
SRL: Scaling Distributed Reinforcement Learning to
Over Ten Thousand Cores

Wei Fu 1 2 * Zhiyu Mei 1 2 * Guangju Wang 2 Huanchen Zhang 1 2 Yi Wu 1 2

Abstract
The ever-growing complexity of reinforcement
learning (RL) tasks demands a distributed sys-
tem to train intelligent agents by efficiently pro-
ducing and processing a massive amount of data.
In this paper, we propose a comprehensive com-
putational abstraction for RL training tasks and
introduce a scalable, efficient, and extensive RL
system called ReaLly Scalable RL (SRL), featur-
ing a novel architecture that separates three ma-
jor computation components in RL training. Our
evaluation demonstrates that SRL outperforms
a popular open-source RL system RLlib (Liang
et al., 2017) in training throughput. Moreover, to
assess the learning performance of SRL, we con-
duct a benchmark on a large scale cluster with 32
Nvidia A100 GPUs, 64 Nvidia RTX 3090 GPUs
and more than 12k CPU cores, reproducing the
results of industrial production system from Ope-
nAI, Rapid (Berner et al., 2019) in the hide-and-
seek environment (Baker et al., 2019). The results
show that SRL is capable of achieving up to 5
times training speedup compared to published re-
sults in Baker et al. (2019).

1. Introduction
Reinforcement Learning (RL) is a prominent subfield of ma-
chine learning that trains intelligent decision-making agents
to maximize a cumulative reward signal, which has been a
popular paradigm leading to a lot of AI breakthroughs (Sil-
ver et al., 2016; Berner et al., 2019; Vinyals et al., 2019).
As RL tasks getting more and more complex, training a
strong neural network policy requires millions to billions
of trajectories. Simply generating such a massive amount
of data sequentially would take hundreds or even thousands

*Equal contribution 1Institute for Interdisciplinary
Information Sciences, Tsinghua University, China 2

Shanghai Qi Zhi Institute, China. Correspondence to:
Zhiyu Mei <meizy20@mails.tsinghua.edu.cn>, Wei Fu
<fuwth17@gmail.com>, Yi Wu <jxwuyi@gmail.com>.

Work presented at the ES-FoMo Workshop at ICML 2023.

of years. Therefore, building a system that can parallelize
the data collection process and perform efficient RL train-
ing over the massive trajectories becomes a fundamental
requirement for applying RL to real-world applications.

Numerous open-source libraries or frameworks are avail-
able to facilitate efficient RL training (Liang et al., 2017;
Espeholt et al., 2019; Hoffman et al., 2020). However, we
have identified several limitations in these systems that hin-
der their abilities to train RL agents efficiently in various
scenarios. First, existing open-source systems have made
unnecessary assumptions about computing resources, such
as types and physical locations of hardware accelerators,
making their architectures only efficient in corresponding
circumstances. Second, their implementations lack sup-
port for multi-node multi-GPU training, which can hinder
efficient RL training in complex tasks that require a sophis-
ticated policy and a large batch size. Third, prior works
primarily focus on small- to medium-scales, resulting in
simplistic implementation details with inadequate consider-
ations for performance optimization.

To address the aforementioned challenges, we present a
novel abstraction on the dataflows of RL training, which
effectively unifies training tasks in diverse circumstances
into a simple framework. At a high level, we introduce the
notion of “workers” to represent all computational and data
management components, each of which hosts distinct “task
handlers” such as environments or RL algorithms. Work-
ers are interconnected by “streams” and supported by “ser-
vices”. Based on such a framework, we propose a scalable,
efficient, and extensive RL system, which we have named
SRL (ReaLly Scalable RL), that can be highly efficient in
a wide range of scenarios, ranging from local machines to
large, customized clusters featuring heterogeneous compu-
tation resources. SRL encompasses three primary types of
workers: actor workers, policy workers and trainer workers,
corresponding to three major computational components
in RL training tasks. To minimize communication over-
head, data transfer between workers is facilitated by infer-
ence streams and sample streams, which can utilize either
network sockets or local shared memory. After each train-
ing step, updated parameters are pushed to the parameter
database and periodically broadcasted to policy workers by
the parameter service.

1

SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores

The architecture of SRL promotes complete decoupling of
workers, thereby allowing for elastic scheduling and find-
ing an optimal configuration on a customized cluster with
heterogeneous hardware resources. This flexible approach
enables the allocation of specific resources, such as CPUs
or GPUs with varying computation powers, based on the
requirements of each task handler.

We assessed the effectiveness of SRL on a diverse collec-
tion of RL environments. First, through comparison with a
popular open-source RL system RLlib (Liang et al., 2017),
we demonstrated that SRL can achieve significantly higher
training throughput and resource efficiency in a distributed
setting. Second, we conducted a benchmark of the system’s
learning performance in terms of both sample efficiency and
wall-clock time. To the best of our knowledge, SRL is the
first academic distributed RL system capable of reproduc-
ing the results of OpenAI’s industrial production system,
Rapid (Berner et al., 2019), on the hide-and-seek environ-
ment (HnS) (Baker et al., 2019), and even obtaining up to a
3∼5x training speedup.

2. System Architecture
2.1. High-Level Design of SRL

To address the limitations of previous designs, we propose a
more general computation abstraction of RL training tasks.
SRL is composed of multiple interconnected “workers” that
host distinct “task handlers”, such as environments and RL
algorithms. These workers are connected via data “streams”
and supported by background “services”. We illustrate the
functionality of each component of SRL in Fig. 1. Specifi-
cally, SRL incorporates three core types of workers: actor
worker, policy worker, and trainer worker, which are respon-
sible for the three pivotal workloads in RL training tasks,
i.e. environment simulation, policy inference and training.
Actor workers simulate environments — they produce re-
wards and next-step observations based on received actions.
Policy workers perform batched forward propagation of the
neural policy to generate actions given observations. Trainer
workers run stochastic gradient descent steps given training
samples to update the policy. Actor workers post inference
requests containing observations to policy workers, and pol-
icy workers respond by the generated actions. We abstract
this client-server communication pattern as inference stream.
In parallel with environment simulation, actor workers accu-
mulate observation-action-reward tuples in the local buffer
and periodically sends them to trainer workers. We abstract
this push-pull communication pattern as sample stream. Af-
ter each training step, the updated parameter is pushed to a
parameter server, which handles pull requests from policy
workers for parameter synchronization. All workers in SRL
can be independently scheduled and distributed across mul-
tiple machines with heterogeneous resources, connected by

most efficient interfaces available (See Fig. 2).

In Sec. 2.2, we will provide a detailed description of each
system component and explain how SRL attains scalability,
efficiency, and flexibility as an integrated system.

2.2. System Components

2.2.1. ACTOR WORKER AND POLICY WORKER

Actor workers host environments to handle the execution
of black-box environment programs. Environment simula-
tion is usually self-contained within each actor, making it
straightforward to be massively parallelized given sufficient
computation resources. On the other side, policy workers
host RL agents (or policies) and provide batched inference
service for actor workers. They can effectively utilize GPU
devices for accelerated neural policy forward propagation.

Environment simulation is usually divided into episodes.
In the beginning of each episode, an actor worker resets
its environment and gets the first observation. Then before
every environment step, each actor worker sends out the
observation of the last step (or the initial reset) and requests
an action from policy workers to continue to the next step.

Policy workers flush received inference requests from multi-
ple actor workers, compute forward passes on policy models
with batched observations, and respond them with output
actions. To keep policy models up-to-date, policy workers
also need to pull parameters from parameter servers once
in a while. Data transmission, parameter synchronization,
and neural network inference are handled in three different
threads.

Our implementation of policy worker also supports a local
CPU mode, which we call inline inference. In this case,
inference stream module will ensure direct data transmission
between an actor and its associated local policy worker with
proper batching and without using the network.

2.2.2. TRAINER WORKERS

Trainer workers are responsible for computing gradient de-
scent iterations. They receives samples from actor workers.
Each trainer worker is embedded with a buffer to store
samples waiting for being fetched into GPU. Before every
iteration of gradient descent, a trainer worker aggregates a
batch of samples from data buffer and load them into its
GPU device. Jobs on CPU and GPU are separated into two
threads.

In SRL, we support multi-GPU training across nodes. By
our multi-trainer design, each trainer worker is assigned to
exactly one GPU device, which means one trainer worker is
a minimal unit for training computations.

Note that policy models in RL are usually small in size and

2

SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores

Figure 1: Core components of SRL. Blue arrows shows dataflow between workers and data streams. Blue boxes represent
workers, which are responsible for computational workloads. Orange boxes represent data streams, represent communication
between workers. Grey box represent storage, which is parameter server in our context.

CPU Node 1 CPU Node 2

Low-power
GPU Node

High-power
GPU Node

GPUCPU

CPUCPU

CPUGPU

Inference Stream Sample Stream Network Shared Memory

Figure 2: Distributed workload of SRL that can fully utilize
all heterogenneous computation resources.

capable of fitting in a single GPU, so model parallelization
is not required in most applications. Hence, we adopt single-
program multi-data (SPMD) paradigm for our multi-trainer
design. For a large batch of samples, we evenly distribute
samples to multiple trainers, every one of which holds a
copy of the same policy model. Each trainer computes gra-
dient using their own copy, and synchronize the gradients to
update the final policy model at the end of every training iter-
ation. Trainer workers use PyTorch DistributedDataParallel
(DDP) (Li et al., 2020) as the backend that communicate
trainers and synchronize the gradients.

Additionally, there are circumstances where a single trainer
worker may not be able to fully utilize the computing power
of a GPU. To prevent unnecessary waste of computing pow-
ers, we allow other workers (e.g. policy workers) to share
one GPU with a trainer worker.

2.2.3. SAMPLE STREAMS AND INFERENCE STREAMS

In SRL, we identify two primitive types of data transmis-
sions between workers. One is exchanging observations
and actions between actor workers and policy workers. The
other is sending samples from actor workers to trainer work-
ers. Corresponding to the two types of data transmissions,
we develop inference streams and sample streams, which
have different data transmission patterns. Inference streams

need to be duplex because actor workers send inference
requests and policy workers are required to reply. Mean-
while, sample streams are simplex. Only actor workers send
training samples to trainer workers, and trainer workers do
not reply.

For network transfer, we implement inference stream as a
pair of request-replay sockets and sample stream as a pair
of push-pull sockets. For local shared-memory transfer, we
instantiate inference stream as a block of pinned shared
memory, i.e., each client is assigned to exactly one slot
for read and write, and sample stream as a well-designed
shared-memory FIFO queue. Different data streams estab-
lish independent and perhaps overlapped communications
between groups of workers to ensure data from different
policies never contaminate each other.

3. Experiments
This section presents an evaluation of the SRL by assess-
ing its training throughput and learning performance. We
employ Proximal Policy Optimization (PPO) (Schulman
et al., 2017) as our primary choice of the RL algorithm.
Experiments are evaluated in a large-scale cluster with fol-
lowing settings1: 4 nodes with 64 physical CPU cores and
8 Nvidia A100 GPUs + 64 nodes with 128 physical CPU
cores and and an Nvidia 3090 GPU. Each node in the clus-
ter had 512GB DRAM and are connected to each other by
100 Gbps intra-cluster network. Storage for the cluster was
facilitated through NFS and parameter service, available on
all nodes.

3.1. Training Throughput

We compared performance of SRL with RLlib (Liang et al.,
2017) in distributed settings. The metric we use for evalua-

1All physical cores have hyperthreading enabled and count as
2 logical cores. In this section, if not emphasized, the term “CPU
cores” will be referring to logical CPU cores.

3

SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores

Table 1: Training throughput of SRL and RLlib with 8 A100 GPU
trainers. # CPU Cores (peak): CPU cores used for training sample
generation when trainers reaches peak performance.

Atari Deepmind Lab gFootball SMAC

SRL(FPS) 643916 741396 89132 17053
CPU Cores (Peak) 800 1600 3200 1280

SRL(FPS) 150288 65768 18988 4943
CPU Cores 96 160 700 200

RLlib(FPS) 65585 34274 5802 2713
CPU Cores (Peak) 96 160 700 200

tion is training environment frames per second (FPS), which
refers to the number of environment frames consumed by
all trainer workers per second.

We run experiments on a set of academic environments, in-
cluding Atari 2600 games (game Pong), Google Research
Football (scenario 11 vs 11), StarCraft Multi-Agent Chal-
lenge (map 27m vs 30m), and Deepmind Lab (scenario
watermaze), each of which possesses distinct characteris-
tics in terms of observation type, speed, memory, etc. In
Atari and DMLab environments, we adopt a traditional 4-
frameskip setting, meaning that number of environment
frames is 4 times actual training sample steps. We utilized 8
Nvidia A100 GPUs as trainer devices on the same machine
with actors across different machines. For RLlib, we grad-
ually increased the number of CPU cores until the trainers
were fully occupied, and adding more CPU cores would
not increase the overall throughput. We then record the
number of CPU cores used and run the same configuration
for SRL. Further, we also evaluated the highest FPS number
that SRL is capable of reaching with 8 trainer workers. The
results, presented in Table 1, demonstrate that, compared to
RLlib, SRL achieved 6.3x to 21.6x higher maximal perfor-
mance, and 1.4x to 3.3x performance when using the same
numbers of CPU cores. We remark that trainer workers of
SRL can effectively utilize training samples generated by
much more CPU cores compared to RLlib’s single-endpoint
multi-threaded trainer. Moreover, actor workers in SRL
are capable of generating more training samples with GPU-
accelerated inference and environment rings. As a result,
the overall performance of SRL dominates RLlib.

3.2. Learning Performance

While quantifying the training throughput of SRL has
yielded valuable insights into its efficiency and scalabil-
ity, it is equally crucial to evaluate its ability to develop
intelligent agents (i.e., learning performance) in a realistic
and challenging environment. In this context, the hide-and-
seek (HnS) environment (Baker et al., 2019) emerges as an
appealing choice. Due to the complexity of this task, Baker
et al. (2019) employed the OpenAI Rapid system (Berner
et al., 2019) for training, which makes it permissive for the

research community to reproduce the results.

(a) HnS environment.

1 2 3 4

(b) Reward over time in HnS.

Figure 3: (a) A snapshot of HnS. (b) Rewards in HnS. Agent
behavior evolves over four stages: running and chasing, box
lock, ramp use, and ramp lock.

x1 x2 x4
Experiment Scale

10
25

50

100

Ti
m

e
(H

ou
rs

) Rapid
SRL CPU inf.
SRL GPU inf.

x1 x2 x4
Experiment Scale

0

20

40

Fr

am
es

 (1
e9

)

Figure 4: Time/data required to reach stage four in HnS.

We conduct experiments in the distributed setting using both
inline CPU inference (denoted as CPU Inf.) and remote
GPU inference (denoted as GPU Inf.). In our experiment,
we present the training time and data volume required to
achieve the ramp lock stage in HnS, as shown in Figure 4.
Our results reveal that SRL is up to 3x faster than the Rapid
system with the same architecture (CPU Inf.), while GPU
Inf.can achieve up to 5x acceleration with further reduced
time and environment interactions. We attribute the im-
provement in training efficiency to two reasons. First, our
system design is more efficient and has a higher FPS than
Rapid. Second, our flexible system design and fine-grained
optimizations ensure that the efficiency of the RL algorithm
is less affected by various system-related factors like net-
work latency and out-of-date data, which leads to improved
sample efficiency even with the same RL algorithm.

4. Conclusion
This paper presents a novel perspective on the dataflows
of RL training, and proposes a scalable, efficient and ex-
tensive RL system named SRL. In our experiments, results
show that SRL outperforms RLLib (Liang et al., 2017) in
a distributed setup. We also show that SRL is efficient by
comparing learning performance to OpenAI Rapid (Berner
et al., 2019) in Hide-and-seek environment (Baker et al.,
2019).

4

SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores

References
Baker, B., Kanitscheider, I., Markov, T. M., Wu, Y., Powell,

G., McGrew, B., and Mordatch, I. Emergent tool use from
multi-agent autocurricula. CoRR, abs/1909.07528, 2019.
URL http://arxiv.org/abs/1909.07528.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak,
P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S.,
Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pa-
chocki, J., Petrov, M., de Oliveira Pinto, H. P., Raiman,
J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S.,
Sutskever, I., Tang, J., Wolski, F., and Zhang, S. Dota
2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019. URL http://arxiv.org/
abs/1912.06680.

Espeholt, L., Marinier, R., Stanczyk, P., Wang, K.,
and Michalski, M. SEED RL: scalable and efficient
deep-rl with accelerated central inference. CoRR,
abs/1910.06591, 2019. URL http://arxiv.org/
abs/1910.06591.

Hoffman, M., Shahriari, B., Aslanides, J., Barth-Maron,
G., Behbahani, F., Norman, T., Abdolmaleki, A., Cas-
sirer, A., Yang, F., Baumli, K., Henderson, S., Novikov,
A., Colmenarejo, S. G., Cabi, S., Gülçehre, Ç., Paine,
T. L., Cowie, A., Wang, Z., Piot, B., and de Freitas,
N. Acme: A research framework for distributed rein-
forcement learning. CoRR, abs/2006.00979, 2020. URL
https://arxiv.org/abs/2006.00979.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li,
T., Paszke, A., Smith, J., Vaughan, B., Damania, P., and
Chintala, S. Pytorch distributed: Experiences on acceler-
ating data parallel training. CoRR, abs/2006.15704, 2020.
URL https://arxiv.org/abs/2006.15704.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R.,
Gonzalez, J., Goldberg, K., and Stoica, I. Ray rllib:
A composable and scalable reinforcement learning li-
brary. CoRR, abs/1712.09381, 2017. URL http:
//arxiv.org/abs/1712.09381.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, jan 2016.
ISSN 0028-0836. doi: 10.1038/nature16961.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, Nov 2019. ISSN 1476-4687. doi: 10.1038/
s41586-019-1724-z. URL https://doi.org/10.
1038/s41586-019-1724-z.

5

http://arxiv.org/abs/1909.07528
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1910.06591
http://arxiv.org/abs/1910.06591
https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.15704
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z

