .

A solution to this problem is called causal robust optimization (CRO) by Jalaldoust et al. (2024).
Notably, with access to target data we can not significantly improve the risk achieved by µpTR; we
elaborate on this point below.

Since X,Y are binary, distributions over them can be parameterized by a point in simplex3. Consider
P˚ as a subset of the simplex, and suppose P˚px, yq lies in the interior of P˚, that is, there exists
δ ą 0 such that a δ-ball around P˚px, yq is contained inside P˚. Using vanilla ERM on the target
data we can estimate the joint distribution P˚px, yq, and form a confidence set that contains it.
The diameter of this confidence set shrinks to zero by increasing the target data, due to uniform
convergence properties of the ERM estimator. Take the target sample size nδ such that the ERM
confidence set containing P˚px, yq has a diameter smaller than δ, and therefore, is contained entirely
inside P˚. Note that source data together with the structure G∆ only implies P˚px, yq P P˚, so for
target data of size n ą nδ, the information P˚px, yq P P˚ would be obsolete, since ERM on target
data only achieves a strictly better confidence set for P˚px, yq.

The above is unlike the unconfounded scenario; in case of transportability, the structure-informed
procedure yields zero-shot generelization (i.e., rates in terms of the source data), that can not be
beaten by vanilla ERM on the target data for any amount of target data.

To summarize, presence of confounders creates situations where certain quantities are partially
transportable. This, in turn, enables non-trivial but imperfect generalization without any target data,
and such situations can not occur without confounders. The immediate advantage of source data
through partial transportability vanishes as the size of the target data grows, and this is shown in
Figure 6. ˝
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E MORE DETAILS ON STRUCTURE-INFORMED RATES

In this section, we expand upon the possible rates in sequence adaptation via the structure-informed
procedure. Please view the proof of Theorem 2.7 (Appendix C.4). We reduce the problem of
estimating P˚pvT | v1:M q to estimating,

P˚pvM`1:T | v1:M q “

T
ź

i“M`1

P˚pvi | v1:i´1q. (88)

Each of the conditionals, is either transported from a source domain (if there exists pi1, j1q such
that ∆pi, ˚; i1, j1q “ 0), or is estimated from the target data alone. In the former, the excess risk
associated to estimation of P˚pvi | v1:i´1q would be |V|

c`1

ϵ2¨N , which is desirable since N is large,

and in the latter, the risk would be bounded by |V|
c`1

ϵ¨n . The joint risk depends on how many of the
T ´ M components are transported, and how many must be estimated from the target data. This
gives a variety of rates, shown in Figure 7. Notably, if N " n, then we achieve a fast rate only if all
components are transported, but achieve slower and slower rates for more and more non-transportable
components. This figure is informative in the case of structure-agnostic adaptation as well, since due

to Theorem 3.2 the risk of the structure-agnostic method is bounded by a fixed margin of
b

K¨T 3¨log T
n

compared to these rates, which is independent from the size of the vocabulary V .

F SIMULATION SETUP AND REPRODUCIBILITY

The controlled simulation Section 4 involves a source domain and a target domain with sequences
of length 10. To handle more than one parent, we follow the design discussed in Appendix G. We
run simulation in a setting where each variable has at most two parents randomly selected from the
previous variables in the causal order. Note that the causal diagrams of the source and target do
not match necessarily, and are determined randomly and independently. The causal modules that
determine the value of the variables are also drawn at random, from a pool containing null-ary, unary
and binary noisy operators;

F “ tgunif , gcopy, g`1, g´1, gˆ2, gsum, gmin, gsubtract, gmultu. (89)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

unif ˆ2 min sum min subtract min sum min sum

Figure 8: Causal diagram and operators corresponding to the source domain.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

unif ˆ2 subtract sum subtract sum subtract sum sum min

Figure 9: causal diagram and operators corresponding to the target domain.

The structure we investigated is shown in Figures 8 and 9, specifying the target and source SCMs,
respectively. Next, we investigate pretraining and fine-tuning in these context of this SCMs.
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F.1 REPRODUCIBILITY

Data generation We evaluate our approach on a synthetic arithmetic benchmark where each
sequence represents a functional program executed on base-10 digits.

Model architecture The DomainAdaptationModel uses the following specification:

• Hidden dimension: r “ 128 (config.hidden_dim)

• Positional encoding: Learned embeddings of length T and dimension r

• Universal operator-indicator: 2-layer MLP: r Ñ d Ñ |F | plus LayerNorm

• Parent selector: H “ 4 causal attention heads with sharp-softmax temperature τ “ 0.1

• Conditional MLP (token head): 2ˆ pLinear ` ReLUq ` LayerNorm, output size |V| “ 10

• Maximum parents per head: C “ 4 (config.max_parents)

• Parameter counts (for T “ 20): 43,868 total parameters, 20,946 trainable during fine-
tuning

• Activation dtype: float32 (no automatic mixed precision)

The target-domain adapter (our method) learns:

• New parent queries/keys (shape rH, r, rs each)

• New operator-indicator MLP (d Ñ d Ñ |F |)

• Freezes: positional encoding, base operator MLP, parent selector of source domain(s), and
conditional MLP

Training hyperparameters Global optimizer: AdamW with β1 “ 0.9, β2 “ 0.999, ε “ 10´8,
weight decay 0.01, batch size 32 sequences (Ñ 32 ¨ pT ´ 1q tokens), no gradient clipping, constant
learning rate schedule.

Pre-training (source only):

• Epochs: 150

• Learning rate: 10´3

• Data: All source sequences (domain id 1)

Fine-tuning (our method - adapter only):

• Epochs: 15

• Learning rate: 10´3

• Prefix length: M “ T {2 (default, override with -M)

• Supervision modes:

– PS (process supervision): Full next-token cross-entropy
– NPS (no process supervision): Mask positions ě M ´ 1

Baseline configurations:

• ERM-Pooled: Stage 1 (source only): 50 epochs, lr 10´3; Stage 2 (add target): 15 epochs, lr
5 ˆ 10´4, all parameters trainable

• ERM-Joint: Start from source pre-trained model, 20 epochs, lr 5 ˆ 10´4, all parameters
trainable

• Early stopping: None
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Loss masking (NPS) In no-process-supervision (NPS) experiments, the cross-entropy at positions
ě M ´ 1 is excluded:

maskris “

"

1 for 0 ď i ă M ´ 1

0 for i ě M ´ 1
(90)

Implemented in build_loss_mask() and applied on GPU.

Evaluation protocol

• Input: First M tokens of target sequence where M P tT ´ 1, T {2u

• Generation: Autoregressively sample positions M, . . . , T ´ 2 by greedy argmax; keep
logits for final position

• Metric: CEplogitsT´1, target digitq averaged over 1000 held-out target sequences

• Seeds: 3 independent runs (seeds 0, 1, 2) with mean ˘ std reported in plots

Computational environment

• Hardware: NVIDIA H100 80GB (PCIe), CUDA 12.1, driver 535

• Software: PyTorch 2.1.0, Python 3.12, numpy 1.26

• Determinism: torch.use_deterministic_algorithms(True) and
torch.backends.cudnn.deterministic = True

• Typical runtimes: T “ 10, N “ 104, 3 ˆ 3 ˆ 2 grid « 6 minutes; T “ 20, N “ 105

pre-training « 90 minutes

• Peak GPU memory: ă 4GB per worker

Randomness control random, numpy, and torch are seeded at program start with deterministic
offsets for DataLoader workers. Re-runs with identical seeds reproduce metrics within 10´8 precision.
All experiments maintain deterministic seeding and full reproducibility through provided scripts and
configurations.

G DETAILED MODEL ARCHITECTURE

This section provides a comprehensive walkthrough of our model architecture, focusing on how
multiple parents are identified and utilized for next-token prediction in a domain-adaptive manner.

OVERALL TASK AND CORE DESIGN PRINCIPLE

The objective is sequence modeling, specifically to predict the next token in a sequence of discrete
symbols (digits 0–9 in our experiments). The core idea is that the generation of a token at position i
depends on:

1. A selected causal function (e.g., add, subtract, multiply)

2. One or more parent tokens from earlier positions in the sequence (i.e., positions ă i)

INPUT REPRESENTATION AND POSITIONAL ENCODING

Input sequences: Sequences of integer token IDs from V “ t0, 1, . . . , 9u.

Positional encoding (PositionalEncoding class): Each token at position pi, jq where i is the
sequence position and j is the domain ID is mapped to a dense vector representation using:

• Standard sinusoidal positional encodings for both the position index (0 to T ´ 1) and the
domain ID (0 to K)

• These two embeddings (each r{2 dimensional) are concatenated to form the initial r-
dimensional embedding
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• Input: pB, T q for positions and domains; Output: pB, T, dq embeddings, where B is the
batch size.

This design allows the model to be aware of both absolute position within the sequence and the
domain context, enabling domain-specific parent selection as described in the following sections.

UNIVERSAL OPERATOR INDICATOR

The UniversalOperatorIndicator class determines, for each token position, the probability
distribution over a fixed set of operations F (e.g., add, subtract, multiply_two).

Mechanism:

1. The h-dimensional embedding of each token is passed through a linear projection to |F |

dimensions

2. Layer normalization is applied: LayerNormpLinearpembeddingqq

3. Softmax produces a probability distribution: softmaxpLayerNormpLinearpembeddingqqq

Universality: This module’s parameters are shared across all domains and positions. The choice
of operation is contextual based on the token’s embedding, but the meaning of each operation is
universal across domains.

Output: pB, T, |F |q operator probabilities where B is batch size.

DOMAIN-SPECIFIC PARENT SELECTOR

The DomainSpecificParentSelector class implements the core mechanism for identifying
influential parent tokens, corresponding to the causal structure learning described in Algorithm 3.

Multi-head causal attention design: The mechanism uses C distinct attention heads (where C is
the maximum number of parents). For our experiments, C “ 2, meaning the model can identify up
to two distinct parents for each token.

Domain-specificity: The key innovation is that query (Que) and key (Key) projection matrices are
domain-specific:

domain_queries P RpK`1qˆCˆrˆr (91)

domain_keys P RpK`1qˆCˆrˆr (92)

During forward pass, for domain j and parent head h:

Quej,h “ Embeddings ¨WQue
j,h (93)

Keyj,h “ Embeddings ¨WKey
j,h (94)

Parent selection process: For each domain j, parent head h:

1. Attention scores: Sj,h “
Quej,hKeyT

j,h?
r

2. Causal masking: Standard causal attention masking ensures token at position i only attends
to positions ă i

3. Sharp softmax: Aj,h “ softmaxpSj,h{τq where τ “ 0.1

4. First position handling: Weights for position 0 are zeroed as it has no parents

The temperature τ “ 0.1 makes the softmax significantly sharper, encouraging sparse selection of a
small number of parents rather than soft averaging.

Output: For each domain j, a list of C attention weight matrices pB, T, T q representing parent
selection distributions.
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FEATURE PREPARATION FOR CONDITIONAL MLP

The _prepare_mlp_features method combines operator indicators and selected parent values
to form input for the final prediction MLP.

Input components:

• sequences_onehot P t0, 1uBˆTˆ|V|: One-hot encoded input sequences

• operator_indicators P r0, 1sBˆTˆ|F |: From universal operator indicator
• parent_weights: From domain-specific parent selector
• domains P t0, . . . ,KuBˆT : Domain IDs

Feature construction: For each position i:

1. Operator indicators operator_indicatorsr:, p, :s form the first part of the feature vector
2. For each parent head h P t0, . . . , C ´ 1u:

WeightedParentValueh,p “ Aj,hr:, p, :s ¨ sequences_onehot (95)

where j is the domain of position i. This produces a pB, |V|q vector for each parent head.
3. These C vectors are concatenated after the operator indicators

Feature dimension: |F | ` pC ˆ |V|q where |F | is the number of operations and |V| “ 10.

CONDITIONAL MLP FOR PREDICTION

The EfficientConditionalMLP class predicts the next token’s probability distribution based
on the combined features, implementing the learned conditional distributions P̂ pvi|paiq from our
theoretical framework.

Architecture:

1. Input projection: Linear layer from feature dimension to r
2. Hidden layers: Stack of linear layers (r Ñ r) with ReLU activations, dropout, and residual

connections
3. Output layer: Linear layer from r to |V| “ 10

Output: Logits of shape pB, T, |V|q for next-token prediction.

TRAINING AND FINE-TUNING PROTOCOL

Pre-training (source domains): The entire model, including domain-specific Que{Key matrices for
source domains, is trained end-to-end using standard next-token prediction cross-entropy loss.

Fine-tuning (target domain adaptation): When adapting to target domain π˚:

• Frozen components:
– Positional encoding parameters
– Universal operator indicator parameters
– Conditional MLP parameters
– Source domain Que{Key matrices

• Trainable components:

– New randomly initialized WQue
˚,h ,W

Key
˚,h for target domain

– New target-specific operator indicator

This modular design enables learning domain-specific parent selection while reusing universal
causal functions, corresponding to the structure-agnostic adaptation strategy in Algorithm 3 with
computational efficiency discussed in Section 4.
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