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ABSTRACT

Fairness in predictions is of direct importance in practice due to legal, ethical, and
societal reasons. This is often accomplished through counterfactual fairness, which
ensures that the prediction for an individual is the same as that in a counterfactual
world under a different sensitive attribute. However, achieving counterfactual
fairness is challenging as counterfactuals are unobservable. Existing baselines
for counterfactual fairness do not have theoretical guarantees. In this paper, we
propose a novel counterfactual fairness predictor for making predictions under
counterfactual fairness. Here, we follow the standard counterfactual fairness setting
and directly learn the counterfactual distribution of the descendants of the sensitive
attribute via tailored neural networks, which we then use to enforce fair predictions
through a novel counterfactual mediator regularization. Unique to our work is
that we provide theoretical guarantees that our method is effective in ensuring
the notion of counterfactual fairness. We further compare the performance across
various datasets, where our method achieves state-of-the-art performance.

1 INTRODUCTION

Fairness in machine learning is mandated for a large number of practical applications due to legal,
ethical, and societal reasons (Barocas & Selbst, 2016; Kleinberg et al., 2019; Feuerriegel et al., 2020;
Angwin et al., 2016; De Arteaga et al., 2022; von Zahn et al., 2022). Examples are predictions in
credit lending or recidivism prediction, where fairness is mandated by anti-discrimination laws.

In this paper, we focus on the notion of counterfactual fairness (Kusner et al., 2017). The notion
of counterfactual fairness has recently received significant attention (e.g., Kusner et al., 2017; Garg
et al., 2019; Xu et al., 2019; Chiappa, 2019; Kim et al., 2021; Abroshan et al., 2022; Garg et al., 2019;
Zuo et al., 2022; Grari et al., 2023; Rosenblatt & Witter, 2023; Ma et al., 2023; Zuo et al., 2023;
Anthis & Veitch, 2024; Silva, 2024). One reason is that counterfactual fairness directly relates to legal
terminology in that a prediction is fair towards an individual if the prediction does not change had the
individual belonged to a different demographic group defined by some sensitive attribute (e.g., gender,
race). However, ensuring counterfactual fairness is challenging as, in practice, counterfactuals are
generally unobservable.

Prior works have developed methods for achieving counterfactual fairness in predictive tasks (see
Sec. 2). Originally, Kusner et al. (2017) described a conceptual algorithm to achieve counterfactual
fairness. Therein, the idea is to first estimate a set of latent (background) variables and then train
a prediction model without using the sensitive attribute or its descendants. More recently, many
works have extended the conceptual algorithm through neural methods (Pfohl et al., 2019; Kim et al.,
2021; Grari et al., 2023). However, these methods have a key shortcoming: they have no theoretical
guarantees for achieving counterfactual fairness. Our proposed method is the first to ensure consistent
estimation of the counterfactual distribution by leveraging the identifiability of counterfactual theory,
and further offers theoretical guarantees in achieving counterfactual fairness.

In this paper, we present a novel deep neural network called Generative Counterfactual Fairness
Network (GCFN) for making predictions under counterfactual fairness. For this, we build upon
Standard Fairness Model (Plecko & Bareinboim, 2022). Our method leverages tailored generative
adversarial networks to directly learn the counterfactual distribution of the descendants of the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sensitive attribute. We then use the generated counterfactuals to enforce fair predictions through a
novel counterfactual mediator regularization. We further provide theoretical guarantees that, if the
counterfactual distribution is learned sufficiently well, our method is effective in ensuring the notion
of counterfactual fairness.

Overall, our main contributions are as follows:1 (1) We propose a novel deep neural network for
achieving counterfactual fairness in predictions. (2) We further provide theoretical results that our
method is guaranteed to ensure counterfactual fairness. (3) We demonstrate that our GCFN achieves
the state-of-the-art performance. We further provide a real-world case study of recidivism prediction
to show that our method gives meaningful predictions in practice.

2 RELATED WORK

2.1 FAIRNESS NOTIONS FOR PREDICTIONS

Over the past years, the machine learning community has developed an extensive series of fairness
notions for predictive tasks so that one can train unbiased machine learning models; see Appendix B
for a detailed overview. In this paper, we focus on counterfactual fairness (Kusner et al., 2017), due
to its relevance in practice (Barocas & Selbst, 2016; De Arteaga et al., 2022).

2.2 PREDICTIONS UNDER COUNTERFACTUAL FAIRNESS

Originally, Kusner et al. (2017) introduced a conceptual algorithm to achieve predictions under
counterfactual fairness. The idea is to first infer a set of latent background variables and subsequently
train a prediction model using these inferred latent variables and non-descendants of sensitive
attributes. Kusner et al. (2017) provided only a conceptual algorithm, while later works offered actual
instantiations. The conceptual algorithm can not directly achieve fairness prediction from data and
a causal graph; instead, it requires the specification of structural equations to ensure identifiability,
which makes it impractical. We provide detailed comparison to Kusner et al. (2017) in Appendix D.1.

State-of-the-art approaches build upon the above idea but integrate neural learning techniques,
typically by using VAEs. These are mCEVAE (Pfohl et al., 2019), DCEVAE (Kim et al., 2021),
and ADVAE (Grari et al., 2023). In general, these methods proceed by first computing the posterior
distribution of the latent variables, given the observational data and a prior on latent variables. Based
on that, they compute the implied counterfactual distributions, which can either be utilized directly
for predictive purposes or can act as a constraint incorporated within the training loss. In sum, the
methods in Pfohl et al. (2019); Kim et al. (2021); Grari et al. (2023) are our main baselines. We
provide a detailed comparison of these papers and ours in the Appendix D.2. However, none of these
methods have shown the identifiability of the latent variables, which implies non-identifiability of the
counterfactual queries, thus can lead to unfair prediction. Further details of the benefits over these
latent variable baselines are in Appendix D.3.

Why existing methods are problematic: Prior works for counterfactual fairness prediction all act as
heuristics that may return estimates but these estimates do not correspond to the true value. (e.g.,
(Pfohl et al., 2019; Kim et al., 2021; Grari et al., 2023; Zuo et al., 2023; Wang et al., 2023; Zhou et al.,
2024)). In other words, predictions can be generated that can be unfair. The reason is of theoretical
nature: existing baselines did not consider identifiability of counterfactuals and were still unclear
under which scenarios counterfactual fairness can be achieved in the first place.

The core of our contribution are solving the following two shortcomings: 1 The learned latent
variables in existing methods are not identifiable.2 The lack of identifiability can lead to that the
true counterfactual distributions are not learned. This can thus lead to an overall low prediction
performance but, importantly, may even undermine fairness objectives. 2 : The existing methods

1Codes are in the anonymous GitHub: https://anonymous.4open.science/r/gcfn. Codes will
also be available to a public GitHub repository upon acceptance.

2In causal inference, “identifiability” refers to a mathematical condition that permits a causal quantity to be
measured from observed data (Pearl, 2009). Importantly, identification is different from estimatability because
methods that act as heuristics may return estimates but they do not correspond to the true value. For the latter,
see D’Amour (2019) where the authors provide several concerns that, if a latent variable is not unique, it is
possible to have local minima, which leads to unsafe results in causal inference.
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have no theoretical guarantees whether the method is effective in achieving counterfactual fairness.
We provide further details in Appendix D. To address 1 and 2 , we later offer theoretical guarantees
leveraging counterfactual identifiability and that our method is effective in ensuring the notion of
counterfactual fairness.

3 PROBLEM SETUP

Notation: Capital letters such as X,A,M denote random variables and small letters x, a,m denote
their realizations from corresponding domainsX ,A,M. Further, P(M) is the probability distribution
of M ; P(M | A = a ) is a conditional distribution; P (Ma) the interventional distribution on M
when setting A to a; and P (Ma′ | A = a,M = m) the counterfactual distribution of M had A been
set to a′ given evidence A = a and M = m.

X

MA Y

Figure 1: Causal
graph. The nodes rep-
resent: sensitive at-
tribute A; covariate
X; mediator M ; tar-
get Y . −→ represents
a direct causal effect;
L9999K represents the
potential presence of
hidden confounders.3

We follow the Standard Fairness Model (Plecko & Bareinboim, 2022),
shown in Fig. 1, where the nodes represent: sensitive attribute A ∈ A;
mediators M ∈M withM⊆ R, which are possibly causally influenced by
the sensitive attribute; covariates X ∈ X , which are not causally influenced
by the sensitive attribute; and a target Y ∈ Y , see Appendix. E for more
details. We give a practical example of our causal graph in Appendix. E.3.
By following the Standard Fairness Model, we ensure that our framework
matches common applications in recidivism prediction, credit lending, and
public resource allocation (Plecko & Bareinboim, 2022).

In our work, A can be a categorical variable with multiple categories k
and X and M can be multi-dimensional. For ease of notation, we use
k = 2, i.e., A = {0, 1}, to present our method below. We later present an
extension to settings where the sensitive attribute has multiple categories
(see Appendix H).

We use the potential outcomes framework (Rubin, 1974) to estimate causal quantities from observa-
tional data. Under our causal graph, the dependence of M on A implies that changes in the sensitive
attribute A mean also changes in the mediator M . We use subscripts such as Ma to denote the
potential outcome of M when intervening on A. Similarly, Ya denotes the potential outcome of
Y . Furthermore, for k = 2, A is the factual, and A′ is the counterfactual outcome of the sensitive
attribute.

Our model follows standard assumptions necessary to identify causal queries (Rubin, 1974). (1) Con-
sistency: The observed mediator is identical to the potential mediator given a certain sensitive
attribute. Formally, for each unit of observation, A = a ⇒ M = Ma. (2) Overlap: For all x
such that P(X = x) > 0, we have 0 < P (A = a | X = x) < 1, ∀a ∈ A. (3) Unconfoundedness:
Conditional on covariates X , the potential outcome Ma is independent of sensitive attribute A, i.e.
Ma ⊥⊥ A | X . We discuss the theoretical guarantee on identifiability of counterfactuals under
bijective generation mechanisms (BGMs) (Nasr-Esfahany et al., 2023; Melnychuk et al., 2023) in
Appendix F.

Objective: In this paper, we aim to learn the prediction of a target Y to be counterfactual fair
with respect to some given sensitive attribute A so that it thus fulfills the notion of counterfactual
fairness (Kusner et al., 2017). Let h(X,M) = Ŷ denote the predicted target from some prediction
model, which only depends on covariates and mediators. Formally, our goal is to have h achieve
counterfactual fairness if under any context X = x, A = a, and M = m, that is,

P (h(x,Ma) | X = x,A = a,M = m) = P (h(x,Ma′) | X = x,A = a,M = m) . (1)

This equation illustrates the need to care about the counterfactual mediator distribution. Under the
consistency assumption, the right side of the equality simplifies to the delta (point mass) distribution
δ (h(x,m)).

3The dashed line allows for a correlation between X and A in our framework. Note that, if there is no dashed
edge between X and A, it is actually a stronger assumption, because it forbids the edge between X and A to
have any hidden confounders. However, our setting is more general and allows for the existence of confounders.
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Generator Discriminator Regularization Predictor

Inputs / outputs variable

Losses
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Figure 2: Overview of our GCFN for achieving counterfactual fairness in predictions. Step 1: The
generator G takes (X,A,M) as input and outputs M̂A and M̂A′ . The discriminator D differentiates
the observed factual mediator M from the generated counterfactual mediator M̂A′ . We train s GANs
and consider the worst-case counterfactual fairness. Step 2: We then use generated counterfactual
mediator M̂A′ in our counterfactual mediator regularizationRcm. We take the supremum ofRcm to
choose the most ‘unfair’ generator. Therefore, we enforce the worst-case counterfactual fairness, and
the counterfactual mediator regularizationRcm can enforce the prediction model h to be counterfac-
tual fairness.

4 GENERATIVE COUNTERFACTUAL FAIRNESS NETWORK

Overview: Here, we introduce our proposed method called Generative Counterfactual Fairness
Network (GCFN). An overview of our method is in Fig. 2. GCFN proceeds in two steps: Step 1 uses
a significantly modified GAN to learn the counterfactual distribution of the mediator. Step 2 uses
the generated counterfactual mediators from the first step together with our counterfactual mediator
regularization to enforce counterfactual fairness. The pseudocode is in Appendix G.

Why do we need counterfactuals of the mediator? Different from existing methods for causal effect
estimation (Yoon et al., 2018; Bica et al., 2020; Zhang et al., 2021), we are not interested in obtaining
counterfactuals of the target Y (=̂ ladder 2 in Pearl’s causality ladder). Instead, we are interested
in counterfactuals for the mediator M , which captures the entire influence of the sensitive attribute
and its descendants on the target (=̂ ladder 3). Thus, by training the prediction model with our
counterfactual mediator regularization, we remove the information from the sensitive attribute
to ensure fairness while keeping the rest useful information of data to maintain high prediction
performance. What is the advantage of using a GAN in our method? The GAN in our method enables
us to directly learn transformations of factual mediators to counterfactuals without the intermediate
step of inferring latent variables. As a result, we eliminate the need for the abduction-action-prediction
procedure (Pearl, 2009) and avoid the complexities and potential inaccuracies of inferring and then
using latent variables for prediction. Further detailed discussion of the benefits over inferring latent
variable baselines in Appendix D.3.

4.1 STEP 1: GAN FOR GENERATING COUNTERFACTUAL OF THE MEDIATOR

In Step 1, we aim to generate counterfactuals of the mediator (since the ground-truth counterfactual
mediator is unavailable). Our generator G produces the counterfactual of the mediators given
observational data. Concurrently, our discriminator D differentiates the factual mediator from the
generated counterfactual mediators. This adversarial training process encourages G to learn the
counterfactual distribution of the mediator.

4.1.1 COUNTERFACTUAL GENERATOR G

The generator G is to learn the counterfactual distribution of the mediator, i.e.,
P (Ma′ | X = x,A = a,M = m). Formally, G : X × A ×M → M. G takes the factual sen-
sitive attribute A, the factual mediator M , and the covariates X as inputs, sampled from the joint
(observational) distribution PX,A,M , denoted as Pf for short. G outputs two potential mediators, M̂0

and M̂1, from which one is factual and the other is counterfactual. For notation, we use G (X,A,M)

4
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to refer to the output of the generator. Thus, we have

G (X,A,M)a = M̂a for a ∈ {0, 1}. (2)

In our generator G, we intentionally output not only the counterfactual mediator but also the factual
mediator, even though the latter is observable. The reason is that we can use it to further stabilize
the training of the generator. For this, we introduce a reconstructive loss Lf , which we use to ensure
that the generated factual mediator M̂A is similar to the observed factual mediator M . Formally, we
define the reconstruction loss

Lf(G) = E(X,A,M)∼Pf

[
∥M −G (X,A,M)A∥

2
2

]
, (3)

where ∥ · ∥2 is the L2-norm.

4.1.2 COUNTERFACTUAL DISCRIMINATOR D

The discriminator D is carefully adapted to our setting. In an ideal world, we would have D
discriminate between real vs. fake counterfactual mediators; however, the counterfactual mediators
are not observable. Instead, we train D to discriminate between factual mediators vs. generated
counterfactual mediators. Note that this is different from the conventional discriminators in GANs
that seek to discriminate real vs. fake samples (Goodfellow et al., 2014a). Formally, our discriminator
D is designed to differentiate the factual mediator M (as observed in the data) from the generated
counterfactual mediator M̂A′ (as generated by G).

We modify the output of G before passing it as input to D: We replace the generated factual mediator
M̂A with the observed factual mediator M . We denote the new, combined data by G̃ (X,A,M),
which is defined via

G̃ (X,A,M)a =

{
M, if A = a,

G (X,A,M)a , if A = a′,
(4)

The discriminator D then determines which component of G̃ is the observed factual mediator and thus
outputs the corresponding probability. Formally, for the input (X, G̃), the output of the discriminator
D is

D(X, G̃)a = P̂(M = G̃a | X, G̃) = P̂(A = a | X, G̃). (5)

4.1.3 ADVERSARIAL TRAINING OF OUR GAN

Our GAN is trained in an adversarial manner: (i) the generator G seeks to generate counterfactual
mediators in a way that minimizes the probability that the discriminator can differentiate between
factual mediators and counterfactual mediators, while (ii) the discriminator D seeks to maximize the
probability of correctly identifying the factual mediator. We thus use an adversarial loss Ladv given
by

Ladv(G,D) = E(X,A,M)∼Pf

[
log

(
D(X, G̃ (X,A,M))A

)]
. (6)

Overall, our GAN is trained through an adversarial training procedure with a minimax problem as

min
G

max
D
Ladv(G,D) + αLf(G), (7)

with a hyperparameter α on Lf . Then, under mild identifiability conditions, the counterfactual
distribution of the mediator, i.e., P (Ma′ | X = x,A = a,M = m), is consistently estimated by our
GAN (up to a measure-preserving indeterminacy (Xi & Bloem-Reddy, 2023)), which we state later
in Lemma 1.

Why our method does not simply reproduce the factual mediators? This is due to the adversarial
training. By training the discriminator to differentiate between factual and generated counterfactual
mediators, the generator is guided to learn the correct counterfactual distribution. It could be seen as a
form of teacher forcing. The input of the discriminator D contains the counterfactual and the factual
and the order of them is randomized. In our framework, the data are intentionally shuffled, so that
factual and counterfactual positions are random. Later, we show this also empirically (Appendix K.2).

5
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4.2 STEP 2: COUNTERFACTUAL FAIR PREDICTION THROUGH COUNTERFACTUAL MEDIATOR
REGULARIZATION

In Step 2, we use the output of several GANs to train a prediction model under counterfactual fairness
in a supervised way. For this, we introduce our counterfactual mediator regularization that enforces
counterfactual fairness w.r.t the sensitive attribute. Let h denote our prediction model (e.g., a neural
network). We define our counterfactual mediator regularizationRcm(h,G) as

Rcm(h,G) = E(X,A,M)∼Pf

[∥∥∥h (X,M)− h
(
X, M̂A′

)∥∥∥2
2

]
, (8)

where M̂A′ = G(X,A,M)A′ . Our counterfactual mediator regularization has three important
characteristics: (1) It is non-trivial. Different from traditional regularization, ourRcm is not based on
the representation of the prediction model h but it involves a GAN-generated counterfactual M̂A′

that is otherwise not observable. (2) OurRcm is not used to constrain the learned representation (e.g.,
to avoid overfitting) but it is used to change the actual learning objective to achieve the property of
counterfactual fairness. (3) OurRcm fulfills theoretical properties. Specifically, we show later that,
under some conditions, our regularization actually optimizes against counterfactual fairness and thus
should learn our task as desired.

The overall loss L(h) is as follows. We fit the prediction model h using a cross-entropy loss Lce(h).
We further integrate the above counterfactual mediator regularizationRcm(h,G) into our overall loss
L(h). For this, we introduce a weight λ ≥ 0 to balance the trade-off between prediction performance
and the level of counterfactual fairness. Formally, we have

L(h) = Lce(h) + λ sup
G∈G
Rcm(h,G), (9)

where G is a set of all the generators, minimizing Eq. 7, and the supremum over this set chooses
the most ‘unfair’ generator. Therefore, we enforce a worst-case counterfactual fairness, as the
ground-truth counterfactual distribution is only identifiable up to a measure-preserving indeterminacy
(see Appendix F). A large value of λ increases the weight of Rcm, thus leading to a prediction
model that is strict with regard to counterfactual fairness, while a lower value allows the prediction
model to focus more on producing accurate predictions. As such, λ offers additional flexibility to
decision-makers as they tailor the prediction model based on the fairness needs in practice.

Considerations of computational efficiency: Having multiple GANs is primarily to meet the
mathematical assumptions and thus ensure theoretical guarantees. We later show that a single GAN
is sufficient in practical applications and achieves state-of-the-art performance (see Appendix K.3).

4.3 THEORETICAL RESULTS

Remark 1. Let the observational distribution PX,A,M = Pf be induced by an SCM M =
⟨V,U,F ,P(U)⟩ with

V = {X,A,M, Y }, U = {UXA, UM , UY },
F = {fX(uXA), fA(x, uXA), fM (x, a, uM ), fY (x,m, uY )},
P(U) = P(UXA)P(UM )P(UY ), (10)

and with the causal graph as in Figure 1. LetM⊆ R and fM be a bijective generation mechanism
(BGM) (Nasr-Esfahany et al., 2023; Melnychuk et al., 2023), i.e., fM is a strictly increasing (decreas-
ing) continuously-differentiable transformation wrt. uM . Then: The counterfactual distribution of
the mediator simplifies to one of two possible point mass distributions

P(Ma′ | X = x,A = a,M = m) = δ(F−1(±F(m;x, a)∓ 0.5 + 0.5;x, a′)),

where F(·;x, a) and F−1(·;x, a) are a CDF and an inverse CDF of P(M | X = x,A = a),
respectively, and δ(·) is a Dirac-delta distribution. Thus, it is identifiable up to a measure-preserving
indeterminacy (Xi & Bloem-Reddy, 2023).
Lemma 1 (Consistent estimation of the counterfactual distribution with GAN (up to a measure-p-
reserving indeterminacy)). If the generator of GAN is a continuously differentiable function with
respect to M , then it consistently estimates one of the counterfactual distributions of the mediator
(Eq. 11).

6
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Proof. Intuitively, we first prove that, given an optimal discriminator, the generator of our GAN
estimates the distribution of potential mediators for counterfactual sensitive attributes. We then prove
that the outputs of the deterministic generator, conditional on the factual mediator M = m, estimate
P(Ma′ | X = x,A = a,M = m).) Details are in Appendix F.

Remark 2. The generator converges to one of the two BGM solutions in Eq. 11. Notably, the
difference between the two solutions is negligibly small, when the conditional standard deviation of
the mediator is small (see Appendix F).

Lemma 1 states that our generator consistently estimates the counterfactual distribution of the
mediator P(Ma′ | X = x,A = a,M = m), up to a measure-preserving indeterminacy. The
discussion about the assumptions is in Appendix C.2. To the best of our knowledge, we are the
first to leverage the identifiability of counterfactual theory to ensure the consistent estimation of the
counterfactual distribution by GANs.

Below, we provide theoretical analysis to show that our proposed counterfactual mediator regular-
ization is effective in ensuring counterfactual fairness for predictions. Following Grari et al. (2023),
we measure the level of counterfactual fairness CF via E

[
∥(h (X,M)− h (X,MA′))∥22

]
. It is

straightforward to see that, the smaller CF is, the more counterfactual fairness the prediction model
achieves.

We show that we can quantify to what extent counterfactual fairness CF is fulfilled in the prediction
model. We give an upper bound in the following lemma.
Lemma 2 (Counterfactual mediator regularization bound). Given the prediction model h that is
Lipschitz continuous with a Lipschitz constant C, we have

E
[
∥(h(X,M)− h(X,MA′)∥22

]
≤ C E

[∥∥∥MA′ − M̂A′

∥∥∥2
2

]
+ sup

G∈G
Rcm(h,G), for every G ∈ G, (11)

where M̂A′ = G(X,A,M)A′ and G is a set of all the generators, minimizing the Eq. 7.

Proof. See Appendix F, where we make use of the triangle inequality and several further transforma-
tion.

The inequality in Lemma 2 states that the influence from the sensitive attribute on the target variable is
upper-bounded by (i) the estimation of counterfactual mediators (first term) and (ii) the counterfactual
mediator regularization (second term). (i) The first term does not depend on h and, given Lemma 1,
reduces to zero as there exists a generator in G, which consistently estimates counterfactuals. Hence,
by reducing (ii) the second termRcm for all the generators through minimizing our training loss in
Eq. 9, we can effectively enforce the predictor to learn counterfactual fair predictions.4

5 EXPERIMENTS

5.1 SETUP

Baselines: We compare our method against the following state-of-the-art approaches: (1) CFAN
(Kusner et al., 2017): Kusner et al.’s algorithm with additive noise where only non-descents of
sensitive attributes and the estimated latent variables are used for prediction; (2) CFUA (Kusner
et al., 2017): a variant of the algorithm which does not use the sensitive attribute or any descents
of the sensitive attribute; (3) mCEVAE (Pfohl et al., 2019): adds a maximum mean discrepancy
to regularize the generations in order to remove the information the inferred latent variable from
sensitive information; (4) DCEVAE (Kim et al., 2021): a VAE-based approach that disentangles the
exogenous uncertainty into two variables; (5) ADVAE (Grari et al., 2023): adversarial neural learning
approach which should be more powerful than penalties from maximum mean discrepancy but is
aimed the continuous setting; (6) HSCIC (Quinzan et al., 2022): originally designed to enforces
the predictions to remain invariant to changes of sensitive attributes using conditional kernel mean

4Details how we ensure Lipschitz continuity in h are in Appendix J.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

embeddings but which we adapted for counterfactual fairness. We also adapt applicable baselines
from fair dataset generation: (7) CFGAN (Xu et al., 2019): which we extend with a second-stage
prediction model. Details are in Appendix J.

Performance metrics: Methods for causal fairness aim at both: (i) achieve high accuracy while
(ii) ensuring causal fairness, which essentially yields a multi-criteria decision-making problem. To this
end, we follow standard procedures and reformulate the multi-criteria decision-making problem using
a utility function Uγ(accuracy ,CF ) : R2 7→ R, where CF is the metric for measuring counterfactual
fairness from Sec. 4.2. We define the utility function as Uγ(accuracy ,CF ) = accuracy − γ × CF
with a given utility weight γ. A larger utility Uγ is better. The weight γ depends on the application and
is set by the decision-maker; here, we report results for a wide range of weights γ ∈ {0.1, . . . , 1.0}.
Implementation details: To ensure our GCFN to achieve counterfactual fairness, we train s = 10
GANs and consider the worst-case counterfactual fairness, i.e., we take the maximum value of
counterfactual mediator regularization maxsj=1Rcm(h,Gj). We implement our GCFN in PyTorch.
Both the generator and the discriminator are designed as deep neural networks. We use LeakyReLU,
batch normalization in the generator for stability, and train all the GANs for 300 epochs with 256
batch size. The prediction model is a multilayer perceptron, which we train for 30 epochs at a 0.005
learning rate. Since the utility function considers two metrics, the weight λ is set to 0.5 to get a good
balance. More implementation details and hyperparameter tuning are in Appendix J.

5.2 RESULTS FOR (SEMI-)SYNTHETIC DATASETS
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Figure 3: Results for LSAC dataset with two dif-
ferent data-generating mechanisms. Utility value
U : the higher (↑) the better. Shown: mean ± std
over 5 runs.

We explicitly focus on (semi-)synthetic datasets,
which allow us to compute the true counterfac-
tuals and thus validate the effectiveness of our
method. We follow previous works that simulate
a fully synthetic dataset for performance evalu-
ations (Kim et al., 2021; Quinzan et al., 2022).
We find that our GCFN is effective. Detailed
results are in Appendix K.1

5.2.1 RESULTS FOR LSAC DATASET

Setting: The Law School (LSAC) dataset
(Wightman, 1998) contains information about
the law school admission records. We use
the LSAC dataset to construct semi-synthetic
datasets with two different data-generating
mechanisms. (See Appendix I). We predict
whether a candidate passes the bar exam and
where gender is the sensitive attribute. We sim-
ulate 101,570 samples and use 20% as the test
set.

Results: Results are shown in Fig. 3. We make
the following findings. (1) Our GCFN performs
best. (2) Compared to the baselines, the per-
formance gain from our GCFN is large (up
to ∼30%). (3) The performance gain for our
GCFN tends to become larger for larger γ. (4) Most baselines in the semi-synthetic dataset with sin
function have a large variability across runs as compared to our GCFN, which further demonstrates the
robustness of our method. (5) Conversely, the strong performance of our GCFN in the semi-synthetic
dataset with sin function demonstrates that our tailed GAN can even capture complex counterfactual
distributions.

5.2.2 ADDITIONAL INSIGHTS

Computational efficiency: Our proposed framework used multiple GANs primarily to meet the
mathematical assumptions and thus ensure theoretical guarantees. However, having multiple GANs is
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not necessary in practice. For this, we provide experimental results in Appendix K.3 to demonstrate
that a single GAN is sufficient for state-of-the-art performance.

Why does our method not simply reproduce the factual mediator? Intuitively, one may think that
the GAN would simply copy the factual mediators because the counterfactual mediators can not be
observed during training. However, this is not the case due to the adversarial training process of the
generator. By training the discriminator to differentiate between factual and generated counterfactual
mediators, the generator is guided to learn the correct counterfactual distribution. It could be seen as
a form of teacher forcing.

We conduct experiments to empirically verify that our method does not simply reproduce the factual
mediators, but actually learns the counterfactual mediators. Experimental results and details are in
Appendix K.2. We observe that the generated counterfactual mediator is similar to the ground-truth
counterfactual mediator, while the factual and the generated counterfactual mediators are highly
dissimilar. In other words, our model can correctly learn the counterfactual mediators. We additionally
give three important arguments for the reason why it works in Appendix K.2.

5.3 RESULTS FOR REAL-WORLD DATASETS
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Figure 4: Density of the predicted target vari-
able (salary) across male vs. female. Left:
w/o ourRcm. Right: w/ ourRcm.

We now demonstrate the applicability of our method
to real-world data. Since ground-truth counterfactu-
als are unobservable for real-world data, we refrain
from benchmarking, but, instead, we now provide
additional insights to offer a better understanding of
our method.

5.3.1 RESULTS FOR UCI ADULT DATASET

Setting: We use UCI Adult (Asuncion & Newman,
2007) to predict if individuals earn a certain salary
but where gender is a sensitive attribute. Further details are in Appendix I.
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ACC: accuracy
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Figure 5: Trade-off between accuracy
(ACC) and counterfactual fairness (CF)
across different λ. ACC: the higher (↑)
the better. CF: the lower (↓) the better.

Insights: To better understand the role of our counter-
factual mediator regularization, we trained prediction
models both with and without applying Rcm. Our pri-
mary focus is to show the shifts in the distribution of
the predicted target variable (salary) across the sensitive
attribute (gender). The corresponding density plots are
in Fig. 4. One would expect the distributions for males
and females should be more similar if the prediction
is fairer. However, we do not see such a tendency for
a prediction model without our counterfactual media-
tor regularization. In contrast, when our counterfactual
mediator regularization is used, both distributions are
fairly similar as desired. Further visualizations are in
Appendix K.

Accuracy and fairness trade-off: We vary the fairness weight λ from 0 to 1 to see the trade-off
between prediction performance and the level of counterfactual fairness. Since the ground-truth
counterfactual is not available for the real-world dataset, we use the generated counterfactual to
measure counterfactual fairness on the test dataset. The results are in Fig. 5. In line with our
expectations, we see that larger values for λ lead the predictions to be more strict w.r.t counterfactual
fairness, while lower values allow the predictions to have greater accuracy. Hence, the fairness weight
λ offers flexibility to decision-makers, so that they can tailor our method to the fairness needs in
practice.

5.3.2 RESULTS ON COMPAS DATASET

Setting: We use the COMPAS dataset (Angwin et al., 2016) to predict recidivism risk of criminals
and where race is a sensitive attribute. The dataset also has a COMPAS score for that purpose, yet
it was revealed to have racial biases (Angwin et al., 2016). In particular, black defendants were

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

frequently overestimated of their risk of recidivism. Motivated by this finding, we focus our efforts
on reducing such racial biases. Further details about the setting are in Appendix I.

Table 1: Comparison of predictions against
actual reoffenses.

Method ACC PPV FPR FNR

COMPAS 0.6644 0.6874 0.4198 0.2689
GCFN (ours) 0.6753 0.7143 0.3519 0.3032
ACC (accuracy); PPV (positive predictive
value); FPR (false positive rate); FNR (false
negative rate).

Insights: We first show how our method adds more fair-
ness to real-world applications. For this, we compare
the recidivism predictions from the criminal justice
process against the actual reoffenses two years later.
Specifically, we compute (i) the accuracy of the official
COMPAS score in predicting reoffenses and (ii) the
accuracy of our GCFN in predicting the outcomes. The
results are in Table 1. We see that our GCFN has a
better accuracy. More important is the false positive
rate (FPR) for black defendants, which measures how
often black defendants are assessed at high risk, even though they do not recidivate. Our GCFN
reduces the FPR of black defendants from 41.98% to 35.19%. In sum, our method can effectively
decrease the bias towards black defendants.
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Figure 6: Distribution of black defendants
that are treated differently using our GCFN.
Left: COMPAS score. Right: Prior charges.

We now provide insights at the defendant level to bet-
ter understand how black defendants are treated dif-
ferently by the COMPAS score vs. our GCFN. Fig. 6
shows the number of such different treatments across
different characteristics of the defendants. (1) Our
GCFN makes oftentimes different predictions for
black defendants with a medium COMPAS score
around 4 and 5. However, the predictions for black
defendants with a very high or low COMPAS score
are similar, potentially because these are ‘clear-cut’
cases. (2) Our method arrives at significantly different predictions for patients with low prior charges.
This is expected as the COMPAS score overestimates the risk and is known to be biased (Angwin
et al., 2016). Further insights are in the Appendix K.

To exemplify the above, Fig. 7 shows two defendants from the data. Both primarily vary in their
race (black vs. white) and their number of prior charges (2 vs. 7). Interestingly, the COMPAS score
coincides with race, while our method makes predictions that correspond to the prior charges.

6 DISCUSSION

ID: 9297

Information
Name:  Melvin Thirsty
Age: 61
Race: African-American
Prior charges: 2
Charge degree: Misdemeanor
COMPAS score: 8   

Our GCFN prediction: Low Risk

ID: 319

Information
Name: Henry Nesbitt
Age: 56
Race: Caucasian
Prior charges: 7
Charge degree: Felony
COMPAS score: 1  

Our GCFN prediction: High Risk

Figure 7: Examples of how defendants are
treated differently by the COMPAS score vs.
our GCFN.

Limitations & future work: As with all research
on algorithmic fairness, we usher for a cautious, re-
sponsible, and ethical use. Sometimes, unfairness
may be historically ingrained and require changes
beyond the algorithmic layer such as changing so-
ciotechnical parts around data collection or deploy-
ment (De Arteaga et al., 2022). The BGM assumption
is valid only for real-valued random variables. We
thus leave to feature work to prove the counterfac-
tual identifiability in high-dimensionality. Broader
impact: We offer a novel method for counterfactual
fairness, which may help to reduce bias against minorities and other marginalized groups. We expect
that our theoretical guarantees are especially useful from a regulatory perspective and to promote
trust among users.
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A MATHEMATICAL BACKGROUND

Notation: Capital letters such as U denote a random variable and small letters u its realizations
from corresponding domains U . Bold capital letters such as U = {U1, . . . , Un} denote finite sets of
random variables. Further, P(Y ) is the distribution of a variable Y .

SCM: A structural causal model (SCM) (Pearl, 2009) is a 4-tuple ⟨V,U,F ,P(U)⟩, where U
is a set of exogenous (background) variables that are determined by factors outside the model;
V = {V1, . . . , Vn} is a set of endogenous (observed) variables that are determined by variables in
the model (i.e., by the variables in V ∪ U ); F = {f1, . . . , fn} is the set of structural functions
determining V, vi ← fi (pa (vi) , ui), where pa (Vi) ⊆ V\Vi and Ui ⊆ U are the functional
arguments of fi; P(U) is a distribution over the exogenous variables U.

Potential outcome: Let X and Y be two random variables in V and u = {u1, . . . , un} ∈ U be a
realization of exogenous variables. The potential outcome Yx(u) is defined as the solution for Y of
the set of equations Fx evaluated with U = u (Pearl, 2009). That is, after U is fixed, the evaluation
is deterministic. Yx(u) is the value variable Y would take if (possibly contrary to observed facts) X
is set to x, for a specific realization u. In the rest of the paper, we use Yx as the short for Yx(U).

Observational distribution: A structural causal model M = ⟨V,U,F ,P(U)⟩ induces a joint
probability distribution P(V) such that for each Y ⊆ V, PM(Y = y) =

∑
u 1(Y (u) = y)P(U =

u) where Y (u) is the solution for Y after evaluating F with U = u (Bareinboim et al., 2022).

Counterfactual distributions: A structural causal modelM = ⟨V,U,F ,P(U)⟩ induces a fam-
ily of joint distributions over counterfactual events Yx, . . . , Zw for any Y,Z, . . . ,X,W ⊆ V :
PM (Yx = y, . . . , Zw = z) =

∑
u 1 (Yx(u) = y, . . . , Zw(u) = z)P(U = u) (Bareinboim et al.,

2022). This equation contains variables with different subscripts, which syntactically represent
different potential outcomes or counterfactual worlds.

Causal graph: A graph G is said to be a causal graph of SCMM if represented as a directed acyclic
graph (DAG), where (Pearl, 2009; Bareinboim et al., 2022) each endogenous variable Vi ∈ V is a
node; there is an edge Vi −→ Vj if Vi appears as an argument of fj ∈ F (Vi ∈ pa(Vj)); there is a
bidirected edge Vi L9999K Vj if the corresponding Ui, Uj ⊂ U are correlated (Ui ∩ Uj ̸= ∅) or the
corresponding functions fi, fj share some Uij ∈ U as an argument.
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B FAIRNESS BACKGROUND

B.1 FAIRNESS NOTIONS

Recent literature has extensively explored different fairness notions (e.g., Dwork et al., 2012; Feldman
et al., 2015; Grgic.Hlaca et al., 2016; Hardt et al., 2016; Joseph et al., 2016; Zafar et al., 2017;
Wadsworth et al., 2018; Madras et al., 2018; Zhang et al., 2018; Pfohl et al., 2019; Salimi et al.,
2019; Celis et al., 2019; Chen et al., 2019; Madras et al., 2019; Di Stefano et al., 2020) For a detailed
overview, we refer to Makhlouf et al. (2020) and Plecko & Bareinboim (2022). There have been also
theoretical advances (e.g., Fawkes et al., 2022; Rosenblatt & Witter, 2023) but these are orthogonal
to ours.

Existing fairness notions can be loosely classified into notions for group- and individual-level fairness,
as well as causal notions, some aim at path-specific fairness (e.g., Nabi & Shpitser, 2018; Chiappa,
2019). We adopt the definition of counterfactual fairness from Kusner et al. (2017).

Counterfactual fairness definition (Kusner et al., 2017): Given a predictive problem with fairness
considerations, where A,X and Y represent the sensitive attributes, remaining attributes, and output
of interest respectively, for a causal modelM = ⟨V = {A,X, Y },U,F ,P(U)⟩, prediction model
Ŷ = h(X,A,U) is counterfactual fair, if under any context X = x and A = a,

P
(
Ŷa(U) | X = x,A = a

)
= P

(
Ŷa′(U) | X = x,A = a

)
, (12)

for any value a′ attainable by A. This is equivalent to the following formulation:

P (h(Xa(U), a,U) | X = x,A = a) = P (h(Xa′(U), a′,U) | X = x,A = a) . (13)

Our paper adapts the later formulation by doing the following. First, we make the prediction model
independent of the sensitive attributes A, as they could only make the predictive model unfairer.
Second, given the general non-identifiability of the posterior distribution of the exogenous noise, i.e.,
P (U | X = x,A = a), we consider only the prediction models dependent on the observed covariates.
Third, we split observed covariates X on pre-treatment covariates (confounders) and post-treatment
covariates (mediators). Thus, we yield our definition of a fair predictor in Eq. 1.
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C IDENTIFICATION OF COUNTERFACTUALS

C.1 IMPORTANCE OF THEORETICAL GUARANTEES FOR IDENTIFAIBILITY

In causal inference, “identifiability” refers to a mathematical condition that permits a causal quantity
to be measured from observed data (Pearl, 2009). Importantly, identification is different from
estimatability because methods that act as heuristics may return estimates but they do not correspond
to the true value. For the latter, we refer to D’Amour (2019) where the authors point out several
technical issues that, if a latent variable is not unique, it is possible to have local minima, which leads
to unsafe results in causal inference. As a result, the lack of identifiability can lead to that the true
counterfactual distributions is not being learned (but some other distribution). This can thus cause an
overall low prediction performance but, more importantly, may even undermine fairness objectives.

Needless to say, identification of counterfactuals is a very challenging, and current literature on this
direction requires assumptions to fulfill it (Xia et al., 2022; Melnychuk et al., 2023; Zhang et al.,
2022; Nasr-Esfahany et al., 2023). We are aligned and thus make similar assumptions. Thereby, we
can – for the first time – show in which scenarios counterfactual fairness can be fulfilled (and in
which scenarios not). This broadens our understanding of how counterfactual fairness operates.

C.2 DISCUSSION ABOUT BGM ASSUMPTION

The bijective generation mechanism (BGM) (Nasr-Esfahany et al., 2023) is required to ensure
the identifiability of our method. The BGM assumption is crucial for the identification of the
counterfactuals. It includes many popular identifiable SCMs as special cases, e.g., ANM (Peters et al.,
2014), LSNM and (Immer et al., 2023), and PNL (Zhang & Hyvärinen, 2010). Thus, this assumption
can be seen as one of the most general assumptions that lead to point identifiability.

It is hard to argue whether real-world datasets usually satisfy the BGM assumption. Rather, this
assumption provides a guideline for which datasets it is – in principle – possible to provide answers
to the counterfactual questions and for which not. As discovered by (Melnychuk et al., 2023), the
relaxation of the BGM assumption not only immediately leads to point non-identifiability but also to
non-informative partial identification bounds. Still, it can be intuitively re-formulated (Melnychuk
et al., 2023) as follows: In fM , the sensitive attribute, A, is assumed to interact only with the observed
covariates, X, and not with the exogenous noise, UM . Many real-world data-generation mechanisms /
phenomena, if studied closely, can be said to satisfy this assumption (e.g., simulators in physics and
medicine but also neuroscience and behavioral processes).

Current literature on counterfactual fairness does not even have any theoretical guarantees on the
identifiability of their methods or provide no guarantees of the correctness of counterfactual fairness
achieved on either synthetic datasets or real-world datasets. We believe having some assumptions to
make our method with theoretical guarantees is better than methods with no correctness guarantee at
all and thus helps us to understand where and when counterfactual fairness can be fulfilled from a
theoretical point of view.
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D RELATED WORKS

D.1 KUSNER COUNTERFACTUAL FAIRNESS

Originally, Kusner et al. (2017) introduced a conceptual algorithm to achieve predictions under
counterfactual fairness. The idea is to first infer a set of latent background variables and subsequently
train a prediction model using these inferred latent variables and non-descendants of sensitive
attributes. Kusner et al. (2017) provided only a conceptual algorithm, while only later works
proceeded by offering actual instantiations. In particular, Kusner et al. (2017) did not clarify how to
learn latent variables in practice and did not prove the identifiability of the inferred latent variables by
a model. As such, the conceptual algorithm does not provide any theoretical guarantees for achieving
counterfactual fairness in the final prediction models. Furthermore, the conceptual algorithm is
not able to directly learn fairness prediction from a given dataset and a given causal graph, but
instead it requires the specification of additional structural equations and thus requires further domain
knowledge. Without knowing the ground-truth structural causal model, Kusner et al. (2017) can not
have identifiability and can not achieve counterfactual fairness. In sum, this makes the conceptual
algorithm – and any other instantiation building upon it – impractical.

D.2 DISCUSSION ABOUT THEORETICAL GUARANTEES IN COUNTERFACTUAL FAIRNESS
PREDICTION

Current works related to counterfactual fairness prediction often state that their proposed methods
satisfy counterfactual fairness under certain conditions (Pfohl et al., 2019; Kim et al., 2021; Grari
et al., 2023; Zuo et al., 2023; Wang et al., 2023; Zhou et al., 2024). However, none of these papers
consider or discuss the identifiability of counterfactuals. These papers either require some implied
strong assumptions about the identifiability of counterfactuals (which they do not specify) or fully
ignore the identifiability at all, and hope their method can somehow manage to learn the correct
counterfactuals. As we discuss below, this is often not true because of which these methods may
learn predictions that are unfair.

Zuo et al. (2023) claims that they form the counterfactual prediction by drawing from the counterfac-
tual distribution. However, it does not clarify how they exactly managed to learn this counterfactual
distribution, and neither does the paper prove why the learned counterfactual distribution by this
model should be identifiable. They just give a conceptual algorithm, yet which may learn an unfair
objective.

Wang et al. (2023); Zhou et al. (2024) involve the step of learning the latent variables and later
training a prediction model using these inferred latent variables. These papers do not clarify how they
managed to learn the latent variables and do not have any proper identification guarantees for learned
latent variables. For example, they can use, for example, a VAE to estimate the latent variable but it is
not guaranteed that it can be correctly identified. Again, this leads to predictions that can be actually
unfair.

Methods that act as heuristics as those above may return estimates but these estimates do not
correspond to the true value. So, theoretically, these methods can converge against predictions that
are not fair but unfair.

D.3 BENEFITS OVER LATENT VARIABLE BASELINES

Importantly, the latent variable baselines for counterfactual fairness (e.g., mCEVAE (Pfohl et al.,
2019), DCEVAE (Kim et al., 2021), and ADVAE (Grari et al., 2023)) are far from being easy as they
do not rely on off-the-shelf methods. Rather, they also learn a latent variable in non-trivial ways.
The inferred latent variable U should be independent of the sensitive attribute A while representing
all other useful information from the observation data. However, there are two main challenges:
(1) The latent variable U is not identifiable. (2) It is very hard to learn such U to satisfy the above
independence requirement, especially for high-dimensional or other more complicated settings.
Hence, we argue that baselines based on some custom latent variables are highly challenging.

Because of (1) and (2), there are no theoretical guarantees for the VAE-based methods. Hence, it
is mathematically unclear whether they actually learn the correct counterfactual fair predictions.
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In fact, there is even rich empirical evidence that VAE-based methods are often suboptimal. VAE-
based methods use the estimated variable U in the first step to learn the counterfactual outcome
P
(
Ŷa′(U) | X = x,A = a,M = m

)
. The inferred, non-identifiable latent variable can be corre-

lated with the sensitive attribute which may harm fairness, or it might not fully represent the rest of
the information from data and harm prediction performance.

Importantly, the latent variable baselines do not allow for identifability. In causal inference, ”identifia-
bility” refers to a mathematical condition that permits a causal quantity to be measured from observed
data (Pearl, 2009). Importantly, identification is different from estimation because methods that act
as heuristics may return estimates but they do not correspond to the true value. For the latter, see
(D’Amour, 2019) where the authors provide several concerns that, if a latent variable is not unique, it
is possible to have local minima, which leads to unsafe results in causal inference.

Non-identifiable for VAE-based methods have been shown in prior works of literature. In a recent
paper (Xia et al., 2022), the authors show that VAE-based counterfactual inference do not allow for
identifiability. The results directly apply to variational inference-based methods, which do not have
proper identification guarantees. Also, the result from non-linear ICA (which is the task of variational
autoencoders) shows that the latent variables are non-identifiable (Khemakhem et al., 2020). In
simple words, VAE-based methods can estimate the latent variable but it is not guaranteed that it can
be correctly identified. Note that non-identifiability of the latent variables means non-identifiability
of the counterfactual queries. We refer to paper (Melnychuk et al., 2023), which show that the
non-identifiability of the latent variables means non-identifiability of the counterfactual queries.
Hence, VAE-based methods can not ensure that they correctly learn counterfactual fairness, only our
method does so.

D.4 DEEP GENERATIVE MODELS FOR ESTIMATING CAUSAL EFFECTS:

There are many papers that leverage generative adversarial networks and variational autoencoders to
estimate causal effects from observational data (Louizos et al., 2017; Kocaoglu et al., 2018; Yoon
et al., 2018; Pawlowski et al., 2020; Bica et al., 2020; Zhang et al., 2021; Ma et al., 2024). We borrow
some ideas of modeling counterfactuals through deep generative models, yet we emphasize that those
methods aim at estimating causal effects but without fairness considerations.

D.5 GENERATING FAIR SYNTHETIC DATASETS

A different literature stream has used generative models to create fair synthetic datasets (e.g., Xu et al.,
2018; 2019; van Breugel et al., 2021; Rajabi & Garibay, 2022). Importantly, the task and objective
here are different from ours. Here, relevant to us is only one method called CFGAN (Xu et al., 2019).
However, it is vastly different from our method in many aspects, see difference comparison below.

D.6 DIFFERENCE FROM CFGAN

Even though CFGAN also employs GANs, it is vastly different from our method.

1. Different tasks: CFGAN is designed for fair data generation tasks, while our model is
designed for learning predictors to be counterfactual fairness. Hence, both address different
tasks. The training objectives are different: CFGAN learns to mimic factual data. In our
method, the generator learns the counterfactual distribution of the mediator through the
discriminator distinguishing factual from counterfactual mediators.

2. Different architectures: CFGAN employs two generators, each aimed at simulating the
original causal model and the interventional model, and two discriminators, which ensure
data utility and causal fairness. We only employ a streamlined architecture with a single
generator and discriminator. Further, fairness enters both architectures at different places.
In CFGAN, fairness is ensured through the GAN setup, whereas our method ensures fairness
in a second step through our counterfactual mediator regularization.

3. Different mathematical objectives: CFGAN is proposed to synthesize a dataset that satisfies
counterfactual fairness in the sampled data. However, a recent paper (Abroshan et al.,
2022) has shown that CFGAN is actually considering interventions (=level 2 in Pearl’s
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causality ladder) and not counterfactuals (=level 3).5 Hence, CFGAN does not fulfill the
counterfactual fairness notion, but a different notion based on do-operator (intervention).
For details, we refer to (Abroshan et al., 2022), Definition 5 therein, called “Discrimination
avoiding through causal reasoning”): A generator is said to be fair if the following equation
holds: for any context A = a and X = x, for all value of y and a′ ∈ A, P (Y = y |
X = x, do(A = a)) = P (Y = y | X = x, do (A = a′)), which is different from the
counterfactual fairness P

(
Ŷa = y | X = x,A = a

)
= P

(
Ŷa′ = y | X = x,A = a

)
..

4. No theoretical guarantee for CFGAN: CFGAN lacks theoretical support for its method-
ology (no identifiable guarantee or counterfactual fairness level). In contrast, our method
strictly satisfies the principles of counterfactual fairness and provides theoretical guarantees
on the counterfactual fairness level. In sum, only our method offers theoretical guarantees
for the task at hand.

5. Suboptimal performance of CFGAN: Even though CFGAN can, in principle, be applied to
counterfactual fairness prediction, it is suboptimal. The reason is the following. Unlike
CFGAN, which generates complete synthetic data under causal fairness notions, our method
only generates counterfactuals of the mediator as an intermediate step, resulting in minimal
information loss and better inference performance than CFGAN. Furthermore, since CF-
GAN needs to train the dual-generator and dual-discriminator together and optimize two
adversarial losses, it is more difficult for stable training, and thus its method is less robust
than ours.

In sum, even though CFGAN also employs GANs, it is vastly different from our method.

5In the context of Pearl’s causal hierarchy**, interventional and counterfactual queries are completely
different concepts (Bareinboim et al., 2022). (1) Interventional queries are located on level 2 of Pearl’s causality
ladder. Interventional queries are of the form P (y | do(x)). Here, the typical question is “What if? What if I do
X?”, where the activity is “doing”. (2) Counterfactual queries are located on level 3 of Pearl’s causality ladder.
Counterfactual queries are of the form P (yx | x′, y′), where x′ and y′ are different values that X,Y took before.
Here, the typical question is “What if I had acted differently?”, where the activity is “imagining” had a different
treatment selected been made in the beginning. Hence, the main difference is that the counterfactual of y is
conditioned on the post-treatment outcome (factual outcome) of y and a different x (where x takes a different
value than x′). For details, we kindly refer to paper (Bareinboim et al., 2022; Pearl, 2009) for a more technical
definition of why intervention and counterfactual are two entirely different concepts.
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E CAUSAL GRAPH

E.1 SELECTION OF THE CAUSAL GRAPH

We choose a causal graph in the way that we do not assume complete knowledge about the causal
graph, just whether a variable is pre- or post-treatment, that is whether a variable is a descendant of
the sensitive attribute. Furthermore, our assumption of the causal graph is aligned with a standard
approach in counterfactual fairness, i.e., with the Standard Fairness Model in (Plecko & Bareinboim,
2022)

E.2 FURTHER CLARIFICATION

In this section, we clarify why our framework is flexible and broadly applicable.

E.2.1 ARROW FROM X TO A

Below, we clarify that the arrow from X to A is not a limitation but a more general setting.

In causal inference, having an arrow means there is no additional assumption, while the absence of
an arrow means that there is an assumption. So in our causal graph, the presence of an arrow from
X to A indicates the allowance of a causal relationship between variables, that is X can be a direct
cause of A, this is permissible/allowed in our framework, but the direct causal relationship X → A
is not a necessity. If there is no arrow from X to A, it is actually a stronger assumption, because it
forbids X to be the cause of A.

E.2.2 MEDIATOR SELECTION

In this section, we clarify that having the mediator in the causal graph is a standard setting (Schröder
et al., 2023). Below, we give a detailed introduction to the mediator selection and further offer a
step-by-step process on how practitioners can adapt their settings to our graph.

1. Knowledge of M is required for any theoretically grounded method that aims to iden-
tify/estimate counterfactual effects. It is well-known in the causal inference literature that
knowledge of pre-treatment and post-treatment variables is required to identify a causal
effect (even in Layer 2 of Pearl’s causal hierarchy) (Pearl, 2009). Hence, such knowledge
must be available to identify stronger fairness notions such as counterfactual fairness, which
lie on layer 3 of Pearl’s hierarchy. Works that do not distinguish between post- and pre-
treatment variables have no hope of achieving identifiability on the interventional level,
and also no hope for the (harder) counterfactual level. The assumption is consistent with
established literature on causal fairness and the corresponding model is even called ”the
Standard Fairness Model” in the literature (Plecko & Bareinboim, 2022). Mediators are part
of a standard causal model, particularly in the context of fairness where sensitive attributes
are often involved due to some discrimination-related issues. Mediators naturally occur in
practical applications where there are sensitive attributes. Knowledge of M is given in many
practical scenarios where our method could be applied.

2. Knowledge of mediators is often realistic as they are usually available mediators in observed
data (De Arteaga et al., 2022). The reason is located in the definition of sensitive attributes.
Sensitive attributes are of concern to (dis)advantage certain groups of society because the
sensitive attribute is known to influence other variables, which may act as proxies that drive
some outcome. For example, consider a loan application and take gender as a sensitive
attribute. Obviously, gender is sensitive in loan applications as it is known to not only be
responsible for discrimination but it naturally affects many other secondary outcomes (e.g.,
income) which make it so important to mitigate discrimination with respect to the sensitive
attribute in the first place. If gender was not affecting outcomes broadly, one would not
necessarily see the importance of mitigating discrimination with regard to it and one would
thus not consider it as a sensitive attribute.

3. Our assumptions regarding M are weaker than in some existing literature: it is important to
clarify that we have a more general setting about mediators. Our method does not require
complete knowledge of the entire causal graph. In some previous works, such as (Kim et al.,
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2021), detailed knowledge of the causal relationships among mediators is required, while
our methodology does not need to specify the causal relationship among them. This makes
our framework more flexible and broadly applicable.

4. What if the mediator M is not correctly identified? In this case, one could still employ
a ”worst-case” approach by including all variables we are unsure about into M , which
gives us a heuristic worst-case approach, This is similar to other methods that do not
distinguish between X and M (Xu et al., 2019). However, those methods that use such
heuristics (including baselines) have no theoretical grounding. In summary, we would like
to emphasize that the ability of our method to incorporate knowledge of M is an advantage
rather than a disadvantage of our method. If M can be correctly identified, then our method
provides strong performance (accuracy) with theoretical guarantees on identifiability of
counterfactual fairness. If not, the worst-case approach is still possible for applying our
method.

In summary, it is important to clarify that we have a more general setting about mediators. Our
method does not require complete knowledge of the entire causal graph. Our primary objective
is to identify whether variables are pre- or post-treatment, in other words, determining if they are
descendants of the sensitive attribute. Variables potentially affected by the sensitive attribute are
classified as mediators. In some previous works, detailed knowledge of the causal relationships
among mediators is required, while our methodology does not. This makes our framework more
flexible and broadly applicable.

E.3 PRACTICAL EXAMPLE OF OUR CAUSAL GRAPH

In practice, it is common and typically straightforward to choose which variables act as mediators
M through domain knowledge (Nabi & Shpitser, 2018; Kim et al., 2021; Plecko & Bareinboim,
2022). Hence, mediators M are simply all variables that can potentially be influenced by the sensitive
attribute. All other variables (except for A and Y ) are modeled as covariates X . For example,
consider a job application setting where we want to avoid discrimination by gender. Then, A is
gender, and Y is the job offer. Mediators are, for instance, education level or work experience, as
both are potentially influenced by gender. In contrast, age is a covariate because it is not influenced
by gender.
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F THEORETICAL RESULTS

F.1 RESULTS ON COUNTERFACTUAL CONSISTENCY

The natural question arises under which conditions our generator produces consistent counterfactuals.
In the following, we provide a theory based on bijective generation mechanisms (BGMs) (Nasr-
Esfahany et al., 2023; Melnychuk et al., 2023) and identifiability results for generative models (Xi &
Bloem-Reddy, 2023).
Lemma 3 (Consistent estimation of the counterfactual distribution with GAN (up to a measure-pre-
serving indeterminacy)). Let the observational distribution PX,A,M = Pf be induced by an SCM
M = ⟨V,U,F ,P(U)⟩ with

V = {X,A,M, Y }, U = {UXA, UM , UY },
F = {fX(uXA), fA(x, uXA), fM (x, a, uM ), fY (x,m, uY )}, P(U) = P(UXA)P(UM )P(UY ),

and with the causal graph as in Figure 1. LetM ⊆ R and fM be a bijective generation mecha-
nism (BGM) (Nasr-Esfahany et al., 2023; Melnychuk et al., 2023), i.e., fM is a strictly increasing
(decreasing) continuously-differentiable transformation wrt. uM . Then:

1. The counterfactual distribution of the mediator simplifies to one of two possible point mass
distributions

P(Ma′ | X = x,A = a,M = m) = δ(F−1(±F(m;x, a)∓ 0.5 + 0.5;x, a′)), (14)

where F(·;x, a) and F−1(·;x, a) are a CDF and an inverse CDF of P(M | X = x,A = a),
respectively, and δ(·) is a Dirac-delta distribution. Thus, it is identifiable up to a measure-
preserving indeterminacy (Xi & Bloem-Reddy, 2023).

2. If the generator of GAN is a continuously differentiable function with respect to M , then it
consistently estimates one of the counterfactual distributions of the mediator (Eq. 14).

Proof. The first statement of the theorem is the main property of bijective generation mechanisms
(BGMs), i.e., they allow for deterministic (point mass) counterfactuals. For a more detailed proof,
we refer to Lemma B.2 in (Nasr-Esfahany et al., 2023) and to Corollary 3 in (Melnychuk et al.,
2023). Importantly, under mild conditions6, this result holds in the more general class of BGMs with
non-monotonous continuously differentiable functions.

The second statement can be proved in two steps. (i) We show that, given an optimal discriminator,
the generator of our GAN estimates the distribution of potential mediators for counterfactual sensitive
attributes, i.e., P(G(x, a,Ma)a′ | X = x,A = a) = P(Ma′ | X = x,A = a) in distribution.
(ii) Then, we demonstrate that the outputs of the deterministic generator, conditional on the factual
mediator M = m, estimate P(Ma′ | X = x,A = a,M = m).

(i) Let πa(x) = P(A = a | X = x) denote the propensity score. The discriminator of our GAN,
given the covariates X = x, tries to distinguish between generated counterfactual data and ground
truth factual data. The adversarial objective from Eq. 6 could be expanded with the law of total
expectation wrt. X and A in the following way:

E(X,A,M)∼Pf

[
log

(
D(X, G̃ (X,A,M))A

)]
(15)

=EX∼P(X)E(A,M)∼P(A,M |X)

[
log

(
D(X, G̃ (X,A,M))A

)]
(16)

=EX∼P(X)

[
EM∼P(M |X,A=0)

[
log

(
D(X, G̃ (X, 0,M))0

)]
π0(X) (17)

+ E(M∼P(M |X,A=1)

[
log

(
D(X, G̃ (X, 1,M))1

)]
π1(X)

]
=EX∼P(X)

[
EM∼P(M |X,A=0)

[
log

(
D(X, {M,G (X, 0,M)1})0

)]
π0(X) (18)

+ EM∼P(M |X,A=1)

[
log

(
1−D(X, {G (X, 1,M)0 ,M})0

)]
π1(X)

]
.

6If the conditional density of the mediator has finite values.
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We give a more detailed explanation of the derivation of this step. We denote {M,G (X, 0,M)1} in
Eq. 17 as G̃(X, 0,M). We modify the output of G before passing it as input to D. We replace the
generated factual mediator M̂A with the observed factual mediator M . We denote the new, combined
data by G̃ (X,A,M). G̃(X, 0,M) means the input of the discriminator for A = 0. In Eq. 4, we have
defined G̃(X,A,M)a via

G̃(X,A,M)a =


M, if A = a

G(X,A,M)a, if A = a′
(19)

For the first term in Eq. 17, the mediator M is drawn from P(M | X,A = 0). For A = 0, we have

G̃(X, 0,M)a =


M, if A = a

G(X, 0,M)a, if A = a′
(20)

When a = 0, we have G̃(X, 0,M)0 = M ; when a = 1, we have G̃(X, 0,M)1 = G(X, 0,M)1.
Therefore, we can write G̃(X, 0,M) = {M,G(X, 0,M)1}. By replacing this term, we have shown
the first term in Eq. 17 equals the first term in Eq. 18.

Similarly, for A = 1, we have G̃(X, 1,M) = {G(X, 1,M)0,M}, because, when a = 0 and A = a′,
we have G̃(X, 1,M)0 = G(X, 1,M)0; when a = 1, we have G̃(X, 0,M)1 = M .

The discriminator D then determines which component of G̃ is the observed factual mediator and
thus outputs the corresponding probability, which is given by Eq. 5, i.e., D(X, G̃)a = P̂(M =

G̃a | X, G̃) = P̂(A = a | X, G̃). As it is the corresponding probability, therefore, the sum of the
D(X, G̃)0 and D(X, G̃)1 should be 1. By replacing the term G̃(X, 1,M) = {G(X, 1,M)0,M} as
we have shown above, we have

log
(
D(X, G̃ (X, 1,M))1

)
= log

(
1−D(X, {G (X, 1,M)0 ,M})0

)
(21)

Thus, we have shown that the second term in Eq. 17 equals the second term in Eq. 18.

Let Z0 = {M,G (X, 0,M)1} and Z1 = {G (X, 1,M)0 ,M} be two random variables. Then, using
the law of the unconscious statistician, the expression can be converted to a weighted conditional
GAN adversarial loss (Mirza & Osindero, 2014), i.e.,

EX∼P(X)

[
EZ0∼P(Z0|X,A=0)

[
log

(
D(X,Z0)0

)]
π0(X) (22)

+ EZ1∼P(Z1|X,A=1)

[
log

(
1−D(X,Z1)0

)]
π1(X)

]
=EX∼P(X)

[ ∫
Z

(
log

(
D(X, z)0

)
π0(X)P(Z0 = z | X,A = 0) (23)

+ log
(
1−D(X, z)0

)
π1(X)P(Z1 = z | X,A = 1)

)
dz

]
,

where Z = M×M. Notably, the weights of the loss, i.e., π0(X) and π1(X), are greater than
zero, due to the overlap assumption. The second term follows analogously. Following the theory
from the standard GANs (Goodfellow et al., 2014b), for any (a, b) ∈ R2 \ 0, the function y 7→
log(y)a+ log(1− y)b achieves its maximum in [0, 1] at a

a+b . Therefore, for a given generator, an
optimal discriminator is

D(x, z)0 =
P(Z0 = z | X = x,A = 0)π0(x)

P(Z0 = z | X = x,A = 0)π0(x) + P(Z1 = z | X = x,A = 1)π1(x)
. (24)

Both conditional densities used in the expression above can be expressed in terms of the potential
outcomes densities due to the consistency and unconfoundedness assumptions, namely

P(Z0 = z | X = x,A = 0) = P({M = m0, G(x, 0,M)1 = m1} | X = x,A = 0) (25)
= P({M0 = m0, G(x, 0,M0)1 = m1} | X = x),

P(Z1 = z | X = x,A = 1) = P({G(x, 1,M)0 = m0,M = m1} | X = x,A = 1) (26)
= P({G(x, 1,M1)0 = m0,M1 = m1} | X = x).
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Thus, an optimal generator of the GAN then minimizes the following conditional propensity-weighted
Jensen–Shannon divergence (JSD)

JSDπ0(x),π1(x)

(
P({M0, G(x, 0,M0)1} | X = x)

∣∣∣∣P({G(x, 1,M1)0,M1} | X = x)
)
, (27)

where JSDw1,w2
(P1 ||P1) = w1 KL(P1 ||w1 P1+w2 P2)+w2 KL(P2 ||w1 P1+w2 P2) and where

KL(P1 ||P1) is Kullback–Leibler divergence. The Jensen–Shannon divergence is minimized, when
G(x, 0,M0)1 = M1 and G(x, 1,M1)0 = M0 conditioned on X = x (in distribution), since, in this
case, it equals to zero, i.e.,

P(G(x, a,Ma)a′ | X = x) = P(Ma′ | X = x). (28)

Finally, due to the unconfoundedness assumption, the generator of our GAN estimates the potential
mediator distributions with counterfactual sensitive attributes, i.e.,

P(G(x, a,Ma)a′ | X = x,A = a) = P(Ma′ | X = x,A = a) (29)

in distribution.

(ii) For a given factual observation, X = x,A = a,M = m, our generator yields a deterministic
output, i.e.,

P(G(x, a,Ma)a′ | X = x,A = a,M = m) = P(G(x, a,m)a′ | X = x,A = a,M = m) (30)
= δ(G(x, a,m)a′). (31)

At the same time, this counterfactual distribution is connected with the potential mediators’ distri-
butions with counterfactual sensitive attributes, P(Ma′ = m′ | X = x,A = a), via the law of total
probability:

P(Ma′ = m′ | X = x,A = a) = P(G(x, a,M)a′ = m′|X = x,A = a) (32)

=

∫
M

δ(G(x, a,m)a′ −m′)P(M = m | X = x,A = a) dm (33)

=
∑

m:G(x,a,m)a′=m′

| ∇mG(x, a,m)a′ |−1 P(M = m | X = x,A = a). (34)

Due to the unconfoundedness and the consistency assumptions, this is equivalent to

P(M = m′ | X = x,A = a′) =
∑

m:G(x,a,m)a′=m′

| ∇mG(x, a,m)a′ |−1 P(M = m | X = x,A = a).

(35)

The equation above has only two solutions wrt. G(x, a, ·) in the class of the continuously differen-
tiable functions (Corollary 3 in (Melnychuk et al., 2023)), namely:7

G(x, a,m)a′ = F−1(±F(m;x, a)∓ 0.5 + 0.5;x, a′), (36)

where F(·;x, a) and F−1(·;x, a) are a CDF and an inverse CDF of P(M | X = x,A = a). Thus,
the generator of GAN exactly matches one of the two BGM solutions from (i). This concludes that
our generator consistently estimates the counterfactual distribution of the mediator, P(Ma′ | X =
x,A = a,M = m), up to a measure-preserving indeterminacy.

Corollary 1. The results of the Lemma 3 naturally generalize to sensitive attributes with more
categories, i.e., A = {0, 1, . . . , k − 1}, k > 2.

Proof. We want to show that, when A = {0, 1, . . . , k − 1}, k > 2, the generator is still able to learn
the potential mediator distributions with the counterfactual distributions. For that, we follow the same

7Under mild conditions, the counterfactual distributions cannot be defined via the point mass distribution
with non-monotonous functions, even if we assume the extension of BGMs to all non-monotonous continuously
differentiable functions.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

derivation steps, as in part (i) of the proof of Lemma 3. This brings us to the following equality for
the loss of the discriminator:

E(X,A,M)∼Pf

[
log

(
D(X, G̃ (X,A,M))A

)]
(37)

=EX∼P(X)

[ ∫
Z

(
log

(
D(X, z)0

)
π0(X)P(Z0 = z | X,A = 0) (38)

+ log
(
D(X, z)1

)
π1(X)P(Z1 = z | X,A = 1) (39)

. . . (40)

+ log
(
D(X, z)k−2

)
πk−2(X)P(Zk−2 = z | X,A = k − 2) (41)

+ log
(
1−

k−2∑
j=0

D(X, z)j
)
πk−1(X)P(Zk−1 = z | X,A = k − 1)

)
dz

]
, (42)

where

Z0 = {M,G(X, 0,M)1, G(X, 0,M)2, . . . , G(X, 0,M)k−1)}, (43)
Z1 = {G(X, 1,M)0,M,G(X, 1,M)2, . . . , G(X, 1,M)k−1}, (44)
. . . (45)
Zk−1 = {G(X, k − 1,M)0, G(X, k − 1,M)1, . . . ,M}. (46)

Then, it is easy to see that, for a given generator, an optimal discriminator is (analogously to Eq. 24)

D(x, z)a =
P(Za = z | X = x,A = a)πa(x)∑k−1
j=0 P(Zj = z | X = x,A = j)πj(x)

for all a ∈ A. (47)

This happens, as, for any (a0, . . . , ak−1) ∈ Rk \ 0, the function (y0, y1, . . . yk−2) 7→ log(y0)a0 +

log(y1)a1 + · · · + log(yk−2)ak−2 + log(1 −
∑k−2

j=0 yj)ak−1 achieves its maximum in [0, 1] at(
a0∑k−1

j=0 aj
, a1∑k−1

j=0 aj
, . . . , ak−2∑k−1

j=0 aj

)
. Then, an optimal generator of the GAN aims to minimize the

propensity-weighted multi-distribution JSD, i.e.,

JSDπ0(x),π1(x),...,πk−1(x)

(
P({M0, G(x, 0,M0)1, G(x, 0,M0)2, . . . , G(x, 0,M0)k−1} | X = x),

P({G(x, 1,M1)0,M1, G(x, 1,M1)2, . . . , G(x, 1,M1)k−1} | X = x),

. . .

P({G(x, k − 1,Mk−1)0, G(x, k − 1,Mk−1)1, . . . ,Mk−1} | X = x)
)
.

(48)

The JSD is minimized, when all the distributions are equal. If we additionally look at the marginalized
distributions, the following equalities will hold

P(G(x, a,Ma)a′ | X = x) = P(Ma′ | X = x) for all a ̸= a′ ∈ A. (49)

This concludes the proof of the Corollary, as all additional steps are analogous to the Lemma 3.

Remark 3. We proved that the generator converges to one of the two BGM solutions in Eq. 14.
Which solution the generator exactly returns depends on the initialization and the optimizer. Notably,
the difference between the two solutions is negligibly small, when the variability of the mediator
is low. To demonstrate this, we assume (without the loss of generality) that the ground-truth
counterfactual mediator follows one of the BGM solutions, e.g., P(Ma′ | X = x,A = a,M = m) =
δ(F−1(F(m;x, a);x, a′)); and our GAN estimates another, i.e., P(Ma′ | X = x,A = a,M = m) =
δ(F−1(1− F(m;x, a);x, a′)). Then, assuming a perfect fit of the GAN, the conditional expectation
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of the squared difference between ground-truth counterfactual mediator and estimated mediator is

sup
G∈G

E
[∥∥∥MA′ − M̂A′

∥∥∥2
2
| X = x,A = a

]
(50)

= E
[∣∣F−1(F(M ;x, a);x, a′)− F−1(1− F(M ;x, a);x, a′)

∣∣ | X = x,A = a
]

(51)

= E
[∣∣F−1(U ;x, a′)− F−1(1− U ;x, a′)

∣∣] (52)

=

∫ 1

0

∣∣F−1(u;x, a′)− F−1(1− u;x, a′)
∣∣du (53)

≤
∫ 1

0

∣∣F−1(u;x, a′)− µ(x, a′)
∣∣du+

∫ 1

0

∣∣F−1(1− u;x, a′)− µ(x, a′)
∣∣du (54)

= 2E [|M − µ(x, a′)| | X = x,A = a′] (55)
(∗)
≤ 2

√
Var [M | X = x,A = a′], (56)

where (∗) holds as an inequality between the mean absolute deviation and the standard deviation.
This result also holds for high-dimensional mediators, where there is a continuum of solutions in
the class of continuously differentiable functions (Chen & Gopinath, 2000). Thus, if the conditional
standard deviation of the mediator is high, a combination of multiple GANs is used to enforce the
worst-case counterfactual fairness.

F.2 PROOF OF LEMMA 2

Here, we prove Lemma 2 from the main paper, which states that our counterfactual regularization
achieves counterfactual fairness if our generator consistently estimates the counterfactuals.
Lemma 4 (Counterfactual mediator regularization bound). Given the prediction model h that is
Lipschitz continuous with a Lipschitz constant C, we have

E
[
∥(h(X,M)− h(X,MA′)∥22

]
≤ C E

[∥∥∥MA′ − M̂A′

∥∥∥2
2

]
+ sup

G∈G
Rcm(h,G), for every G ∈ G,

(57)
where M̂A′ = G(X,A,M)A′ and G is a set of all the generators, minimizing the Eq. 7.

Proof. Using triangle inequality, we yield

E
[
∥h(X,M)− h(X,MA′)∥22

]
(58)

=E
[∥∥∥h(X,M)− h(X,MA′) + h(X, M̂A′)− h(X, M̂A′)

∥∥∥2
2

]
(59)

≤E
[∥∥∥h(X,M)− h(X, M̂A′)

∥∥∥2
2

]
+ E

[∥∥∥h(X, M̂A′)− h(X,MA′)
∥∥∥2
2

]
(60)

=E
[∥∥∥h(X, M̂A′)− h(X,MA′)

∥∥∥2
2

]
+Rcm(h,G) (61)

≤C E
[∥∥∥(X, M̂A′)− (X,MA′)

∥∥∥2
2

]
+Rcm(h,G) (62)

= C E
[∥∥∥MA′ − M̂A′

∥∥∥2
2

]
+Rcm(h,G) (63)

≤C E
[∥∥∥MA′ − M̂A′

∥∥∥2
2

]
+ sup

G∈G
Rcm(h,G). (64)
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G TRAINING ALGORITHM OF GCFN

Algorithm 1 Training algorithm of GCFN
1: Input. Training dataset D; fairness weight λ; number of training GANs to train s; number of training epoch

for each GAN e1; number of training prediction model epoch e2; minibatch of size n; training supervised
loss weight α

2: Init. Generator G parameters: θg; discriminator D parameters: θd; prediction model h parameters: θh
3: Step 1: Training GAN to learn to generate counterfactual mediator
4: for j ∈ {1, . . . , s} do
5: for e1 do
6: for k steps do
7: Sample minibatch of n examples

{
x(i), a(i),m(i)

}n

i=1
from D

8: Compute generator output Gj

(
x(i), a(i),m(i)

)
a
= m̂

(i)
a for a ∈ {0, 1}

9: Modify Gj output to G̃j
(i)

a =

{
m(i), if a(i) = a,

m̂
(i)
a , if a(i) = a′ for a ∈ {0, 1}

10: Update the discriminator via stochastic gradient ascent

∇θd

1

n

n∑
i=1

[
log

(
Dj(x

(i), G̃j
(i)
)a(i)

)]
11: end for
12: for k steps do
13: Sample minibatch of n examples

{
x(i), a(i),m(i)

}n

i=1
from D

14: Compute generator output Gj

(
x(i), a(i),m(i)

)
a
= m̂

(i)
a for a ∈ {0, 1}

15: Modify Gj output to G̃j
(i)

a =

{
m(i), if a(i) = a,

m̂
(i)
a , if a(i) = a′ for a ∈ {0, 1}

16: Update the generator via stochastic gradient descent

∇θg

1

n

n∑
i=1

[
log

(
Dj(x

(i), G̃j
(i)
)a(i)

)
+ log

(
1−Dj(x

(i), G̃j
(i)
)1−a(i)

)
+ α

∥∥∥m(i) −Gj

(
x(i), a(i),m(i)

)
a(i)

∥∥∥2

2

]
17: end for
18: end for
19: end for
20: Step 2: Training prediction model with counterfactual mediator regularization
21: for e2 do
22: Sample minibatch of n examples

{
x(i), a(i),m(i), y(i)

}n

i=1
from D

23: Generate m̂
(i)
j from Gj

(
x(i), a(i),m(i)

)
24: Compute counterfactual mediator regularization

Rcm(h,Gj) =
∥∥∥h(x(i),m(i))− h(x(i), m̂

(i)

j,a
′(i))

∥∥∥2

2

25: Update the prediction model via stochastic gradient descent

∇θh

1

n

n∑
i=1

[
y(i) log

(
h(x(i),m(i))

)
+ (1− y(i)) log

(
1− h(x(i),m(i))

)
+ λ

s
max
j=1

Rcm(h,Gj)

]
26: end for
27: Output. Counterfactually fair prediction model h
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H GENERALIZATION TO MULTIPLE SOCIAL GROUPS

H.1 THEORETICAL INSIGHTS

We provide proof that our method can naturally generalize to sensitive attributes with more categories
in Appendix F, Corollary 1.

H.2 STEP 1: GAN FOR GENERATING COUNTERFACTUAL OF THE MEDIATOR

Our method can easily extended to scenarios with multiple social groups. Suppose we have k
categories, then the sensitive attribute A ∈ A, where A = {0, 1, . . . , k − 1} and k > 2.

The output of the generator G is k potential mediators, i.e., M̂0, M̂1, . . . , M̂k−1, from which one is
factual and the others are counterfactual.

G (X,A,M)a = M̂a for a ∈ {0, 1, ..., k − 1} (65)

The reconstruction loss of the generator is the same as the binary case,

Lf(G) = E(X,A,M)∼Pf

[
∥M −G (X,A,M)A∥

2
2

]
, (66)

where ∥ · ∥2 is the L2-norm.

The discriminator D is designed to differentiate the factual mediator M (as observed in the data)
from the k − 1 generated counterfactual mediators (as generated by G).

We modify the output of G before passing it as input to D: We replace the generated factual mediator
M̂A with the observed factual mediator M . We denote the new, combined data by G̃ (X,A,M),
which is defined via

G̃ (X,A,M)a =

{
M, if A = a,

G (X,A,M)a , Otherwise ,
for a ∈ {0, 1, ..., k − 1}. (67)

The discriminator D then determines which component of G̃ is the observed factual mediator and thus
outputs the corresponding probability. Formally, for the input (X, G̃), the output of the discriminator
D is

D
(
X, G̃

)
a
= P̂

(
M = G̃a | X, G̃

)
= P̂

(
A = a | X, G̃

)
for a ∈ {0, 1, ..., k − 1}. (68)

Our GAN is trained in an adversarial manner: (i) the generator G seeks to generate counterfactual
mediators in a way that minimizes the probability that the discriminator can differentiate between
factual mediators and counterfactual mediators, while (ii) the discriminator D seeks to maximize the
probability of correctly identifying the factual mediator. We thus use an adversarial loss Ladv by

Ladv(G,D) = E(X,A,M)∼Pf

[
log

(
D(X, G̃ (X,A,M))A

)]
. (69)

Overall, our GAN is trained through an adversarial training procedure with a minimax problem as
min
G

max
D
Ladv(G,D) + αLf(G), (70)

with a hyperparameter α on Lf .

H.3 STEP 2: COUNTERFACTUAL FAIR PREDICTION THROUGH COUNTERFACTUAL MEDIATOR
REGULARIZATION

We use the output of the GAN to train a prediction model h under counterfactual fairness in a
supervised way. Our counterfactual mediator regularizationRcm(h,G) thus is

Rcm(h,G) = E(X,A,M)∼Pf

 1

(k − 1)

k−1∑
a=0
a̸=A

∥∥∥h (X,M)− h
(
X, M̂a

)∥∥∥2
2

 . (71)

The training loss is
L(h) = Lce(h) + λ sup

G∈G
Rcm(h,G). (72)
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I DATASET

I.1 SYNTHETIC DATA

Analogous to prior works that simulate synthetic data for benchmarking (Kim et al., 2021; Kusner
et al., 2017; Quinzan et al., 2022), we generate our synthetic dataset in the following way. The
covariates X is drawn from a standard normal distribution N (0, 1). The sensitive attribute A follows
a Bernoulli distribution with probability p, determined by a sigmoid function σ of X and a Gaussian
noise term UA. We then generate the mediator M as a function of X , A, and a Gaussian noise
term UM . Finally, the target Y follows a Bernoulli distribution with probability py, calculated by a
sigmoid function of X , M , and a Gaussian noise term UY . βi (i ∈ [1, 6]) are the coefficients. Let
σ(x) = 1

1+e−x represent the sigmoid function. Formally, we yield
X = UX UX ∼ N (0, 1)

A ∼ Bernoulli (σ(β1X + UA)) UA ∼ N (0, 0.01)

M = β2X + β3A+ UM UM ∼ N (0, 0.01)

Y ∼ Bernoulli (σ(β5X + β6M + UY )) UY ∼ N (0, 0.01)

(73)

We sample 10,000 observations and use 20% as the test set.

I.2 SEMI-SYNTHETIC DATA

LSAC dataset. The Law School (LSAC) dataset (Wightman, 1998) contains information about the
law school admission records. We use the LSAC dataset to construct two semi-synthetic datasets. In
both, we set the sensitive attribute to gender. We take resident and race from the LSAC dataset as
confounding variables. The LSAT and GPA are the mediator variables, and the admissions decision
is our target variable. We simulate 101,570 samples and use 20% as the test set. We denote M1 as
GPA score, M2 as LSAT score, X1 as resident, and X2 as race. Further, wX1

, wX2
, wA, wM1

, wM2

are the coefficients. UM1 , UM2 , UY are the Gaussian noise. Let σ(x) = 1
1+e−x represent the sigmoid

function.

We follow the prior work (Bica et al., 2020) to produce two different semi-synthetic datasets as
follows. For the first one, we use the sigmoid function on linear combinations and for the second one,
we use the sinus function that could make extrapolation more challenging for our GCFN.

■ Semi-synthetic dataset “sigmoid”:
M1 = wM1

(σ(wAA+ wX1
X1 + wX2

X2 + UM1
)) UM1

∼ N (0, 0.01)

M2 = wM2 + wM1 (σ(wAS + wX1X1 + wX2X2 + UM2)) UM2 ∼ N (0, 0.01)

Y ∼ Bernoulli (σ(wM1
M1 + wM2

M2 + wX1
X1 + wX2

X2 + UY )) UY ∼ N (0, 0.01)
(74)

■ Semi-synthetic “sin”:
M1 = wA ·A− sin (π × (wX1X1 + wX2X2 + UM1)) UM1 ∼ N (0, 0.01)

M2 = wA ·A− sin (π × (wX1
X1 + wX2

X2 + UM2
)) UM2

∼ N (0, 0.01)

Y ∼ Bernoulli (σ(wM1
M1 + wM2

M2 + wX1
X1 + wX2

X2 + UY )) UY ∼ N (0, 0.01)
(75)

I.3 REAL-WORLD DATA

UCI Adult dataset: The UCI Adult dataset (Asuncion & Newman, 2007) captures information
about 48,842 individuals including their sociodemographics. Our aim is to predict if individuals earn
more than USD 50k per year. We follow the setting of earlier research (Kim et al., 2021; Nabi &
Shpitser, 2018; Quinzan et al., 2022; Xu et al., 2019). We treat gender as the sensitive attribute and
set mediator variables to be marital status, education level, occupation, hours per week, and work
class. The causal graph of the UCI dataset is in Fig. 8. We take 20% as the test set.

COMPAS dataset: COMPAS (Correctional Offender Management Profiling for Alternative Sanc-
tions) (Angwin et al., 2016) was developed as a decision support tool to score the likelihood of a
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person’s recidivism. The score ranges from 1 (lowest risk) to 10 (highest risk). The dataset further
contains information about whether there was an actual recidivism (reoffended) record within 2 years
after the decision. Overall, the dataset has information about over 10,000 criminal defendants in
Broward County, Florida. We treat race as the sensitive attribute. The mediator variables are the
features related to prior convictions and current charge degree. The target variable is the recidivism
for each defendant. The causal graph of the COMPAS dataset is in Fig. 9. We take 20% as test set.

age, race

gender marital status, education
level, occupation, 

hours per week, work class

income

Figure 8: Causal graph of UCI dataset.

age, gender

race prior convictions
(number of juvenile felony

and misdemeanor charges),
prior charges,

current charge degree

recidivism

Figure 9: Causal graph of COMPAS dataset.
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J IMPLEMENTATION DETAILS

J.1 IMPLEMENTATION OF OUR METHOD

To ensure our GCFN to achieve counterfactual fairness, we train s = 10 GANs and consider the
worst-case counterfactual fairness, i.e., we take the maximum value of counterfactual mediator
regularization maxsj=1Rcm(h,Gj). Our GCFN is implemented in PyTorch. Both the generator and
the discriminator in the GAN model are designed as deep neural networks, each with a hidden layer
of dimension 64. LeakyReLU is employed as the activation function and batch normalization is
applied in the generator to enhance training stability. The GAN training procedure is performed for
300 epochs with a batch size of 256 at each iteration. We set the learning rate to 0.0005. Following
the GAN training, the prediction model, structured as a multilayer perceptron (MLP), is trained
separately. This classifier can incorporate spectral normalization in its linear layers to ensure Lipschitz
continuously. It is trained for 30 epochs, with the same learning rate of 0.005 applied. The training
time of our GCFN on (semi-) synthetic dataset is comparable to or smaller than the baselines.

J.2 IMPLEMENTATION OF BENCHMARKS

We implement CFAN (Kusner et al., 2017) in PyTorch based on the paper’s source code in R
and Stan on https://github.com/mkusner/counterfactual-fairness. We use
a VAE to infer the latent variables. For mCEVAE (Pfohl et al., 2019), we follow the imple-
mentation from https://github.com/HyemiK1m/DCEVAE/tree/master/Tabular/
mCEVAE_baseline. We implement CFGAN (Xu et al., 2019) in PyTorch based on the code
of (Abroshan et al., 2022) and the TensorFlow source code of (Xu et al., 2019). We implement
ADVAE (Grari et al., 2023) in PyTorch. For DCEVAE (Kim et al., 2021), we use the source
code of the author of DCEVAE (Kim et al., 2021). We use HSCIC (Quinzan et al., 2022)
source implementation from the supplementary material provided on the OpenReview website
https://openreview.net/forum?id=ERjQnrmLKH4. We performed rigorous hyperpa-
rameter tuning for all baselines.

J.3 HYPERPARAMETER TUNING.

We perform a rigorous procedure to optimize the hyperparameters for the different methods as follows.
For DCEVAE (Kim et al., 2021) and mCEVAE (Pfohl et al., 2019), we follow the hyperparameter
optimization as described in the supplement of (Kim et al., 2021). For ADVAE (Grari et al., 2023)
and CFGAN (Xu et al., 2019), we follow the hyperparameter optimization as described in their
paper. For both HSCIC and our GCFN, we have an additional weight that introduces a trade-off
between accuracy and fairness. This provides additional flexibility to decision-makers as they tailor
the methods based on the fairness needs in practice (Quinzan et al., 2022). We then benchmark the
utility of different methods across different choices of γ of the utility function in Sec. 5.1. This
allows us thus to optimize the trade-off weight λ inside HSCIC and our GCFN using grid search.
For HSCIC, we experiment with λ = 0.1, 0.5, 1, 5, 10, 15, 20 and choose the best for them across
different datasets. For our method, we experiment with λ = 0.1, 0.5, 1, 1.5, 2. Since the utility
function considers two metrics, across the experiments on (semi-)synthetic dataset, the weight λ is
set to 0.5 to get a good balance for our method.
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K ADDITIONAL EXPERIMENTAL RESULTS

K.1 RESULTS FOR SYNTHETIC DATASET

Setting: We follow previous works that simulate a fully synthetic dataset for performance evaluations
(Kim et al., 2021; Quinzan et al., 2022). The details of data generation process are in Appendix I. We
generate 10,000 samples and use 20% as the test set.

Results: Results are shown in Fig. 10. We again find that our method is highly effective.
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Figure 10: Results for synthetic datasets. A larger utility is better. Shown: mean ± std over 5 runs.

K.2 ADDITIONAL INSIGHTS: WHY OUR METHOD DOES NOT SIMPLY REPRODUCE THE
FACTUAL MEDIATORS BUT ACTUALLY LEARNS THE COUNTERFACTUAL MEDIATORS?

As an additional analysis, we now provide further insights into how our GCFN operates. Specifically,
one may think that our GCFN simply learns to reproduce factual mediators in the GAN rather than
actually learning the counterfactual mediators. However, this is not the case. To show this, we
compare the (1) the factual mediator M , (2) the ground-truth counterfactual mediator MA′ , and
(3) the generated counterfactual mediator M̂A′ . The normalized mean squared error (MSE) between
them is in Table 2 (D1, D2, D3 refer to synthetic, semi-syn (sigmoid) and semi-syn (sin) dataset
in Appendix I, respectively. We find: (1) The factual mediator and the generated counterfactual
mediator are highly dissimilar. This is shown by a normalized MSE(M,M̂A′) of ≈ 1. (2) The
ground-truth counterfactual mediator and our generated counterfactual mediator are highly similar.
This shown by a normalized MSE(MA′ , M̂A′) of close to zero. In sum, our GCFN is effective in
learning counterfactual mediators (and does not reproduce the factual data).

We further give explanations for why our GAN does not copy the factual values but learns the
counterfactual values (due to its custom design!). It is true that during training, we cannot directly
learn the counterfactual mediators in a supervised way as they are unobservable. Instead, we can
only leverage the reconstruction loss on the factual mediators. The reason why we can still learn
the correct counterfactual mediators is due to the adversarial training process of the generator. By
training the discriminator to differentiate between factual and generated counterfactual mediators,
the generator is guided to learn the correct counterfactual distribution. It could be seen as a form of
teacher forcing.

Importantly, there are three important arguments for why our method does not simply reproduce the
factual mediators but actually learns the counterfactual mediators even though it is not observed.

Intuitively: The input of the discriminator D contains the counterfactual and the factual and the
order of them is intentionally randomized. Suppose, hypothetically, that the factual always comes
in the first place, then it is easy to distinguish. However, in the design of our framework, this is not
the case. In our framework, the data are intentionally shuffled, so that factual and counterfactual
positions are random.

Technical reason: If the generator G would just copy the factual values of the mediator M and
output a trivial solution, it would be super hard for the discriminator D to distinguish, implying that
the loss of D would be super large. We would observe mode collapse during training, yet which we
did not observe and thus provides support for our argument.

Theoretical reason: We provide theoretical proof in our Lemma 1. Therein, we show theoretically
that our generator consistently estimates the counterfactual distribution of the mediator P(Ma′ | X =
x,A = a,M = m). For each specific input data (X = x,A = a,M = m), we then generate the
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counterfactual mediator from the distribution P(Ma′ | X = x,A = a,M = m). Hence, we offer
theoretical proof that we learn counterfactual fairness correctly.

Table 2: Our GCFN can learn the distribution of the counterfactual mediator. The normalized
MSE(MA′ ,M̂A′ ) is ≈ 0, showing the generated counterfactual mediator is similar to the ground-truth
counterfactual mediator. In contrast, both the factual and the generated counterfactual mediator are
highly dissimilar.

D1 D2 D3

MSE(M , MA′ ) 1.00±0.00 1.00±0.00 1.00±0.00

MSE(M , M̂A′ ) 1.21±0.064 1.02±0.027 1.06±0.051

MSE(MA′ , M̂A′ ) 0.14±0.052 0.05±0.013 0.08±0.028

M : ground-truth factual mediator; MA′ : ground-truth
counterfactual mediator; M̂A′ : generated counterfactual
mediator

K.3 COMPUTATIONAL EFFICIENCY

We initially used the approach based on several GANs to ensure that the assumptions of our theoretical
foundation were met. However, this was merely done for theoretical reasons, but not for better
performance. More specifically, we train several GANs to ensure the worst-case counterfactual
fairness to be aligned with our theory. This gives the upper bound of the extent to which counterfactual
fairness is fulfilled in the prediction model, which is needed for our theoretical guarantees. Below,
we demonstrate that a single GAN is sufficient for state-of-the-art performance.
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Figure 11: Results for semi-synthetic datasets with a single GAN. A larger utility is better. Shown:
mean ± std over 5 runs.

We conducted the experiments on the LSAC dataset. The results are shown in Figure 11. We can
see that our method based on a single GAN still gives good results and outperforms all baselines.
This demonstrates the scalability of our method. In fact, in practice, the scalability of our proposed
method can be simplified using a single GAN. Therefore, we recommend using a single GAN for
empirical use and multiple for when theoretical guarantees are additionally needed.

K.4 RESULTS FOR (SEMI-)SYNTHETIC DATASET

We compute the average value of the utility function U over varying utility weights γ ∈ {0.1, . . . , 1.0}
on the synthetic dataset (Fig. 12) and two different semi-synthetic datasets (Fig. 13 and Fig. 14).
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Figure 12: Average utility function value U across different utility weights γ on synthetic dataset.
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Figure 13: Average utility function value U across different utility weight γ on semi-synthetic
(sigmoid) dataset.
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Figure 14: Average utility function value U across different utility weight γ on semi-synthetic (sin)
dataset.
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K.5 RESULTS FOR UCI ADULT DATASET

We now examine the results for different fairness weights λ. For this, we report results from λ = 0.5
(Fig. 15) to λ = 1000 (Fig. 18). In line with our expectations, we see that larger values for fairness
weight λ lead the distributions of the predicted target to overlap more, implying that counterfactual
fairness is enforced more strictly. This shows that our regularization Rcm achieves the desired
behavior.
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Figure 15: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 0.
Right: fairness weight λ = 0.5.
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Figure 16: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 1.
Right: fairness weight λ = 5.
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Figure 17: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 10.
Right: fairness weight λ = 100.
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Figure 18: Density plots of the predicted target on UCI Adult dataset. Left: fairness weight λ = 500.
Right: fairness weight λ = 1000.
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K.6 RESULTS FOR COMPAS DATASET

In Sec. 5, we show how black defendants are treated differently by the COMPAS score vs. our GCFN.
Here, we also show how white defendants are treated differently by the COMPAS score vs. our
GCFN; see Fig. 19. We make the following observations. (1) Our GCFN makes oftentimes different
predictions for white defendants with a low and high COMPAS score, which is different from black
defendants. (2) Our method also arrives at different predictions for white defendants with low prior
charges, similar to black defendants.
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Figure 19: Distribution of white and black defendants that are treated differently using our GCFN.
Left: COMPAS score. Right: Prior charges.
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