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ABSTRACT

We live in a world where machines with large language models (LLMs) and
deep reinforcement learning have shown sparks of super-human intelligence in
question-answering and playing strategic boardgames. At the same time, animals
continue to reign supreme in the sense of smell, a primitive form of intelligence.
Applying the former (deep learning) tricks on large datasets of hyperspectral hard-
ware and spectrometers may well lead to artificial noses that can detect the chem-
ical composition of a mixture. But it comes at the cost of interpretability!
Here, I propose a path that uses linear mixture models (LMMs) to build an engi-
neering theory of cognitive development for chemosensing. With creative mathe-
matical models, we can derive analytical expressions for the limits of chemosens-
ing and advance the statistical mechanics of learning.

1 INTRODUCTION

Look at Patron (in Figure 1), a dog that is energy-efficient, portable, and parts-per-trillion sensitive
to detect underground explosives by their chemical traces in the air. Machines such as spectrome-
ters used in analytical chemistry (check Table-1 of Sharma et al. (2023)), are no match for sniffer
dogs yet. In gas-phase spectrometry, the measured spectrum of a mixture of chemicals is often a
linearly weighted sum of a basis of chemical spectra. Similarly, for imaging spectrometers found in
microscopes and remote sensing satellites, the measurement at a pixel of the hyperspectral camera
is a linear combination of the spectra of materials located inside the area covered by the pixel. Now,
despite the mathematical simplicity of a linear mixture model (LMM), learning to unmix spectral
signals is challenging in practice due to the presence of sensor noise, photon noise, low concentra-
tions of target chemicals, and interference from a large number of background chemicals (Duarte
et al., 2014). Here, we shall build a cognitive theory for chemosensing to calculate some minimum
hardware requirements for dog-level performance. One day, this could lead to the development of
artificial noses with super-dog intelligence, learning to detect chemicals much faster than animals
and in a more interpretable way than chemometric classification using deep learning (Deshpande
et al., 2021; Hong et al., 2021a;b).

Figure 1: Patron, dog mascot of the State Emergency Service of Ukraine. (Wikimedia Commons)
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Table 1: Stages of chemosensing

Sensory Infer the number of chemicals in a set of mixtures
Preoperational Learn spectral representations of the chemicals
Concrete operational Estimate the concentration of a chemical in a mixture
Formal operational Interpret why a mixture is good or bad by reasoning from past examples
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Figure 2: The four stages of cognitive chemosensing. Chemical spectra are depicted abstractly by
objects of different shapes, so that a mixture of chemicals of varying concentration is a frame of
overlapping objects with varying intensity.

2 COGNITIVE THEORY OF CHEMOSENSING

Let us take inspiration from Jean Piaget’s theory of cognitive development (Piaget & Cook, 1952),
which Einstein is quoted to have called a discovery ”so simple that only a genius could have thought
of it”. Piaget experimented on children and formulated that the development of reasoning occurs
over four stages, a theory that is textbook knowledge for psychologists but lacks a mathematical
demonstration. Here, I adapt his stage theory to an abstract world of chemical mixtures (see
Table 1 and Figure 2). As a thought experiment, imagine a collection of Raman spectra measured
on plant leaves (Gupta et al., 2020). Now, there are likely more than 1000s of different kinds of
proteins, carbohydrates, fats, and micronutrients in that leaf whose pure spectra are linearly mixed
to result in the measured spectra. Not all chemicals can be objectified, especially those in ultra-low
concentrations or those with pure spectra similar to the pure spectra of high concentration chemicals.
Thus, the first stage is to infer the number of objectifiable chemicals in the collection of spectra. The
second stage is to infer a symbolic representation, i.e. the pure spectrum of each chemical whose
presence was inferred. The third stage is to quantitatively estimate the concentration of each known
chemical in the mixed spectra. The fourth stage is to scientifically explain the nutritional goodness of
a leaf given labelled examples. This kind of a problem formulation has been long awaited, as Svante
Wold (who coined the term chemometrics) said over 30 years ago (Geladi & Esbensen, 1990): ”In
this century, the most important thing we have learned is design. How to set up an experiment.
And in the next century, we may learn how to formulate a problem in a meaningful way. If you
consider that as a part of chemometrics, then it is the most important. But I think it resides outside
chemometrics. Problem formulation is important in all branches of science”. With this motivation,
we shall pioneer a path where LMM is what (if not, all) you need.
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LMM unmixing

Figure 3: Linearly mixed observations and their underlying chemical concentrations. All simula-
tions are done using Wolfram Language 13.1.

In our path, we shall commit to foundational and analytical theory instead of hunting for narrow-
scope empirical successes on real-world datasets. Hence, I propose that we build and validate the-
ories using synthetic datasets based on Algorithm 1 with the hardware parameters (M,N,R, S, T )
defined in the comments, the pure spectrum (⃗am) of a chemical (m) mathematically modelled
(based on intuition gained from observing signals at spectrabase.com) to be a random per-
mutation of a list of exponentially increasing numbers, and the chemical concentrations (pm(t) for
m = 1 : M ) sampled from uniform distributions of exponentially decreasing widths (because we
focus on a parts-per-trillion sensitivity). In Figure 3, we plot the calculated linearly mixed obser-
vations (s⃗(t) for t = 1 : T ) and the underlying chemical concentrations. This is a dataset for
LMM unmixing that is non-trivial, and yet small enough to embrace researchers with only access
to low-compute resources. The dataset and Wolfram Language code for our subsequent analysis, is
provided in the supplementary file. This would be the first ever dataset for linear unmixing at
https://paperswithcode.com/datasets. It would also be of interest to the interpretable
machine learning and unsupervised few-shot learning communities, which in my humble opinion,
are often fighting a pre-mature battle against highly nonlinear datasets such as image-net.org.

Algorithm 1 Simulate LMM given hardware parameters
1: Default parameters
2: M = 8 ▷ number of chemicals in the Mixture
3: N = 100 ▷ Number of sensor or spectral channels
4: R = 1010 ▷ dynamic Range of a pure spectrum
5: S = 10−12 ▷ Sensitivity of chemical concentration standard deviations
6: T = 9 ▷ number of samples over Time
7: procedure SYNTHETICLMM(M,N,R, S, T )
8: α = R1/(N−1)

9: β = S1/(M−1)

10: for m = 1 to M do
11: π⃗m = RandomPermutation(0 to N − 1)
12: a⃗m = απ⃗m ▷ Generate pure spectrum
13: end for
14: for t = 1 to T do
15: for m = 1 to M do
16: pm(t) = UniformRandomNumber(0, βm−1) ▷ Generate chemical concentration
17: end for
18: s⃗(t) = ΣM

m=1pm(t)⃗am ▷ Calculate signal intensity
19: end for
20: end procedure
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Let us now begin with the analysis of our model and dataset over the four stages.

2.1 INFER THE NUMBER OF CHEMICALS IN A SET OF MIXTURES

Inferring the chemical dimension M , just from the observations in Figure 3 is a classic problem
with a long history (Malinowski, 1977) of performing an eigenvalue cutoff of the sample covariance
matrix Q. However, this has to be done carefully. In particular, the observations have to be rescaled
to have a unit mean value at each sensory channel and large values for N and R are necessary for
the correct estimation of M = 8, as depicted in Figure 4. An analytic justification is sketched below.

Proof of eigenvalue cutoff in rescaled sample covariance matrix: Q( s⃗(t = 1 : T )/ ⃗̄s ) has the

elements qjk = Σt(sj(t)/s̄j−1)(sk(t)/s̄k−1)/(T−1)
T≫1
≈ (sjsk−s̄j s̄k)/(s̄j s̄k) where x̄ denotes

the mean value of x(t). In our model, s̄n = Σmp̄manm = Σmβm−1anm/2 and sjsk − s̄j s̄k =

ΣmΣm′(pmpm′ − p̄mp̄m′)ajmakm′ = Σm(p2m − p̄2m)ajmakm = Σmβ2m−2ajmakm/12. For
α → ∞, we can show that qjk ≈ 1/3 only for j = k = n with anm = R, otherwise qjk ≈ 0. For
N ≫ M , it is thus almost certain that there are exactly M non-zero elements in Q, which are all in
the diagonal.

Future work to evaluate methods for dimensionality estimation may also include noise added to the
signals produced by Algorithm 1. We may begin with old methods such as the Malinowski indi-
cator function, Akaike information criterion and minimum description length (Chang & Du, 2004);
then Hyperspectral signal identification by minimum error (HySime) (Bioucas-Dias & Nascimento,
2008), which is the only method to correctly infer the dimensionality of the Indian Pines hyperspec-
tral image segmentation dataset; and random matrix theory (Cawse-Nicholson et al., 2013) which
works better or worse than HySime depending on the nature of the correlated noise in the dataset.
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Figure 4: Eigenvalue decay plot of the sample covariance matrix of the observations (blue) and unit-
mean rescaled observations (yellow). In addition to the observations shown in Figure 3, two other
observations under different hardware constraints are considered.

2.2 LEARN SPECTRAL REPRESENTATIONS OF THE CHEMICALS

For the LMM, since there are MN +MT variables and NT equations, we get an overdetermined
system for T > MN/(N −M) (and thus for T = M + 1 if N > M(M + 1)). In principle, this
system can be solved consistently to get an accurate estimation of a⃗m. However, the Wolfram func-
tion repository’s default methods for nonnegative matrix factorization (NMF) (Lee & Seung, 1999)
and independent component analysis (ICA) (Herault & Jutten, 1986) did not converge to the pure
spectra for the observations in Figure 3 (using M = 8) and perform worse than principal component
analyis (PCA) based on the eigenvalues of the sample covariance matrix (see results in Figure 5).
This opens up a concrete playground to refine our mathematical understanding of ICA and
NMF. Analytic convergence laws may be reverse engineered with the intuition gained from simu-
lations, and the computational efficiencies over alternatives such as singular value decomposition,
pixel purity index, and maximum distance methods (Bajorski et al., 2004) need to be explored.

Note that, ICA can also be implemented as a neuromorphic signal processing method to directly
learn the ideal pseudo-inverse w⃗1:M . Ideally, w⃗m · a⃗m = 1 and the vector-sum Σ(w⃗m) = 0 to cancel
out the noise. Thus, when N ≫ M , we can expect that w⃗m ≈ a⃗m−Σ(a⃗m)/N

a⃗m ·⃗am−Σ(a⃗m)2/N . This can be

further simplified when N ≫ lnR, because Σ(⃗am) = Σnα
n−1 = RN/(N−1)−1

R1/(N−1)−1
≈ RN/ lnR and

a⃗m · a⃗m = Σnα
2(n−1) ≈ R2N/ lnR2.
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Figure 5: None of the existing methods are able to learn the pure (ideal) spectra, despite the existence
of its pseudo-inverse. Novel update rules for ICA and NMF are needed to solve this problem.

2.3 ESTIMATE THE CONCENTRATION OF A CHEMICAL IN A MIXTURE

A dot product of the observations (Figure 3 left) with an ideal pseudo-inverse spectrum (Figure
5 bottom) will give an estimate of the underlying chemical concentration (Figure 3 right). The
maximum absolute error in estimation due to floating-point arithmetic is found to be ∆max ≈ 10−15,
thus guaranteeing parts-per-trillion sensitivity.

Error scaling law: ∆max < N × Precision ×max s×maxw.

Using the simplification from Section 2.2 for w⃗m when N ≫ M and N ≫ lnR, we can ob-
tain maxw ≈ g(R) lnR

RN where g(R) ≡ max( 1−1/ lnR
1/2−1/ lnR , 1−R/ lnR

R/2−R/ lnR ). Points of interest are that
g(R ≫ 1) ≈ 2, g(R = e2) ≫ 1, min g(R) ≈ 0.9 at R ≈ 1.4, and g(R = 1 + ϵ) = 1. For M ≫ 1,
we obtain max s ≈ R + ΣM

m=2β
m−1Ea ≈ R(1 + M

ln 1/S lnR ); and for M ≪ lnR ln 1/S we have
max s ≈ R.

In our case, N = 100, Precision = 1.11 × 10−16 (for 64-bit float), max s ≈ 1010 and maxw ≈
2 ln 1010/1010/100 ≈ 4.6×10−11 yields ∆max < 5.1×10−15. This clears the way for future work
which may include an investigation of the limits of accurate estimation in the presence of noisy
observations. Note that matched subspace detectors (Scharf & Friedlander, 1994) are understood
with Gaussian noise, but spectral signals are often dominated by Poisson noise.

2.4 INTERPRET WHY A MIXTURE IS GOOD OR BAD BY REASONING FROM PAST EXAMPLES

Ideally, LMM unmixing results in the unsupervised learning of interpretable features that is out-
of-distribution generalizable (Ye et al., 2021). To establish this, we need to test convenient math-
ematical models to develop intuitions and use real-world open-access datasets to provide proof-of-
concepts. An empirical demo may even require the development of new hardware technology to
extend the linear dynamic range of its sensors.

Note that this final stage of learning can be compared to learning in the association-response lay-
ers of perceptrons (Rosenblatt, 1961). While the sensory-association layer of classical perceptrons
was untrained and randomly connected; here, the methods of Section 2.1 fix the number of asso-
ciation neurons and the methods of Section 2.2 fix the weights of the sensory-association layer.
Also the association neurons are linear, and the nonlinearity is only in the association-response lay-
ers. I recommend that we focus on datasets where the response units are binary, for example using
spectral measurements on the skin to detect skin diseases. But, of course this approach can also
be extended for non-binary datasets such as predicting pH levels of farmland patches using hyper-
spectral images (https://zindi.africa/competitions/geoai-challenge-estimating-soil-parameters-from-
hyperspectral-images), where interpretable learning may require much larger datasets to sample
across different chemical species that could result in the same pH.
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3 CONCLUSION

We have now perhaps the first mathematically tractable framework for cognitive development,
by a dogged focus on chemical mixture understanding, a primitive form of intelligence. Hope this
is complementary to other paths (LeCun, 2022) that focus on more advanced and autonomous intel-
ligence such as natural language understanding and motor development. Note that, apart from spec-
trometers, LMM theory is also applicable for the analysis of gene-expression microarrays (Bazot
et al., 2013) and gas-sensing material arrays (Persaud & Dodd, 1982). A friendly warning to new
entrants of the LMM world, it should not be confused with a linear mixed-effects model (Lippert
et al., 2011; Gałecki et al., 2013), which is popular in bioinformatics.
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