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ABSTRACT

Time Series Analysis is widely used in various real-world applications such as
weather forecasting, financial fraud detection, imputation for missing data in IoT
systems, and classification for action recognization. Mixture-of-Experts (MoE),
as a powerful architecture, though demonstrating effectiveness in NLP, still falls
short in adapting to versatile tasks in time series analytics due to its task-agnostic
router and the lack of capability in modeling channel correlations. In this study,
we propose a novel, general MoE-based time series framework called PatchMoE
to support the intricate “knowledge” utilization for distinct tasks, thus task-aware.
Based on the observation that hierarchical representations often vary across tasks,
e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to uti-
lize the hierarchical information in routing, thus obtaining task-sepcific capabil-
ity. And the routing strategy is operated on time series tokens in both temporal
and channel dimensions, and encouraged by a meticulously designed Temporal &
Channel Load Balancing Loss to model the intricate temporal and channel cor-
relations. Comprehensive experiments on five downstream tasks demonstrate the
state-of-the-art performance of PatchMoE.

Resources: https://anonymous.4open.science/r/PatchMoE-BD38.

1 INTRODUCTION

Time Series Analysis is widely used in real-world applications, with key tasks such as forecast-
ing (Cirstea et al.l 2022} Q1u et al., 2025b), anomaly detection (Wu et al., [2025b; [Wang et al.,
2023al), imputation (Tashiro et al.l [2021) and classification (Chen et al.| [2025)), among others (Wu
et al.l 2024bfa)), gaining attention. In recent years, many deep-learning networks are proposed for
these specific tasks, and achieve great progress. Most of them feature distinct meticulously-designed
representation learning backbones, aiming at capturing task-specific inductive bias within data, and
actually outperform those general algorithms (Wu et al.| 2023} |Nie et al.| 2023 |Liu et al.| [2024c)).
Therefore, there still lacks a general and powerful enough backbone to explicitly and effectively
capture the task-specific characteristics in different time series tasks, like ResNet in CV and GPT
in NLP. Mixture-of-Experts (MoE) (Shazeer et al.,2017; Aljundi et al.,[2017)), as a powerful frame-
work, is widely applied in CV and NLP, and proven effective and efficient by activating different
experts to solve problems from different distributions, possessing the potential of exceling at all
tasks. However, there still exists some challenges in adapting MoE to time series analysis.

In Time Series Analytics, some studies (Wu et al.| 2023} [Liu et al. |2024c} |[Luo & Wang] 2024;
Nie et al.,|2023) reveal the phenomenon that CKA (centered kernel alignment (Cortes et al., 2012))
similarities of the representations from the first and last layers often show distinguishable differ-
ences in different tasks of time series analytics. As shown in Figure[I] stronger models often show
higher CKA similarities in forecasting and anomaly detection, and lower CKA similarities in im-
putation and classification. This indicates key task-specific characteristics exist in representations
of different levels, and well-performed models (like PatchTST, iTransformer) can implicitly adapt
the hierarchical representations in different layers to extract the task-specific characteristics. How-
ever, since the “predict next token” paradigm has unified all language tasks of NLP, advanced MoE
architectures (Liu et al.,2024a;|Ma et al.,2018)) may not consider such task-specific hierarchical rep-
resentational differences during routing, thus limiting the ability of explicitly utilizing task-specific
characteristics across layers for time series analytics.
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Moreover, the Channel-Independent Transformer (Nie et al| [2023), as a basic structure insen-
sitive to the number of channels and input lengths, has been used in many applications (Liu
et al., 2024d; [Woo et al., [2024} [Liu et al., 2024bj |20235)), appropriate to be integrated with MoEs.
While, due to the Channel-Independent (CI)

Strategy, it lacks the ablllty to model the in- CKA Similarities across Distinct Tasks

tricate channel and temporal correlations. Due ™ [ ., | o, a8 2503 ¢
to the univariate property in NLP, recent ad- . | =aiw
vanced MoE architectures also cannot perform
channel-wise routing for them and still follows
CI, thus hindering capturing the channel corre-
lations. Therefore, this calls for a mechanism
to capture these correlations to adapt MoE in 02
transformers for time series analytics.
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To handle the aforementioned limitations, in-
tegrating the MoE architecture with transform-

ers and making it possess the task-specific ca-  pigyre 1: Representation analytics in Forecasting
pability while capturing the channel correlation  (Weather input-96-predict-336; MSE), Anomaly
provides an elegant solution for time series an-  pegection (SMD; F1-Score), Imputation (Elec-
alytics. Intuitively, we propose a framework tricity Mask 37.5%; MSE), and Classification
called PatchMoE. As its core component, the (pEMS-SF; Accuracy). For each model, we cal-
Recurrent Noisy Gating (RNG-Router) can dy-  cyJate the CKA similarity (refer to the vertical
namically perceive the representatlopal dlffer— axis corresponding to the columns) between rep-
ences across layers to model the hierarchical regentations from the first and the last layers, and
conditional probability distributions in the rout- 4k the performance of each task at the top
ing strategy, thus effectively routing experts 0 of columns. Stronger models show more distin-

extract knowledge for distinct tasks. Moreover, o ishable CKA simiarlities across different tasks.
time series tokens from different channels and

timestamps are simultaneously routed to cap-

ture the intricate temporal and channel correlations. We also design the Temporal & Channel Load
Balancing Loss to guide the MoE to model the sparse correlations, which is a better strategy (Qiu
et al., 2025b; [Wu et al.| |2025b) between CI and CD. Inspired by recent works from multiple do-
mains (Liu et al., 2024a; Ma et al., [2018}; [Fedus et al., 2022)), we realize that applying the MoE ar-
chitecture in the basic architecture to replace the FeedForward layer in CI-based Transformers may
effectively utilize the knowledge and tackle tasks of time series analysis. Specifically, we use shared
experts to extract common temporal patterns and routed experts to extract the differences among
temporal and channel representations, so as to better model complex and distinct downstream tasks.
Our contributions lie in:

| DOForecasting B Anomaly Detection OImputation OClassification |

* We propose a cross-task framework called PatchMoE for time series analysis. It can effectively
utilize the hierarchical representational information for knowledge extraction, and enhance the
CI-based Transformers in modeling intricate temporal and channel correlations.

* We devise a Recurrent Noisy Gating to effectively route experts based on the hierarchical repre-
sentations for different tasks, which can enhance the performance of distinct downstream tasks.

* We propose the Temporal & Channel Load Balancing Loss to encourage the modeling of sparse
correlations, which leads to a better temporal and channel strategy.

* As a general framework supporting multiple tasks, PatchMoE demonstrates consistent state-of-
the-art performance on forecasting, anomaly detection, imputation and classification.

2 RELATED WORKS

2.1 TIME SERIES ANALYTICS

In recent years, time series analytics gain sustained attention. In forecasting, most works such as
CNNs (Wu et al.| 2023 [Luo & Wang, [2024; Wang et al., [2022)), MLPs (Lin et al.,2024bja; |Xu et al.}
2024;|Li et al.,2023), and Transformers (Cirstea et al., [ 2022;Nie et al.,|2023;|Dai et al.,|2024;Zhang
& Yan, [2022) manage to capture periodicity and trends within data and achieve good performance.
In anomaly detection, reconstruction-based (Wu et al.l [2025b; [Nam et al.| |2024) methods show
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strong capabilities in detecting heterogeneous anomalies, and applying time-frequency analysis can
effectively enhance the detection of subsequence anomalies. In imputation, capturing the underlying
structures and complex temporal dynamics of time series data is important. By learning the true data
distribution from observed values, deep learning imputation methods (Gao et al.| 2025; Wang et al.;
Du et al.l 2023) can generate more reliable missing data. For classification, constrative learning
methods (Wang et al., |2023b; |[Eldele et al.,|2023};|Chen et al.}|2025) are widely used to construct the
positive and negative pairs based on prior knowledge, which enhances the representation capability
of encoders to identify different types of sequences.

2.2 MIXTURE-OF-EXPERTS

The mixture of experts (MoE) has been comprehensively explored and advanced, as demonstrated
by subsequent studies (Shazeer et al., 2017} |Aljundi et al., |2017; Zhou et al.,|2022b). As the most
important component, the routing mechanism of MoE gains wide attention. Noisy Gating (Shazeer
et al., 2017) and Multi-Gating (Ma et al., 2018) are widely used to stablize the training and have
many variations, but they do not consider task-specific information during routing. The load bal-
ancing constraint (Liu et al.| [2024a; Shazeer et al) [2017) is also important, lots of task-specific
optimization objectives are designed to mitigate the imbalance phenomenon in routing strategy, but
they lack the generalization in time series analysis when facing multivariate modeling. For the basic
architecture, most recent methods (Liu et al.| [2024a; [Ma et al.| [2018; Riquelme et al.| [2021) give
priority to sparse MoE rather than dense MoE. As a modular layer, MoE demonstrates its flexibil-
ity and effectiveness in multiple real-world applications (Riquelme et al.| 2021} |Liu et al., |[2024a;
Ma et al) 2018)), and the most common use is to replace the FeedForward layer in Transformer,
which is generally believed to store and utilize the “knowledge”. Famous works such as Switch
Transformer (Fedus et all [2022), Llama (Touvron et al., 2023)), DeepSeek (Liu et al., 2024a)), and
MMOoE (Ma et al.| [2018) all follow this paradigm. In time series analytics, though some works (Liu
et al., 2024b; Shi et al., 2024; |Chen et al., [2024) apply the MoE layers in their models, no specific
MokEs are devised for time series analysis to fully utilize the task-wise inductive bias within data. In
this study, PatchMoE adopts a novel MoE structure tailored for task-specific representation learning,
and can model intricate temporal and channel correlations.

3 METHODOLOGY

3.1 STRUCTURE OVERVIEW

As demonstrated in Figure[2] our proposed PatchMoE introduces a novel Mixture-of-Experts (MoE)
framework. We reinforce the feedward layers with PatchMoE to effectively extract and utilize the
“knowledge” from high-dimensional hidden representations. A multivariate time series is first pro-
cessed through Normalization & Tokenization—see Section to form the time series tokens. The
tokens are then fed into Transformer layers to further extract the hidden semantics. In the MoE layer,
the RNG-Router—see Section [3.3|models the conditional distribution of current routing strategy with
a Recurrent Noisy Gating, which can integrate the representations from pre-layers, thus considering
the main differences of various downstream tasks. Subsequently, the multivariate time series tokens
are routed simultaneously to model the temporal and channel correlations. Specifically, we design
the Temporal & Channel Load Balancing Loss—see Section[3.4]to encourage the RNG-Router adap-
tively route tokens with similar temporal or channel patterns into the same group of experts. The
loss function encourages the green cases and mitigates the red cases in Figure 2] right. Consider-
ing the basic architecture, we also adpot the novel expert framework inspired by DeepSeek (Liu
et all 2024a), with Shared Experts and Routed Experts—see Section [3.5] The Shared Experts are
designed to capture the general patterns in time series tokens, and the routed experts are assigned
by the RNG-Router to flexibly construct the temporal and channel correlations. Finally, after the
Transformer layers learn the representations, the task heads make outputs for different tasks, i.e.,
forecasting, anomaly detection, imputation, and classification.

3.2 NORMALIZATION & TOKENIZATION

The statistical property of time series varies over the time and causes distributional shift which hin-
ders the performance of downstream tasks. For multivariate time series X € RV*T with NV variates
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Figure 2: The overview of PatchMoE. The time series is first normalized and tokenized to make
time series “tokens”. In the L-stacked Transformer layers, the time series tokens are then processed
through Multi-head Self-Attention (MSA) mechanism to obtain the representations. In the [-th layer,
the RNG-Router takes the X, € ROVX")xd and the hidden state h;_; € R(V*™*4 a5 inputs, uti-
lizes the task-specific characteristics inside them to effectively route the experts. The Temporal &
Channel Load Balancing Loss is designed to encourage the modeling of sparse temporal and chan-
nel correlations, which can enhance the temporal semantics and construct better Channel Strategies
between CI and CD. See red and green tokens, encouraged by the Temporal & Channel Load Bal-
ancing Loss, green ones indicates that tokens are routed to different group of experts for balance.

and T timestamps, PatchMoE adopts the Revin (Kim et al., 2021} [Liu et al.} 2022) technique for
normalization to remove the varying statistical properties from the model’s internal representations.

For the normalized time series X, orm € RY*T, we then utilize the Patching & Embedding tech-
nique (Cirstea et al., [2022; Nie et al., 2023} [Wu et al., 2025bja)) for tokenization. The normalized
time series is first divided into patches, and then projected into high-dimensional tokens:

Xp = Patching(X,,0rm ) € RNXTLXp’ 0
Xyoken = Linear(Xp) € RV*nxd, o

where Xionen € RV*™%? are the embeded time series tokens. In the Multi-head Self-Attention
(MSA) of Transformer layers, the tokens are further processed to extract the inherent temporal
semantics:

Xg = LayerNorm(Xoken + MSA(Xoken)), &)

where Xp € RV*xd ig the output of MSA. Note that in the MSA, the X,k is processed in a
Channel-Independent manner, where the channel correlations are not considered.

3.3 RNG-ROUTER

In the MoE layer, the processed tokens X € RY*"*4 are first fed into the RNG-Router to decide
which group of experts are activated for each token. The RNG-Router is based on the Recurrent
Noisy Gating (RNG) mechanism, which models the conditional normal distribution of current rout-
ing strategy. This design utilizes the hierarchical information from Transformer layers to enhance
the task-specific capabilities of PatchMoE, and stablizes the training process through a probability
sampling paradigm (Shazeer et al., [2017). It is noted that the hierarchical information means the
outputs of MSA layers in L stacked Transformer layers and are denoted as { Xg,, Xg,, - , Xg, }-
As aforementioned, these representations show distinct characteristics in different downstream tasks
so that considering them into routing strategy to better extract the knowledge is rational.
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Intuitively, we make the Recurrent Noisy Gating shared by all L MoE layers of the L-stacked
Transformer layers. In the [-th MoE layer, the Recurrent Noisy Gating takes the [-th MSA’s out-
put Xp, € RVX7)*d and hidden state h;_; € R(V*™)*4 from the previous layer as inputs, outputs
0, € RN xn)xd.

Oy, hy = RNG(hi—1, Xg,), 4

where the Recurrent Noisy Gating (RNG) is implemented by simple yet effective GRU cells (Dey
& Salem, [2017). Then the conditional normal distribution is modeled through the gaussian heads:

= Linear,, (O;), o; = Softplus(Linear, (Oy)), Q)
P(Ri[Ru:-1) = N (p, 01), (6)

where ju;, 07 € ROVXM)XNr - Softplus function is used to keep the standard variance o; positive,
P(R;|R1.—1) denotes the conditional normal distribution of the routing strategy for N x n time
series tokens in the [-th MoE layer. Under this design, RNG-Router can construct the current routing
strategy R, based on the information from all the previous layers, and adaptively control the degree
of retention and forgetting of information from different layers. And the noisy gating mechanism is
used to stablize the training of NN, routed experts via resampling from P(R;|Rq.;—1):

H(Xg)=m+e®o, (7

V;  ifi € ArgTopk(V)
KeepTopK(V, k); = ) :
cepTopK(V, k) {—oo otherwise ®)
G(Xg,) = Softmax(KeepTopK(H (Xg,), k)), )

where the Top-k routed experts for each of the IV x n tokens are independently determined through
the scores H(Xp,) € RINXMXNr ¢ ¢ RINXm)XNe  Af(0, T) are used for differentiable resam-
pling. And the gating weights G(X,) € R(NX™xE of them are calculated through the Softmax
function for aggregation of routed experts’ outputs. Note that the resampling process shown in For-
mula (/) only works in the training stage to enhance the roubustness of PatchMoE, and adopts the
deterministic values H(Xg, ) = p for inference.

3.4 TEMPORAL & CHANNEL LOAD BALANCING LOSS

Since Cl-based Transformers may not capture the intricate temporal and channel correlations, we
preliminarily handle the bottleneck through simultaneously routing experts for N x n multivarate
time series tokens as aforementioned. To further ensure the sparsification and avoid imbalance in
routing, we hope to keep the diversity of routed experts for time series tokens.

As shown in Figure[2]right, the green tokens share distinct groups of routed experts, so that clustering
centroids are formed to model the complex correlations. In contrast, red tokens share the same
group of experts, which causes imbalance and hinders the representational capability. Intuitively,
we design two optimization objectives to encourage the green cases during routing. Specifically,
the two optimization objectives consider the relationships between tokens and experts. Take the
Channel Load Balancing Loss L., in the [-th MoE layer as an example:

s, = reshape(H (X g, )[:, :, p]) e RN~ >N (10)
s?,., = Softmax(s]) € RN~V (11)
N
fir =% 1 L(s2pli: t] € TopK (s[5 1)), (12)
Pip = D Senalisth Lena = DY finPip (13)
t=1 p=1i=1

When calculating the Channel Load Balancing Loss L., we parallel along the temporal dimension.
st .[i,t] denotes the relationship between i-th expert and ¢-th channel of token at the p-th temporal
index. F;;, = 1 indicates that the i-th expert is one of the TopK routed experts activated for ¢-th
channel of token, so that high f; , indicates that the i-th expert is frequenctly activated for all N
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channel tokens at the p-th temporal index, which reflects there exists red cases in routing, causing
imbalance. P; ;, € R™ is the normalization weight. Through weightsuming the channel-wise loss at
each time stamp p and then suming up them, the obtained L5, can measure the degree of imbalance
along the channel dimension. Therefore, optimizing L., can effectively encourage the modeling of
sparse channel correlations, which preserves all tokens of the same channel from sharing the fixed
experts, thus keeping load balance.

The Temporal Load Balancing Loss L;.,, obeys the same way as Channel Load Balancing Loss.
Due to the heterogeneity of temporal patterns, single Feed Forward Layer may not have enough
capacity to model these. Through routing tokens from the same channel with distinct groups of
experts, the modeling of temporal semantics are boosted. The formulas of Temporal Load Balancing
Loss are as follows:

s} = reshape(H (X g, )[:, :, t]) € RN-*"™, (14)
st = Softmax(s}) € RN-*", (15)
N, & )
fir =203 Ustemlis p] € TopK (s [ 21), (16)
p=1
1 n N N,
Piy=- Z; Stem [ Ps Ltem = ; Z; fiaPrit (17)
p= =1i=

Finally, we integrate the two optimization objectives into the Temporal & Channel Load Balancing
Loss Lyar:

£bal :a'£t€m+6'£0ha7 (18)

where a and (3 are used to control the sensitivity.

3.5 BASIC ARCHITECTURE OF PATCHMOE

Inspired from prior works (Liu et al., 2024a} [Riquelme et al 2021} Ma et al) 2018)), PatchMoE
replaces the FeedForward Layer in the original Transformers. Instead, each expert in PatchMoE is
a FeedForward layer:

expert(X g, ) = Linear(ReLU(Linear(Xg,))) (19)

PatchMoE uses N, finer-grained routed experts and isolates Ny experts as shared ones, where the
shared experts model the general patterns and the routed experts are used to model the intricate
temporal and channel correlations. Take the [-th MoE layer as an example:

N, k
U= Z expert’(Xg,) + Z G(Xg,)" ©expert,. (Xg,), (20)
i=1 i=1
V = LayerNorm(X g, + U), (21)

where V' € RY*n*d jg the output of the I-th MoE layer, expert, denotes the shared experts, expert,.
denotes the routed experts, and G(X,) is the calculated by RNG-Router to weightsum the routed
experts. We make skip connection and adopt LayerNorm to obtain the final output V.

4 EXPERIMENTS

4.1 MAIN RESULTS

4.1.1 EXPERIMENTAL SETTINGS

Since PatchMoE is a cross-task general model for time series analysis, we evaluate it on distinct tasks
in an end-to-end manner. For Univariate Forecasting, we evaluate PatchMoE with comprehensive
experiments on all the 8,068 univariate time series in TFB (Qiu et al., 2024), and report the Mean
Absolute Scaled Error (MASE) and Mean Symmetric Mean Absolute Percentage Error (msMAPE).
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For Multivariate Forecasting, we conduct experiments on 8 best-recognized datasets, including ETT
(4 subsets), Weather, Electricity, Solar, and Traffic. We follow the protocol in TFB to aviod apply-
ing the “Drop Last” trick, adopt Mean Squared Error (MSE) and Mean Absolute Error (MAE) as
metrics, and choose the look-back window size in {96, 336, 512} for all datasets and report each
method’s best results.

For Anomaly Detection, we conduct experiments using 8 real-world datasets from TAB (Qiu et al.,
2025a). We report the results on datasets including CallT2, Credit, GECCO, Genesis, MSL, NYC,
PSM, and SMD, adopting the Label-based metric Affiliated-F1-score (F), and Score-based metric:
Area under the Receiver Operating Characteristics Curve (AUC) as main evaluation metrics.

For Imputation, we use datasets from electricity and weather domains, selecting ETT (4 subsets),
Electricity, and Weather as benchmarks, and report Mean Squared Error (MSE) and Mean Absolute
Error (MAE) as main metrics. We adopt four mask ratios (randomly masking) {12.5%, 25%, 37.5%,
50%} with the input length equals 1,024 on each dataset, and report the average performance.

Time series classification can be used in medical diagnosis and recognition. To evaluate the
sequence-level classification capability of PatchMoE, we choose 10 datasets from UEA Time Series
Classification Archive (Bagnall et al.,|2018)) and report the average accuracy of each model.

4.1.2 BASELINES

Our baselines include task-agnostic models like iTransformer (Liu et al.| 2024c), PatchTST (Nie
et al. 2023), Crossformer (Zhang & Yan, |2022), TimesNet (Wu et al.| 2023)), DLinear (Zeng et al.,
2023)), and FEDformer (Zhou et al., 2022a)), and task-specific models like Flowformer (Wu et al.,
2022), LighTS (Zhang et al.| [2022). CATCH (Wu et al., |2025b), DCdetector (Yang et al., [2023)),
Anomaly Transformer (Xu et al.l |[2021), Rocket (Dempster et al.| [2020), and MoE-based models,
i.e., Pathformer (Chen et al.,[2024) and Time-MoE (Full-shot) (Shi et al., [2024).

4.1.3 UNIVARIATE FORECASTING

As shown in Figure 3] PatchMoE achieves the [ ML B MLP BN CNN =3 Transformer B Ours
best performance on the 8,068 datasets. Com- " 19.95
pared with previous advanced models Times- .

Net and PatchTST, PatchMoE shows more sta- 2 2282 T s
ble performance with lower average msMAPE
values. Compared with recent strong mod- % 2 as0
els like Amplifier and TimeKAN, PatchMoE &
also achieves 5.2% and 3.9% reduction on
msMAPE, demonstrating the state-of-the-art
performance.
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4.1.4 MULTIVARIATE FORECASTING

As shown in Table [IJ PatchMoE consis- Figure 3: Model comparison in univariate fore-
tently outperforms other models across vari- casting. The msMAPE results are average from
ous datasets. Compared with PatchTST, Patch- 8,068 univariate time series in TFB (lower is bet-
MoE’s mixture-of-experts mechanism intro- ter). See Table[J]in Appendix [B|for full results.
duces consistent improvement on all datasets,

demonstrating stronger representational capability. Considering large datasets, PatchMoE possesses
7.6% lower MSE and 7.0% lower MAE on Electricity, 9.0% lower MSE and 21.8% lower MAE on
Solar, demonstrating the larger model capacity on these large datasets. Compared with CD-based
models like Crossformer and iTransformer, PatchMoE also has better performance on datasets with
significant channel correlations (like Traffic and Solar), demonstrating the effectiveness of the Rout-
ing strategy and the Temporal & Channel Load Balancing Loss. Note that PatchMoE patchifys the
multivariate time series in a CI manner but can capture the token-wise channel correlations.

4.1.5 ANOMALY DETECTION

The results are listed in Table[2] Compared with advanced approaches, it can be seen that PatchMoE
achieves SOTA results under the widely used Affiliated-F1-score and AUC-ROC metrics in most
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Table 1: Multivariate forecasting average results with forecasting horizons F' € {96,192, 336, 720}
for the datasets. Lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) values indicate
better performance. Bond: the best, Underline: the 2nd best. Full results are available in Table
of Appendix For Time-MoE, Electricity, Solar and Traffic are included in pretraining datasets.

Datasets ‘ ETThl ‘ ETTh2 ‘ ETTml ‘ ETTm2 ‘ Weather ‘ Electricity ‘ Solar ‘ Traffic
Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
FEDformer [2022] | 0.433 0.454 | 0.406 0.438 | 0.567 0.519 | 0.335 0.380 | 0.312 0.356 | 0.219 0.330 | 0.641 0.628 | 0.620 0.382
DLinear [2023] | 0.430 0.443 | 0.470 0468 | 0.356 0.378 | 0.259 0.324 | 0.242 0.295 | 0.167 0.264 | 0.224 0.286 | 0.418 0.287
TimesNet [2023] | 0.468 0.459 | 0.390 0.417 | 0.408 0.415 | 0.292 0.331 | 0255 0.282 | 0.190 0.284 | 0.211 0.281 | 0.617 0.327
Crossformer [2023] | 0.439  0.461 | 0.894 0.680 | 0.464 0.456 | 0.501 0.505 | 0.232 0.294 | 0.171 0.263 | 0.205 0.232 | 0.522 0.282
PatchTST [2023] | 0.419 0436 | 0.351 0.395 | 0.349 0.381 | 0256 0.314 | 0224 0.262 | 0.171 0.270 | 0.200 0.284 | 0.397 0.275
TimeMixer [2024] | 0.427 0.441 | 0.347 0.394 | 0.356 0.380 | 0.257 0.318 | 0.225 0.263 | 0.185 0.284 | 0.203 0.261 | 0.410 0.279
Pathformer [2024] | 0.417 0.426 | 0.360 0.395 | 0.357 0.375 | 0.309 0.250 | 0.227 0.263 | 0.160 0.253 | 0.204 0.230 | 0.418 0.281
iTransformer [2024] | 0.440 0.445 | 0359 0.396 | 0.347 0.378 | 0.258 0.318 | 0.232 0270 | 0.163 0.258 | 0.202 0.260 | 0.397 0.281
Amplifier [2025] | 0421 0433 | 0.356 0402 | 0.353 0.379 | 0.256 0.318 | 0.223 0.264 | 0.163 0.256 | 0.202  0.256 | 0.417 0.290
TimeKAN [2025] | 0.409 0427 | 0350 0.397 | 0.344 0.380 | 0.260 0.318 | 0.226 0.268 | 0.164 0.258 | 0.198 0.263 | 0.420 0.286

Time-MoE [2025] | 0.379 0.406 | 0.346 0.386 | 0.345 0.381 | 0271 0335 | 0236 0275 | - - - - - -
PatchMoE [ours] | 0.400 0.424 | 0.340 0.384 | 0.343 0370 | 0.251 0.306 0.221 0.250 0.158 0.251 | 0.182 0.222 | 0.392 0.274

benchmark datasets. It mean that PatchMoE possesses stable performance under different anomaly
thresholds, which is highly important for real-world applications. Compared with the most advanced
baseline CATCH (Wu et al.,2025b), PatchMoE also shows higher accuracy and considers patch-wise
fine-grained channel correlations in a more lightweight manner on some cases.

Table 2: Anomaly detection results. Higher Affiliated-F1 (F) and AUC-ROC (AUC) values indicate
better performance. Bond: the best, Underline: the 2nd best. Full results are available in Table

of Appendix

Datasets | Callr2 | Credit | GECCO | Genesis | MSL | NYC | PSM | SMD
Metrics | F AUC| F AUC| F AUC| F AUC| F AUC| F AUC| F AUC| F AUC
ATransformer [2022] ‘ 0.688 0.491 ‘ 0.646  0.533 ‘ 0.782 0.516 ‘ 0.715 0472 ‘ 0.685 0.508 ‘ 0.691 0.499 ‘ 0.654 0.498 ‘ 0.704 0.309
FEDformer [2022] ‘ 0.788 0.707 ‘ 0.683 0.825 ‘ 0.900 0.709 ‘ 0.893  0.802 ‘ 0.726  0.561 ‘ 0.691 0.725 ‘ 0.761  0.679 ‘ 0.782  0.650
DCdetector [2023] ‘ 0.673  0.527 ‘ 0.610 0.504 ‘ 0.671 0.555 ‘ 0.776  0.507 ‘ 0.683  0.504 ‘ 0.698 0.528 ‘ 0.662  0.499 ‘ 0.675  0.500
DLinear [2023] ‘ 0.793  0.752 ‘ 0.738 0.954 ‘ 0.893  0.947 ‘ 0.856 0.696 ‘ 0.725 0.624 ‘ 0.828 0.768 ‘ 0.831 0.580 ‘ 0.841 0.728
TimesNet [2023] ‘ 0.794 0.771 ‘ 0.744 0.958 ‘ 0.897 0.964 ‘ 0.864 0913 ‘ 0.734  0.613 ‘ 0.794  0.791 ‘ 0.842  0.592 ‘ 0.833  0.766
Crossformer [2023] ‘ 0.789  0.798 ‘ 0.720 0.951 ‘ 0.897 0.770 ‘ 0.865 0.755 ‘ 0.733  0.587 ‘ 0.692 0.679 ‘ 0.789  0.654 ‘ 0.839 0.710
PatchTST [2023] ‘ 0.660 0.808 ‘ 0.746  0.957 ‘ 0.906 0.949 ‘ 0.856  0.685 ‘ 0.723  0.637 ‘ 0.776  0.709 ‘ 0.831 0.586 ‘ 0.845 0.736
ModernTCN [2024] ‘ 0.780 0.676 ‘ 0.744 0957 ‘ 0.899 0.954 ‘ 0.833  0.676 ‘ 0.726  0.633 ‘ 0.769  0.466 ‘ 0.825 0.592 ‘ 0.840 0.722
iTransformer [2024] ‘ 0.812 0.791 ‘ 0.713  0.934 ‘ 0.839  0.794 ‘ 0.891  0.690 ‘ 0.710 0.611 ‘ 0.684 0.640 ‘ 0.853 0.592 ‘ 0.827 0.745
CATCH [2025] ‘ 0.835 0.838 ‘ 0.750 0.958 ‘ 0.908 0.970 ‘ 0.896 0.974 ‘ 0.740  0.664 ‘ 0.994 0.816 ‘ 0.859 0.652 ‘ 0.847 0.811
PatchMoE [ours] 0.842  0.861 | 0.754 0.959 | 0.914 0.979 | 0.903 0.862 | 0.746 0.641 | 0.973 0.833 | 0.850 0.645 | 0.868 0.831

4.1.6 IMPUTATION

Table [3] presents PatchMoE’s performance in imputating missing values. We observe that Patch-
MoE consistently outperforms all baselines, demonstrating its potential of being the infrastruc-
ture for data preprocessing in real-world applications. Compared with the most advanced base-
line TimeMixer++ (Wang et al., [2024), PatchMoE surpasses it significantly on the Electricity and
Weather datasets, showing the excellent model capacity for large datasets.

4.1.7 CLASSIFICATION

See Figure 4] PatchMoE demonstrates remarkable capabilities in time series classification. Com-
pared with generative tasks like forecasting, anomaly detection, and imputation, classification is a
discriminative task which relies more on model’s sequence-aware capability and channel correla-
tions. Our proposed PatchMoE can learn the overall characteristics of a time series via modeling the
local patch-wise transition rule, and capture the intricate channel correlations through the routing
strategy, thus it achieves the state-of-the-art performance on classification tasks.
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Table 3:  Multivariate imputation aver-
age results with mask ratios spanning =9 ML B9 MLP S CNN =3 Transformer B Ours

{12.5%, 25%, 37.5%,50%} for the datasets. 5 7a11

73.57

Bond: the best, Underline: the 2nd best. aes 7285

72.53

70.75

Datasets | ETT(Avg) | Electricity |  Weather o2 roms Joss 7052

Metrics | MSE MAE | MSE MAE | MSE MAE
Autoformer [2022] | 0.104 0215 | 0.141 0.234 | 0.066 0.107
FEDformer [2022] | 0.124 0.230 | 0.181 0.314 | 0.064 0.139

69.52

Average Accuracy(%)

67.53

MICN [2023] | 0.119 0234 | 0.138 0.246 | 0.075 0.126 6097

TimesNet [2023] | 0.079 0.182 | 0.135 0.255 | 0.061 0.098 o 6598

DLincar [2023] | 0.115 0229 | 0.080 0.200 | 0.071 0.107 & PSS PSS
TIDE[2023] | 0314 0366 | 0.182 0202 | 0.063 0.131 & e <« ?‘\o‘°,,a“"{y“’ées“’&@sfﬂa‘“

Crossformer [2023] | 0.150 0.258 | 0.125 0204 | 0.150 0.111

PatchTST [2023] | 0.120 0225 | 0.129 0.198 | 0.082 0.149 ) ) ) ) )
iTransformer [2024] | 0.096 0205 | 0.140 0.223 | 0.095 0.102 Figure 4: Model comparison in classification.
TimeMixer [2024] | 0.097 0220 | 0.142 0.261 | 0.091 0.114 The accuracy are averaged from 10 subsets from

TimeMixer++ [2025] | 0.055 0.154 | 0.109 0.197 | 0.049 0.078 UEA. See Tablein Appendixfor full results.

PatchMoE [ours] 0.054 0.154 | 0.052 0.162 | 0.035 0.064

4.2 MODEL ANALYSIS
4.2.1 ABLATION STUDIES

To verify the effectiveness of PatchMoE, we Table 4: Studies on key components of Patch-
conduct ablation studies on the components MoE, inlcuding w/o RNG-Routher (line 1), w/o
different from traditional MoE architectures, Shared Experts (line 2), w/o Temporal & Channel
ie., RNG-Router, Shared Experts, and Tem- [ oad Balancing Loss (line 3), and original Patch-

poral & Channel Load Balancing Loss. The MoE (line 4). Full results are in Appendix|[T3}
results are shown in Table 4] PatchMoE with

all above components achieves the best per- ETThI | ETTm2 |  Solar |  Traffic
formance. The RNG-Router plays the most MSE MAE | MSE MAE | MSE MAE | MSE MAE
critical role to consider the hierarchical repre- 5117 0431 | 0260 0316 | 0.197 0228 | 0398 0.276

sentation differences in routing, improving the (412 0432 0257 0313 | 0.188 0228 | 0.421 0,293
performance by reducing 4.2% in MSE. The = 403 0456 | 0257 0311 [ 0.185 0226 | 0403 0285
Shared Experts are crucial on large datasets like
Traffic, which can enhance the model capacity
to effectively capture the general patterns, lead-
ing 6.9% reduction in MSE. The Temporal & Channel Load Balancing Loss boosts the clustering of
correlated temporal- and channel-wise tokens, consistently enhancing the performance.

0.400 0.424 | 0.251 0.306 | 0.182 0.222 | 0.392 0.274

4.3 MORE ANALYTICS

Parameter Sensitivity. We study the parameter sensitivity of PatchMoE—see Figure [/ in Ap-
pendix [B] PatchMoE achieves strong performance under the parameter configurations of patch size
p = 24, number of hidden layers L = 3, and number of routed experts N = 10.

Representation Analytics. We provide the representation analytics in Figure [6] in Appendix
Results demonstarte that RNG-Router can effectively utilize the hierarchical representations to boost
the routing of time series tokens for distinct tasks, thus possessing task-specific capabilities.

5 CONCLUSION

In this paper, we propose a general representation learning framework, called PatchMoE, with a
novel Mixture-of-Experts architecture tailored for time series analysis. To sum up, PatchMoE can
utilize the hierarchical representation differences across different neural layers via a RNG-Router,
making accurate routing decision based on the current task. And the Temporal & Channel Load
Balancing Loss is devised to encourage the modeling of sparse correlations. PatchMoE also utilizes
the shared experts to capture common patterns and routed experts to capture detailed differences.
Based on these innovative mechanisms, PatchMoE demonstrates state-of-the-art performances on
time series analytics.
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ETHICS STATEMENT

Our work exclusively uses publicly available benchmark datasets that contain no personally identi-
fiable information. No human subjects are involved in this research.

REPRODUCIBILITY STATEMENT

We promise that all experimental results can be reproduced. We have released our model code in an
anonymous repository: https://anonymous.4open.science/r/PatchMoE-BD38.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We do not use Large Language Models in our methodology and writing.

A IMPLEMENTATION DETAILS
We introduce the Dataset Details, Metric Details, and Experimental Details in this section for clarity.

A.1 DATASET DETAILS

We evaluate the performance of different models for multivariate forecasting on 8 well-established
datasets from TFB, including Weather, Traffic, Electricity, Solar, and ETT datasets (ETTh1, ETTh2,
ETTml, ETTm?2), and provide their detailed descriptions in Table [6} For univariate forecasting,
we evaluate all 8,068 well-established univariate time series from TFB, as summarized in Table [3]
For anomaly detection, we evaluate 9 well-established datasets from TAB, including Callt2, Credit,
GECCO, Genesis, MSL, NYC, PSM, SMAP, and SMD, with detailed descriptions provided in Ta-
ble [/l We evaluate 10 datasets from the UEA Time Series Classification Archive for classification,
and show their details in Table E} For imputation, we evaluate the Electricity, Weather, and ETT
datasets (ETTh1, ETTh2, ETTml1, ETTm2).

Table 5: Univariate forecasting dataset detailed ~ Table 6: Multivariate forecasting dataset detailed

descriptions. descriptions (Split: Train/Validation/Test split ra-
tio).
Dataset | Series Count | Input | Predict | AvgLength | Frequency
TFB-Yearly | 1500 | 7 | 6 | 320 | yearly Dawset | Dim | Input | Predict | Length | Frequency | Split | Domain
TFB-Quarterly | 1514 | 10 | 8 | 972 | quarterly ETTml | 7 | 96,336,512) | (96,192,336,720) | 57.600 | 15min | 6:22 | Electricity
: ETTm2 | 7 | (96,336,512) | (96,192,336,720] | 57,600 | I5min | 6:2:2 | Electricity
TFB-Monthly | 1674 | 22 | 18 | 2591 | monthly ETThl | 7 | (96,336,512) | (9, 192,336,720) | 14400 | 15min | 622 | Electricity
TFB-Weekly | 805 | 16 | 13 | 5363 | weekly ETTh2 | 7 | (96,336,512) | (96, 192,336,720} | 14400 | 15min | 6222 | Electricity
TFB-Daily | 1,48 | 17 | 14 | 49508 | daily Electricity | 321 | {96,336,512) | (96, 192,336,720) | 26304 | Hourly | 7:12 | Electricity
2 | (96,336,5 192,336, 7,54 7l i
TFB-Houly | 206 60 | 48 | 50090 | Touly Trafic | 862 ] 196,336, 312) | (96,192,336, 720] | 1754 | Howly | 72| Trihe
Weather | 21 | (96,336,512) | (96,192,336, 720] | 52,696 | 10min | 7:1:2 | Environment
TFB-Other | 385 | 10 | 8 | 16784 | other Solar | 137 | {96,336,512) | (96,192,336,720) | 52,560 | 10min | 622 | Energy

Table 7: Anomaly detection dataset detailed  Table 8: Classification dataset detailed descrip-

descriptionss (AR: anomaly ratio). tions.
Dataset ‘ Dim ‘ AR(%) ‘ Length ‘ Test Length ‘ Domain Dataset | Dim | Train Cases | Test Cases | Series Length | Classes
Call2 | 2 | 409 | 5040 | 2520 | Visitors Flowrate EthanolConcentration | 3 | 261 | 263 | 1751 | 4
GECCO | 9 | 125 | 138521 | 69,261 | Water Treatment FaceDetection | 144 | 580 | 354 | 6 | 2
Credit | 20 | 017 | 284807 | 142404 |  Finance Handwriting [ 3 | 150 | 80 | 182 | 2%
Genesis | 18 | 031 | 16220 | 12616 | Machinery Heartbeat | o] 24 | 05 | 45 | 2
JapaneseVowels | 12| 270 | 370 | 29 |9
NYC | 3 | 057 | 17520 | 4416 | Transport PEMS.SE 563 | 267 ‘ EE ™ B
MSL | 55 | 588 | 132046 | 73729 | Spacecraft SelfRegulationSCP1 | 6 | 268 | 293 | 896 | 2
SMAP | 25 | 972 | 562800 | 427.617 | Spacecraft SclfRegulationSCP2 | 7 | 200 | 180 | 1152 | 2
PSM ‘ 25 ‘ 11.07 ‘ 220,322 ‘ 87,841 ‘ Server Machine SpokenArabicDigits | 13 | 6599 | 2199 | 93 | 10
SMD | 38 | 2.08 | 1416825 | 708,420 | Server Machine UWaveGestureLibrary | 3 | 120 | 320 | 315 | 8

A.2 EXPERIMENTAL DETAILS

All experiments are conduct using PyTorch and executed on an NVIDIA Tesla-A800 GPU. The
training process is guided by the L1 or L2 loss, and optimized with the ADAM optimizer. The
“Drop Last” tricky is forbidden. We conduct 8 sets of hyperparameter search for each baseline and
PatchMoE and save their best parameters. For the best parameter, we run it 5 times with different
random seeds and report the mean values.

A.3 METRIC DETAILS

Regarding evaluation metrics, following the experimental setup in TFB, we adopt Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics for multivariate forecasting. For
univariate forecasting, we use Modified Symmetric Mean Absolute Percentage Error (MSMAPE)
and Mean Absolute Scaled Error (MASE). M is the length of the training series, S is the seasonality
of the time series, h is the forecasting horizon, the F}, are the generated forecasts, and the Y}, are
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the actual values. We set parameter € in Equation [23] to its proposed default of 0.1. For rolling
forecasting, we further calculate the average of error metrics for all samples (windows) on each time
series to assess method performance. The definitions of these metrics are as follows:

h
1
MSE = 7 (Fx — Yi)?, (22)
k=1
h
1
MAE = = 3 |F = Yil, (23)
k=1
M+h
MASE — k= [l — Vil (24)
M b)
55 Yohesi1 | Ve — Yaos|
h
MSMAPE — 100% |Fr, — Yy 25)

h = max(|Yy| + |Fi| +€ 0.5 +¢) /2’

B FULL RESULTS

We list the full results in this section—see Table[9}{I2] including Univariate Forecasting, Multivariate
Forecasting, Anomaly Detection, and Classification. In summary, PatchMoE achieves consistent
state-of-the-art performance on all five tasks—see Figure 3]

Multivariate Forecasting
(MSE)
0.286

Classification Imputation
(Acc) (MSE)
7411 0.051

0.835 19.95
Anomaly Detection Univariate Forecasting
(F1-Score) (msMAPE)
—— PatchMoE (ours) FEDformer (2022)
— jTransformer (2024) - TimesNet (2023)
- PatchTST (2023) - DLinear (2023)

Figure 5: Model Performance comparision in five tasks.

Table 9: Univariate forecasting results averaged over 8,068 time series from TFB. Lower msMAPE
and MASE values indicate better performance. Red: the best, Blue: the 2nd best.

Models

PatchMoE | TimeKAN | Ampilifier | iTransformer | TimeMixer | PatchTST | Crossformer | TimesNet DLinear NHITS | Stationary | FEDformer N-BEATS TON LR RE
) (2025) 025) 024) 024 023) 023) (2023) (2023) (2023) (2022) 2022) (2020) 018) (2005) (001)

w»s‘ 20.77 ‘ 21.05 ‘ 2253 ‘ 21.02 21.87 176.57 2148 25.09 2479 2177 28.06 ‘ 2693 ‘ 13247 ‘ 2979 ‘ 2282

msMAPE

MASE 1.97 223 202 259 216 235 29.22 234 267 255 235 279 264 1827 444 241

15
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Table 10: Multivariate forecasting results with forecasting horizons F' € {96,192, 336, 720} for the
datasets. Lower Mean Squared Error (MSE ) and Mean Absolute Error (MAE) values indicate better
performance. Red: the best, Blue: the 2nd best.

Models ‘ PatchMoE Time-MoE TimeKAN Amplifier iTransformer Pathformer TimeMixer PatchTST Crossformer TimesNet DLinear FEDformer

(ours) (2025) (2025) (2025) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022)

Metics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

_ 9% 0345 0373|0370 0396 | 0373 0399 | 0.386 0.405 | 0.372 0392 | 0.372 0401 | 0.377 0397 | 0.411 0435 | 0.389 0412 | 0.379 0403 | 0.379 0419
& 192 0.372 0.396 | 0403 0417 | 0.414 0420 | 0430 0435 | 0.408 0415 0409 0438 | 0.440 0443 | 0427 0435 | 0420 0444
E 336 0389 0.412 | 0420 0432 | 0442 0446 | 0450 0452 | 0.438 0434 0433 0457 | 0523 0487 | 0.440 0.440 | 0.458 0.466
720 0410 0.443 | 0442 0463 | 0455 0467 | 0495 0487 | 0.450 0.463 0.501  0.514 | 0.521 0495 | 0473 0494 | 0474 0.488
o 96 0276 0340 | 0280 0343 | 0.287 0349 | 0292 0347 | 0279 0336 0728 0.603 | 0334 0370 | 0300 0.364 | 0337 0.380
= 192 0331 03710329 0382|0348 0393 | 0.348 0384 | 0.345 0380 0723 0.607 | 0.404 0.413 | 0387 0423 | 0415 0428
E 336 0.373 0402 | 0370 0412 | 0.383 0.423 | 0372 0.407 | 0.378 0.408 0.740  0.628 | 0.389 0.435 | 0490 0487 | 0.389 0457
720 0404 0431 | 0420 0450 | 0.407 0.444 | 0.424 0444 | 0.437 0455 1386 0.882 | 0434 0.448 | 0704 0597 | 0483 0.488
— 9% 0286 0348 | 0.292 0346 | 0.287 0342 | 0.290 0335 0314 0367 | 0340 0.378 | 0300 0345 | 0463 0463
E 192 0.307 0.327 .365 | 0331 0.371 | 0.337  0.363 0.374 0410 | 0392 0.404 | 0.336  0.366 | 0.575 0516
5 3% 0354 365 . 1368 0.386 | 0.362 0390 | 0.413 0432 | 0.423 0426 | 0367 0.386 | 0.618 0.544
720 0.433 0426  0.417 | 0416 0423 | 0.753 0.613 | 0.475 0453 | 0.419 0416 | 0.612 0.551
o 96 0.160 0.172 0265 | 0.164 0.254 | 0.164 0.254 | 0.168 0.262 | 0.164 0.250 | 0.165 0.256 | 0.165 0.255 | 0.296 0.391 | 0.189 0.265 | 0.164 0.255 | 0.216 0.309
E 192 | 0217 0228 0306 | 0238 0300 | 0226 0300 | 0.224 0295 | 0.219 0288 | 0.225 0298 | 0.221 0293 | 0.369 0.416 | 0.254 0310 | 0.224 0304 | 0.297 0.360
E 336 3 0.281 0.345 | 0.278 0.331 | 0.276 0.331 | 0.274 0.330 | 0.267 0.319 | 0.277 0.332 | 0.276 0.327 | 0.588 0.600 | 0.313 0.345 | 0.277 0.337 | 0.366 0.400
720 0403 0424 | 0359 0387 | 0.358 0388 | 0.367 0385 0360 0.387 | 0362 0381 | 0750 0.612 | 0413 0402 | 0371 0401 | 0459 0450
5 96 | 0145 083 | 0.151 0203 | 0.151 0.202 | 0.147 0.199 | 0.157 0.207 0.147 0.198 | 0.150 0.200 | 0.143 0210 | 0.168 0214 | 0.170 0230 | 0229 0.298
£ 192 | 0.190 0228 | 0.195 0246 | 0.195 0244 | 0.194 0245 | 0200 0248 0.191 0242 | 0.191 0239 | 0.195 0261 | 0219 0262 | 0216 0275 | 0265 0334
2336|0240 0269 | 0247 0288 | 0242 0287 | 0243 0282 | 0252 0287 0244 0280 | 0242 0279 | 0254 0319 | 0278 0302 | 0258 0307 | 0330 0372
720 | 0309 0321 | 0352 0366 | 0.317 0340 | 0.310 0329 | 0.320 0336 0316 0331 | 0312 0.330 | 0335 0.385 | 0353 0351 | 0324 0367 | 0423 0418
z 96 | 0131 - | 0135 02310132 0227 | 0.134 0230 0.153 0256 | 0.143 0247 | 0.134 0231 | 0.169 0271 | 0.140 0237 | 0.191 0305
2 192 | 0145 - - | 0149 0243 | 0.149 0243 | 0.154 0250 0.168 0269 | 0.158 0.260 | 0.146 0.243 | 0.180 0.280 | 0.154 0250 | 0.203 0316
S 336 | 0162 0256 | - - | 0165 0260 | 0.167 0261 | 0.169 0.265 0.189 0291 | 0.168 0.267 | 0.165 0264 | 0204 0293 | 0.169 0268 | 0221 0333
@ 720 | 0193 0282 - - | 0206 0297|0203 0292 | 0.194 0288 0228 0320 | 0214 0307 | 0237 0314 | 0206 0293 | 0203 0300 | 0.259 0364
0.180 0.233 0485 0570
K 0201 0.259 0415 0477
& 0214 0272 1.008  0.839
0218 0278 0655 0.627
Y 0369 0.256 0593 0365
£ 0400 0.271 0614 0381
| 0407 0.272 0627 0389
0462 0.316 0.646  0.394

1" Count | 22 23 | 5 6 | 3 0o | o 0o | o0 0 | 1 2 |1 2] 0 0 | 1 1] o0 0| o 0| o0 0

Table 11: Full results for the classification task. *. in the Transformers indicates the name of xformer.
We report the classification accuracy (%) as the result. Higher accuracies indicate better perfor-
mance. Red: the best, Blue: the 2nd best.

‘ Classical methods RNN Transformers MLP CNN

Datasets / Models . . . . . .
DTW XGBoost Rocket LSTM LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. ETS. Flow. iTrans.DLinearLightTS. TIDE TCN TimesNetPatchMoE

(1994)(2016) (2020)(1997)(2018)(2022)(2017)(2020)(2021)(2022)(2021) (2022) (2022)(2022)(2022)(2024) (2023) (2022) (2023)(2019) (2023)  (ours)

EthanolConcentration| 32.3 43.7 452 323 399 31.1 327 319 316 308 31.6 327 281 312 338 281 326 297 27.1 289 357 328
FaceDetection 529 633 647 577 657 667 673 68.6 67.0 657 684 68.0 66.0 663 676 663 680 675 653 528 686 69.3
Handwriting 28.6 158 588 152 258 246 320 274 328 294 367 31.6 280 325 338 242 270 26.1 232 533 321 304

Heartbeat 717 732 722 7710 727 756 76.1 77.1 80.5 756 746 737 737 712 716 756 751 751 746 756 78.0 772
JapaneseVowels | 949 86.5 962 79.7 98.1 984 987 978 989 984 962 992 984 959 989 96.6 962 962 956 989 984 97.0
PEMS-SF 71.1 983 75.1 399 86.7 86.1 82.1 827 81.5 832 827 873 809 860 838 879 75.1 884 869 688 89.6 88.4

SelfRegulationSCP1 | 77.7 84.6 90.8 68.9 84.0 90.8 922 904 90.1 88.1 84.0 894 887 89.6 925 902 873 898 892 846 918 92.6

SelfRegulationSCP2 | 53.9 489 533 46.6 52.8 522 539 56.7 533 533 50.6 572 544 550 56.1 544 505 5I.1 534 556 572 65.6

SpokenArabicDigits | 96.3  69.6 71.2 31.9 100 100 984 97.0 100 99.6 100 100 100 100 98.8 96.0 81.4 100 950 956 99.0 99.8

UWaveGestureLibrary| 90.3 759 944 412 87.8 859 856 856 856 834 859 875 853 850 86.6 859 821 803 849 884 853 88.8

Average Accuracy | 67.0 66.0 725 48.6 71.8 709 703 719 715 72.1 70.8 711 727 70.7 71.0 73.0 705 67.5 704 69.5 73.6 74.11
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Table 12: Anomaly detection results. Higher Affiliated-F1 (F) and AUC-ROC (AUC) values indicate
better performance. Red: the best, Blue: the 2nd best.

Datasets | Cam2 | Credit | GECCO | Genesis | MSL | NYC | PSM | SMAP | SMD | 1° Count
Metrics | F AUC| F AUC| F AUC| F AUC| F AUC| F AUC| F AUC| F AUC| F AUC| F  AUC
Ocsvm [1999] | 0783 0.804 | 0.714 0953 | 0.666 0804 | 0.677 0733 | 0.641 0.524 | 0.667 0456 | 0.531 0619 | 0.503 0487 | 0742 0679 | 0 0
PCA [2003] [ 0768 0790 | 0710 0.871 | 0785 0711 | 0.814 03815 | 0.678 0552 | 0680 0.666 | 0.702 0.648 | 0.505 0396 | 0.738 0679 | 0 0
Isolation Forest [2008] | 0402 0775 | 0634 0.860 | 0.424 0.619 | 0.788 0549 | 0.584 0524 | 0648 0475 | 0.620 0542 | 0.512 0487 | 0626 0.664 | 0 0
HBOS [2012] | 0.756 0798 | 0.695 0951 | 0.708 0.557 | 0498 0.124 | 0.680 0574 | 0.675 0446 | 0.658 0.620 | 0.509 0.585 | 0.629 0626 | 0 1
Autoencoder [2014] | 0587 0.767 | 0.561 0909 | 0.823 0769 | 0.854 0.931 | 0625 0.562 | 0.689 0.504 | 0.707 0650 | 0463 0522 | 0.120 0.774 | 0 0
ATransformer [2022] | 0.688 0491 | 0.646 0533 | 0782 0.516 | 0715 0472 | 0.685 0508 | 0.691 0499 | 0.654 0.498 | 0.703 0.504 | 0.704 0309 | 1 0
FEDformer [2022] | 0788 0.707 | 0.683 0.825 | 0.900 0709 | 0.893 0.802 | 0.726 0.561 | 0.691 0.725 | 0.761 0.679 | 0.658 0474 | 0782 0650 | 0 1
DCdetector [2023] | 0.673  0.527 | 0.610 0504 | 0.671 0555 | 0.776 0.507 | 0.683 0.504 | 0.698 0.528 | 0.662 0499 | 0.701 0516 | 0675 0.500 | 0 0
NLinear [2023] | 0.757 0.695 | 0742 0.948 | 0.882 0.936 | 0.829 0755 | 0.723 0.592 | 0.819 0.671 | 0.843 0.585 | 0.601 0434 | 0.844 0738 | 0 0
DLinear [2023] | 0793 0752 0738 0.954 | 0.893 0.947 | 0.856 0.696 | 0.725 0.624 | 0.828 0.768 | 0.831 0.580 | 0.616 0397 | 0.841 0728 | 0 0
TimesNet [2023] | 0794 0771 | 0744 0958 | 0.897 0964 | 0.864 0913 | 0734 0.613 | 0.794 0791 | 0.842 0592 | 0.638 0453 | 0833 0766 | 0 0
Crossformer [2023] | 0.789 0798 | 0.720 0951 | 0.897 0.770 | 0.865 0.755 | 0.733 0587 | 0.692 0.679 | 0.789 0.654 | 0.627 0.383 | 0.839 0710 | 0 0
PaichTST [2023] | 0.660 0.808 | 0.746 0.957 | 0.906 0949 | 0.856 0.685 | 0.723 0.637 | 0.776 0709 | 0.831 0586 | 0.606 0448 | 0845 0736 | © 0
ModernTCN [2024] | 0.780  0.676 | 0.744  0.957 | 0.899 0.954 | 0.833 0.676 | 0.726 0.633 | 0.769 0.466 | 0.825 0.592 | 0.635 0455 | 0.840 0722 0 0
iTransformer [2024] | 0.812 0791 | 0.713 0934 | 0839 0.794 | 0.891 0.690 | 0.710 0611 | 0.684 0.640 | 0.853 0.592 | 0587 0409 | 0.827 0745 | 0 0
DualTF [2025] | 0751 0.643 | 0.663 0.703 | 0.701 0714 | 0.810 0.937 | 0588 0.585 | 0.708 0.633 | 0.725 0.600 | 0.674 0478 | 0679 0631 | © 0
CATCH[2025] | 0.835 0.838 | 0750 0.958 | 0.008 0.970 | 0.896 0.974 | 0.740 0.664 | 0.994 0.816 | 0.859 0.652 | 0.699 0504 | 0.847 0811 ] 2 2
PatchMoE [ours] | 0.842  0.861 | 0.754  0.959 | 0.914 0.979 | 0.903 0862 | 0.746 0.641 | 0973 0.833 | 0.850 0.645 | 0.669 0489 | 0.868 0.831 | 6 5
Five tokens of ETTh1 in Forecasting Router weights of Layer 1 Router weights of Layer 2 Router weights of Layer 3 08
W\/[\m\_/\ T1|0.081 0.378 0.102 0.021 T 0.191 0.119 0.068 T1|0.072 LA Z2E 0.186 0.076 0.125 07
T T2 |0.339 0.111 0.102 0.351 0.097 T 0.081 0.115 0.293 0.093 T2 LACLE]R 0.082 0.009 0.198 0.108 06
~\ 05
" T3 |0.058 0.004@0.017 T3 |0.005 0.0120.002 0.303 T3 |0.014 0.007“0.042 0.263 0.4
03
T4 |0.309 0.067 0.122 0.075 T4 |0.344 0.102 0.082 0.069 T4 |\ 2104 0.043 0.010 0.295 0.045 02
T4
T5 [0.001 0.011@0.047 0.382 T5 [0.002 n.1zzﬁo.ozs 0.261 T5 [0.017 0.0320.002 0.138 0.1
T
—— Channel 1 Channel 2 — Channel 3 — Channel & R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R5 o0
(a) Router weights of different layers in Forecasting (ETTh1-input-96-predict-96).
Five tokens of ETTh1 in Imputation Router weights of Layer 1 Router weights of Layer 2 Router weights of Layer 3 08
T
WM\A T1 |0.207 0.313 0.102 0.365 0.013 T1|0.307 0.182 0.272 0.125 0.114 T1|0.387 0.103 0.090 0.001 07
™ T2 [LA1r] 0.102 0.316 0.048 0.032 T2 (0.189 0.223 0.178 0.235 0.175 T2 (0.082 0.292 0.006 0.297 0.323 o
I\ 0.5
~'N
" T3 |0.108 0.292 0.036 0.360 0.204 T3 |0.287 0.127 0.371 0.205 0.010 T3 |0.038 0.242 0.106 0.227 0.387 0.4
0.3
T4 [AFZy 0.015 0.212 0.006 0.043 T4 (0.203 0.189 0.211 0.197 0.200 T4 0.091 0.385 0.106 0.004 02
T4
= T5 |0.149 0.257 0.103 0.083 T5 |0.289 0.127 0.303 0.108 0.173 T5 |0.329 0.157 0.373 0.121 0.020 0.1
0.0

Rl R2

R3 R4 RS

R1 R2 R3

R4 RS

R1

R2 R3

RS

(b) Router weights of different layers in Imputation (ETTh1-mask-ratio-12.5%). Masked points are circled.

Figure 6: Router weights of different layers in ETThl (input-96), under tasks of Forecasting
(horizon-96), and Imputation (mask-ratio-12.5%). We select five tokens (T1-T5) from four channels
as examples to demonstrate the effectiveness of RNG-Router (with NV, = 5 routed experts (R1-R5)).
In Forecasting, the routing strategies keep consistent from Layer 1-3, forming three clusters to ca-
putre the temporal and channel correlations, i.e., T1 itself, {T2, T4}, and {T3, T5}, which mainly
relies on the shallow representations. In imputation, the routing strategies vary across layers, tuning
the shallow clusters, i.e., {T1, T3, TS5}, and {T2, T4}, to deep clusters, i.e., {T1, T4, TS5}, and {T2,
T3}, which relies more on deep representations.
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C MODEL ANALYSIS

C.1 REPRESENTATION ANALYSIS

As the core component in PatchMoE, the RNG-Router is designed for task-specific purposes. To
further evaluate its impact, we make a special representation analysis on this routing mechanism—
see Figure [6] We select five tokens from ETThl and track their routing weights across different
MoE layers under tasks of forecasting and imputation. Since advanced task-specific models tend
to implicitly utilize the shallow representations in forecasting (reflected in high CKA similarities),
and deep representations in imputation (reflected in low CKA similarities), our proposed PatchMoE
provides explict evidences of this capability. In Figure[6] (a), token T3 and T5, T2 and T4 are sim-
ilar, and T1 is a bit similar to T3. The routing weights across three MoE layers reflect that the
RNG-Router gradually achieves the clustering of tokens with similar shallow patterns, where tokens
in the same cluster share the same experts. On the other hand, the imputation task relies more on
high-level semantics in deep representations. It is observed that the RNG-Router gradually tunes
the routing weights in deeper layers and mines the appropriate high-level correlations among rep-
resentations. These evidences demonstrate that RNG-Router can effectively utilize the hierarchical
representations to boost the routing of time series tokens for distinct downstream tasks, which leads
to an elegant and general representation learning framework with task-specific capabilities.

C.2 FULL PARAMETER SENSITIVITY

We conduct more analytics of PatchMoE in
this section. We study the parameter sensi-
tivity of PatchMoE-see Figure Figure
shows that PatchMoE keep stable performance X e
under different patch sizs, and we often choose

16 and 24 as common configurations. As the \,\“‘
Look Back Window extends—see Figure[7b] the 8 £ % 750
forecasting performance keeps consistent im-

¥:

~e- ETTh1
ETTm2
~#- Solar

~e- ETThL

ETTm2
~#- Solar
¢ Traffic

16 24 336 512
Patch Size Look Back Windows

provement, showing scability. Figure [7c| and (a) Patch Size p (b) Look Back Window T'
Figure show the influences of MoE layers — quf—n . —+ ool —
and routed experts, which determine model’s . e

capability of modeling the task-specific tem- e - - e
poral and channel correlations. Results show £ T | £ nafrd
that more MoE layers and routed experts leads — °* 02

to larger model capacity on large datasets like oz —_— e
Solar and Traffic, but may cause over-fittling T iaeniaie 3 SR T
dilemma in small datasets like ETThl and

ETTm?2. To make accruacy and efficiency meet, (c) Hidden Layer L (d) Routed Expert N,

we choose L = 3 and N™ = 10 as the common
setting, and set 3 as the Top-K number. We also
set N° = 1 shared expert to extract the com-
mon patterns.

Figure 7: Parameter sensitivity studies of main
hyper-parameters in PatchMoE, including Patch
Size p, Length of Look Back Window 7', num-
ber of Hidden Layers L, and number of Routed
Experts N,..

D FULL ABLATIONS

We list the full results of ablation studies in Table[T3] It is observed that each component is very im-
portant. Without the RNG-Router, the traditional router cannot utilize the task-specific information
across hierarchical representations, causing performance crash. Without Shared Experts, the model
lacks capacity and performs poorly at large datasets like Solar and Traffic. Without Temporal &
Channel Load Balancing Loss, the model also cannot well model the intricate temporal and channel
correlations.
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Table 13: Full ablation studies on key components of PatchMoE, including RNG-Router, Shared
Experts, and Temporal & Channel Load Balancing Loss.

Models | w/o RNG-Router | w/o Shared Experts | w/oLoss | PatchMoE

Metrics ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
96 | 0.368 0.394 0.358 0.393 0.357 0392 | 0355 0.390

= 192 | 0.425 0.441 0.402 0.418 0.404 0.420 | 0.398 0.417
E 336 | 0.432 0.439 0.437 0.446 0.420 0.433 | 0418 0.431
&) 720 | 0.443 0.462 0.450 0.477 0.431 0460 | 0430 0.456
avg | 0.417 0.434 0.412 0.434 0.403 0426 | 0400 0.424

96 | 0.171 0.262 0.167 0.254 0.163 0.247 | 0.160 0.244

%‘ 192 | 0.217 0.286 0.220 0.287 0.223  0.291 | 0.217 0.285
E 336 | 0.289 0.336 0.283 0.331 0.275 0.326 | 0.273  0.322
m 720 | 0.362 0.379 0.359 0.378 0.365 0.379 | 0.355 0.373
avg | 0.260 0.316 0.257 0.313 0.257 0.311 | 0.251  0.306

96 | 0.175 0.217 0.169 0.211 0.168 0.209 | 0.166 0.207

5 192 | 0.198 0.223 0.183 0.228 0.183 0.228 | 0.178 0.222
=} 336 | 0.205 0.229 0.197 0.232 0.188 0.227 | 0.184 0.224
« 720 | 0.210 0.244 0.202 0.240 0.200 0.240 | 0.198 0.234
avg | 0.197 0.228 0.188 0.228 0.185 0.226 | 0.182 0.222

96 | 0.373 0.266 0.368 0.265 0.376  0.272 | 0.361 0.261

2 192 | 0.386 0.269 0.420 0.294 0.392 0.279 | 0.382 0.268
B 336 | 0.396 0.275 0.432 0.298 0.405 0.288 | 0.395 0.278
&= 720 | 0.435 0.295 0.465 0.313 0437 0.299 | 0.431 0.288
avg | 0.398 0.276 0.421 0.293 0.403 0.285 | 0.392 0.274
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