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ABSTRACT

Robotics is irreplaceable in driving social progress, enhancing productivity and
improving human life, and efficient task planning is the key to ensuring that robots
accurately perform complex tasks. Traditional world models based on physical
simulation or rule-based engines are limited by the high cost of environment mod-
eling and dynamic scene generalization capabilities. Although large language
models (LLMs), represented by GPT, have shown potential for generalized in-
telligence in natural language processing tasks and have made initial progress
in robotic task planning, their generalization ability as a world model for the
robotics domain has not been systematically verified. No study has yet answered
the question of whether LLMs can predict physical action outcomes through task
decomposition and environment imagery (rather than pure linguistic reasoning),
and how to assess their world modeling capabilities. In this paper, we propose
the Robotic Action Decomposition and Imagination (RADI) framework, which
combines the self-reflective capability of LLMs to improve the success rate of
task planning through the two core mechanisms of action decomposition and en-
vironment imagination. Specifically, RADI first gradually decomposes a complex
robot task into atomic action sequences, then imagines the execution results of
each action based on the environment state, and verifies whether it meets the task
expectations through the state changes. If the expectations are not met, it triggers
the self-reflective mechanism to re-optimize the action decomposition. The exper-
iments are conducted based on GPT-4 in the VirtualHome environment, and the
results show that RADI significantly improves the success rate of task planning,
and verifies the effectiveness of LLM as a world model in robotics.

1 INTRODUCTION

Robotics is of irreplaceable importance in promoting social progress, enhancing productivity, and
improving human life (Brooks, [1986). For example, the application of robots in the manufactur-
ing industry has greatly improved productivity and product quality (Gatla et al., |2007ab). Robot
task planning is a crucial step to ensure that robots can complete complex tasks efficiently and ac-
curately, and it enables robots to maximize their performance in various application scenarios by
analyzing, decomposing, and optimizing paths for tasks (Hanheide et al.l 2017} |Paxton et al., | 2019;
Galindo et al.| 2008}, Zhang et al. [2017). In the field of robot task planning, world models (Ha &
Schmidhuber}, 2018)) play a pivotal role. It is crucial to predict the outcome of actions, reduce the
cost of physical trial and error, and improve the safety of decisions. Traditional world models based
on physical simulation or rule engines have significant limitations since they rely heavily on accu-
rate environment modeling (Blumenthal et al., [2013} |Roth et al., 2003; Zhang & Faugeras| [1990), a
process that is costly and difficult to generalize to complex or dynamic scenarios.

Large Language Models (LLMs) (Zhao et al. 2023), represented by the GPT family of mod-
els (Floridi & Chiriatti, 20205 Lund & Wangl 2023; |Achiam et al., [2023) developed by OpenAl,
have achieved performance far beyond that of previous models on a wide range of tasks in natural
language processing (Baktash & Dawodil [2023)), and to some extent have shown the potential for ar-
tificial general intelligence (AGI) by going beyond the language model itself and understanding the
physical world (Bubeck et al., [2023)), and even more recently there has been some research to show
that LLMs can be effective in generating robot task plans. For example, the PROGPROMPT(Singh
et al., |2023) achieves a high success rate in the VirtualHome housework task using LLMs with
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program-like prompts. In addition, the RoboMatrix (Mao et al.| [2024) framework provides a skill-
centered hierarchical approach for scalable robot task planning and execution in the open world,
demonstrating generalization performance across new objects, scenarios, tasks, and robots.

However, previous approaches have limited large language models for task planning and have not
verified whether LLMs have the ability to generalize as world models in the robotics domain (Yao
et al., 2023 (Wu et al.| 2023} |Chalvatzaki et al., 2023; Wu et al., |2024). There are currently two
major research gaps in LLM as a world model for robotics task planning. The first is whether LLM
can predict the outcome of physical actions through environment imagination rather than purely
linguistic reasoning. The other is how to evaluate the world modeling ability of LLM.

In this paper, we propose the Robotic Action Decomposition and Imagination (RADI) framework.
Specifically, we first utilize LLM to achieve action decomposition by planning and progressively
decomposing a complex task into a series of atomic actions. Subsequently, we let the large model
perform environment imagination. Based on the current state of the environment, the LLM is asked
to predict the change in the state of the environment after the execution of each atomic action, and to
anticipate whether such a change in the state can meet the expectations of the task. In the event that
it does not meet the expectation, we can ask the LLM to re-perform the action decomposition, thus
improving the success rate of task planning through the reflection of the LLM itself. The experiment
conducted in VirturalHome (Puig et al., 2018)) shows an improvement in task planning success rate
that can be used as a measure of the LLM’s ability to act as a world model. The contribution of this
paper can be summarized as follows:

* We propose the RADI framework that consists of action decomposition and environmental
imagination, allowing the LLMs to break down complex robot tasks and predict the out-
comes of actions based on the current environmental state, as well as achieve environmental
imagination-driven error correction for action decomposition.

* We provide a systematic way to explore the potential of LLMs as world models in the field
of robot task planning, paving the way for more interpretable and reliable applications of
LLMs in robotic systems in a variety of environments.

* We conduct experiments on four public datasets in VirtualHome using GPT-4, one of the
state-of-the-art LLMs. Experimental results show the effectiveness of the RADI framework
to improve robot task planning, and LLMs can serve as the world model for robotics.

2 PRELIMINARIES

Robot task planning. Robot task planning is the process of allowing a robot, upon receiving
a command for a particular task, to generate a detailed executable plan in a given environment
to achieve the goal of the task (T'sarouchi et al.| [2016; Hanheide et al., 2017; |Paxton et al., [2019).
Specifically, given the task goal G, the observation O consisting of objects in the environment £ and
their relationships, and a set of all possible actions A = {a1, as, ..., a,} executable for the robot, a
task planning algorithm 7 aims to find an action sequence 7 to achieve the goal of the task. In other
word, T : (G, O, A) — . For example, if the goal G =“put one cupcake in microwave and switch
on microwave”, the observation O =“one cupcake is in fridge, one cupcake is in kitchencabinet”,
the possible action set A = {walk, open, ..., switchon}, then we aim to generate an action sequence
m = “walk to fridge, open fridge, grab cupcake,...,switchon microwave”.

3 METHODOLOGY

We propose the RADI framework, where we first let the LLM complete the decomposition of a
robot action sequence based on the task description and the observed environment state. Then, we
let the LLM be a world model, imagining the change of the environment state after the execution
of the action sequence to verify whether the action sequence can accomplish the corresponding
task. If LLM determines that the task cannot be accomplished, we let the LLM repeat the action
decomposition. The overall pipeline of the proposed framework is shown in Figure
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Figure 1: The overview of robot task planning pipeline of the proposed RADI framework.

3.1 ACTION DECOMPOSITION

The action decomposition module is independent of the followed imagination module and can be
implemented by any decomposition methods. In practice, to improve the efficiency of action de-
composition, we adopt a hierarchical task decomposition framework (Wu et al.| [2024) that reduces
the planning complexity of difficult tasks through an incremental decomposition strategy. Firstly, a
goal-oriented decomposition is adopted to decompose the overall task into a number of independent
sub-goals based on semantic associations; subsequently, environment observation is introduced at
the task execution layer, and each sub-goal is transformed into an actionable sequential task chain
through hierarchical prompt templates; and finally, at the action generation layer, each sub-goal is
parsed into specific action instructions by combining with the domain knowledge base, and the stan-
dardized action sequences are extracted by a pattern-matching algorithm. Formally, given task goal
G, observation O and the possible action set A, we use LLM to obtain the action sequence:

m = (a1, ag, ...,am) = LLM (G, 0, A). (1)

3.2 IMAGINATION VIA LLM SIMULATION

The imagination module aims to let LLM predict the execution result of an action sequence based on
the current environment state, focusing on the construction of a closed-loop inference mechanism.
Specifically, the complete action sequence is generated by the action decomposition module. In the
imagination step, the structured text description of the current environment state (including object
position relationship, status, etc.) is input into the LLM together with the action sequence. The
LLM is prompted to output two prediction results: (1) the natural language description of the action
effect (e.g., “after the robotic arm grasps the cup, the cup will be detached from the table and move
with the robotic arm”), and (2) whether the whole action sequence is feasible for task completion.
We use the entire sequence of actions rather than individual atomic actions, which allows the LLM
world model to imagine the state changes of the whole process rather than unilaterally considering
the effects of individual actions, as Figure [2]shows. This design also led to a significant reduction in
the time of inferences in the face of long action sequences.

We also design a multi-round iterative correction mechanism, i.e., if the LLM world model deter-
mines that an action sequence is infeasible, the system will automatically trigger a Self-Correction
Prompt, which requires the LLM to re-generate a new action sequence by combining the conflict
information. If the LLM still fails to pass the imagination after K times of action decomposition,
we regard it as an abstention instead of forcing the execution of this action sequence.
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Figure 2: An example with prompt and result of imagination in our RADI framework.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Environment. All experiments are performed in VirtualHome (Puig et al., [2018), a three-
dimensional household simulation platform that includes various rooms (e.g., kitchens, living rooms,
and bedrooms) and a wide array of interactive objects. VirtualHome offers a realistic yet con-
trolled setting, enabling systematic evaluation of GPT-4’s capacity for predicting physical outcomes.
Through successive iterations of action decomposition and outcome verification, our method as-
sesses whether GPT-4 can consistently produce valid, goal-aligned action sequences in an environ-
ment that closely mirrors everyday scenarios.

Datasets We exclusively utilize the In-Distribution dataset from LID [Li et al.| (2022}, which con-
tains tasks conforming to the original training distribution. By restricting our experiments to these
tasks, we establish a controlled testbed to evaluate how effectively GPT-4, under purely prompt-
based guidance, can decompose actions, anticipate their consequences, and validate state changes in
a household environment. Crucially, we do not employ additional in-context examples for GPT-4;
all performance results stem directly from the model’s inherent reasoning abilities and its capacity
to internalize and respond to carefully crafted prompts.

Large Language Models We adopt GPT-4 as the primary large language model for this study. Un-
like methods that rely on extensive fine-tuning, our framework remains purely prompt-based, lever-
aging GPT-4’s capacity for iterative task decomposition and environment “imagination.” Specifi-
cally, GPT-4 breaks down complex robotic tasks into atomic actions and predicts the resulting state
transitions without any parameter updates. This design rigorously tests GPT-4’s ability to infer
physical dynamics and assess the feasibility of each action in a simulated environment.

Evaluation Metrics We employ three complementary metrics as our exclusive means of evalua-
tion: Success Rate After Abstention (SRA), Abstention Rate (AR), and Overall Success Rate (OSR).
SRA is defined as the percentage of tasks successfully executed among those the system does not
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Figure 3: The performance of our RADI framework with varying repeat generation limit K.
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Figure 4: An example of failure without imagination, but success after imagination and correction.

abstain from, AR measures the proportion of tasks the system opts to skip, and OSR indicates the
fraction of all tasks that are ultimately completed. In our framework, a plan is deemed success-
ful only if it satisfies two critical criteria: (1) all actions can be executed in a logically consistent
manner, and (2) the resultant state transitions precisely align with the intended outcomes.

4.2 EXPERIMENTAL RESULTS

The results of our quantitative experiments are shown in Figure [3] An important finding is that
the tasks that pass the verification in the imagination module by the LLM world model have very
high success rates, and, unsurprisingly, as the repeat generation limit K increases, the percentage
of abstentions gradually decreases to 0, and the overall success rate shows an increasing trend. A
qualitative example is shown in Figure 4} Without imagination and correction, the generated action
sequence is missing the step of opening the cupboard and cannot complete the task, whereas after
imagination and correction, the correct and complete action sequence is generated.

5 CONCLUSION

In this paper, we explore the key challenge of utilizing LLM as a world model for robot task plan-
ning. We propose the RADI framework, which integrates action decomposition and imagination to
improve the success of robotic task planning. By progressively decomposing complex tasks into
atomic actions and modeling their outcomes through environment state change prediction, RADI
enables LLMs to self-reflect and iteratively improve action sequences. Experiments in the Virtual-
Home show the effectiveness of our framework.
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