
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNLOCKING THE POWER OF MIXTURE-OF-EXPERTS
FOR TASK-AWARE TIME SERIES ANALYTICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Time Series Analysis is widely used in various real-world applications such as
weather forecasting, financial fraud detection, imputation for missing data in IoT
systems, and classification for action recognization. Mixture-of-Experts (MoE),
as a powerful architecture, though demonstrating effectiveness in NLP, still falls
short in adapting to versatile tasks in time series analytics due to its task-agnostic
router and the lack of capability in modeling channel correlations. In this study,
we propose a novel, general MoE-based time series framework called PatchMoE
to support the intricate “knowledge” utilization for distinct tasks, thus task-aware.
Based on the observation that hierarchical representations often vary across tasks,
e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to uti-
lize the hierarchical information in routing, thus obtaining task-sepcific capabil-
ity. And the routing strategy is operated on time series tokens in both temporal
and channel dimensions, and encouraged by a meticulously designed Temporal &
Channel Load Balancing Loss to model the intricate temporal and channel cor-
relations. Comprehensive experiments on five downstream tasks demonstrate the
state-of-the-art performance of PatchMoE.

Resources: https://anonymous.4open.science/r/PatchMoE-BD38.

1 INTRODUCTION

Time Series Analysis is widely used in real-world applications, with key tasks such as forecast-
ing (Cirstea et al., 2022; Qiu et al., 2025b), anomaly detection (Wu et al., 2025b; Wang et al.,
2023a), imputation (Tashiro et al., 2021) and classification (Chen et al., 2025), among others (Wu
et al., 2024b;a), gaining attention. In recent years, many deep-learning networks are proposed for
these specific tasks, and achieve great progress. Most of them feature distinct meticulously-designed
representation learning backbones, aiming at capturing task-specific inductive bias within data, and
actually outperform those general algorithms (Wu et al., 2023; Nie et al., 2023; Liu et al., 2024c).
Therefore, there still lacks a general and powerful enough backbone to explicitly and effectively
capture the task-specific characteristics in different time series tasks, like ResNet in CV and GPT
in NLP. Mixture-of-Experts (MoE) (Shazeer et al., 2017; Aljundi et al., 2017), as a powerful frame-
work, is widely applied in CV and NLP, and proven effective and efficient by activating different
experts to solve problems from different distributions, possessing the potential of exceling at all
tasks. However, there still exists some challenges in adapting MoE to time series analysis.

In Time Series Analytics, some studies (Wu et al., 2023; Liu et al., 2024c; Luo & Wang, 2024;
Nie et al., 2023) reveal the phenomenon that CKA (centered kernel alignment (Cortes et al., 2012))
similarities of the representations from the first and last layers often show distinguishable differ-
ences in different tasks of time series analytics. As shown in Figure 1, stronger models often show
higher CKA similarities in forecasting and anomaly detection, and lower CKA similarities in im-
putation and classification. This indicates key task-specific characteristics exist in representations
of different levels, and well-performed models (like PatchTST, iTransformer) can implicitly adapt
the hierarchical representations in different layers to extract the task-specific characteristics. How-
ever, since the “predict next token” paradigm has unified all language tasks of NLP, advanced MoE
architectures (Liu et al., 2024a; Ma et al., 2018) may not consider such task-specific hierarchical rep-
resentational differences during routing, thus limiting the ability of explicitly utilizing task-specific
characteristics across layers for time series analytics.
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Moreover, the Channel-Independent Transformer (Nie et al., 2023), as a basic structure insen-
sitive to the number of channels and input lengths, has been used in many applications (Liu
et al., 2024d; Woo et al., 2024; Liu et al., 2024b; 2025), appropriate to be integrated with MoEs.
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Figure 1: Representation analytics in Forecasting
(Weather input-96-predict-336; MSE), Anomaly
Detection (SMD; F1-Score), Imputation (Elec-
tricity Mask 37.5%; MSE), and Classification
(PEMS-SF; Accuracy). For each model, we cal-
culate the CKA similarity (refer to the vertical
axis corresponding to the columns) between rep-
resentations from the first and the last layers, and
mark the performance of each task at the top
of columns. Stronger models show more distin-
guishable CKA simiarlities across different tasks.

While, due to the Channel-Independent (CI)
Strategy, it lacks the ability to model the in-
tricate channel and temporal correlations. Due
to the univariate property in NLP, recent ad-
vanced MoE architectures also cannot perform
channel-wise routing for them and still follows
CI, thus hindering capturing the channel corre-
lations. Therefore, this calls for a mechanism
to capture these correlations to adapt MoE in
transformers for time series analytics.

To handle the aforementioned limitations, in-
tegrating the MoE architecture with transform-
ers and making it possess the task-specific ca-
pability while capturing the channel correlation
provides an elegant solution for time series an-
alytics. Intuitively, we propose a framework
called PatchMoE. As its core component, the
Recurrent Noisy Gating (RNG-Router) can dy-
namically perceive the representational differ-
ences across layers to model the hierarchical
conditional probability distributions in the rout-
ing strategy, thus effectively routing experts to
extract knowledge for distinct tasks. Moreover,
time series tokens from different channels and
timestamps are simultaneously routed to cap-
ture the intricate temporal and channel correlations. We also design the Temporal & Channel Load
Balancing Loss to guide the MoE to model the sparse correlations, which is a better strategy (Qiu
et al., 2025b; Wu et al., 2025b) between CI and CD. Inspired by recent works from multiple do-
mains (Liu et al., 2024a; Ma et al., 2018; Fedus et al., 2022), we realize that applying the MoE ar-
chitecture in the basic architecture to replace the FeedForward layer in CI-based Transformers may
effectively utilize the knowledge and tackle tasks of time series analysis. Specifically, we use shared
experts to extract common temporal patterns and routed experts to extract the differences among
temporal and channel representations, so as to better model complex and distinct downstream tasks.
Our contributions lie in:

• We propose a cross-task framework called PatchMoE for time series analysis. It can effectively
utilize the hierarchical representational information for knowledge extraction, and enhance the
CI-based Transformers in modeling intricate temporal and channel correlations.

• We devise a Recurrent Noisy Gating to effectively route experts based on the hierarchical repre-
sentations for different tasks, which can enhance the performance of distinct downstream tasks.

• We propose the Temporal & Channel Load Balancing Loss to encourage the modeling of sparse
correlations, which leads to a better temporal and channel strategy.

• As a general framework supporting multiple tasks, PatchMoE demonstrates consistent state-of-
the-art performance on forecasting, anomaly detection, imputation and classification.

2 RELATED WORKS

2.1 TIME SERIES ANALYTICS

In recent years, time series analytics gain sustained attention. In forecasting, most works such as
CNNs (Wu et al., 2023; Luo & Wang, 2024; Wang et al., 2022), MLPs (Lin et al., 2024b;a; Xu et al.,
2024; Li et al., 2023), and Transformers (Cirstea et al., 2022; Nie et al., 2023; Dai et al., 2024; Zhang
& Yan, 2022) manage to capture periodicity and trends within data and achieve good performance.
In anomaly detection, reconstruction-based (Wu et al., 2025b; Nam et al., 2024) methods show
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strong capabilities in detecting heterogeneous anomalies, and applying time-frequency analysis can
effectively enhance the detection of subsequence anomalies. In imputation, capturing the underlying
structures and complex temporal dynamics of time series data is important. By learning the true data
distribution from observed values, deep learning imputation methods (Gao et al., 2025; Wang et al.;
Du et al., 2023) can generate more reliable missing data. For classification, constrative learning
methods (Wang et al., 2023b; Eldele et al., 2023; Chen et al., 2025) are widely used to construct the
positive and negative pairs based on prior knowledge, which enhances the representation capability
of encoders to identify different types of sequences.

2.2 MIXTURE-OF-EXPERTS

The mixture of experts (MoE) has been comprehensively explored and advanced, as demonstrated
by subsequent studies (Shazeer et al., 2017; Aljundi et al., 2017; Zhou et al., 2022b). As the most
important component, the routing mechanism of MoE gains wide attention. Noisy Gating (Shazeer
et al., 2017) and Multi-Gating (Ma et al., 2018) are widely used to stablize the training and have
many variations, but they do not consider task-specific information during routing. The load bal-
ancing constraint (Liu et al., 2024a; Shazeer et al., 2017) is also important, lots of task-specific
optimization objectives are designed to mitigate the imbalance phenomenon in routing strategy, but
they lack the generalization in time series analysis when facing multivariate modeling. For the basic
architecture, most recent methods (Liu et al., 2024a; Ma et al., 2018; Riquelme et al., 2021) give
priority to sparse MoE rather than dense MoE. As a modular layer, MoE demonstrates its flexibil-
ity and effectiveness in multiple real-world applications (Riquelme et al., 2021; Liu et al., 2024a;
Ma et al., 2018), and the most common use is to replace the FeedForward layer in Transformer,
which is generally believed to store and utilize the “knowledge”. Famous works such as Switch
Transformer (Fedus et al., 2022), Llama (Touvron et al., 2023), DeepSeek (Liu et al., 2024a), and
MMoE (Ma et al., 2018) all follow this paradigm. In time series analytics, though some works (Liu
et al., 2024b; Shi et al., 2024; Chen et al., 2024) apply the MoE layers in their models, no specific
MoEs are devised for time series analysis to fully utilize the task-wise inductive bias within data. In
this study, PatchMoE adopts a novel MoE structure tailored for task-specific representation learning,
and can model intricate temporal and channel correlations.

3 METHODOLOGY

3.1 STRUCTURE OVERVIEW

As demonstrated in Figure 2, our proposed PatchMoE introduces a novel Mixture-of-Experts (MoE)
framework. We reinforce the feedward layers with PatchMoE to effectively extract and utilize the
“knowledge” from high-dimensional hidden representations. A multivariate time series is first pro-
cessed through Normalization & Tokenization–see Section 3.2 to form the time series tokens. The
tokens are then fed into Transformer layers to further extract the hidden semantics. In the MoE layer,
the RNG-Router–see Section 3.3 models the conditional distribution of current routing strategy with
a Recurrent Noisy Gating, which can integrate the representations from pre-layers, thus considering
the main differences of various downstream tasks. Subsequently, the multivariate time series tokens
are routed simultaneously to model the temporal and channel correlations. Specifically, we design
the Temporal & Channel Load Balancing Loss–see Section 3.4 to encourage the RNG-Router adap-
tively route tokens with similar temporal or channel patterns into the same group of experts. The
loss function encourages the green cases and mitigates the red cases in Figure 2 right. Consider-
ing the basic architecture, we also adpot the novel expert framework inspired by DeepSeek (Liu
et al., 2024a), with Shared Experts and Routed Experts–see Section 3.5. The Shared Experts are
designed to capture the general patterns in time series tokens, and the routed experts are assigned
by the RNG-Router to flexibly construct the temporal and channel correlations. Finally, after the
Transformer layers learn the representations, the task heads make outputs for different tasks, i.e.,
forecasting, anomaly detection, imputation, and classification.

3.2 NORMALIZATION & TOKENIZATION

The statistical property of time series varies over the time and causes distributional shift which hin-
ders the performance of downstream tasks. For multivariate time series X ∈ RN×T with N variates
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Figure 2: The overview of PatchMoE. The time series is first normalized and tokenized to make
time series “tokens”. In the L-stacked Transformer layers, the time series tokens are then processed
through Multi-head Self-Attention (MSA) mechanism to obtain the representations. In the l-th layer,
the RNG-Router takes the XEl

∈ R(N×n)×d and the hidden state hl−1 ∈ R(N×n)×d as inputs, uti-
lizes the task-specific characteristics inside them to effectively route the experts. The Temporal &
Channel Load Balancing Loss is designed to encourage the modeling of sparse temporal and chan-
nel correlations, which can enhance the temporal semantics and construct better Channel Strategies
between CI and CD. See red and green tokens, encouraged by the Temporal & Channel Load Bal-
ancing Loss, green ones indicates that tokens are routed to different group of experts for balance.

and T timestamps, PatchMoE adopts the Revin (Kim et al., 2021; Liu et al., 2022) technique for
normalization to remove the varying statistical properties from the model’s internal representations.

For the normalized time series Xnorm ∈ RN×T , we then utilize the Patching & Embedding tech-
nique (Cirstea et al., 2022; Nie et al., 2023; Wu et al., 2025b;a) for tokenization. The normalized
time series is first divided into patches, and then projected into high-dimensional tokens:

XP = Patching(Xnorm) ∈ RN×n×p, (1)

Xtoken = Linear(XP ) ∈ RN×n×d, (2)

where Xtoken ∈ RN×n×d are the embeded time series tokens. In the Multi-head Self-Attention
(MSA) of Transformer layers, the tokens are further processed to extract the inherent temporal
semantics:

XE = LayerNorm(Xtoken + MSA(Xtoken)), (3)

where XE ∈ RN×n×d is the output of MSA. Note that in the MSA, the Xtoken is processed in a
Channel-Independent manner, where the channel correlations are not considered.

3.3 RNG-ROUTER

In the MoE layer, the processed tokens XE ∈ RN×n×d are first fed into the RNG-Router to decide
which group of experts are activated for each token. The RNG-Router is based on the Recurrent
Noisy Gating (RNG) mechanism, which models the conditional normal distribution of current rout-
ing strategy. This design utilizes the hierarchical information from Transformer layers to enhance
the task-specific capabilities of PatchMoE, and stablizes the training process through a probability
sampling paradigm (Shazeer et al., 2017). It is noted that the hierarchical information means the
outputs of MSA layers in L stacked Transformer layers and are denoted as {XE1 , XE2 , · · · , XEL

}.
As aforementioned, these representations show distinct characteristics in different downstream tasks
so that considering them into routing strategy to better extract the knowledge is rational.
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Intuitively, we make the Recurrent Noisy Gating shared by all L MoE layers of the L-stacked
Transformer layers. In the l-th MoE layer, the Recurrent Noisy Gating takes the l-th MSA’s out-
put XEl

∈ R(N×n)×d and hidden state hl−1 ∈ R(N×n)×d from the previous layer as inputs, outputs
Ol ∈ R(N×n)×d:

Ol, hl = RNG(hl−1, XEl
), (4)

where the Recurrent Noisy Gating (RNG) is implemented by simple yet effective GRU cells (Dey
& Salem, 2017). Then the conditional normal distribution is modeled through the gaussian heads:

µl = Linearµ(Ol), σl = Softplus(Linearσ(Ol)), (5)
P(Rl|R1:l−1) = N (µl, σl), (6)

where µl, σl ∈ R(N×n)×Nr , Softplus function is used to keep the standard variance σl positive,
P(Rl|R1:l−1) denotes the conditional normal distribution of the routing strategy for N × n time
series tokens in the l-th MoE layer. Under this design, RNG-Router can construct the current routing
strategy Rl based on the information from all the previous layers, and adaptively control the degree
of retention and forgetting of information from different layers. And the noisy gating mechanism is
used to stablize the training of Nr routed experts via resampling from P(Rl|R1:l−1):

H(XEl
) = µl + ϵ⊙ σl, (7)

KeepTopK(V, k)i =
{
Vi if i ∈ ArgTopk(V)
−∞ otherwise

, (8)

G(XEl
) = Softmax(KeepTopK(H(XEl

), k)), (9)

where the Top-k routed experts for each of the N × n tokens are independently determined through
the scores H(XEl

) ∈ R(N×n)×Nr . ϵ ∈ R(N×n)×Nr ∼ N (0, I) are used for differentiable resam-
pling. And the gating weights G(XEl

) ∈ R(N×n)×k of them are calculated through the Softmax
function for aggregation of routed experts’ outputs. Note that the resampling process shown in For-
mula (7) only works in the training stage to enhance the roubustness of PatchMoE, and adopts the
deterministic values H(XEl

) = µl for inference.

3.4 TEMPORAL & CHANNEL LOAD BALANCING LOSS

Since CI-based Transformers may not capture the intricate temporal and channel correlations, we
preliminarily handle the bottleneck through simultaneously routing experts for N × n multivarate
time series tokens as aforementioned. To further ensure the sparsification and avoid imbalance in
routing, we hope to keep the diversity of routed experts for time series tokens.

As shown in Figure 2 right, the green tokens share distinct groups of routed experts, so that clustering
centroids are formed to model the complex correlations. In contrast, red tokens share the same
group of experts, which causes imbalance and hinders the representational capability. Intuitively,
we design two optimization objectives to encourage the green cases during routing. Specifically,
the two optimization objectives consider the relationships between tokens and experts. Take the
Channel Load Balancing Loss Lcha in the l-th MoE layer as an example:

s′p = reshape(H(XEl
)[:, :, p]) ∈ RNr×N , (10)

spcha = Softmax(s′p) ∈ RNr×N , (11)

fi,p =
Nr

kN

N∑
t=1

1(spcha[i, t] ∈ TopK(spcha[:, t])), (12)

Pi,p =
1

N

N∑
t=1

spcha[i, t],Lcha =

n∑
p=1

Nr∑
i=1

fi,pPi,p (13)

When calculating the Channel Load Balancing Loss Lcha, we parallel along the temporal dimension.
spcha[i, t] denotes the relationship between i-th expert and t-th channel of token at the p-th temporal
index. Fi,t,p = 1 indicates that the i-th expert is one of the TopK routed experts activated for t-th
channel of token, so that high fi,p indicates that the i-th expert is frequenctly activated for all N

5
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channel tokens at the p-th temporal index, which reflects there exists red cases in routing, causing
imbalance. Pi,p ∈ Rn is the normalization weight. Through weightsuming the channel-wise loss at
each time stamp p and then suming up them, the obtained Lcha can measure the degree of imbalance
along the channel dimension. Therefore, optimizing Lcha can effectively encourage the modeling of
sparse channel correlations, which preserves all tokens of the same channel from sharing the fixed
experts, thus keeping load balance.

The Temporal Load Balancing Loss Ltem obeys the same way as Channel Load Balancing Loss.
Due to the heterogeneity of temporal patterns, single Feed Forward Layer may not have enough
capacity to model these. Through routing tokens from the same channel with distinct groups of
experts, the modeling of temporal semantics are boosted. The formulas of Temporal Load Balancing
Loss are as follows:

s′t = reshape(H(XEl
)[:, :, t]) ∈ RNr×n, (14)

sttem = Softmax(s′t) ∈ RNr×n, (15)

fi,t =
Nr

kn

n∑
p=1

1(sttem[i, p] ∈ TopK(sttem[:, p])), (16)

Pi,t =
1

n

n∑
p=1

sttem[i, p],Ltem =

N∑
t=1

Nr∑
i=1

fi,tPi,t (17)

Finally, we integrate the two optimization objectives into the Temporal & Channel Load Balancing
Loss Lbal:

Lbal = α · Ltem + β · Lcha, (18)

where α and β are used to control the sensitivity.

3.5 BASIC ARCHITECTURE OF PATCHMOE

Inspired from prior works (Liu et al., 2024a; Riquelme et al., 2021; Ma et al., 2018), PatchMoE
replaces the FeedForward Layer in the original Transformers. Instead, each expert in PatchMoE is
a FeedForward layer:

expert(XEl
) = Linear(ReLU(Linear(XEl

))) (19)

PatchMoE uses Nr finer-grained routed experts and isolates Ns experts as shared ones, where the
shared experts model the general patterns and the routed experts are used to model the intricate
temporal and channel correlations. Take the l-th MoE layer as an example:

U =

Ns∑
i=1

expertis(XEl
) +

k∑
i=1

G(XEl
)i ⊙ expertir(XEl

), (20)

V = LayerNorm(XEl
+ U), (21)

where V ∈ RN×n×d is the output of the l-th MoE layer, experts denotes the shared experts, expertr
denotes the routed experts, and G(XEl

) is the calculated by RNG-Router to weightsum the routed
experts. We make skip connection and adopt LayerNorm to obtain the final output V .

4 EXPERIMENTS

4.1 MAIN RESULTS

4.1.1 EXPERIMENTAL SETTINGS

Since PatchMoE is a cross-task general model for time series analysis, we evaluate it on distinct tasks
in an end-to-end manner. For Univariate Forecasting, we evaluate PatchMoE with comprehensive
experiments on all the 8,068 univariate time series in TFB (Qiu et al., 2024), and report the Mean
Absolute Scaled Error (MASE) and Mean Symmetric Mean Absolute Percentage Error (msMAPE).

6
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For Multivariate Forecasting, we conduct experiments on 8 best-recognized datasets, including ETT
(4 subsets), Weather, Electricity, Solar, and Traffic. We follow the protocol in TFB to aviod apply-
ing the “Drop Last” trick, adopt Mean Squared Error (MSE) and Mean Absolute Error (MAE) as
metrics, and choose the look-back window size in {96, 336, 512} for all datasets and report each
method’s best results.

For Anomaly Detection, we conduct experiments using 8 real-world datasets from TAB (Qiu et al.,
2025a). We report the results on datasets including CalIT2, Credit, GECCO, Genesis, MSL, NYC,
PSM, and SMD, adopting the Label-based metric Affiliated-F1-score (F), and Score-based metric:
Area under the Receiver Operating Characteristics Curve (AUC) as main evaluation metrics.

For Imputation, we use datasets from electricity and weather domains, selecting ETT (4 subsets),
Electricity, and Weather as benchmarks, and report Mean Squared Error (MSE) and Mean Absolute
Error (MAE) as main metrics. We adopt four mask ratios (randomly masking) {12.5%, 25%, 37.5%,
50%} with the input length equals 1,024 on each dataset, and report the average performance.

Time series classification can be used in medical diagnosis and recognition. To evaluate the
sequence-level classification capability of PatchMoE, we choose 10 datasets from UEA Time Series
Classification Archive (Bagnall et al., 2018) and report the average accuracy of each model.

4.1.2 BASELINES

Our baselines include task-agnostic models like iTransformer (Liu et al., 2024c), PatchTST (Nie
et al., 2023), Crossformer (Zhang & Yan, 2022), TimesNet (Wu et al., 2023), DLinear (Zeng et al.,
2023), and FEDformer (Zhou et al., 2022a), and task-specific models like Flowformer (Wu et al.,
2022), LighTS (Zhang et al., 2022). CATCH (Wu et al., 2025b), DCdetector (Yang et al., 2023),
Anomaly Transformer (Xu et al., 2021), Rocket (Dempster et al., 2020), and MoE-based models,
i.e., Pathformer (Chen et al., 2024) and Time-MoE (Full-shot) (Shi et al., 2024).

4.1.3 UNIVARIATE FORECASTING
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Figure 3: Model comparison in univariate fore-
casting. The msMAPE results are average from
8,068 univariate time series in TFB (lower is bet-
ter). See Table 9 in Appendix B for full results.

As shown in Figure 3, PatchMoE achieves the
best performance on the 8,068 datasets. Com-
pared with previous advanced models Times-
Net and PatchTST, PatchMoE shows more sta-
ble performance with lower average msMAPE
values. Compared with recent strong mod-
els like Amplifier and TimeKAN, PatchMoE
also achieves 5.2% and 3.9% reduction on
msMAPE, demonstrating the state-of-the-art
performance.

4.1.4 MULTIVARIATE FORECASTING

As shown in Table 1, PatchMoE consis-
tently outperforms other models across vari-
ous datasets. Compared with PatchTST, Patch-
MoE’s mixture-of-experts mechanism intro-
duces consistent improvement on all datasets,
demonstrating stronger representational capability. Considering large datasets, PatchMoE possesses
7.6% lower MSE and 7.0% lower MAE on Electricity, 9.0% lower MSE and 21.8% lower MAE on
Solar, demonstrating the larger model capacity on these large datasets. Compared with CD-based
models like Crossformer and iTransformer, PatchMoE also has better performance on datasets with
significant channel correlations (like Traffic and Solar), demonstrating the effectiveness of the Rout-
ing strategy and the Temporal & Channel Load Balancing Loss. Note that PatchMoE patchifys the
multivariate time series in a CI manner but can capture the token-wise channel correlations.

4.1.5 ANOMALY DETECTION

The results are listed in Table 2. Compared with advanced approaches, it can be seen that PatchMoE
achieves SOTA results under the widely used Affiliated-F1-score and AUC-ROC metrics in most
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Table 1: Multivariate forecasting average results with forecasting horizons F ∈ {96, 192, 336, 720}
for the datasets. Lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) values indicate
better performance. Bond: the best, Underline: the 2nd best. Full results are available in Table 10
of Appendix B. For Time-MoE, Electricity, Solar and Traffic are included in pretraining datasets.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Solar Traffic

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

FEDformer [2022] 0.433 0.454 0.406 0.438 0.567 0.519 0.335 0.380 0.312 0.356 0.219 0.330 0.641 0.628 0.620 0.382

DLinear [2023] 0.430 0.443 0.470 0.468 0.356 0.378 0.259 0.324 0.242 0.295 0.167 0.264 0.224 0.286 0.418 0.287

TimesNet [2023] 0.468 0.459 0.390 0.417 0.408 0.415 0.292 0.331 0.255 0.282 0.190 0.284 0.211 0.281 0.617 0.327

Crossformer [2023] 0.439 0.461 0.894 0.680 0.464 0.456 0.501 0.505 0.232 0.294 0.171 0.263 0.205 0.232 0.522 0.282

PatchTST [2023] 0.419 0.436 0.351 0.395 0.349 0.381 0.256 0.314 0.224 0.262 0.171 0.270 0.200 0.284 0.397 0.275

TimeMixer [2024] 0.427 0.441 0.347 0.394 0.356 0.380 0.257 0.318 0.225 0.263 0.185 0.284 0.203 0.261 0.410 0.279

Pathformer [2024] 0.417 0.426 0.360 0.395 0.357 0.375 0.309 0.250 0.227 0.263 0.160 0.253 0.204 0.230 0.418 0.281

iTransformer [2024] 0.440 0.445 0.359 0.396 0.347 0.378 0.258 0.318 0.232 0.270 0.163 0.258 0.202 0.260 0.397 0.281

Amplifier [2025] 0.421 0.433 0.356 0.402 0.353 0.379 0.256 0.318 0.223 0.264 0.163 0.256 0.202 0.256 0.417 0.290

TimeKAN [2025] 0.409 0.427 0.350 0.397 0.344 0.380 0.260 0.318 0.226 0.268 0.164 0.258 0.198 0.263 0.420 0.286

Time-MoE [2025] 0.379 0.406 0.346 0.386 0.345 0.381 0.271 0.335 0.236 0.275 - - - - - -

PatchMoE [ours] 0.400 0.424 0.340 0.384 0.343 0.370 0.251 0.306 0.221 0.250 0.158 0.251 0.182 0.222 0.392 0.274

benchmark datasets. It mean that PatchMoE possesses stable performance under different anomaly
thresholds, which is highly important for real-world applications. Compared with the most advanced
baseline CATCH (Wu et al., 2025b), PatchMoE also shows higher accuracy and considers patch-wise
fine-grained channel correlations in a more lightweight manner on some cases.

Table 2: Anomaly detection results. Higher Affiliated-F1 (F) and AUC-ROC (AUC) values indicate
better performance. Bond: the best, Underline: the 2nd best. Full results are available in Table 12
of Appendix B.

Datasets CalIt2 Credit GECCO Genesis MSL NYC PSM SMD

Metrics F AUC F AUC F AUC F AUC F AUC F AUC F AUC F AUC

ATransformer [2022] 0.688 0.491 0.646 0.533 0.782 0.516 0.715 0.472 0.685 0.508 0.691 0.499 0.654 0.498 0.704 0.309

FEDformer [2022] 0.788 0.707 0.683 0.825 0.900 0.709 0.893 0.802 0.726 0.561 0.691 0.725 0.761 0.679 0.782 0.650

DCdetector [2023] 0.673 0.527 0.610 0.504 0.671 0.555 0.776 0.507 0.683 0.504 0.698 0.528 0.662 0.499 0.675 0.500

DLinear [2023] 0.793 0.752 0.738 0.954 0.893 0.947 0.856 0.696 0.725 0.624 0.828 0.768 0.831 0.580 0.841 0.728

TimesNet [2023] 0.794 0.771 0.744 0.958 0.897 0.964 0.864 0.913 0.734 0.613 0.794 0.791 0.842 0.592 0.833 0.766

Crossformer [2023] 0.789 0.798 0.720 0.951 0.897 0.770 0.865 0.755 0.733 0.587 0.692 0.679 0.789 0.654 0.839 0.710

PatchTST [2023] 0.660 0.808 0.746 0.957 0.906 0.949 0.856 0.685 0.723 0.637 0.776 0.709 0.831 0.586 0.845 0.736

ModernTCN [2024] 0.780 0.676 0.744 0.957 0.899 0.954 0.833 0.676 0.726 0.633 0.769 0.466 0.825 0.592 0.840 0.722

iTransformer [2024] 0.812 0.791 0.713 0.934 0.839 0.794 0.891 0.690 0.710 0.611 0.684 0.640 0.853 0.592 0.827 0.745

CATCH [2025] 0.835 0.838 0.750 0.958 0.908 0.970 0.896 0.974 0.740 0.664 0.994 0.816 0.859 0.652 0.847 0.811

PatchMoE [ours] 0.842 0.861 0.754 0.959 0.914 0.979 0.903 0.862 0.746 0.641 0.973 0.833 0.850 0.645 0.868 0.831

4.1.6 IMPUTATION

Table 3 presents PatchMoE’s performance in imputating missing values. We observe that Patch-
MoE consistently outperforms all baselines, demonstrating its potential of being the infrastruc-
ture for data preprocessing in real-world applications. Compared with the most advanced base-
line TimeMixer++ (Wang et al., 2024), PatchMoE surpasses it significantly on the Electricity and
Weather datasets, showing the excellent model capacity for large datasets.

4.1.7 CLASSIFICATION

See Figure 4, PatchMoE demonstrates remarkable capabilities in time series classification. Com-
pared with generative tasks like forecasting, anomaly detection, and imputation, classification is a
discriminative task which relies more on model’s sequence-aware capability and channel correla-
tions. Our proposed PatchMoE can learn the overall characteristics of a time series via modeling the
local patch-wise transition rule, and capture the intricate channel correlations through the routing
strategy, thus it achieves the state-of-the-art performance on classification tasks.
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Table 3: Multivariate imputation aver-
age results with mask ratios spanning
{12.5%, 25%, 37.5%, 50%} for the datasets.
Bond: the best, Underline: the 2nd best.

Datasets ETT (Avg) Electricity Weather

Metrics MSE MAE MSE MAE MSE MAE

Autoformer [2022] 0.104 0.215 0.141 0.234 0.066 0.107

FEDformer [2022] 0.124 0.230 0.181 0.314 0.064 0.139

MICN [2023] 0.119 0.234 0.138 0.246 0.075 0.126

TimesNet [2023] 0.079 0.182 0.135 0.255 0.061 0.098

DLinear [2023] 0.115 0.229 0.080 0.200 0.071 0.107

TIDE [2023] 0.314 0.366 0.182 0.202 0.063 0.131

Crossformer [2023] 0.150 0.258 0.125 0.204 0.150 0.111

PatchTST [2023] 0.120 0.225 0.129 0.198 0.082 0.149

iTransformer [2024] 0.096 0.205 0.140 0.223 0.095 0.102

TimeMixer [2024] 0.097 0.220 0.142 0.261 0.091 0.114

TimeMixer++ [2025] 0.055 0.154 0.109 0.197 0.049 0.078

PatchMoE [ours] 0.054 0.154 0.052 0.162 0.035 0.064
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Figure 4: Model comparison in classification.
The accuracy are averaged from 10 subsets from
UEA. See Table 11 in Appendix B for full results.

4.2 MODEL ANALYSIS

4.2.1 ABLATION STUDIES

Table 4: Studies on key components of Patch-
MoE, inlcuding w/o RNG-Routher (line 1), w/o
Shared Experts (line 2), w/o Temporal & Channel
Load Balancing Loss (line 3), and original Patch-
MoE (line 4). Full results are in Appendix 13.

ETTh1 ETTm2 Solar Traffic

MSE MAE MSE MAE MSE MAE MSE MAE

0.417 0.434 0.260 0.316 0.197 0.228 0.398 0.276

0.412 0.434 0.257 0.313 0.188 0.228 0.421 0.293

0.403 0.426 0.257 0.311 0.185 0.226 0.403 0.285

0.400 0.424 0.251 0.306 0.182 0.222 0.392 0.274

To verify the effectiveness of PatchMoE, we
conduct ablation studies on the components
different from traditional MoE architectures,
i.e., RNG-Router, Shared Experts, and Tem-
poral & Channel Load Balancing Loss. The
results are shown in Table 4, PatchMoE with
all above components achieves the best per-
formance. The RNG-Router plays the most
critical role to consider the hierarchical repre-
sentation differences in routing, improving the
performance by reducing 4.2% in MSE. The
Shared Experts are crucial on large datasets like
Traffic, which can enhance the model capacity
to effectively capture the general patterns, lead-
ing 6.9% reduction in MSE. The Temporal & Channel Load Balancing Loss boosts the clustering of
correlated temporal- and channel-wise tokens, consistently enhancing the performance.

4.3 MORE ANALYTICS

Parameter Sensitivity. We study the parameter sensitivity of PatchMoE–see Figure 7 in Ap-
pendix B. PatchMoE achieves strong performance under the parameter configurations of patch size
p = 24, number of hidden layers L = 3, and number of routed experts Nr = 10.

Representation Analytics. We provide the representation analytics in Figure 6 in Appendix B.
Results demonstarte that RNG-Router can effectively utilize the hierarchical representations to boost
the routing of time series tokens for distinct tasks, thus possessing task-specific capabilities.

5 CONCLUSION

In this paper, we propose a general representation learning framework, called PatchMoE, with a
novel Mixture-of-Experts architecture tailored for time series analysis. To sum up, PatchMoE can
utilize the hierarchical representation differences across different neural layers via a RNG-Router,
making accurate routing decision based on the current task. And the Temporal & Channel Load
Balancing Loss is devised to encourage the modeling of sparse correlations. PatchMoE also utilizes
the shared experts to capture common patterns and routed experts to capture detailed differences.
Based on these innovative mechanisms, PatchMoE demonstrates state-of-the-art performances on
time series analytics.
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REFERENCES

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3366–3375, 2017.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
forecasting. In ICLR, 2024.

Yuxuan Chen, Shanshan Huang, Yunyao Cheng, Peng Chen, Zhongwen Rao, Yang Shu, Bin Yang,
Lujia Pan, and Chenjuan Guo. AimTS: Augmented series and image contrastive learning for time
series classification. In ICDE, 2025.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. Tri-
former: Triangular, variable-specific attentions for long sequence multivariate time series fore-
casting. In IJCAI, pp. 1994–2001, 2022.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based
on centered alignment. The Journal of Machine Learning Research, 13(1):795–828, 2012.

Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
decoupling framework for long-term series forecasting. In ICLR, 2024.

Angus Dempster, François Petitjean, and Geoffrey I Webb. ROCKET: exceptionally fast and accu-
rate time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34(5):1454–1495, 2020.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE, 2017.

Wenjie Du, David Cote, and Yan Liu. SAITS: Self-Attention-based Imputation for Time Series.
Expert Systems with Applications, 219:119619, 2023. ISSN 0957-4174. doi: 10.1016/j.eswa.
2023.119619.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Self-supervised contrastive representation learning for semi-supervised time-
series classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12):
15604–15618, 2023. doi: 10.1109/TPAMI.2023.3308189.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Hongfan Gao, Wangmeng Shen, Xiangfei Qiu, Ronghui Xu, Bin Yang, and Jilin Hu. Ssd-ts: Ex-
ploring the potential of linear state space models for diffusion models in time series imputation.
In SIGKDD, 2025.

10

https://anonymous.4open.science/r/PatchMoE-BD38


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
ICLR, 2021.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. ArXiv, abs/2305.10721, 2023.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsetsf: Modeling
long-term time series forecasting with 1k parameters. In ICML, pp. 30211–30226, 2024a.

Shengsheng Lin, Weiwei Lin, HU Xinyi, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
Enhancing time series forecasting through modeling periodic patterns. In NeurIPS, 2024b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao
Liu, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. Moirai-moe: Empowering time series
foundation models with sparse mixture of experts. arXiv preprint arXiv:2410.10469, 2024b.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. In NeurIPS, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In ICLR, 2024c.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: generative pre-trained transformers are large time series models. In Proceedings of the
41st International Conference on Machine Learning, pp. 32369–32399, 2024d.

Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
Mingsheng Long. Sundial: A family of highly capable time series foundation models. arXiv
preprint arXiv:2502.00816, 2025.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The twelfth international conference on learning representations, pp. 1–43,
2024.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 1930–1939, 2018.

Youngeun Nam, Susik Yoon, Yooju Shin, Minyoung Bae, Hwanjun Song, Jae-Gil Lee, and
Byung Suk Lee. Breaking the time-frequency granularity discrepancy in time-series anomaly
detection. In Proceedings of the ACM on Web Conference 2024, pp. 4204–4215, 2024.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In ICLR, 2023.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. TFB: towards comprehensive and
fair benchmarking of time series forecasting methods. Proc. VLDB Endow., 17(9):2363–2377,
2024.

Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan
Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, and Bin Yang. TAB: Unified
benchmarking of time series anomaly detection methods. In Proc. VLDB Endow., 2025a.

Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
enhanced multivariate time series forecasting. In SIGKDD, pp. 1185–1196, 2025b.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In ICLR, 2017.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
moe: Billion-scale time series foundation models with mixture of experts. arXiv e-prints, pp.
arXiv–2409, 2024.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: conditional score-based
diffusion models for probabilistic time series imputation. In NeurIPS, pp. 24804–24816, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Chengsen Wang, Zirui Zhuang, Qi Qi, Jingyu Wang, Xingyu Wang, Haifeng Sun, and Jianxin Liao.
Drift doesn’t matter: Dynamic decomposition with diffusion reconstruction for unstable multi-
variate time series anomaly detection. In NeurIPS, pp. 10758–10774, 2023a.

Hao Wang, Haoxuan Li, Xu Chen, Mingming Gong, Zhichao Chen, et al. Optimal transport for time
series imputation. In The Thirteenth International Conference on Learning Representations.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
scale local and global context modeling for long-term series forecasting. In ICLR, 2022.

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
Chu, and Ming Jin. TimeMixer++: A general time series pattern machine for universal predictive
analysis. arXiv preprint arXiv:2410.16032, 2024.

Yucheng Wang, Yuecong Xu, Jianfei Yang, Min Wu, Xiaoli Li, Lihua Xie, and Zhenghua Chen.
Graph contextual contrasting for multivariate time series classification, 2023b.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In Forty-first International
Conference on Machine Learning, 2024.

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
transformers with conservation flows. arXiv preprint arXiv:2202.06258, 2022.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In ICLR, 2023.

Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Bin Yang, and Chenjuan Guo. K2VAE: A
koopman-kalman enhanced variational autoencoder for probabilistic time series forecasting. In
ICML, 2025a.

Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, and
Bin Yang. CATCH: Channel-aware multivariate time series anomaly detection via frequency
patching. In ICLR, 2025b.

Xinle Wu, Xingjian Wu, Bin Yang, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu, Jilin Hu, Zhenli
Sheng, and Christian S Jensen. AutoCTS++: zero-shot joint neural architecture and hyperparam-
eter search for correlated time series forecasting. The VLDB Journal, 33(5):1743–1770, 2024a.

Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Chris-
tian S Jensen. Fully automated correlated time series forecasting in minutes. arXiv preprint
arXiv:2411.05833, 2024b.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly Transformer: Time series
anomaly detection with association discrepancy. In International Conference on Learning Repre-
sentations, 2021.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: modeling time series with 10k parameters. In ICLR,
2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. Dcdetector: Dual attention
contrastive representation learning for time series anomaly detection. In SIGKDD, pp. 3033–
3045, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI, volume 37, pp. 11121–11128, 2023.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less
is more: Fast multivariate time series forecasting with light sampling-oriented MLP structures.
CoRR, abs/2207.01186, 2022. doi: 10.48550/ARXIV.2207.01186.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In ICLR, 2022.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, pp. 27268–27286,
2022a.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We do not use Large Language Models in our methodology and writing.

A IMPLEMENTATION DETAILS

We introduce the Dataset Details, Metric Details, and Experimental Details in this section for clarity.

A.1 DATASET DETAILS

We evaluate the performance of different models for multivariate forecasting on 8 well-established
datasets from TFB, including Weather, Traffic, Electricity, Solar, and ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2), and provide their detailed descriptions in Table 6. For univariate forecasting,
we evaluate all 8,068 well-established univariate time series from TFB, as summarized in Table 5.
For anomaly detection, we evaluate 9 well-established datasets from TAB, including CalIt2, Credit,
GECCO, Genesis, MSL, NYC, PSM, SMAP, and SMD, with detailed descriptions provided in Ta-
ble 7. We evaluate 10 datasets from the UEA Time Series Classification Archive for classification,
and show their details in Table 8. For imputation, we evaluate the Electricity, Weather, and ETT
datasets (ETTh1, ETTh2, ETTm1, ETTm2).

Table 5: Univariate forecasting dataset detailed
descriptions.

Dataset Series Count Input Predict Avg Length Frequency

TFB-Yearly 1,500 7 6 32.0 yearly

TFB-Quarterly 1,514 10 8 97.2 quarterly

TFB-Monthly 1,674 22 18 259.1 monthly

TFB-Weekly 805 16 13 536.3 weekly

TFB-Daily 1,484 17 14 4,950.8 daily

TFB-Hourly 706 60 48 5,109.0 hourly

TFB-Other 385 10 8 1,678.4 other

Table 6: Multivariate forecasting dataset detailed
descriptions (Split: Train/Validation/Test split ra-
tio).

Dataset Dim Input Predict Length Frequency Split Domain

ETTm1 7 {96, 336, 512} {96, 192, 336, 720} 57,600 15min 6:2:2 Electricity

ETTm2 7 {96, 336, 512} {96, 192, 336, 720} 57,600 15min 6:2:2 Electricity

ETTh1 7 {96, 336, 512} {96, 192, 336, 720} 14,400 15 min 6:2:2 Electricity

ETTh2 7 {96, 336, 512} {96, 192, 336, 720} 14,400 15 min 6:2:2 Electricity

Electricity 321 {96, 336, 512} {96, 192, 336, 720} 26,304 Hourly 7:1:2 Electricity

Traffic 862 {96, 336, 512} {96, 192, 336, 720} 17,544 Hourly 7:1:2 Traffic

Weather 21 {96, 336, 512} {96, 192, 336, 720} 52,696 10 min 7:1:2 Environment

Solar 137 {96, 336, 512} {96, 192, 336, 720} 52,560 10min 6:2:2 Energy

Table 7: Anomaly detection dataset detailed
descriptionss (AR: anomaly ratio).

Dataset Dim AR(%) Length Test Length Domain

CalIt2 2 4.09 5,040 2,520 Visitors Flowrate

GECCO 9 1.25 138,521 69,261 Water Treatment

Credit 29 0.17 284,807 142,404 Finance

Genesis 18 0.31 16,220 12,616 Machinery

NYC 3 0.57 17,520 4,416 Transport

MSL 55 5.88 132,046 73,729 Spacecraft

SMAP 25 9.72 562,800 427,617 Spacecraft

PSM 25 11.07 220,322 87,841 Server Machine

SMD 38 2.08 1,416,825 708,420 Server Machine

Table 8: Classification dataset detailed descrip-
tions.

Dataset Dim Train Cases Test Cases Series Length Classes

EthanolConcentration 3 261 263 1,751 4

FaceDetection 144 5,890 3,524 62 2

Handwriting 3 150 850 152 26

Heartbeat 61 204 205 405 2

JapaneseVowels 12 270 370 29 9

PEMS-SF 963 267 173 144 7

SelfRegulationSCP1 6 268 293 896 2

SelfRegulationSCP2 7 200 180 1,152 2

SpokenArabicDigits 13 6,599 2,199 93 10

UWaveGestureLibrary 3 120 320 315 8

A.2 EXPERIMENTAL DETAILS

All experiments are conduct using PyTorch and executed on an NVIDIA Tesla-A800 GPU. The
training process is guided by the L1 or L2 loss, and optimized with the ADAM optimizer. The
“Drop Last” tricky is forbidden. We conduct 8 sets of hyperparameter search for each baseline and
PatchMoE and save their best parameters. For the best parameter, we run it 5 times with different
random seeds and report the mean values.

A.3 METRIC DETAILS

Regarding evaluation metrics, following the experimental setup in TFB, we adopt Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics for multivariate forecasting. For
univariate forecasting, we use Modified Symmetric Mean Absolute Percentage Error (MSMAPE)
and Mean Absolute Scaled Error (MASE). M is the length of the training series, S is the seasonality
of the time series, h is the forecasting horizon, the Fk are the generated forecasts, and the Yk are
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the actual values. We set parameter ϵ in Equation 25 to its proposed default of 0.1. For rolling
forecasting, we further calculate the average of error metrics for all samples (windows) on each time
series to assess method performance. The definitions of these metrics are as follows:

MSE =
1

h

h∑
k=1

(Fk − Yk)
2, (22)

MAE =
1

h

h∑
k=1

|Fk − Yk|, (23)

MASE =

∑M+h
k=M+1 |Fk − Yk|

h
M−S

∑M
k=S+1 |Yk − Yk−S |

, (24)

MSMAPE =
100%

h

h∑
k=1

|Fk − Yk|
max(|Yk|+ |Fk|+ ϵ, 0.5 + ϵ)/2

, (25)

B FULL RESULTS

We list the full results in this section–see Table 9-12, including Univariate Forecasting, Multivariate
Forecasting, Anomaly Detection, and Classification. In summary, PatchMoE achieves consistent
state-of-the-art performance on all five tasks–see Figure 5.

PatchMoE (ours)
iTransformer (2024)
PatchTST (2023)

FEDformer (2022)
TimesNet (2023)
DLinear (2023)

Multivariate Forecasting
(MSE)

ImputationClassification

Anomaly Detection Univariate Forecasting
(msMAPE)(F1-Score)

(Acc) (MSE)

0.286

0.051

0.835 19.95

0.360

0.434 0.111

0.171

23.65

27.35

0.805

0.775

71.22

68.33

74.11

Figure 5: Model Performance comparision in five tasks.

Table 9: Univariate forecasting results averaged over 8,068 time series from TFB. Lower msMAPE
and MASE values indicate better performance. Red: the best, Blue: the 2nd best.

Models
PatchMoE TimeKAN Ampilifier iTransformer TimeMixer PatchTST Crossformer TimesNet DLinear N-HITS Stationary FEDformer N-BEATS TCN LR RF

(ours) IIII(2025)IIII IIII(2025)IIII IIII(2024)IIII IIII(2024)IIII IIII(2023)IIII IIII(2023)IIII IIII(2023)IIII IIII(2023)IIII IIII(2023)IIII IIII(2022)IIII IIII(2022)IIII IIII(2020)IIII IIII(2018)IIII IIII(2005)IIII IIII(2001)IIII

msMAPE 19.95 20.77 21.05 22.53 21.02 21.87 176.57 21.48 25.09 24.79 21.77 28.06 26.93 132.47 29.79 22.82
MASE 1.97 2.23 2.02 2.59 2.16 2.35 29.22 2.34 2.67 2.55 2.35 2.79 2.64 18.27 4.44 2.41
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Table 10: Multivariate forecasting results with forecasting horizons F ∈ {96, 192, 336, 720} for the
datasets. Lower Mean Squared Error (MSE ) and Mean Absolute Error (MAE) values indicate better
performance. Red: the best, Blue: the 2nd best.

Models PatchMoE Time-MoE TimeKAN Amplifier iTransformer Pathformer TimeMixer PatchTST Crossformer TimesNet DLinear FEDformer
(ours) (2025) (2025) (2025) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.355 0.390 0.345 0.373 0.370 0.396 0.373 0.399 0.386 0.405 0.372 0.392 0.372 0.401 0.377 0.397 0.411 0.435 0.389 0.412 0.379 0.403 0.379 0.419
192 0.398 0.417 0.372 0.396 0.403 0.417 0.414 0.420 0.430 0.435 0.408 0.415 0.413 0.430 0.409 0.425 0.409 0.438 0.440 0.443 0.427 0.435 0.420 0.444
336 0.418 0.431 0.389 0.412 0.420 0.432 0.442 0.446 0.450 0.452 0.438 0.434 0.438 0.450 0.431 0.444 0.433 0.457 0.523 0.487 0.440 0.440 0.458 0.466
720 0.430 0.456 0.410 0.443 0.442 0.463 0.455 0.467 0.495 0.487 0.450 0.463 0.483 0.483 0.457 0.477 0.501 0.514 0.521 0.495 0.473 0.494 0.474 0.488

E
T

T
h2

96 0.272 0.330 0.276 0.340 0.280 0.343 0.287 0.349 0.292 0.347 0.279 0.336 0.270 0.342 0.274 0.337 0.728 0.603 0.334 0.370 0.300 0.364 0.337 0.380
192 0.333 0.376 0.331 0.371 0.329 0.382 0.348 0.393 0.348 0.384 0.345 0.380 0.349 0.387 0.348 0.384 0.723 0.607 0.404 0.413 0.387 0.423 0.415 0.428
336 0.357 0.398 0.373 0.402 0.370 0.412 0.383 0.423 0.372 0.407 0.378 0.408 0.367 0.410 0.377 0.416 0.740 0.628 0.389 0.435 0.490 0.487 0.389 0.457
720 0.396 0.433 0.404 0.431 0.420 0.450 0.407 0.444 0.424 0.444 0.437 0.455 0.401 0.436 0.406 0.441 1.386 0.882 0.434 0.448 0.704 0.597 0.483 0.488

E
T

T
m

1 96 0.282 0.332 0.286 0.334 0.290 0.348 0.292 0.346 0.287 0.342 0.290 0.335 0.293 0.345 0.289 0.343 0.314 0.367 0.340 0.378 0.300 0.345 0.463 0.463
192 0.325 0.357 0.307 0.358 0.332 0.368 0.327 0.365 0.331 0.371 0.337 0.363 0.335 0.372 0.329 0.368 0.374 0.410 0.392 0.404 0.336 0.366 0.575 0.516
336 0.359 0.379 0.354 0.390 0.354 0.386 0.365 0.386 0.358 0.384 0.374 0.384 0.368 0.386 0.362 0.390 0.413 0.432 0.423 0.426 0.367 0.386 0.618 0.544
720 0.407 0.412 0.433 0.445 0.401 0.417 0.427 0.419 0.412 0.416 0.428 0.416 0.426 0.417 0.416 0.423 0.753 0.613 0.475 0.453 0.419 0.416 0.612 0.551

E
T

T
m

2 96 0.160 0.244 0.172 0.265 0.164 0.254 0.164 0.254 0.168 0.262 0.164 0.250 0.165 0.256 0.165 0.255 0.296 0.391 0.189 0.265 0.164 0.255 0.216 0.309
192 0.217 0.285 0.228 0.306 0.238 0.300 0.226 0.300 0.224 0.295 0.219 0.288 0.225 0.298 0.221 0.293 0.369 0.416 0.254 0.310 0.224 0.304 0.297 0.360
336 0.273 0.322 0.281 0.345 0.278 0.331 0.276 0.331 0.274 0.330 0.267 0.319 0.277 0.332 0.276 0.327 0.588 0.600 0.313 0.345 0.277 0.337 0.366 0.400
720 0.355 0.373 0.403 0.424 0.359 0.387 0.358 0.388 0.367 0.385 0.361 0.377 0.360 0.387 0.362 0.381 0.750 0.612 0.413 0.402 0.371 0.401 0.459 0.450

W
ea

th
er 96 0.145 0.183 0.151 0.203 0.151 0.202 0.147 0.199 0.157 0.207 0.148 0.195 0.147 0.198 0.150 0.200 0.143 0.210 0.168 0.214 0.170 0.230 0.229 0.298

192 0.190 0.228 0.195 0.246 0.195 0.244 0.194 0.245 0.200 0.248 0.191 0.235 0.191 0.242 0.191 0.239 0.195 0.261 0.219 0.262 0.216 0.275 0.265 0.334
336 0.240 0.269 0.247 0.288 0.242 0.287 0.243 0.282 0.252 0.287 0.243 0.274 0.244 0.280 0.242 0.279 0.254 0.319 0.278 0.302 0.258 0.307 0.330 0.372
720 0.309 0.321 0.352 0.366 0.317 0.340 0.310 0.329 0.320 0.336 0.318 0.326 0.316 0.331 0.312 0.330 0.335 0.385 0.353 0.351 0.324 0.367 0.423 0.418

E
le

ct
ri

ci
ty 96 0.131 0.226 - - 0.135 0.231 0.132 0.227 0.134 0.230 0.135 0.222 0.153 0.256 0.143 0.247 0.134 0.231 0.169 0.271 0.140 0.237 0.191 0.305

192 0.145 0.240 - - 0.149 0.243 0.149 0.243 0.154 0.250 0.157 0.253 0.168 0.269 0.158 0.260 0.146 0.243 0.180 0.280 0.154 0.250 0.203 0.316
336 0.162 0.256 - - 0.165 0.260 0.167 0.261 0.169 0.265 0.170 0.267 0.189 0.291 0.168 0.267 0.165 0.264 0.204 0.293 0.169 0.268 0.221 0.333
720 0.193 0.282 - - 0.206 0.297 0.203 0.292 0.194 0.288 0.211 0.302 0.228 0.320 0.214 0.307 0.237 0.314 0.206 0.293 0.203 0.300 0.259 0.364

So
la

r 96 0.166 0.207 - - 0.187 0.255 0.175 0.237 0.174 0.229 0.218 0.235 0.180 0.233 0.170 0.234 0.183 0.208 0.198 0.270 0.199 0.265 0.485 0.570
192 0.178 0.222 - - 0.194 0.265 0.198 0.259 0.205 0.270 0.196 0.220 0.201 0.259 0.204 0.302 0.208 0.226 0.206 0.276 0.228 0.282 0.415 0.477
336 0.184 0.224 - - 0.203 0.264 0.213 0.259 0.216 0.282 0.195 0.228 0.214 0.272 0.212 0.293 0.212 0.239 0.208 0.284 0.234 0.295 1.008 0.839
720 0.198 0.234 - - 0.209 0.269 0.222 0.269 0.211 0.260 0.208 0.237 0.218 0.278 0.215 0.307 0.215 0.256 0.232 0.294 0.243 0.301 0.655 0.627

Tr
af

fic

96 0.361 0.261 - - 0.388 0.269 0.391 0.277 0.363 0.265 0.392 0.271 0.369 0.256 0.370 0.262 0.526 0.288 0.595 0.312 0.395 0.275 0.593 0.365
192 0.382 0.268 - - 0.411 0.286 0.405 0.283 0.384 0.273 0.405 0.274 0.400 0.271 0.386 0.269 0.503 0.263 0.613 0.322 0.407 0.280 0.614 0.381
336 0.395 0.278 - - 0.425 0.284 0.416 0.290 0.396 0.277 0.424 0.282 0.407 0.272 0.396 0.275 0.505 0.276 0.626 0.332 0.417 0.286 0.627 0.389
720 0.431 0.288 - - 0.455 0.302 0.454 0.312 0.445 0.308 0.452 0.298 0.462 0.316 0.435 0.295 0.552 0.301 0.635 0.340 0.454 0.308 0.646 0.394

1st Count 22 23 5 6 3 0 0 0 0 0 1 2 1 2 0 0 1 1 0 0 0 0 0 0

Table 11: Full results for the classification task. ∗. in the Transformers indicates the name of ∗former.
We report the classification accuracy (%) as the result. Higher accuracies indicate better perfor-
mance. Red: the best, Blue: the 2nd best.

Datasets / Models
Classical methods RNN Transformers MLP CNN

DTW XGBoost Rocket LSTM LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. ETS. Flow. iTrans.DLinearLightTS. TiDE TCN TimesNetPatchMoE
(1994)(2016)(2020)(1997)(2018)(2022)(2017)(2020)(2021)(2022)(2021) (2022) (2022)(2022)(2022)(2024) (2023) (2022) (2023)(2019) (2023) (ours)

EthanolConcentration 32.3 43.7 45.2 32.3 39.9 31.1 32.7 31.9 31.6 30.8 31.6 32.7 28.1 31.2 33.8 28.1 32.6 29.7 27.1 28.9 35.7 32.8
FaceDetection 52.9 63.3 64.7 57.7 65.7 66.7 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 66.3 68.0 67.5 65.3 52.8 68.6 69.3
Handwriting 28.6 15.8 58.8 15.2 25.8 24.6 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 24.2 27.0 26.1 23.2 53.3 32.1 30.4

Heartbeat 71.7 73.2 72.2 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.6 75.1 75.1 74.6 75.6 78.0 77.2
JapaneseVowels 94.9 86.5 96.2 79.7 98.1 98.4 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.6 96.2 96.2 95.6 98.9 98.4 97.0

PEMS-SF 71.1 98.3 75.1 39.9 86.7 86.1 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 87.9 75.1 88.4 86.9 68.8 89.6 88.4
SelfRegulationSCP1 77.7 84.6 90.8 68.9 84.0 90.8 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 90.2 87.3 89.8 89.2 84.6 91.8 92.6
SelfRegulationSCP2 53.9 48.9 53.3 46.6 52.8 52.2 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 54.4 50.5 51.1 53.4 55.6 57.2 65.6
SpokenArabicDigits 96.3 69.6 71.2 31.9 100 100 98.4 97.0 100 99.6 100 100 100 100 98.8 96.0 81.4 100 95.0 95.6 99.0 99.8

UWaveGestureLibrary 90.3 75.9 94.4 41.2 87.8 85.9 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 85.9 82.1 80.3 84.9 88.4 85.3 88.8

Average Accuracy 67.0 66.0 72.5 48.6 71.8 70.9 70.3 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 70.5 67.5 70.4 69.5 73.6 74.11

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 12: Anomaly detection results. Higher Affiliated-F1 (F) and AUC-ROC (AUC) values indicate
better performance. Red: the best, Blue: the 2nd best.

Datasets CalIt2 Credit GECCO Genesis MSL NYC PSM SMAP SMD 1st Count

Metrics F AUC F AUC F AUC F AUC F AUC F AUC F AUC F AUC F AUC F AUC

Ocsvm [1999] 0.783 0.804 0.714 0.953 0.666 0.804 0.677 0.733 0.641 0.524 0.667 0.456 0.531 0.619 0.503 0.487 0.742 0.679 0 0

PCA [2003] 0.768 0.790 0.710 0.871 0.785 0.711 0.814 0.815 0.678 0.552 0.680 0.666 0.702 0.648 0.505 0.396 0.738 0.679 0 0

Isolation Forest [2008] 0.402 0.775 0.634 0.860 0.424 0.619 0.788 0.549 0.584 0.524 0.648 0.475 0.620 0.542 0.512 0.487 0.626 0.664 0 0

HBOS [2012] 0.756 0.798 0.695 0.951 0.708 0.557 0.498 0.124 0.680 0.574 0.675 0.446 0.658 0.620 0.509 0.585 0.629 0.626 0 1

Autoencoder [2014] 0.587 0.767 0.561 0.909 0.823 0.769 0.854 0.931 0.625 0.562 0.689 0.504 0.707 0.650 0.463 0.522 0.120 0.774 0 0

ATransformer [2022] 0.688 0.491 0.646 0.533 0.782 0.516 0.715 0.472 0.685 0.508 0.691 0.499 0.654 0.498 0.703 0.504 0.704 0.309 1 0

FEDformer [2022] 0.788 0.707 0.683 0.825 0.900 0.709 0.893 0.802 0.726 0.561 0.691 0.725 0.761 0.679 0.658 0.474 0.782 0.650 0 1

DCdetector [2023] 0.673 0.527 0.610 0.504 0.671 0.555 0.776 0.507 0.683 0.504 0.698 0.528 0.662 0.499 0.701 0.516 0.675 0.500 0 0

NLinear [2023] 0.757 0.695 0.742 0.948 0.882 0.936 0.829 0.755 0.723 0.592 0.819 0.671 0.843 0.585 0.601 0.434 0.844 0.738 0 0

DLinear [2023] 0.793 0.752 0.738 0.954 0.893 0.947 0.856 0.696 0.725 0.624 0.828 0.768 0.831 0.580 0.616 0.397 0.841 0.728 0 0

TimesNet [2023] 0.794 0.771 0.744 0.958 0.897 0.964 0.864 0.913 0.734 0.613 0.794 0.791 0.842 0.592 0.638 0.453 0.833 0.766 0 0

Crossformer [2023] 0.789 0.798 0.720 0.951 0.897 0.770 0.865 0.755 0.733 0.587 0.692 0.679 0.789 0.654 0.627 0.383 0.839 0.710 0 0

PatchTST [2023] 0.660 0.808 0.746 0.957 0.906 0.949 0.856 0.685 0.723 0.637 0.776 0.709 0.831 0.586 0.606 0.448 0.845 0.736 0 0

ModernTCN [2024] 0.780 0.676 0.744 0.957 0.899 0.954 0.833 0.676 0.726 0.633 0.769 0.466 0.825 0.592 0.635 0.455 0.840 0.722 0 0

iTransformer [2024] 0.812 0.791 0.713 0.934 0.839 0.794 0.891 0.690 0.710 0.611 0.684 0.640 0.853 0.592 0.587 0.409 0.827 0.745 0 0

DualTF [2025] 0.751 0.643 0.663 0.703 0.701 0.714 0.810 0.937 0.588 0.585 0.708 0.633 0.725 0.600 0.674 0.478 0.679 0.631 0 0

CATCH [2025] 0.835 0.838 0.750 0.958 0.908 0.970 0.896 0.974 0.740 0.664 0.994 0.816 0.859 0.652 0.699 0.504 0.847 0.811 2 2

PatchMoE [ours] 0.842 0.861 0.754 0.959 0.914 0.979 0.903 0.862 0.746 0.641 0.973 0.833 0.850 0.645 0.669 0.489 0.868 0.831 6 5

Five tokens of ETTh1 in Forecasting

Channel 1 Channel 2 Channel 3 Channel 4 R1 R2 R3 R4 R5

T1

T2

T3

T4

T5

0.081 0.418 0.378 0.102 0.021

0.339 0.111 0.102 0.351 0.097

0.058 0.004 0.503 0.017 0.418

0.309 0.067 0.122 0.427 0.075

0.001 0.011 0.559 0.047 0.382

Router weights of Layer 1

R1 R2 R3 R4 R5

T1

T2

T3
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(a) Router weights of different layers in Forecasting (ETTh1-input-96-predict-96).
Five tokens of ETTh1 in Imputation
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(b) Router weights of different layers in Imputation (ETTh1-mask-ratio-12.5%). Masked points are circled.

Figure 6: Router weights of different layers in ETTh1 (input-96), under tasks of Forecasting
(horizon-96), and Imputation (mask-ratio-12.5%). We select five tokens (T1–T5) from four channels
as examples to demonstrate the effectiveness of RNG-Router (with Nr = 5 routed experts (R1–R5)).
In Forecasting, the routing strategies keep consistent from Layer 1–3, forming three clusters to ca-
putre the temporal and channel correlations, i.e., T1 itself, {T2, T4}, and {T3, T5}, which mainly
relies on the shallow representations. In imputation, the routing strategies vary across layers, tuning
the shallow clusters, i.e., {T1, T3, T5}, and {T2, T4}, to deep clusters, i.e., {T1, T4, T5}, and {T2,
T3}, which relies more on deep representations.
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C MODEL ANALYSIS

C.1 REPRESENTATION ANALYSIS

As the core component in PatchMoE, the RNG-Router is designed for task-specific purposes. To
further evaluate its impact, we make a special representation analysis on this routing mechanism–
see Figure 6. We select five tokens from ETTh1 and track their routing weights across different
MoE layers under tasks of forecasting and imputation. Since advanced task-specific models tend
to implicitly utilize the shallow representations in forecasting (reflected in high CKA similarities),
and deep representations in imputation (reflected in low CKA similarities), our proposed PatchMoE
provides explict evidences of this capability. In Figure 6 (a), token T3 and T5, T2 and T4 are sim-
ilar, and T1 is a bit similar to T3. The routing weights across three MoE layers reflect that the
RNG-Router gradually achieves the clustering of tokens with similar shallow patterns, where tokens
in the same cluster share the same experts. On the other hand, the imputation task relies more on
high-level semantics in deep representations. It is observed that the RNG-Router gradually tunes
the routing weights in deeper layers and mines the appropriate high-level correlations among rep-
resentations. These evidences demonstrate that RNG-Router can effectively utilize the hierarchical
representations to boost the routing of time series tokens for distinct downstream tasks, which leads
to an elegant and general representation learning framework with task-specific capabilities.

C.2 FULL PARAMETER SENSITIVITY
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Figure 7: Parameter sensitivity studies of main
hyper-parameters in PatchMoE, including Patch
Size p, Length of Look Back Window T , num-
ber of Hidden Layers L, and number of Routed
Experts Nr.

We conduct more analytics of PatchMoE in
this section. We study the parameter sensi-
tivity of PatchMoE–see Figure 7. Figure 7a
shows that PatchMoE keep stable performance
under different patch sizs, and we often choose
16 and 24 as common configurations. As the
Look Back Window extends–see Figure 7b, the
forecasting performance keeps consistent im-
provement, showing scability. Figure 7c and
Figure 7d show the influences of MoE layers
and routed experts, which determine model’s
capability of modeling the task-specific tem-
poral and channel correlations. Results show
that more MoE layers and routed experts leads
to larger model capacity on large datasets like
Solar and Traffic, but may cause over-fittling
dilemma in small datasets like ETTh1 and
ETTm2. To make accruacy and efficiency meet,
we choose L = 3 and Nr = 10 as the common
setting, and set 3 as the Top-K number. We also
set Ns = 1 shared expert to extract the com-
mon patterns.

D FULL ABLATIONS

We list the full results of ablation studies in Table 13. It is observed that each component is very im-
portant. Without the RNG-Router, the traditional router cannot utilize the task-specific information
across hierarchical representations, causing performance crash. Without Shared Experts, the model
lacks capacity and performs poorly at large datasets like Solar and Traffic. Without Temporal &
Channel Load Balancing Loss, the model also cannot well model the intricate temporal and channel
correlations.
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Table 13: Full ablation studies on key components of PatchMoE, including RNG-Router, Shared
Experts, and Temporal & Channel Load Balancing Loss.

Models w/o RNG-Router w/o Shared Experts w/o Loss PatchMoE

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.368 0.394 0.358 0.393 0.357 0.392 0.355 0.390
192 0.425 0.441 0.402 0.418 0.404 0.420 0.398 0.417
336 0.432 0.439 0.437 0.446 0.420 0.433 0.418 0.431
720 0.443 0.462 0.450 0.477 0.431 0.460 0.430 0.456
avg 0.417 0.434 0.412 0.434 0.403 0.426 0.400 0.424

E
T

T
m

2

96 0.171 0.262 0.167 0.254 0.163 0.247 0.160 0.244
192 0.217 0.286 0.220 0.287 0.223 0.291 0.217 0.285
336 0.289 0.336 0.283 0.331 0.275 0.326 0.273 0.322
720 0.362 0.379 0.359 0.378 0.365 0.379 0.355 0.373
avg 0.260 0.316 0.257 0.313 0.257 0.311 0.251 0.306

So
la

r

96 0.175 0.217 0.169 0.211 0.168 0.209 0.166 0.207
192 0.198 0.223 0.183 0.228 0.183 0.228 0.178 0.222
336 0.205 0.229 0.197 0.232 0.188 0.227 0.184 0.224
720 0.210 0.244 0.202 0.240 0.200 0.240 0.198 0.234
avg 0.197 0.228 0.188 0.228 0.185 0.226 0.182 0.222

Tr
af

fic

96 0.373 0.266 0.368 0.265 0.376 0.272 0.361 0.261
192 0.386 0.269 0.420 0.294 0.392 0.279 0.382 0.268
336 0.396 0.275 0.432 0.298 0.405 0.288 0.395 0.278
720 0.435 0.295 0.465 0.313 0.437 0.299 0.431 0.288
avg 0.398 0.276 0.421 0.293 0.403 0.285 0.392 0.274
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