

000 001 002 003 004 005 006 007 008 009 010 UNLOCKING THE POWER OF MIXTURE-OF-EXPERTS FOR TASK-AWARE TIME SERIES ANALYTICS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Time Series Analysis is widely used in various real-world applications such as
 012 weather forecasting, financial fraud detection, imputation for missing data in IoT
 013 systems, and classification for action recognition. Mixture-of-Experts (MoE),
 014 as a powerful architecture, though demonstrating effectiveness in NLP, still falls
 015 short in adapting to versatile tasks in time series analytics due to its task-agnostic
 016 router and the lack of capability in modeling channel correlations. In this study,
 017 we propose a novel, general MoE-based time series framework called PatchMoE
 018 to support the intricate “knowledge” utilization for distinct tasks, thus task-aware.
 019 Based on the observation that hierarchical representations often vary across tasks,
 020 e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to uti-
 021 lize the hierarchical information in routing, thus obtaining task-specific capabili-
 022 ty. And the routing strategy is operated on time series tokens in both temporal
 023 and channel dimensions, and encouraged by a meticulously designed Temporal &
 024 Channel Load Balancing Loss to model the intricate temporal and channel cor-
 025 relations. Comprehensive experiments on five downstream tasks demonstrate the
 026 state-of-the-art performance of PatchMoE.

027 **Resources:** <https://anonymous.4open.science/r/PatchMoE-BD38>.

029 1 INTRODUCTION

031 Time Series Analysis is widely used in real-world applications, with key tasks such as forecasting (Cirstea et al., 2022; Qiu et al., 2025b), anomaly detection (Wu et al., 2025b; Wang et al., 2023a), imputation (Tashiro et al., 2021) and classification (Chen et al., 2025), among others (Wu et al., 2024b;a), gaining attention. In recent years, many deep-learning networks are proposed for these specific tasks, and achieve great progress. Most of them feature distinct meticulously-designed representation learning backbones, aiming at capturing task-specific inductive bias within data, and actually outperform those general algorithms (Wu et al., 2023; Nie et al., 2023; Liu et al., 2024c). Therefore, *there still lacks a general and powerful enough backbone to explicitly and effectively capture the task-specific characteristics in different time series tasks*, like ResNet in CV and GPT in NLP. Mixture-of-Experts (MoE) (Shazeer et al., 2017; Aljundi et al., 2017), as a powerful framework, is widely applied in CV and NLP, and proven effective and efficient by activating different experts to solve problems from different distributions, possessing the potential of excelling at all tasks. However, there still exists some challenges in adapting MoE to time series analysis.

032 In Time Series Analytics, some studies (Wu et al., 2023; Liu et al., 2024c; Luo & Wang, 2024;
 033 Nie et al., 2023) reveal the phenomenon that CKA (centered kernel alignment (Cortes et al., 2012))
 034 similarities of the representations from the first and last layers often show distinguishable differ-
 035 ences in different tasks of time series analytics. As shown in Figure 1, stronger models often show
 036 higher CKA similarities in forecasting and anomaly detection, and lower CKA similarities in im-
 037 putation and classification. *This indicates key task-specific characteristics exist in representations*
 038 *of different levels, and well-performed models (like PatchTST, iTransformer) can implicitly adapt*
 039 *the hierarchical representations in different layers to extract the task-specific characteristics.* How-
 040 ever, since the “predict next token” paradigm has unified all language tasks of NLP, advanced MoE
 041 architectures (Liu et al., 2024a; Ma et al., 2018) may not consider such task-specific hierarchical rep-
 042 resentational differences during routing, *thus limiting the ability of explicitly utilizing task-specific*
 043 *characteristics across layers for time series analytics.*

Moreover, the Channel-Independent Transformer (Nie et al., 2023), as a basic structure insensitive to the number of channels and input lengths, has been used in many applications (Liu et al., 2024d; Woo et al., 2024; Liu et al., 2024b; 2025), appropriate to be integrated with MoEs. While, due to the Channel-Independent (CI)

Strategy, it lacks the ability to model the intricate channel and temporal correlations. Due to the univariate property in NLP, recent advanced MoE architectures also *cannot perform channel-wise routing for them and still follows CI*, thus hindering capturing the channel correlations. Therefore, this calls for a mechanism to capture these correlations to adapt MoE in transformers for time series analytics.

To handle the aforementioned limitations, integrating the MoE architecture with transformers and making it possess the task-specific capability while capturing the channel correlation provides an elegant solution for time series analytics. Intuitively, we propose a framework called **PatchMoE**. As its core component, the Recurrent Noisy Gating (RNG-Router) can dynamically perceive the representational differences across layers to model the hierarchical conditional probability distributions in the routing strategy, thus effectively routing experts to extract knowledge for distinct tasks. Moreover, time series tokens from different channels and timestamps are simultaneously routed to capture the intricate temporal and channel correlations. We also design the Temporal & Channel Load Balancing Loss to guide the MoE to model the sparse correlations, which is a better strategy (Qiu et al., 2025b; Wu et al., 2025b) between CI and CD. Inspired by recent works from multiple domains (Liu et al., 2024a; Ma et al., 2018; Fedus et al., 2022), we realize that applying the MoE architecture in the basic architecture to replace the FeedForward layer in CI-based Transformers may effectively utilize the knowledge and tackle tasks of time series analysis. Specifically, we use shared experts to extract common temporal patterns and routed experts to extract the differences among temporal and channel representations, so as to better model complex and distinct downstream tasks. Our contributions lie in:

- We propose a cross-task framework called PatchMoE for time series analysis. It can effectively utilize the hierarchical representational information for knowledge extraction, and enhance the CI-based Transformers in modeling intricate temporal and channel correlations.
- We devise a Recurrent Noisy Gating to effectively route experts based on the hierarchical representations for different tasks, which can enhance the performance of distinct downstream tasks.
- We propose the Temporal & Channel Load Balancing Loss to encourage the modeling of sparse correlations, which leads to a better temporal and channel strategy.
- As a general framework supporting multiple tasks, PatchMoE demonstrates consistent state-of-the-art performance on forecasting, anomaly detection, imputation and classification.

2 RELATED WORKS

2.1 TIME SERIES ANALYTICS

In recent years, time series analytics gain sustained attention. In forecasting, most works such as CNNs (Wu et al., 2023; Luo & Wang, 2024; Wang et al., 2022), MLPs (Lin et al., 2024b;a; Xu et al., 2024; Li et al., 2023), and Transformers (Cirstea et al., 2022; Nie et al., 2023; Dai et al., 2024; Zhang & Yan, 2022) manage to capture periodicity and trends within data and achieve good performance. In anomaly detection, reconstruction-based (Wu et al., 2025b; Nam et al., 2024) methods show

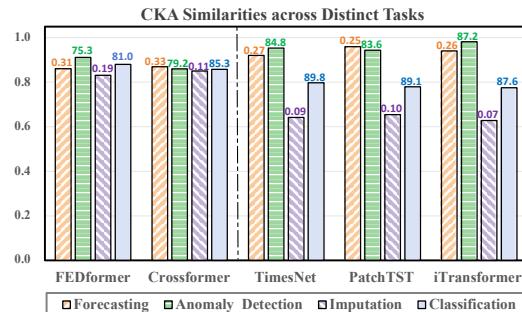


Figure 1: Representation analytics in Forecasting (Weather input-96-predict-336; MSE), Anomaly Detection (SMD; F1-Score), Imputation (Electricity Mask 37.5%; MSE), and Classification (PEMS-SF; Accuracy). For each model, we calculate the CKA similarity (refer to the vertical axis corresponding to the columns) between representations from the first and the last layers, and mark the performance of each task at the top of columns. Stronger models show more *distinct* CKA similarities across different tasks.

108 strong capabilities in detecting heterogeneous anomalies, and applying time-frequency analysis can
 109 effectively enhance the detection of subsequence anomalies. In imputation, capturing the underlying
 110 structures and complex temporal dynamics of time series data is important. By learning the true data
 111 distribution from observed values, deep learning imputation methods (Gao et al., 2025; Wang et al.;
 112 Du et al., 2023) can generate more reliable missing data. For classification, constrative learning
 113 methods (Wang et al., 2023b; Eldele et al., 2023; Chen et al., 2025) are widely used to construct the
 114 positive and negative pairs based on prior knowledge, which enhances the representation capability
 115 of encoders to identify different types of sequences.

116 2.2 MIXTURE-OF-EXPERTS

117 The mixture of experts (MoE) has been comprehensively explored and advanced, as demonstrated
 118 by subsequent studies (Shazeer et al., 2017; Aljundi et al., 2017; Zhou et al., 2022b). As the most
 119 important component, the routing mechanism of MoE gains wide attention. Noisy Gating (Shazeer
 120 et al., 2017) and Multi-Gating (Ma et al., 2018) are widely used to stablize the training and have
 121 many variations, but they do not consider task-specific information during routing. The load bal-
 122 ancing constraint (Liu et al., 2024a; Shazeer et al., 2017) is also important, lots of task-specific
 123 optimization objectives are designed to mitigate the imbalance phenomenon in routing strategy, but
 124 they lack the generalization in time series analysis when facing multivariate modeling. For the basic
 125 architecture, most recent methods (Liu et al., 2024a; Ma et al., 2018; Riquelme et al., 2021) give
 126 priority to sparse MoE rather than dense MoE. As a modular layer, MoE demonstrates its flexibil-
 127 ity and effectiveness in multiple real-world applications (Riquelme et al., 2021; Liu et al., 2024a;
 128 Ma et al., 2018), and the most common use is to replace the FeedForward layer in Transformer,
 129 which is generally believed to store and utilize the “knowledge”. Famous works such as Switch
 130 Transformer (Fedus et al., 2022), Llama (Touvron et al., 2023), DeepSeek (Liu et al., 2024a), and
 131 MMoE (Ma et al., 2018) all follow this paradigm. In time series analytics, though some works (Liu
 132 et al., 2024b; Shi et al., 2024; Chen et al., 2024) apply the MoE layers in their models, no specific
 133 MoEs are devised for time series analysis to fully utilize the task-wise inductive bias within data. In
 134 this study, PatchMoE adopts a novel MoE structure tailored for task-specific representation learning,
 135 and can model intricate temporal and channel correlations.

136 3 METHODOLOGY

137 3.1 STRUCTURE OVERVIEW

138 As demonstrated in Figure 2, our proposed **PatchMoE** introduces a novel Mixture-of-Experts (MoE)
 139 framework. We reinforce the feedward layers with PatchMoE to effectively extract and utilize the
 140 “knowledge” from high-dimensional hidden representations. A multivariate time series is first pro-
 141 cessed through Normalization & Tokenization—see Section 3.2 to form the time series tokens. The
 142 tokens are then fed into Transformer layers to further extract the hidden semantics. In the MoE layer,
 143 the RNG-Router—see Section 3.3 models the conditional distribution of current routing strategy with
 144 a Recurrent Noisy Gating, which can integrate the representations from pre-layers, thus consider-
 145 ing the main differences of various downstream tasks. Subsequently, the multivariate time series tokens
 146 are routed simultaneously to model the temporal and channel correlations. Specifically, we design
 147 the Temporal & Channel Load Balancing Loss—see Section 3.4 to encourage the RNG-Router adap-
 148 tively route tokens with similar temporal or channel patterns into the same group of experts. The
 149 loss function encourages the green cases and mitigates the red cases in Figure 2 right. Consider-
 150 ing the basic architecture, we also adpot the novel expert framework inspired by DeepSeek (Liu
 151 et al., 2024a), with Shared Experts and Routed Experts—see Section 3.5. The Shared Experts are
 152 designed to capture the general patterns in time series tokens, and the routed experts are assigned
 153 by the RNG-Router to flexibly construct the temporal and channel correlations. Finally, after the
 154 Transformer layers learn the representations, the task heads make outputs for different tasks, i.e.,
 155 forecasting, anomaly detection, imputation, and classification.

156 3.2 NORMALIZATION & TOKENIZATION

157 The statistical property of time series varies over the time and causes distributional shift which hin-
 158 ders the performance of downstream tasks. For multivariate time series $X \in \mathbb{R}^{N \times T}$ with N variates

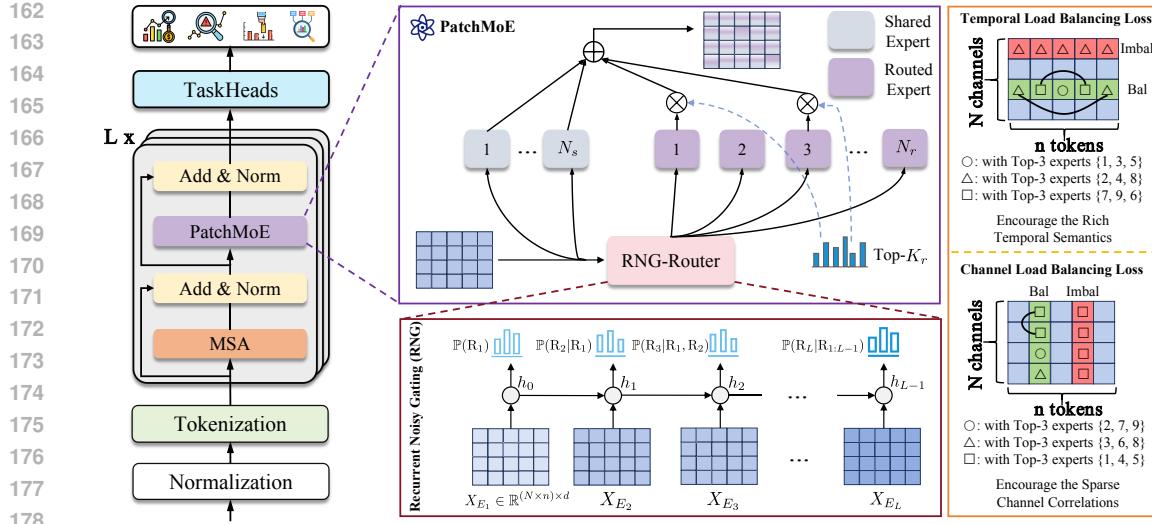


Figure 2: The overview of PatchMoE. The time series is first normalized and tokenized to make time series ‘‘tokens’’. In the L -stacked Transformer layers, the time series tokens are then processed through Multi-head Self-Attention (MSA) mechanism to obtain the representations. In the l -th layer, the RNG-Router takes the $X_{E_l} \in \mathbb{R}^{(N \times n) \times d}$ and the hidden state $h_{l-1} \in \mathbb{R}^{(N \times n) \times d}$ as inputs, utilizes the task-specific characteristics inside them to effectively route the experts. The Temporal & Channel Load Balancing Loss is designed to encourage the modeling of sparse temporal and channel correlations, which can enhance the temporal semantics and construct better Channel Strategies between CI and CD. See red and green tokens, encouraged by the Temporal & Channel Load Balancing Loss, green ones indicates that tokens are routed to different group of experts for balance.

and T timestamps, PatchMoE adopts the Revin (Kim et al., 2021; Liu et al., 2022) technique for normalization to remove the varying statistical properties from the model’s internal representations.

For the normalized time series $X_{norm} \in \mathbb{R}^{N \times T}$, we then utilize the Patching & Embedding technique (Cirstea et al., 2022; Nie et al., 2023; Wu et al., 2025b;a) for tokenization. The normalized time series is first divided into patches, and then projected into high-dimensional tokens:

$$X_P = \text{Patching}(X_{norm}) \in \mathbb{R}^{N \times n \times p}, \quad (1)$$

$$X_{token} = \text{Linear}(X_P) \in \mathbb{R}^{N \times n \times d}, \quad (2)$$

where $X_{token} \in \mathbb{R}^{N \times n \times d}$ are the embedded time series tokens. In the Multi-head Self-Attention (MSA) of Transformer layers, the tokens are further processed to extract the inherent temporal semantics:

$$X_E = \text{LayerNorm}(X_{token} + \text{MSA}(X_{token})), \quad (3)$$

where $X_E \in \mathbb{R}^{N \times n \times d}$ is the output of MSA. Note that in the MSA, the X_{token} is processed in a Channel-Independent manner, where the channel correlations are not considered.

3.3 RNG-ROUTER

In the MoE layer, the processed tokens $X_E \in \mathbb{R}^{N \times n \times d}$ are first fed into the RNG-Router to decide which group of experts are activated for each token. The RNG-Router is based on the Recurrent Noisy Gating (RNG) mechanism, which models the conditional normal distribution of current routing strategy. This design utilizes the hierarchical information from Transformer layers to enhance the task-specific capabilities of PatchMoE, and stabilizes the training process through a probability sampling paradigm (Shazeer et al., 2017). It is noted that the hierarchical information means the outputs of MSA layers in L stacked Transformer layers and are denoted as $\{X_{E_1}, X_{E_2}, \dots, X_{E_L}\}$. As aforementioned, these representations show distinct characteristics in different downstream tasks so that considering them into routing strategy to better extract the knowledge is rational.

216 Intuitively, we make the Recurrent Noisy Gating shared by all L MoE layers of the L -stacked
 217 Transformer layers. In the l -th MoE layer, the Recurrent Noisy Gating takes the l -th MSA's out-
 218 put $X_{E_l} \in \mathbb{R}^{(N \times n) \times d}$ and hidden state $h_{l-1} \in \mathbb{R}^{(N \times n) \times d}$ from the previous layer as inputs, outputs
 219 $O_l \in \mathbb{R}^{(N \times n) \times d}$:

$$221 \quad O_l, h_l = \text{RNG}(h_{l-1}, X_{E_l}), \quad (4)$$

222 where the Recurrent Noisy Gating (RNG) is implemented by simple yet effective GRU cells (Dey
 223 & Salem, 2017). Then the conditional normal distribution is modeled through the gaussian heads:

$$225 \quad \mu_l = \text{Linear}_\mu(O_l), \sigma_l = \text{Softplus}(\text{Linear}_\sigma(O_l)), \quad (5)$$

$$226 \quad \mathbb{P}(R_l | R_{1:l-1}) = \mathcal{N}(\mu_l, \sigma_l), \quad (6)$$

227 where $\mu_l, \sigma_l \in \mathbb{R}^{(N \times n) \times N_r}$, Softplus function is used to keep the standard variance σ_l positive,
 228 $\mathbb{P}(R_l | R_{1:l-1})$ denotes the conditional normal distribution of the routing strategy for $N \times n$ time
 229 series tokens in the l -th MoE layer. Under this design, RNG-Router can construct the current routing
 230 strategy R_l based on the information from all the previous layers, and adaptively control the degree
 231 of retention and forgetting of information from different layers. And the noisy gating mechanism is
 232 used to stablize the training of N_r routed experts via resampling from $\mathbb{P}(R_l | R_{1:l-1})$:

$$234 \quad H(X_{E_l}) = \mu_l + \epsilon \odot \sigma_l, \quad (7)$$

$$235 \quad \text{KeepTopK}(\mathcal{V}, k)_i = \begin{cases} \mathcal{V}_i & \text{if } i \in \text{ArgTopk}(\mathcal{V}) \\ -\infty & \text{otherwise} \end{cases}, \quad (8)$$

$$236 \quad G(X_{E_l}) = \text{Softmax}(\text{KeepTopK}(H(X_{E_l}), k)), \quad (9)$$

237 where the Top- k routed experts for each of the $N \times n$ tokens are independently determined through
 238 the scores $H(X_{E_l}) \in \mathbb{R}^{(N \times n) \times N_r}$. $\epsilon \in \mathbb{R}^{(N \times n) \times N_r} \sim \mathcal{N}(0, I)$ are used for differentiable resam-
 239 pling. And the gating weights $G(X_{E_l}) \in \mathbb{R}^{(N \times n) \times k}$ of them are calculated through the Softmax
 240 function for aggregation of routed experts' outputs. Note that the resampling process shown in For-
 241 mula (7) only works in the training stage to enhance the roubustness of PatchMoE, and adopts the
 242 deterministic values $H(X_{E_l}) = \mu_l$ for inference.

243 3.4 TEMPORAL & CHANNEL LOAD BALANCING LOSS

244 Since CI-based Transformers may not capture the intricate temporal and channel correlations, we
 245 preliminarily handle the bottleneck through simultaneously routing experts for $N \times n$ multivariate
 246 time series tokens as aforementioned. To further ensure the sparsification and avoid imbalance in
 247 routing, we hope to keep the diversity of routed experts for time series tokens.

248 As shown in Figure 2 right, the green tokens share distinct groups of routed experts, so that clustering
 249 centroids are formed to model the complex correlations. In contrast, red tokens share the same
 250 group of experts, which causes imbalance and hinders the representational capability. Intuitively,
 251 we design two optimization objectives to encourage the green cases during routing. Specifically,
 252 the two optimization objectives consider the relationships between tokens and experts. Take the
 253 Channel Load Balancing Loss \mathcal{L}_{cha} in the l -th MoE layer as an example:

$$254 \quad s'_p = \text{reshape}(H(X_{E_l})[:, :, p]) \in \mathbb{R}^{N_r \times N}, \quad (10)$$

$$255 \quad s_{cha}^p = \text{Softmax}(s'_p) \in \mathbb{R}^{N_r \times N}, \quad (11)$$

$$256 \quad f_{i,p} = \frac{N_r}{kN} \sum_{t=1}^N \mathbf{1}(s_{cha}^p[i, t] \in \text{TopK}(s_{cha}^p[:, t])), \quad (12)$$

$$257 \quad P_{i,p} = \frac{1}{N} \sum_{t=1}^N s_{cha}^p[i, t], \mathcal{L}_{cha} = \sum_{p=1}^n \sum_{i=1}^{N_r} f_{i,p} P_{i,p} \quad (13)$$

258 When calculating the Channel Load Balancing Loss \mathcal{L}_{cha} , we parallel along the temporal dimension.
 259 $s_{cha}^p[i, t]$ denotes the relationship between i -th expert and t -th channel of token at the p -th temporal
 260 index. $F_{i,t,p} = 1$ indicates that the i -th expert is one of the TopK routed experts activated for t -th
 261 channel of token, so that high $f_{i,p}$ indicates that the i -th expert is frequently activated for all N

270 channel tokens at the p -th temporal index, which reflects there exists red cases in routing, causing
 271 imbalance. $P_{i,p} \in \mathbb{R}^n$ is the normalization weight. Through weightsuming the channel-wise loss at
 272 each time stamp p and then suming up them, the obtained \mathcal{L}_{cha} can measure the degree of imbalance
 273 along the channel dimension. Therefore, optimizing \mathcal{L}_{cha} can effectively encourage the modeling of
 274 sparse channel correlations, which preserves all tokens of the same channel from sharing the fixed
 275 experts, thus keeping load balance.

276 The Temporal Load Balancing Loss \mathcal{L}_{tem} obeys the same way as Channel Load Balancing Loss.
 277 Due to the heterogeneity of temporal patterns, single Feed Forward Layer may not have enough
 278 capacity to model these. Through routing tokens from the same channel with distinct groups of
 279 experts, the modeling of temporal semantics are boosted. The formulas of Temporal Load Balancing
 280 Loss are as follows:

$$s'_t = \text{reshape}(H(X_{E_l})[:, :, t]) \in \mathbb{R}^{N_r \times n}, \quad (14)$$

$$s_{tem}^t = \text{Softmax}(s'_t) \in \mathbb{R}^{N_r \times n}, \quad (15)$$

$$f_{i,t} = \frac{N_r}{kn} \sum_{p=1}^n \mathbf{1}(s_{tem}^t[i, p] \in \text{TopK}(s_{tem}^t[:, p])), \quad (16)$$

$$P_{i,t} = \frac{1}{n} \sum_{p=1}^n s_{tem}^t[i, p], \mathcal{L}_{tem} = \sum_{t=1}^N \sum_{i=1}^{N_r} f_{i,t} P_{i,t} \quad (17)$$

290 Finally, we integrate the two optimization objectives into the Temporal & Channel Load Balancing
 291 Loss \mathcal{L}_{bal} :

$$\mathcal{L}_{bal} = \alpha \cdot \mathcal{L}_{tem} + \beta \cdot \mathcal{L}_{cha}, \quad (18)$$

294 where α and β are used to control the sensitivity.

296 3.5 BASIC ARCHITECTURE OF PATCHMoE

298 Inspired from prior works (Liu et al., 2024a; Riquelme et al., 2021; Ma et al., 2018), PatchMoE
 299 replaces the FeedForward Layer in the original Transformers. Instead, each expert in PatchMoE is
 300 a FeedForward layer:

$$\text{expert}(X_{E_l}) = \text{Linear}(\text{ReLU}(\text{Linear}(X_{E_l}))) \quad (19)$$

303 PatchMoE uses N_r finer-grained routed experts and isolates N_s experts as shared ones, where the
 304 shared experts model the general patterns and the routed experts are used to model the intricate
 305 temporal and channel correlations. Take the l -th MoE layer as an example:

$$U = \sum_{i=1}^{N_s} \text{expert}_s^i(X_{E_l}) + \sum_{i=1}^k G(X_{E_l})^i \odot \text{expert}_r^i(X_{E_l}), \quad (20)$$

$$V = \text{LayerNorm}(X_{E_l} + U), \quad (21)$$

311 where $V \in \mathbb{R}^{N \times n \times d}$ is the output of the l -th MoE layer, expert_s denotes the shared experts, expert_r
 312 denotes the routed experts, and $G(X_{E_l})$ is the calculated by RNG-Router to weightsum the routed
 313 experts. We make skip connection and adopt LayerNorm to obtain the final output V .

315 4 EXPERIMENTS

317 4.1 MAIN RESULTS

319 4.1.1 EXPERIMENTAL SETTINGS

321 Since PatchMoE is a cross-task general model for time series analysis, we evaluate it on distinct tasks
 322 in an end-to-end manner. For Univariate Forecasting, we evaluate PatchMoE with comprehensive
 323 experiments on all the 8,068 univariate time series in TFB (Qiu et al., 2024), and report the Mean
 Absolute Scaled Error (MASE) and Mean Symmetric Mean Absolute Percentage Error (msMAPE).

For Multivariate Forecasting, we conduct experiments on 8 best-recognized datasets, including ETT (4 subsets), Weather, Electricity, Solar, and Traffic. We follow the protocol in TFB to avoid applying the “Drop Last” trick, adopt Mean Squared Error (MSE) and Mean Absolute Error (MAE) as metrics, and choose the look-back window size in {96, 336, 512} for all datasets and report each method’s best results.

For Anomaly Detection, we conduct experiments using 8 real-world datasets from TAB (Qiu et al., 2025a). We report the results on datasets including CalIT2, Credit, GECCO, Genesis, MSL, NYC, PSM, and SMD, adopting the Label-based metric Affiliated-F1-score (F), and Score-based metric: Area under the Receiver Operating Characteristics Curve (AUC) as main evaluation metrics.

For Imputation, we use datasets from electricity and weather domains, selecting ETT (4 subsets), Electricity, and Weather as benchmarks, and report Mean Squared Error (MSE) and Mean Absolute Error (MAE) as main metrics. We adopt four mask ratios (randomly masking) {12.5%, 25%, 37.5%, 50%} with the input length equals 1,024 on each dataset, and report the average performance.

Time series classification can be used in medical diagnosis and recognition. To evaluate the sequence-level classification capability of PatchMoE, we choose 10 datasets from UEA Time Series Classification Archive (Bagnall et al., 2018) and report the average accuracy of each model.

4.1.2 BASELINES

Our baselines include task-agnostic models like iTransformer (Liu et al., 2024c), PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2022), TimesNet (Wu et al., 2023), DLinear (Zeng et al., 2023), and FEDformer (Zhou et al., 2022a), and task-specific models like Flowformer (Wu et al., 2022), LighTS (Zhang et al., 2022). CATCH (Wu et al., 2025b), DCdetector (Yang et al., 2023), Anomaly Transformer (Xu et al., 2021), Rocket (Dempster et al., 2020), and MoE-based models, i.e., Pathformer (Chen et al., 2024) and Time-MoE (Full-shot) (Shi et al., 2024).

4.1.3 UNIVARIATE FORECASTING

As shown in Figure 3, PatchMoE achieves the best performance on the 8,068 datasets. Compared with previous advanced models TimesNet and PatchTST, PatchMoE shows more stable performance with lower average msMAPE values. Compared with recent strong models like Amplifier and TimeKAN, PatchMoE also achieves 5.2% and 3.9% reduction on msMAPE, demonstrating the state-of-the-art performance.

4.1.4 MULTIVARIATE FORECASTING

As shown in Table 1, PatchMoE consistently outperforms other models across various datasets. Compared with PatchTST, PatchMoE’s mixture-of-experts mechanism introduces consistent improvement on all datasets, demonstrating stronger representational capability. Considering large datasets, PatchMoE possesses 7.6% lower MSE and 7.0% lower MAE on Electricity, 9.0% lower MSE and 21.8% lower MAE on Solar, demonstrating the larger model capacity on these large datasets. Compared with CD-based models like Crossformer and iTransformer, PatchMoE also has better performance on datasets with significant channel correlations (like Traffic and Solar), demonstrating the effectiveness of the Routing strategy and the Temporal & Channel Load Balancing Loss. Note that PatchMoE patchifies the multivariate time series in a CI manner but can capture the token-wise channel correlations.

4.1.5 ANOMALY DETECTION

The results are listed in Table 2. Compared with advanced approaches, it can be seen that PatchMoE achieves SOTA results under the widely used Affiliated-F1-score and AUC-ROC metrics in most

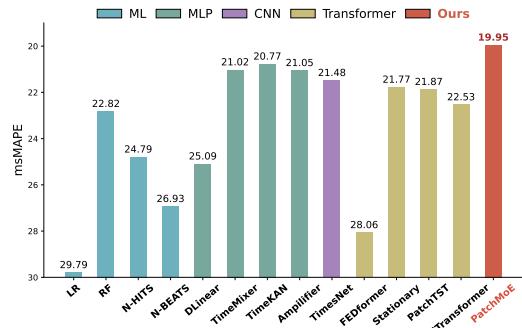


Figure 3: Model comparison in univariate forecasting. The msMAPE results are average from 8,068 univariate time series in TFB (lower is better). See Table 9 in Appendix B for full results.

378 Table 1: Multivariate forecasting average results with forecasting horizons $F \in \{96, 192, 336, 720\}$
379 for the datasets. Lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) values indicate
380 better performance. **Bond**: the best, Underline: the 2nd best. Full results are available in Table 10
381 of Appendix B. For Time-MoE, Electricity, Solar and Traffic are included in pretraining datasets.

Datasets	ETTh1		ETTh2		ETTm1		ETTm2		Weather		Electricity		Solar		Traffic	
Metrics	MSE	MAE														
FEDformer [2022]	0.433	0.454	0.406	0.438	0.567	0.519	0.335	0.380	0.312	0.356	0.219	0.330	0.641	0.628	0.620	0.382
DLinear [2023]	0.430	0.443	0.470	0.468	0.356	0.378	0.259	0.324	0.242	0.295	0.167	0.264	0.224	0.286	0.418	0.287
TimesNet [2023]	0.468	0.459	0.390	0.417	0.408	0.415	0.292	0.331	0.255	0.282	0.190	0.284	0.211	0.281	0.617	0.327
Crossformer [2023]	0.439	0.461	0.894	0.680	0.464	0.456	0.501	0.505	0.232	0.294	0.171	0.263	0.205	0.232	0.522	0.282
PatchTST [2023]	0.419	0.436	0.351	0.395	0.349	0.381	0.256	<u>0.314</u>	0.224	<u>0.262</u>	0.171	0.270	0.200	0.284	<u>0.397</u>	<u>0.275</u>
TimeMixer [2024]	0.427	0.441	0.347	0.394	0.356	0.380	0.257	0.318	0.225	0.263	0.185	0.284	0.203	0.261	0.410	0.279
Pathformer [2024]	0.417	0.426	0.360	0.395	0.357	0.375	0.309	0.250	0.227	0.263	<u>0.160</u>	<u>0.253</u>	0.204	0.230	0.418	0.281
iTransformer [2024]	0.440	0.445	0.359	0.396	0.347	<u>0.378</u>	0.258	0.318	0.232	0.270	0.163	0.258	0.202	0.260	0.397	0.281
Amplifier [2025]	0.421	0.433	0.356	0.402	0.353	0.379	<u>0.256</u>	0.318	<u>0.223</u>	0.264	0.163	0.256	0.202	0.256	0.417	0.290
TimeKAN [2025]	0.409	0.427	0.350	0.397	<u>0.344</u>	0.380	0.260	0.318	0.226	0.268	0.164	0.258	<u>0.198</u>	0.263	0.420	0.286
Time-MoE [2025]	0.379	0.406	<u>0.346</u>	<u>0.386</u>	0.345	0.381	0.271	0.335	0.236	0.275	-	-	-	-	-	-
PatchMoE [ours]	<u>0.400</u>	<u>0.424</u>	0.340	0.384	<u>0.343</u>	<u>0.370</u>	0.251	0.306	0.221	0.250	<u>0.158</u>	<u>0.251</u>	0.182	0.222	0.392	0.274

396 benchmark datasets. It mean that PatchMoE possesses stable performance under different anomaly
397 thresholds, which is highly important for real-world applications. Compared with the most advanced
398 baseline CATCH (Wu et al., 2025b), PatchMoE also shows higher accuracy and considers patch-wise
399 fine-grained channel correlations in a more lightweight manner on some cases.

401 Table 2: Anomaly detection results. Higher Affiliated-F1 (F) and AUC-ROC (AUC) values indicate
402 better performance. **Bond**: the best, Underline: the 2nd best. Full results are available in Table 12
403 of Appendix B.

Datasets	CallIt2		Credit		GECCO		Genesis		MSL		NYC		PSM		SMD	
Metrics	F	AUC														
ATransformer [2022]	0.688	0.491	0.646	0.533	0.782	0.516	0.715	0.472	0.685	0.508	0.691	0.499	0.654	0.498	0.704	0.309
FEDformer [2022]	0.788	0.707	0.683	0.825	0.900	0.709	0.893	0.802	0.726	0.561	0.691	0.725	0.761	0.679	0.782	0.650
DCdetector [2023]	0.673	0.527	0.610	0.504	0.671	0.555	0.776	0.507	0.683	0.504	0.698	0.528	0.662	0.499	0.675	0.500
DLinear [2023]	0.793	0.752	0.738	0.954	0.893	0.947	0.856	0.696	0.725	0.624	0.828	0.768	0.831	0.580	0.841	0.728
TimesNet [2023]	0.794	0.771	0.744	0.958	0.897	0.964	0.864	<u>0.913</u>	0.734	0.613	0.794	0.791	0.842	0.592	0.833	0.766
Crossformer [2023]	0.789	0.798	0.720	0.951	0.897	0.770	0.865	0.755	0.733	0.587	0.692	0.679	0.789	<u>0.654</u>	0.839	0.710
PatchTST [2023]	0.660	0.808	0.746	0.957	0.906	0.949	0.856	0.685	0.723	0.637	0.776	0.709	0.831	0.586	0.845	0.736
ModernTCN [2024]	0.780	0.676	0.744	0.957	0.899	0.954	0.833	0.676	0.726	0.633	0.769	0.466	0.825	0.592	0.840	0.722
iTransformer [2024]	0.812	0.791	0.713	0.934	0.839	0.794	0.891	0.690	0.710	0.611	0.684	0.640	<u>0.853</u>	0.592	0.827	0.745
CATCH [2025]	<u>0.835</u>	<u>0.838</u>	<u>0.750</u>	<u>0.958</u>	<u>0.908</u>	<u>0.970</u>	<u>0.896</u>	<u>0.974</u>	<u>0.740</u>	<u>0.664</u>	<u>0.994</u>	<u>0.816</u>	<u>0.859</u>	0.652	0.847	0.811
PatchMoE [ours]	0.842	0.861	0.754	0.959	0.914	0.979	0.903	0.862	0.746	<u>0.641</u>	<u>0.973</u>	0.833	0.850	0.645	0.868	0.831

4.1.6 IMPUTATION

417 Table 3 presents PatchMoE’s performance in imputing missing values. We observe that PatchMoE
418 consistently outperforms all baselines, demonstrating its potential of being the infrastructure
419 for data preprocessing in real-world applications. Compared with the most advanced baseline
420 TimeMixer++ (Wang et al., 2024), PatchMoE surpasses it significantly on the Electricity and
421 Weather datasets, showing the excellent model capacity for large datasets.

4.1.7 CLASSIFICATION

422 See Figure 4, PatchMoE demonstrates remarkable capabilities in time series classification. Compared
423 with generative tasks like forecasting, anomaly detection, and imputation, classification is a
424 discriminative task which relies more on model’s sequence-aware capability and channel correlations.
425 Our proposed PatchMoE can learn the overall characteristics of a time series via modeling the
426 local patch-wise transition rule, and capture the intricate channel correlations through the routing
427 strategy, thus it achieves the state-of-the-art performance on classification tasks.

432
 433 Table 3: Multivariate imputation average
 434 results with mask ratios spanning
 435 $\{12.5\%, 25\%, 37.5\%, 50\%\}$ for the datasets.
Bond: the best, Underline: the 2nd best.

Datasets	ETT (Avg)		Electricity		Weather	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE
Autoformer [2022]	0.104	0.215	0.141	0.234	0.066	0.107
FEDformer [2022]	0.124	0.230	0.181	0.314	0.064	0.139
MIQN [2023]	0.119	0.234	0.138	0.246	0.075	0.126
TimesNet [2023]	0.079	0.182	0.135	0.255	0.061	0.098
DLinear [2023]	0.115	0.229	0.080	0.200	0.071	0.107
TIDE [2023]	0.314	0.366	0.182	0.202	0.063	0.131
Crossformer [2023]	0.150	0.258	0.125	0.204	0.150	0.111
PatchTST [2023]	0.120	0.225	0.129	0.198	0.082	0.149
iTransformer [2024]	0.096	0.205	0.140	0.223	0.095	0.102
TimeMixer [2024]	0.097	0.220	0.142	0.261	0.091	0.114
TimeMixer++ [2025]	0.055	0.154	0.109	0.197	0.049	0.078
PatchMoE [ours]	0.054	0.154	0.052	0.162	0.035	0.064

4.2 MODEL ANALYSIS

4.2.1 ABLATION STUDIES

To verify the effectiveness of PatchMoE, we conduct ablation studies on the components different from traditional MoE architectures, i.e., RNG-Router, Shared Experts, and Temporal & Channel Load Balancing Loss. The results are shown in Table 4, PatchMoE with all above components achieves the best performance. The RNG-Router plays the most critical role to consider the hierarchical representation differences in routing, improving the performance by reducing 4.2% in MSE. The Shared Experts are crucial on large datasets like Traffic, which can enhance the model capacity to effectively capture the general patterns, leading 6.9% reduction in MSE. The Temporal & Channel Load Balancing Loss boosts the clustering of correlated temporal- and channel-wise tokens, consistently enhancing the performance.

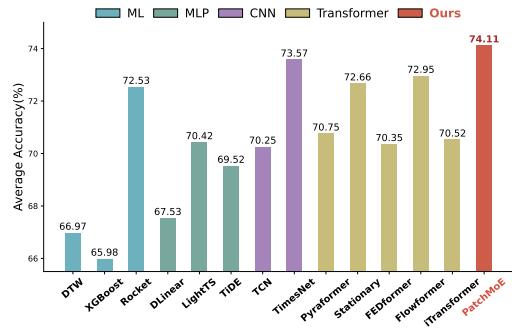
4.3 MORE ANALYTICS

Parameter Sensitivity. We study the parameter sensitivity of PatchMoE—see Figure 7 in Appendix B. PatchMoE achieves strong performance under the parameter configurations of patch size $p = 24$, number of hidden layers $L = 3$, and number of routed experts $N^r = 10$.

Representation Analytics. We provide the representation analytics in Figure 6 in Appendix B. Results demonstrate that RNG-Router can effectively utilize the hierarchical representations to boost the routing of time series tokens for distinct tasks, thus possessing task-specific capabilities.

5 CONCLUSION

In this paper, we propose a general representation learning framework, called PatchMoE, with a novel Mixture-of-Experts architecture tailored for time series analysis. To sum up, PatchMoE can utilize the hierarchical representation differences across different neural layers via a RNG-Router, making accurate routing decision based on the current task. And the Temporal & Channel Load Balancing Loss is devised to encourage the modeling of sparse correlations. PatchMoE also utilizes the shared experts to capture common patterns and routed experts to capture detailed differences. Based on these innovative mechanisms, PatchMoE demonstrates state-of-the-art performances on time series analytics.



449
 450 Figure 4: Model comparison in classification.
 451 The accuracy are averaged from 10 subsets from
 452 UEA. See Table 11 in Appendix B for full results.

453
 454 Table 4: Studies on key components of Patch-
 455 MoE, including w/o RNG-Router (line 1), w/o
 456 Shared Experts (line 2), w/o Temporal & Channel
 457 Load Balancing Loss (line 3), and original Patch-
 458 MoE (line 4). Full results are in Appendix 13.

ETTh1		ETTm2		Solar		Traffic	
MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
0.417	0.434	0.260	0.316	0.197	0.228	0.398	0.276
0.412	0.434	0.257	0.313	0.188	0.228	0.421	0.293
0.403	0.426	0.257	0.311	0.185	0.226	0.403	0.285
0.400	0.424	0.251	0.306	0.182	0.222	0.392	0.274

486 ETHICS STATEMENT
487488 Our work exclusively uses publicly available benchmark datasets that contain no personally identi-
489 fiable information. No human subjects are involved in this research.
490491 REPRODUCIBILITY STATEMENT
492493 We promise that all experimental results can be reproduced. We have released our model code in an
494 anonymous repository: <https://anonymous.4open.science/r/PatchMoE-BD38>.
495496 REFERENCES
497498 Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
499 a network of experts. In *Proceedings of the IEEE conference on computer vision and pattern*
500 *recognition*, pp. 3366–3375, 2017.501 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
502 Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. *arXiv*
503 *preprint arXiv:1811.00075*, 2018.505 Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
506 and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
507 forecasting. In *ICLR*, 2024.508 Yuxuan Chen, Shanshan Huang, Yunyao Cheng, Peng Chen, Zhongwen Rao, Yang Shu, Bin Yang,
509 Lujia Pan, and Chenjuan Guo. AimTS: Augmented series and image contrastive learning for time
510 series classification. In *ICDE*, 2025.512 Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. Tri-
513 former: Triangular, variable-specific attentions for long sequence multivariate time series fore-
514 casting. In *IJCAI*, pp. 1994–2001, 2022.515 Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based
516 on centered alignment. *The Journal of Machine Learning Research*, 13(1):795–828, 2012.518 Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
519 decoupling framework for long-term series forecasting. In *ICLR*, 2024.520 Angus Dempster, François Petitjean, and Geoffrey I Webb. ROCKET: exceptionally fast and accu-
521 rate time series classification using random convolutional kernels. *Data Mining and Knowledge*
522 *Discovery*, 34(5):1454–1495, 2020.523 Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In *2017*
524 *IEEE 60th international midwest symposium on circuits and systems (MWSCAS)*, pp. 1597–1600.
525 IEEE, 2017.527 Wenjie Du, David Cote, and Yan Liu. SAITS: Self-Attention-based Imputation for Time Series.
528 *Expert Systems with Applications*, 219:119619, 2023. ISSN 0957-4174. doi: 10.1016/j.eswa.
529 2023.119619.530 Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwok, Xiaoli Li,
531 and Cuntai Guan. Self-supervised contrastive representation learning for semi-supervised time-
532 series classification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(12):
533 15604–15618, 2023. doi: 10.1109/TPAMI.2023.3308189.534 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
535 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
536 2022.538 Hongfan Gao, Wangmeng Shen, Xiangfei Qiu, Ronghui Xu, Bin Yang, and Jilin Hu. Ssd-ts: Ex-
539 ploring the potential of linear state space models for diffusion models in time series imputation.
In *SIGKDD*, 2025.

540 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
 541 versible instance normalization for accurate time-series forecasting against distribution shift. In
 542 *ICLR*, 2021.

543 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 544 investigation on linear mapping. *ArXiv*, abs/2305.10721, 2023.

545 Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsesf: Modeling
 546 long-term time series forecasting with 1k parameters. In *ICML*, pp. 30211–30226, 2024a.

547 Shengsheng Lin, Weiwei Lin, HU Xinyi, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
 548 Enhancing time series forecasting through modeling periodic patterns. In *NeurIPS*, 2024b.

549 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 550 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 551 *arXiv:2412.19437*, 2024a.

552 Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao
 553 Liu, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. Moirai-moe: Empowering time series
 554 foundation models with sparse mixture of experts. *arXiv preprint arXiv:2410.10469*, 2024b.

555 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 556 the stationarity in time series forecasting. In *NeurIPS*, 2022.

557 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 558 itransformer: Inverted transformers are effective for time series forecasting. In *ICLR*, 2024c.

559 Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
 560 Timer: generative pre-trained transformers are large time series models. In *Proceedings of the*
 561 *41st International Conference on Machine Learning*, pp. 32369–32399, 2024d.

562 Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
 563 Mingsheng Long. Sundial: A family of highly capable time series foundation models. *arXiv*
 564 *preprint arXiv:2502.00816*, 2025.

565 Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
 566 series analysis. In *The twelfth international conference on learning representations*, pp. 1–43,
 567 2024.

568 Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relation-
 569 ships in multi-task learning with multi-gate mixture-of-experts. In *Proceedings of the 24th ACM*
 570 *SIGKDD international conference on knowledge discovery & data mining*, pp. 1930–1939, 2018.

571 Youngeun Nam, Susik Yoon, Yooju Shin, Minyoung Bae, Hwanjun Song, Jae-Gil Lee, and
 572 Byung Suk Lee. Breaking the time-frequency granularity discrepancy in time-series anomaly
 573 detection. In *Proceedings of the ACM on Web Conference 2024*, pp. 4204–4215, 2024.

574 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 575 64 words: Long-term forecasting with transformers. In *ICLR*, 2023.

576 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
 577 ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. TFB: towards comprehensive and
 578 fair benchmarking of time series forecasting methods. *Proc. VLDB Endow.*, 17(9):2363–2377,
 579 2024.

580 Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shixian Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan
 581 Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, and Bin Yang. TAB: Unified
 582 benchmarking of time series anomaly detection methods. In *Proc. VLDB Endow.*, 2025a.

583 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
 584 enhanced multivariate time series forecasting. In *SIGKDD*, pp. 1185–1196, 2025b.

585 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
 586 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
 587 *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.

594 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
 595 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 596 In *ICLR*, 2017.

597

598 Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
 599 moe: Billion-scale time series foundation models with mixture of experts. *arXiv e-prints*, pp.
 600 arXiv–2409, 2024.

601 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: conditional score-based
 602 diffusion models for probabilistic time series imputation. In *NeurIPS*, pp. 24804–24816, 2021.

603

604 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 605 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 606 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

607 Chengsen Wang, Zirui Zhuang, Qi Qi, Jingyu Wang, Xingyu Wang, Haifeng Sun, and Jianxin Liao.
 608 Drift doesn't matter: Dynamic decomposition with diffusion reconstruction for unstable multi-
 609 variate time series anomaly detection. In *NeurIPS*, pp. 10758–10774, 2023a.

610 Hao Wang, Haoxuan Li, Xu Chen, Mingming Gong, Zhichao Chen, et al. Optimal transport for time
 611 series imputation. In *The Thirteenth International Conference on Learning Representations*.

612

613 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
 614 scale local and global context modeling for long-term series forecasting. In *ICLR*, 2022.

615

616 Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
 617 Chu, and Ming Jin. TimeMixer++: A general time series pattern machine for universal predictive
 618 analysis. *arXiv preprint arXiv:2410.16032*, 2024.

619 Yucheng Wang, Yuecong Xu, Jianfei Yang, Min Wu, Xiaoli Li, Lihua Xie, and Zhenghua Chen.
 620 Graph contextual contrasting for multivariate time series classification, 2023b.

621

622 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
 623 Unified training of universal time series forecasting transformers. In *Forty-first International
 624 Conference on Machine Learning*, 2024.

625

626 Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
 627 transformers with conservation flows. *arXiv preprint arXiv:2202.06258*, 2022.

628

629 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 630 Temporal 2d-variation modeling for general time series analysis. In *ICLR*, 2023.

631

632 Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Bin Yang, and Chenjuan Guo. K²VAE: A
 633 koopman-kalman enhanced variational autoencoder for probabilistic time series forecasting. In
 634 *ICML*, 2025a.

635

636 Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, and
 637 Bin Yang. CATCH: Channel-aware multivariate time series anomaly detection via frequency
 638 patching. In *ICLR*, 2025b.

639

640 Xinle Wu, Xingjian Wu, Bin Yang, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu, Jilin Hu, Zhenli
 641 Sheng, and Christian S Jensen. AutoCTS++: zero-shot joint neural architecture and hyperparam-
 642 eter search for correlated time series forecasting. *The VLDB Journal*, 33(5):1743–1770, 2024a.

643

644 Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Chris-
 645 tian S Jensen. Fully automated correlated time series forecasting in minutes. *arXiv preprint
 646 arXiv:2411.05833*, 2024b.

647

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly Transformer: Time series
 648 anomaly detection with association discrepancy. In *International Conference on Learning Repre-
 649 sentations*, 2021.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: modeling time series with 10k parameters. In *ICLR*,
 650 2024.

648 Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. Dcdetector: Dual attention
649 contrastive representation learning for time series anomaly detection. In *SIGKDD*, pp. 3033–
650 3045, 2023.

651

652 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
653 forecasting? In *AAAI*, volume 37, pp. 11121–11128, 2023.

654

655 Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less
656 is more: Fast multivariate time series forecasting with light sampling-oriented MLP structures.
657 *CoRR*, abs/2207.01186, 2022. doi: 10.48550/ARXIV.2207.01186.

658

659 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
660 for multivariate time series forecasting. In *ICLR*, 2022.

661

662 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
663 enhanced decomposed transformer for long-term series forecasting. In *ICML*, pp. 27268–27286,
664 2022a.

665

666 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
667 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural*
668 *Information Processing Systems*, 35:7103–7114, 2022b.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 THE USE OF LARGE LANGUAGE MODELS (LLMs)
704705 We do not use Large Language Models in our methodology and writing.
706707 A IMPLEMENTATION DETAILS
708709 We introduce the Dataset Details, Metric Details, and Experimental Details in this section for clarity.
710711 A.1 DATASET DETAILS
712713 We evaluate the performance of different models for multivariate forecasting on 8 well-established
714 datasets from TFB, including Weather, Traffic, Electricity, Solar, and ETT datasets (ETTh1, ETTh2,
715 ETTm1, ETTm2), and provide their detailed descriptions in Table 6. For univariate forecasting,
716 we evaluate all 8,068 well-established univariate time series from TFB, as summarized in Table 5.
717 For anomaly detection, we evaluate 9 well-established datasets from TAB, including CalIt2, Credit,
718 GECCO, Genesis, MSL, NYC, PSM, SMAP, and SMD, with detailed descriptions provided in Ta-
719 ble 7. We evaluate 10 datasets from the UEA Time Series Classification Archive for classification,
720 and show their details in Table 8. For imputation, we evaluate the Electricity, Weather, and ETT
721 datasets (ETTh1, ETTh2, ETTm1, ETTm2).
722723 Table 5: Univariate forecasting dataset detailed
724 descriptions.
725

Dataset	Series Count	Input	Predict	Avg Length	Frequency
TFB-Yearly	1,500	7	6	32.0	yearly
TFB-Quarterly	1,514	10	8	97.2	quarterly
TFB-Monthly	1,674	22	18	259.1	monthly
TFB-Weekly	805	16	13	536.3	weekly
TFB-Daily	1,484	17	14	4,950.8	daily
TFB-Hourly	706	60	48	5,109.0	hourly
TFB-Other	385	10	8	1,678.4	other

731 Table 7: Anomaly detection dataset detailed
732 descriptions (AR: anomaly ratio).
733

Dataset	Dim	AR(%)	Length	Test Length	Domain
CalIt2	2	4.09	5,040	2,520	Visitors Flowrate
GECCO	9	1.25	138,521	69,261	Water Treatment
Credit	29	0.17	284,807	142,404	Finance
Genesis	18	0.31	16,220	12,616	Machinery
NYC	3	0.57	17,520	4,416	Transport
MSL	55	5.88	132,046	73,729	Spacecraft
SMAP	25	9.72	562,800	427,617	Spacecraft
PSM	25	11.07	220,322	87,841	Server Machine
SMD	38	2.08	1,416,825	708,420	Server Machine

742 A.2 EXPERIMENTAL DETAILS
743744 All experiments are conduct using PyTorch and executed on an NVIDIA Tesla-A800 GPU. The
745 training process is guided by the L1 or L2 loss, and optimized with the ADAM optimizer. The
746 “Drop Last” tricky is forbidden. We conduct 8 sets of hyperparameter search for each baseline and
747 PatchMoE and save their best parameters. For the best parameter, we run it 5 times with different
748 random seeds and report the mean values.
749750 A.3 METRIC DETAILS
751752 Regarding evaluation metrics, following the experimental setup in TFB, we adopt Mean Squared
753 Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics for multivariate forecasting. For
754 univariate forecasting, we use Modified Symmetric Mean Absolute Percentage Error (MSMAPE)
755 and Mean Absolute Scaled Error (MASE). M is the length of the training series, S is the seasonality
of the time series, h is the forecasting horizon, the F_k are the generated forecasts, and the Y_k are726 Table 6: Multivariate forecasting dataset detailed
727 descriptions (Split: Train/Validation/Test split ra-
728 tio).
729

Dataset	Dim	Input	Predict	Length	Frequency	Split	Domain
ETTm1	7	(96, 336, 512)	(96, 192, 336, 720)	57,600	15min	6:2:2	Electricity
ETTm2	7	(96, 336, 512)	(96, 192, 336, 720)	57,600	15min	6:2:2	Electricity
ETTh1	7	(96, 336, 512)	(96, 192, 336, 720)	14,400	15 min	6:2:2	Electricity
ETTh2	7	(96, 336, 512)	(96, 192, 336, 720)	14,400	15 min	6:2:2	Electricity
Electricity	321	(96, 336, 512)	(96, 192, 336, 720)	26,304	Hourly	7:1:2	Electricity
Traffic	862	(96, 336, 512)	(96, 192, 336, 720)	17,544	Hourly	7:1:2	Traffic
Weather	21	(96, 336, 512)	(96, 192, 336, 720)	52,696	10 min	7:1:2	Environment
Solar	137	(96, 336, 512)	(96, 192, 336, 720)	52,560	10min	6:2:2	Energy

730 Table 8: Classification dataset detailed descrip-
731 tions.
732

Dataset	Dim	Train Cases	Test Cases	Series Length	Classes
EthanolConcentration	3	261	263	1,751	4
FaceDetection	144	5,890	3,524	62	2
Handwriting	3	150	850	152	26
Heartbeat	61	204	205	405	2
JapaneseVowels	12	270	370	29	9
PEMS-SF	963	267	173	144	7
SelfRegulationSCP1	6	268	293	896	2
SelfRegulationSCP2	7	200	180	1,152	2
SpokenArabicDigits	13	6,599	2,199	93	10
UWaveGestureLibrary	3	120	320	315	8

756 the actual values. We set parameter ϵ in Equation 25 to its proposed default of 0.1. For rolling
 757 forecasting, we further calculate the average of error metrics for all samples (windows) on each time
 758 series to assess method performance. The definitions of these metrics are as follows:
 759

$$760 \quad 761 \quad 762 \quad 763 \quad 764 \quad 765 \quad 766 \quad 767 \quad 768 \quad 769 \quad 770 \quad 771 \quad 772 \quad 773 \quad 774 \quad 775 \quad 776 \quad 777 \quad 778 \quad 779 \quad 780 \quad 781 \quad 782 \quad 783 \quad 784 \quad 785 \quad 786 \quad 787 \quad 788 \quad 789 \quad 790 \quad 791 \quad 792 \quad 793 \quad 794 \quad 795 \quad 796 \quad 797 \quad 798 \quad 799 \quad 800 \quad 801 \quad 802 \quad 803 \quad 804 \quad 805 \quad 806 \quad 807 \quad 808 \quad 809$$

$$MSE = \frac{1}{h} \sum_{k=1}^h (F_k - Y_k)^2, \quad (22)$$

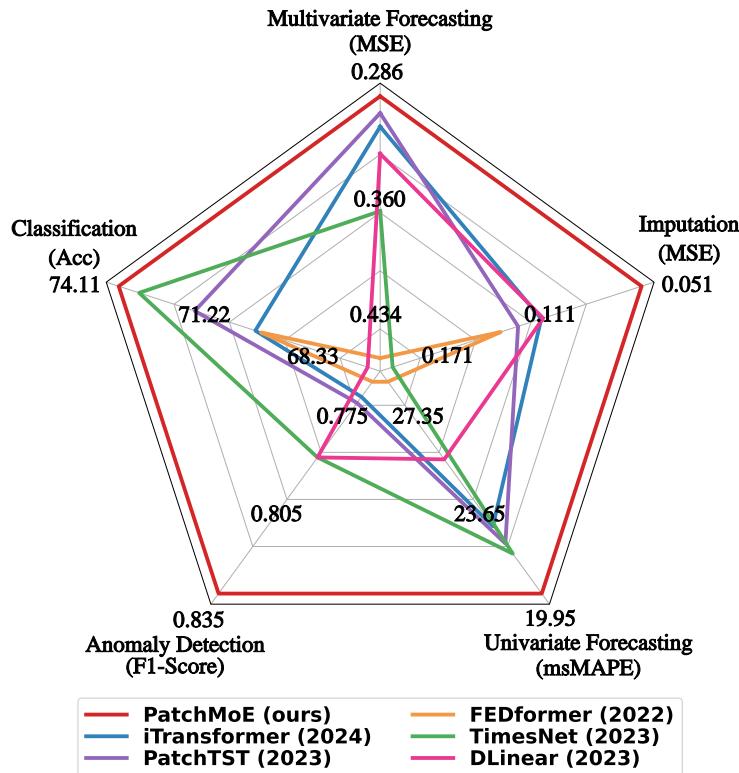
$$MAE = \frac{1}{h} \sum_{k=1}^h |F_k - Y_k|, \quad (23)$$

$$MASE = \frac{\sum_{k=M+1}^{M+h} |F_k - Y_k|}{\frac{h}{M-S} \sum_{k=S+1}^M |Y_k - Y_{k-S}|}, \quad (24)$$

$$MSMAPE = \frac{100\%}{h} \sum_{k=1}^h \frac{|F_k - Y_k|}{\max(|Y_k| + |F_k| + \epsilon, 0.5 + \epsilon)/2}, \quad (25)$$

B FULL RESULTS

774 We list the full results in this section—see Table 9-12, including Univariate Forecasting, Multivariate
 775 Forecasting, Anomaly Detection, and Classification. In summary, PatchMoE achieves consistent
 776 state-of-the-art performance on all five tasks—see Figure 5.
 777



803 Figure 5: Model Performance comparison in five tasks.
 804

805 Table 9: Univariate forecasting results averaged over 8,068 time series from TFB. Lower msMAPE
 806 and MASE values indicate better performance. **Red**: the best, **Blue**: the 2nd best.
 807

Models	PatchMoE (ours)	TimeKAN (2025)	Amplifier (2025)	iTransformer (2024)	TimeMixer (2024)	PatchTST (2023)	Crossformer (2023)	TimesNet (2023)	DLinear (2023)	N-HITS (2023)	Stationary (2022)	FEDformer (2022)	N-BEATS (2020)	TCN (2018)	LR (2005)	RF (2001)
msMAPE	19.95	20.77	21.05	22.53	21.02	21.87	176.57	21.48	25.09	24.79	21.77	28.06	26.93	132.47	29.79	22.82
MASE	1.97	2.23	2.02	2.59	2.16	2.35	29.22	2.34	2.67	2.55	2.35	2.79	2.64	18.27	4.44	2.41

Table 10: Multivariate forecasting results with forecasting horizons $F \in \{96, 192, 336, 720\}$ for the datasets. Lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) values indicate better performance. **Red**: the best, **Blue**: the 2nd best.

Models	PatchMoE (ours)		Time-MoE (2025)		TimeKAN (2025)		Amplifier (2025)		iTTransformer (2024)		Pathformer (2024)		TimeMixer (2023)		PatchTST (2023)		Crossformer (2023)		TimesNet (2023)		DLlinear (2022)		FEDformer (2022)		
	Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTH1	96	0.355	0.390	0.345	0.373	0.370	0.396	0.373	0.399	0.386	0.405	0.392	0.372	0.401	0.377	0.397	0.411	0.435	0.389	0.412	0.379	0.403	0.376	0.419	
	192	0.398	0.417	0.372	0.396	0.403	0.417	0.414	0.420	0.430	0.435	0.408	0.415	0.413	0.409	0.425	0.409	0.438	0.440	0.443	0.427	0.435	0.420	0.444	
	336	0.418	0.431	0.389	0.412	0.420	0.432	0.442	0.446	0.445	0.452	0.438	0.434	0.438	0.450	0.431	0.444	0.433	0.457	0.523	0.487	0.440	0.440	0.458	0.466
ETTH2	96	0.272	0.330	0.276	0.340	0.280	0.343	0.287	0.349	0.292	0.347	0.279	0.336	0.270	0.342	0.274	0.337	0.728	0.603	0.334	0.370	0.300	0.364	0.337	0.380
	192	0.333	0.376	0.331	0.371	0.329	0.382	0.348	0.393	0.348	0.384	0.350	0.349	0.387	0.348	0.384	0.723	0.607	0.404	0.413	0.387	0.423	0.415	0.428	
	336	0.357	0.399	0.375	0.402	0.370	0.412	0.383	0.423	0.372	0.407	0.378	0.408	0.367	0.410	0.377	0.416	0.740	0.620	0.389	0.435	0.490	0.487	0.389	0.457
ETTM1	96	0.282	0.332	0.286	0.334	0.290	0.348	0.292	0.346	0.287	0.342	0.290	0.335	0.293	0.345	0.289	0.343	0.314	0.367	0.340	0.378	0.300	0.345	0.463	0.463
	192	0.325	0.357	0.327	0.358	0.322	0.368	0.327	0.365	0.331	0.371	0.337	0.363	0.335	0.372	0.329	0.368	0.374	0.410	0.392	0.404	0.336	0.366	0.575	0.516
	336	0.359	0.379	0.354	0.390	0.354	0.386	0.365	0.386	0.358	0.384	0.374	0.384	0.368	0.386	0.362	0.390	0.413	0.432	0.423	0.426	0.367	0.386	0.618	0.544
ETTM2	96	0.160	0.244	0.172	0.265	0.164	0.254	0.164	0.254	0.168	0.262	0.164	0.250	0.165	0.256	0.165	0.255	0.296	0.391	0.189	0.265	0.164	0.255	0.216	0.309
	192	0.217	0.287	0.228	0.306	0.238	0.300	0.236	0.300	0.224	0.295	0.219	0.288	0.225	0.298	0.221	0.293	0.369	0.416	0.254	0.310	0.224	0.304	0.297	0.360
	336	0.273	0.329	0.281	0.345	0.278	0.331	0.276	0.331	0.274	0.330	0.267	0.319	0.277	0.323	0.272	0.327	0.588	0.600	0.313	0.345	0.277	0.337	0.366	0.400
Weather	96	0.372	0.403	0.421	0.424	0.359	0.387	0.358	0.388	0.367	0.385	0.361	0.377	0.360	0.387	0.362	0.381	0.750	0.612	0.403	0.440	0.371	0.404	0.459	0.450
	192	0.190	0.228	0.195	0.246	0.195	0.244	0.195	0.245	0.200	0.248	0.191	0.235	0.191	0.232	0.191	0.239	0.185	0.261	0.219	0.262	0.176	0.275	0.265	0.334
	336	0.240	0.269	0.247	0.288	0.242	0.287	0.243	0.282	0.252	0.287	0.243	0.274	0.244	0.280	0.242	0.279	0.254	0.319	0.278	0.302	0.258	0.307	0.333	0.372
Electricity	96	0.145	0.183	0.151	0.203	0.151	0.202	0.147	0.199	0.157	0.207	0.148	0.195	0.147	0.198	0.150	0.200	0.143	0.210	0.168	0.214	0.170	0.230	0.229	0.298
	192	0.190	0.228	0.195	0.246	0.195	0.244	0.195	0.245	0.200	0.248	0.191	0.235	0.191	0.232	0.191	0.239	0.185	0.261	0.219	0.262	0.176	0.275	0.265	0.334
	336	0.240	0.269	0.247	0.288	0.242	0.287	0.243	0.282	0.252	0.287	0.243	0.274	0.244	0.280	0.242	0.279	0.254	0.319	0.278	0.302	0.258	0.307	0.333	0.372
Solar	96	0.131	0.226	-	-	0.135	0.231	0.132	0.227	0.134	0.230	0.135	0.222	0.153	0.226	0.143	0.247	0.134	0.231	0.169	0.271	0.140	0.237	0.191	0.305
	192	0.145	0.240	-	-	0.149	0.243	0.149	0.243	0.154	0.250	0.157	0.253	0.168	0.269	0.158	0.261	0.146	0.243	0.180	0.280	0.154	0.250	0.203	0.316
	336	0.162	0.256	-	-	0.165	0.260	0.167	0.261	0.169	0.265	0.170	0.267	0.189	0.271	0.168	0.265	0.164	0.264	0.204	0.293	0.169	0.268	0.221	0.333
Traffic	96	0.166	0.207	-	-	0.187	0.255	0.175	0.237	0.174	0.229	0.170	0.235	0.189	0.233	0.170	0.234	0.183	0.208	0.179	0.270	0.169	0.255	0.165	0.270
	192	0.178	0.222	-	-	0.194	0.265	0.189	0.259	0.205	0.270	0.196	0.250	0.201	0.264	0.204	0.270	0.195	0.266	0.207	0.278	0.182	0.265	0.161	0.277
	336	0.184	0.224	-	-	0.203	0.264	0.213	0.259	0.216	0.282	0.195	0.228	0.214	0.272	0.212	0.293	0.212	0.289	0.208	0.284	0.234	0.295	1.008	0.839
ETTH2	96	0.198	0.234	-	-	0.209	0.269	0.222	0.269	0.211	0.260	0.208	0.237	0.218	0.278	0.215	0.307	0.215	0.256	0.232	0.294	0.243	0.301	0.655	0.627
	192	0.202	0.238	-	-	0.206	0.297	0.203	0.292	0.194	0.288	0.211	0.302	0.228	0.320	0.214	0.307	0.237	0.264	0.236	0.276	0.228	0.282	0.145	0.477
	336	0.204	0.238	-	-	0.205	0.302	0.204	0.312	0.205	0.308	0.222	0.305	0.230	0.316	0.235	0.326	0.235	0.272	0.235	0.284	0.234	0.309	0.248	0.394
1 st Count	22	23	5	6	3	0	0	0	0	0	1	2	1	2	1	0	0	1	1	0	0	0	0	0	0

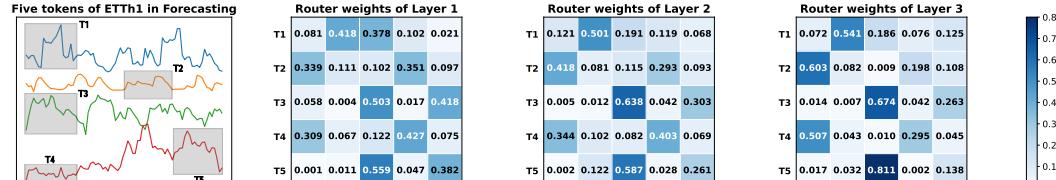
Table 11: Full results for the classification task. *. in the Transformers indicates the name of *former. We report the classification accuracy (%) as the result. Higher accuracies indicate better performance. **Red**: the best, **Blue**: the 2nd best.

Datasets / Models	Classical methods			RNN			Transformers						MLP			CNN						
	DTW	XGBoost	Rocket	LSTM	LSTNet	SSL	Trans.	Re.	In.	Pyra.	Auto.	Station.	FED.	ETS.	Flow.	iTrans.	DLinear	LightTS.	TIDE	TCN	TimesNet	PatchMoE
EthanolConcentration	32.3	43.7	45.2	32.3	39.9	31.1	32.7	31.9	31.6	30.8	31.6	32.7	28.1	31.2	33.8	28.1	32.6	29.7	27.1	28.9	35.7	32.8
FaceDetection	52.9	63.3	64.7	57.7	65.7	66.7	67.3	68.6	67.0	65.7	68.4	68.0	66.0	66.3	67.6	66.3	68.0	67.5	65.3	52.8	68.6	69.3
Handwriting	28.6	15.8	58.8	15.2	25.8	24.6	32.0	27.4	32.8	29.4	36.7	31.6	28.0	32.5	33.8	24.2	27.0	26.1	23.2	53.3	32.1	30.4
Heartbeat	71.7	73.2	72.2	77.1	72.7	75.6	76.1	77.1	80.5	75.6	74.6	73.7	73.7	71.2	77.6	75.6	75.1	75.1	74.6	75.6	78.0	77.2
JapaneseVowels	94.9	86.5	96.2	79.7	98.1	98.4	98.7	97.8	98.9	98.4	96.2	99.2	98.4	95.9	98.9	96.6	96.2	96.2	95.6	98.9	98.4	97.0
PEMS-SF	71.1	98.3	75.1	39.9	86.7	86.1	82.1	82.7	81.5	83.2	82.7	87.3	80.9	86.0	83.8	87.9	75.1	88.4	86.9	68.8	89.6	88.4
SelfRegulationSCP1	77.7	84.6	90.8	68.9	84.0	90.8	92.2	90.4	90.1	88.1	84.0	89.4	88.7	89.6	92.5	90.2	87.3	89.8	89.2	84.6	91.8	92.6
SelfRegulationSCP2	53.9	48.9	53.3	46.6	52.8	52.2	53.9	56.7	53.3	53.3	50.6	57.2	54.4	55.0	56.1	54.4	50.5	51.1	53.4	55.6	57.2	65.6
SpokenArabicDigits	96.3	69.6	71.2	31.9	100	98.4	97.0	100	99.6	100	100	100	100	98.4	96.0	81.4	100	95.0	95.6	99.0	99.8	
UWaveGestureLibrary	90.3	75.9	94.4	41.2	87.8	85.9	85.6	85.6	85.6	83.4	85.9	87.5	85.3	85.0	86.6	85.9	82.1	80.3	84.9	88.4	85.3	88.8
Average Accuracy	67.0	66.0	72.5	48.6	71.8	70.9	70.3	71.9	71.5	72.1	70.8	71.1	72.7	70.7	71.0	73.0	70.5	67.5	70.4	69.5	73.6	74.11

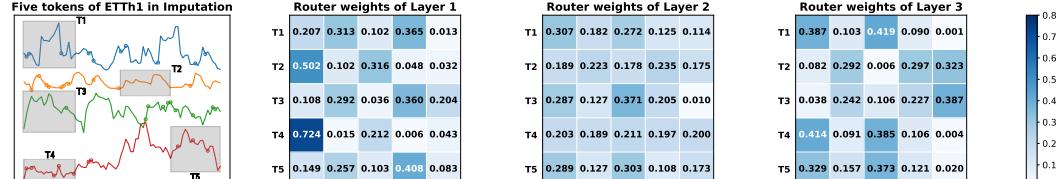
864
865
866867 Table 12: Anomaly detection results. Higher Affiliated-F1 (F) and AUC-ROC (AUC) values indicate
868 better performance. **Red**: the best, **Blue**: the 2nd best.

869

Datasets	CallIt2		Credit		GECCO		Genesis		MSL		NYC		PSM		SMAP		SMD		1 st Count	
Metrics	F	AUC	F	AUC																
Ocsvm [1999]	0.783	0.804	0.714	0.953	0.666	0.804	0.677	0.733	0.641	0.524	0.667	0.456	0.531	0.619	0.503	0.487	0.742	0.679	0	0
PCA [2003]	0.768	0.790	0.710	0.871	0.785	0.711	0.814	0.815	0.678	0.552	0.680	0.666	0.702	0.648	0.505	0.396	0.738	0.679	0	0
Isolation Forest [2008]	0.402	0.775	0.634	0.860	0.424	0.619	0.788	0.549	0.584	0.524	0.648	0.475	0.620	0.542	0.512	0.487	0.626	0.664	0	0
HBOS [2012]	0.756	0.798	0.695	0.951	0.708	0.557	0.494	0.124	0.680	0.574	0.675	0.446	0.658	0.620	0.509	0.585	0.629	0.626	0	1
Autoencoder [2014]	0.587	0.767	0.561	0.909	0.823	0.769	0.854	0.931	0.625	0.562	0.689	0.504	0.707	0.650	0.463	0.522	0.120	0.774	0	0
ATransformer [2022]	0.688	0.491	0.646	0.533	0.782	0.516	0.715	0.472	0.685	0.508	0.691	0.499	0.654	0.498	0.703	0.504	0.704	0.309	1	0
FEDformer [2022]	0.788	0.707	0.683	0.825	0.900	0.709	0.893	0.802	0.726	0.561	0.691	0.725	0.761	0.679	0.658	0.474	0.782	0.650	0	1
DCdetector [2023]	0.673	0.527	0.610	0.504	0.671	0.555	0.776	0.507	0.683	0.504	0.698	0.520	0.662	0.499	0.701	0.516	0.675	0.500	0	0
NLinear [2023]	0.757	0.695	0.742	0.948	0.882	0.936	0.829	0.755	0.723	0.592	0.819	0.671	0.843	0.585	0.601	0.434	0.844	0.738	0	0
DLinear [2023]	0.793	0.752	0.738	0.954	0.893	0.947	0.856	0.696	0.725	0.624	0.828	0.768	0.831	0.580	0.616	0.397	0.841	0.728	0	0
TimesNet [2023]	0.794	0.771	0.744	0.958	0.897	0.964	0.864	0.913	0.734	0.613	0.794	0.791	0.842	0.592	0.638	0.453	0.833	0.766	0	0
Crossformer [2023]	0.789	0.798	0.720	0.951	0.897	0.770	0.865	0.755	0.733	0.587	0.692	0.679	0.789	0.654	0.627	0.383	0.839	0.710	0	0
PatchTST [2023]	0.660	0.808	0.746	0.957	0.906	0.949	0.856	0.685	0.723	0.637	0.776	0.709	0.831	0.586	0.606	0.448	0.845	0.736	0	0
ModemTCN [2024]	0.780	0.676	0.744	0.957	0.899	0.954	0.833	0.676	0.726	0.633	0.769	0.466	0.825	0.592	0.635	0.455	0.840	0.722	0	0
iTransformer [2024]	0.812	0.791	0.713	0.934	0.839	0.794	0.891	0.690	0.710	0.611	0.684	0.640	0.853	0.592	0.587	0.409	0.827	0.745	0	0
DualITF [2025]	0.751	0.643	0.663	0.703	0.701	0.714	0.810	0.937	0.588	0.585	0.708	0.633	0.725	0.600	0.674	0.478	0.679	0.631	0	0
CATCH [2025]	0.835	0.838	0.750	0.958	0.908	0.970	0.896	0.974	0.740	0.664	0.994	0.816	0.859	0.652	0.699	0.504	0.847	0.811	2	2
PatchMoE [ours]	0.842	0.861	0.754	0.959	0.914	0.979	0.903	0.862	0.746	0.641	0.973	0.833	0.850	0.645	0.669	0.489	0.868	0.831	6	5

885
886
887
888
889
890

(a) Router weights of different layers in Forecasting (ETTh1-input-96-predict-96).



(b) Router weights of different layers in Imputation (ETTh1-mask-ratio-12.5%). Masked points are circled.

Figure 6: Router weights of different layers in ETTh1 (input-96), under tasks of Forecasting (horizon-96), and Imputation (mask-ratio-12.5%). We select five tokens (T1–T5) from four channels as examples to demonstrate the effectiveness of RNG-Router (with $N_r = 5$ routed experts (R1–R5)). In Forecasting, the routing strategies keep consistent from Layer 1–3, forming three clusters to capture the temporal and channel correlations, i.e., T1 itself, {T2, T4}, and {T3, T5}, which mainly relies on the shallow representations. In imputation, the routing strategies vary across layers, tuning the shallow clusters, i.e., {T1, T3, T5}, and {T2, T4}, to deep clusters, i.e., {T1, T4, T5}, and {T2, T3}, which relies more on deep representations.

906
907
908
909
910
911
912
913
914
915
916
917

918 C MODEL ANALYSIS
919920 C.1 REPRESENTATION ANALYSIS
921

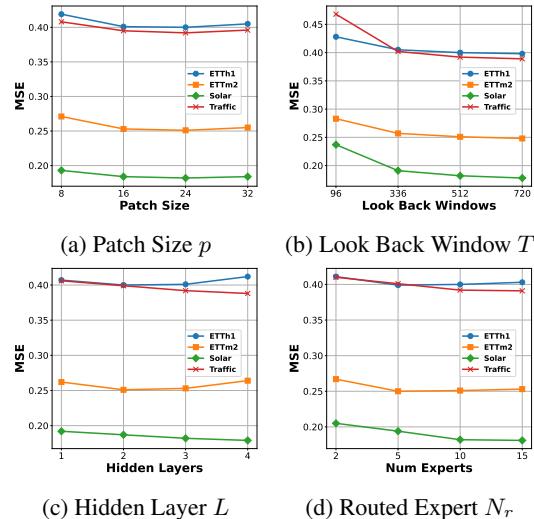
922 As the core component in PatchMoE, the RNG-Router is designed for task-specific purposes. To
923 further evaluate its impact, we make a special representation analysis on this routing mechanism—
924 see Figure 6. We select five tokens from ETTh1 and track their routing weights across different
925 MoE layers under tasks of forecasting and imputation. Since advanced task-specific models tend
926 to implicitly utilize the shallow representations in forecasting (reflected in high CKA similarities),
927 and deep representations in imputation (reflected in low CKA similarities), our proposed PatchMoE
928 provides explicit evidences of this capability. In Figure 6 (a), token T3 and T5, T2 and T4 are simi-
929 lar, and T1 is a bit similar to T3. The routing weights across three MoE layers reflect that the
930 RNG-Router gradually achieves the clustering of tokens with similar shallow patterns, where tokens
931 in the same cluster share the same experts. On the other hand, the imputation task relies more on
932 high-level semantics in deep representations. It is observed that the RNG-Router gradually tunes
933 the routing weights in deeper layers and mines the appropriate high-level correlations among rep-
934 resentations. These evidences demonstrate that RNG-Router can effectively utilize the hierarchical
935 representations to boost the routing of time series tokens for distinct downstream tasks, which leads
936 to an elegant and general representation learning framework with task-specific capabilities.

937 C.2 FULL PARAMETER SENSITIVITY
938

939 We conduct more analytics of PatchMoE in
940 this section. We study the parameter sensi-
941 tivity of PatchMoE—see Figure 7. Figure 7a
942 shows that PatchMoE keep stable performance
943 under different patch sizes, and we often choose
944 16 and 24 as common configurations. As the
945 Look Back Window extends—see Figure 7b, the
946 forecasting performance keeps consistent im-
947 provement, showing scalability. Figure 7c and
948 Figure 7d show the influences of MoE layers
949 and routed experts, which determine model’s
950 capability of modeling the task-specific tem-
951 poral and channel correlations. Results show
952 that more MoE layers and routed experts leads
953 to larger model capacity on large datasets like
954 Solar and Traffic, but may cause over-fitting
955 dilemma in small datasets like ETTh1 and
956 ETTm2. To make accuracy and efficiency meet,
957 we choose $L = 3$ and $N^r = 10$ as the common
958 setting, and set 3 as the Top-K number. We also
959 set $N^s = 1$ shared expert to extract the com-
960 mon patterns.

961 D FULL ABLATIONS
962

963 We list the full results of ablation studies in Table 13. It is observed that each component is very im-
964 portant. Without the RNG-Router, the traditional router cannot utilize the task-specific information
965 across hierarchical representations, causing performance crash. Without Shared Experts, the model
966 lacks capacity and performs poorly at large datasets like Solar and Traffic. Without Temporal &
967 Channel Load Balancing Loss, the model also cannot well model the intricate temporal and channel
968 correlations.



968 Figure 7: Parameter sensitivity studies of main
969 hyper-parameters in PatchMoE, including Patch
970 Size p , Length of Look Back Window T , num-
971 ber of Hidden Layers L , and number of Routed
972 Experts N_r .

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987

988
 989 Table 13: Full ablation studies on key components of PatchMoE, including RNG-Router, Shared
 990 Experts, and Temporal & Channel Load Balancing Loss.
 990

Models	w/o RNG-Router		w/o Shared Experts		w/o Loss		PatchMoE	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96	0.368	0.394	0.358	0.393	0.357	0.392	0.355 0.390
	192	0.425	0.441	0.402	0.418	0.404	0.420	0.398 0.417
	336	0.432	0.439	0.437	0.446	0.420	0.433	0.418 0.431
	720	0.443	0.462	0.450	0.477	0.431	0.460	0.430 0.456
	avg	0.417	0.434	0.412	0.434	0.403	0.426	0.400 0.424
ETTm2	96	0.171	0.262	0.167	0.254	0.163	0.247	0.160 0.244
	192	0.217	0.286	0.220	0.287	0.223	0.291	0.217 0.285
	336	0.289	0.336	0.283	0.331	0.275	0.326	0.273 0.322
	720	0.362	0.379	0.359	0.378	0.365	0.379	0.355 0.373
	avg	0.260	0.316	0.257	0.313	0.257	0.311	0.251 0.306
Solar	96	0.175	0.217	0.169	0.211	0.168	0.209	0.166 0.207
	192	0.198	0.223	0.183	0.228	0.183	0.228	0.178 0.222
	336	0.205	0.229	0.197	0.232	0.188	0.227	0.184 0.224
	720	0.210	0.244	0.202	0.240	0.200	0.240	0.198 0.234
	avg	0.197	0.228	0.188	0.228	0.185	0.226	0.182 0.222
Traffic	96	0.373	0.266	0.368	0.265	0.376	0.272	0.361 0.261
	192	0.386	0.269	0.420	0.294	0.392	0.279	0.382 0.268
	336	0.396	0.275	0.432	0.298	0.405	0.288	0.395 0.278
	720	0.435	0.295	0.465	0.313	0.437	0.299	0.431 0.288
	avg	0.398	0.276	0.421	0.293	0.403	0.285	0.392 0.274

1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025