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Abstract
Radiofrequency catheter ablation (RFCA) therapy is the first-line treatment for atrial fib-
rillation (AF), the most common type of cardiac arrhythmia globally. However, the pro-
cedure currently has low success rates in dealing with persistent AF, with a reoccurrence
rate of ⇠ 50% post-ablation. Therefore, deep learning (DL) has increasingly been applied
to improve and optimise RFCA treatment for AF. However, for a clinician to trust the
prediction of a DL model, the model’s decision process needs to be interpretable and have
biomedical relevance. This study explores DL interpretability in predicting the success
of RFCA strategies simulated using MRI-derived 2D left atrial (LA) tissue models. The
developed DL model had an AUC (area under the receiver operating characteristic curve)
of 0.78 ± 0.04 for predicting the success of the pulmonary vein isolation strategy, 0.923
±0.016 for a fibrosis-based (FIBRO) strategy and 0.77 ±0.02 for a rotor-based strategy
(ROTOR). Three feature attribution (FA) map methods were used to investigate inter-
pretability: GradCAM, Occlusions and LIME. GradCAM was found to have the highest
percentage of RFCA ablation lesions (known from 2D LA simulations, but unseen by DL
model) within informative regions within the FA maps (62% for FIBRO and 71% for RO-
TOR). Most of the ablation lesions coincided with informative regions of the FA maps (for
ROTOR and FIBRO), suggesting that the DL model leveraged structural features of MR
images to identify pro-arrhythmogenic regions to make its prediction. In the future, such
techniques can help predict the success of RFCA strategies from patient imaging data.
Keywords: Deep learning, Atrial fibrillation, Cardiac modelling, Interpretability, Medical
imaging.

1. Introduction

Atrial fibrillation (AF), the rapid, uncoordinated contraction of the atria, is a heart condi-
tion that a↵ects 33 million people worldwide - making it the most common type of cardiac
arrhythmia globally (Hart and Halperin, 2001; Chugh et al., 2014). Currently, the direct
cause of AF is unclear. However, there is evidence that ectopic electrical beats originating
from the pulmonary veins (PVs) can trigger AF (Chen et al., 1999). The triggers can then
generate re-entrant drivers (rotors) that sustain AF, and spatial fibrosis distributions in the
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left atria (LA) have been demonstrated to facilitate such drivers (Morgan et al., 2016; Roy
et al., 2020). One treatment for AF is radiofrequency catheter ablation (RFCA) therapy.
RFCA involves using induced heat from a rapidly alternating current in a catheter to ablate
(isolate or destroy) the arrhythmogenic area of atrial tissue that harbours triggers or ro-
tors, thus restoring sinus rhythm and the mechanical function of the heart (Townsend and
Sabiston, 2001). Presently, the success rate of RFCA is ⇠70% for paroxysmal AF - which
is relatively high (Oketani et al., 2012). However, the procedure is much less successful
when dealing with persistent AF, which has a reoccurrence rate of ⇠75% post-intervention.
Therefore, with the high reoccurrence rate of AF, there is a need for improvements within
RFCA (Wang et al., 2017; Yubing et al., 2018). Image-based computational modelling
has been used to understand the structure-function relationship that determines re-entrant
atrial drivers for AF with the aim of improving RFCA outcomes. As a result, computa-
tional modelling has been introduced to improve RFCA outcomes, ultimately leading to
the FIRM (Focal Impulse and Rotor Modulation) trial study. The FIRM trial study in-
vestigated ablating areas of the LA fostering phase singularities – showing AF reversal in
80.3% of the patients (Narayan et al., 2014). However, the procedure is still awaiting a
multi-centre study as the ablation strategy has not proven to be better than the pulmonary
vein isolation (PVI) ablation strategy (current gold standard) (Brachmann et al., 2019).
With the recent rise of artificial intelligence (AI), machine and deep learning (DL) have
been applied to patient medical imaging data and computational cardiac modelling with
the aim to develop e↵ective RFCA treatment. These applications of DL include predicting
AF reoccurrence post-RFCA and the origins of AF triggers and ablation sites (Kim et al.,
2020; Liu et al., 2020). However, DL is limited by its black-box nature. This is an issue
when considering European Union’s General Data Protection Regulation (GDPR), as any
algorithmic decision used in patient care requires an explanation for transparency. More-
over, clinicians have also argued that if AI can outperform human diagnosis, understanding
the AI model’s decision process will be beneficial in discovering new biological processes
and furthering medical knowledge (Watson et al., 2019).

1.1. Related Work

Mu↵oletto et al. were the first to apply DL to this problem and developed a convolu-
tional neural network (CNN) to predict suitable ablation strategies for a given patient,
using synthetic tissue-based atrial models with randomly distributed fibrotic patches. The
approach proved e↵ective (79% accuracy) and illustrated the proof-of-concept (Mu↵oletto
et al., 2019). Ultimately, this led to the approach being applied to MRI-derived data to
predict the patient-specific optimal RFCA strategy. As a result, the developed CNN had a
100% accuracy for classifying optimal fibrosis- (FIBRO) and rotor-based (ROTOR) strate-
gies success and 33% accuracy for the PVI ablation strategy (Mu↵oletto et al., 2021).

Currently, research in interpretability for DL AF management is minimal. For example,
one study by Alhusseini et al. used gradient-weighted class activation mapping (GradCAM)
to show that their feature attribution (FA) map closely replicated rules used by clinicians.
However, only one method was validated within this study, and a comparison between other
methods was not investigated. Furthermore, the study used spatial maps of the activation
phase derived from electrocardiogram data from a basket catheter. Hence, there has been
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no investigation into DL interpretability for models which use medical imaging data to make
explainable predictions for cardiac arrhythmias and anti-arrhythmic treatments (Alhusseini
et al., 2020).

1.2. Contributions

In this study, we will make the following novel contributions to the field of DL-based RFCA
outcome prediction:

1. We present a novel qualitative and quantitative comparison of established DL inter-
pretability methods for medical imaging and image-based cardiac modelling.

2. We propose a new quantitative metric to assess interpretability of FA maps for image-
based cardiac modelling.

3. We present the first investigation of DL interpretability methods for cardiac modelling
with medical imaging data.

2. Methods and Materials

2.1. Overview

In this study, we propose a DL model to 1) accurately predict the outcomes of RFCA therapy
based on biophysical modelling and simulations and 2) interpret the decision process of the
DL model. To achieve this, standardised 2D LA models were produced with patient-specific
distributions of fibrosis derived from late gadolinium-enhanced (LGE) MR imaging data.
Simulations of AF and its termination with RFCA were performed to predict the success of
multiple strategies, and the simulation results were compared with interpretability maps to
identify proarrhythmogenic locations. Three established interpretability approaches were
also compared qualitatively and quantitatively to interpret the CNN’s predictions.

Thus, this study simulates three RFCA strategies on patient-specific 2D LA tissue mod-
els. The latter is derived from the LGE MR images from which the LA and fibrosis have
been segmented.

2.2. Data Acquisition and Pre-processing

The datasets used in this study were derived from 122 LGE MRI patient scans: 86 datasets
with spatial resolution of 0.625x0.625x0.625 mm3 were acquired from the Atrial Segmen-
tation Challenge at the STACOM 2018 workshop; additionally, 36 LGE MRI images were
collected at St. Thomas’ Hospital London with resolution of 1.3x1.3x4 mm3 (specifically,
18 AF patients were scanned both pre-and post-intervention) (Xiong et al., 2021; Chubb
et al., 2018).

Generating 2D LA models with fibrosis first required manual segmentation of patient
LGE MRI data to produce 3D patient-specific endocardial LA surface meshes. The LGE
MR image intensities were then mapped to these models and the image intensity ratio
thresholding technique was applied to quantify and visualise LA fibrosis (Roy et al., 2020).
Finally, the 3D LA fibrosis maps were unwrapped using the LA standardised unfold mapping
technique to produce models in the 2D LA disk format for the DL network, as shown in
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Appendix 2 (Williams et al., 2017; Qureshi et al., 2020). Furthermore, to increase the size
of the dataset, synthetic 2D LA disks were generated by weighted-averaging the patient-
specific datasets to vary the fibrosis distribution and PVs. The creation of synthetic disks
consisted of three steps. First, 65 MRI images were extracted from the STACOM 2018
dataset and were each weighted by assigning a random weight (between zero to one) to all
voxels of a given image. Then the extracted fibrosis distribution was further augmented by
applying one or multiple a�ne transformations (translation, rotation and flipping). The
fibrosis threshold value and the types of transformation were randomly selected. Lastly,
the PVs were varied by assigning one of 6 di↵erent variants (which included changing PV
size and position) (Mu↵oletto et al., 2021). This resulted in a total of 199 synthetic 2D
LA tissue models in addition to the 122 patient-specific models, totalling 321 2D LA tissue
models.

2.3. Atrial Tissue Modelling and AF simulation

Equation (1) represents the Fenton-Karma semi-physiological model, which consists of three
ionic currents representing the overall ion current in the electrical dynamics of atria cells;
Ifi represents the fast inward current (Na+), Iso is the slow outward current (K+) and Isi
is the slow inward current (Ca+) (Fenton and Karma, 1998):

Iion = Ifi + Iso + Isi (1)

Equation (2) is the standard monodomain equation to describe electrical wave propa-
gation.

@Vm

@t
= r.DrVm � Iion

Cm
(2)

Here Vm is the membrane potential, Cm is the membrane capacitance, D is a tensor
that represents the di↵usion of the electrical coupling within the tissue. Equation (2) with
ion current determined in Equation (1) was solved using the forward Euler method with a
finite-di↵erence approximation of the Laplacian. Therefore, Equation (1) and Equation (2)
were solved using each 2D tissue disk as a spatial domain to simulate electrical waves
sustaining AF. Such waves in the form of rotors were generated using the standard cross-
field protocol at 28ms into the simulation (Tobón et al., 2014). The numerical integration
steps were 0.01 ms time step and 0.3 mm spatial step. Additionally, healthy tissue had
a D value of 0.1 mm2s�1 to match the physiological value of healthy myocardium tissue.
Meanwhile, fibrotic tissue had D value of 0.015 mm2s�1. The three most common ablation
strategies were simulated to terminate persistent AF: PVI, FIBRO and rotor-based ROTOR
RFCA strategies. The FIBRO strategy involved ablating the perimeter of the fibrotic tissue,
while PVI consisted of ablating the circumference of the PVs and Rotor ablated the phase
singularities of the electrical wave. The ablation strategy was deemed successful for a tissue
if AF was terminated within 2000 ms and less than 40% of the tissue was ablated (Mu↵oletto
et al., 2021). Therefore, using the stated simulation pipeline, the success of the three RFCA
strategies was determined for AF simulations in the 2D LA tissues (real patient data and
synthetic). Furthermore, since multiple strategies can be successful/unsuccessful for a given
2D LA tissue, the classification task was multi-label.
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2.4. Deep Learning

We employed the convolutional neural network with hyperparameters based on the study by
Mu↵oletto et al. as the basis of our interpretability framework (Mu↵oletto et al., 2021). Four
convolutional layers of 32x32 filters followed by Rectified Linear Unit (ReLU) activation.
The convolution block was followed by a Max pooling of pool size two and three linear
layers (2048, 128 and 3 units, respectively) and had ReLU activation. A Dropout layer
followed this at a rate of 0.8 and a sigmoid function (Paszke et al., 2019). Since we address
a multi-label classification problem (i.e., multiple ablation strategies), we modified the loss
function to be a mean-squared error tailored to perform multi-label classification for the
three ablation strategies.

MSE(yscore, y) =

PN
i=1 (y

i
score � yi)2

N
(3)

Equation (3) is the mean-squared error function formulation, where yscore is the pre-
dicted class score array and y is the RFCA strategy success ground truth (where 1 = success
and 0 = unsuccessful). Meanwhile, N represents the number of classes/strategies (three in
this study) and i is the index of a class in the class score array. To train and e↵ectively test
the CNN, a leave-one-out cross-validation was used where four folds were used to train the
CNN explicitly, and the last fold was used as a validation set to select the optimal CNN
model state (model state with the lowest loss during training) (Raschka, 2018). This was
the approach employed in our previous study (Mu↵oletto et al., 2021). In total, there were
271 2D LA tissues in the leave-one-out cross-validation dataset (96 real and 175 synthetic).
Within each fold the DL model was trained for 100 epochs using an ADAM optimiser with
a learning rate of 1e-4 (Kingma and Ba, 2014). Finally, the optimal state was tested on a
randomly chosen hold-out set of 50 2D LA tissues (26 real and 24 synthetic) from the total
dataset to evaluate the DL model’s performance. The process was repeated five times and
tested on the same hold-out test set to evaluate the error for the model’s prediction.

2.5. Interpretability

Three popular local post-hoc interpretability methods were used to interpret the CNN’s
predictions - GradCAM, occlusions and local interpretable model-agnostic explanations
(LIME) (Selvaraju et al., 2017; Zeiler and Fergus, 2013; Ribeiro et al., 2016; Kokhlikyan
et al., 2020). The DL model state from the most accurate fold of leave-one-out cross-
validation was used to produce the FA maps for the three methods on the hold-out test
set. Moreover, the GradCAM method was applied to the last convolutional layer of the
CNN. Each FA map was thresholded above the respective map’s average FA to highlight
the most informative features. Furthermore, these informative features were compared to
the ablation lesions from the RFCA simulations to evaluate if the DL model focuses on
relevant biomedical features by measuring the percentage of simulation RFCA ablation
lesions within thresholded informative regions (lesion percentage) and the Jacquard index
(IoU) of the informative regions and ablation lesions.
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Figure 1: Diagram of 2D LA tissues with highlighted feature attribution maps. White
areas in the 2D tissues are healthy tissue and red areas are fibrosis. Ablation
lesion locations known from simulations are shown (yellow) for all three RFCA
strategies, along with respective FA maps for LIME, GradCAM and occlusions
and highlighted thresholded informative regions (green).

Table 1: Mean area under the receiver operating characteristic curve (AUC) score, recall
and precision on independent hold-out test set (with standard deviation) for each
RFCA strategy.

Strategy AUC Recall Precision
PVI 0.78 ± 0.04 0.35 ± 0.07 0.68 ± 0.28
FIBRO 0.92 ± 0.02 0.89 ± 0.03 0.82 ± 0.02
ROTOR 0.77 ± 0.02 0.93 ± 0.04 0.76 ± 0.02
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Table 2: Mean lesion percentage and IoU of the informative region and ablation lesions
with errors (standard deviation for each FA map method and RFCA strategy.

Ablation Strategy Method Lesion Percentage IoU
PVI LIME 0.44 ± 0.24 0.077 ± 0.023

Occlusions 0.55 ± 0.15 0.065 ± 0.17
GradCAM 0.47 ± 0.17 0.063 ± 0.029

FIBRO LIME 0.57 ± 0.19 0.18 ± 0.09
Occlusions 0.45 ± 0.14 0.19 ± 0.11
GradCAM 0.62 ± 0.25 0.256 ± 0.11

ROTOR LIME 0.62 ± 0.16 0.12 ± 0.07
Occlusions 0.53 ± 0.16 0.14 ± 0.06
GradCAM 0.71 ± 0.13 0.20 ± 0.08

3. Results

As shown in Table 2, GradCAM is characterised with the highest lesion percentage and IoU
for the FIBRO and ROTOR strategies. Additionally, Figure 1 shows that in FA maps ob-
tained with GradCAM for ROTOR and FIBRO, the informative regions coincide with most
ablation lesions. Using the Wilcoxon signed-rank test, ROTOR strategy lesion percentage
for GradCAM was significantly greater (p < 0.017 using Bonferroni correction) than that
for occlusions, but not for LIME (p = 3.1e-8 and p = 0.0253, respectively). Moreover,
for FIBRO strategy, the lesion percentage for GradCAM was significantly higher than that
for the occlusions method, but again not for LIME (p = 4.0 e-6, p = 0.06, respectively).
However, the IoU scores for GradCAM were significantly greater (p < 0.017) than those for
occlusions and LIME for ROTOR (p = 3.3e-6 and p = 2.1e-9, respectively) and FIBRO (p =
4.2e-6 and p = 1.6e-9, respectively). Therefore, GradCAM produces more interpretable FA
maps than LIME (for FIBRO and ROTOR) as the informative regions are more focused on
areas with a high number of ablation lesions – reflected in GradCAM having a significantly
greater IoU score than LIME. These findings show little dependence on the threshold be-
tween informative and uninformative regions. As shown in Appendix F, when the threshold
value is set to 25% above and below the average feature attribution, Grad-CAM still has
the highest lesion percentage and IoU compared to LIME and Occlusions for the ROTOR
and FIBRO strategies. For the PVI strategy, the occlusions method provided FA maps
with the greatest lesion percentage and LIME FA maps had the highest IoU score. The
di↵erence in best FA map methods in terms of lesion percentage and IoU score can be seen
in Figure 1, as informative regions in the occlusions’ FA maps cover vast area highlighting
the ablation lesions, but are not local to the PVs. Meanwhile, the LIME FA map highlights
areas around the PVs, but does not cover many ablation lesions.
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4. Discussion and Conclusion

Predicting RFCA outcomes from imaging data is a challenging task, as shown by Kim et al.,
who predicted AF recurrence post-RFCA with a 0.61 accuracy from a CNN which used a
combination of MRI data and patient demographics (Kim et al., 2020). Therefore, develop-
ing a successful DL model to predict RFCA outcomes in AF simulations is the natural first
step to predict real RFCA outcomes in AF patients. Hence, this study (i) demonstrates
a multi-label classification CNN for the success of ablation strategies in patient-specific
simulations of AF, with AUC scores of 0.92 ± 0.02 for FIBRO, 0.78 ± 0.04 for PVI and
0.77 ± 0.02 for ROTOR, and (ii) explores di↵erent methods of DL interpretability in the
classification, with GradCAM shown to provide the most interpretable FA maps for the
ROTOR and FIBRO strategy, suggesting that the DL model utilises pro-arrhythmogenic
regions to make its prediction. A possible explanation for why GradCAM performed better
than the other methods is that LIME is susceptible to unstable generated interpretations
due to random perturbations and feature selection. Moreover, LIME and occlusions are not
class discriminative – meaning that they cannot localise the class (RFCA strategy) within
the feature space. Grad-CAM is gradient-based (does not randomise parameters to obtain
FA maps) and is class discriminative, allowing it to localise pro-arrhythmogenic regions
more faithfully than LIME and occlusions (Zafar and Khan, 2021; Selvaraju et al., 2017).

Classification of the PVI strategy was di�cult to interpret. A possible reason for this
di�culty is that the PVI strategy in the clinic is based on ablating PV triggers that typically
initiate AF. However, these initial PV triggers were not present in the 2D LA tissue models.
Therefore, the three FA methods could not produce interpretable maps. Lastly, limitations
of the study include using a large amount of synthetic LA data and 2D data. The RFCA
strategy that has the highest magnitude of lesion percentage (ROTOR) also had the lowest
AUC score in testing (Table 1). Showing that the interpretability of a FA map does not
increase with the accuracy of the strategies prediction. This observation demonstrates
that the need for interpretability in RFCA strategy prediction likely goes beyond FA, and
in future work, we will investigate the incorporation of confidence in prediction outputs
to enable our method to be used as a decision support tool to help clinicians select the
appropriate therapy. Future work should also focus on; exclusively real patient LA data,
extension to 3D simulations and investigating intrinsically interpretable DL models such as
ICAM developed by Bass et al. (Bass et al., 2020).

The purpose of FA maps is not to be directly applied in the clinic to predict ablation
lesions in a patient – but to explain why the DL approach is making a certain prediction, and
to increase clinical confidence in this approach. The EU’s GDPR requires an explanation for
any algorithmic decision used in patient care. Unclear what form this explanation should
take; we believe our work represents a significant step to meet this requirement. Most
of the ablation lesions in our study coincided with informative regions of the GradCAM
FA maps (ROTOR and FIBRO, Figure 1), suggesting that the DL model learns from
structural features of MR images even without knowledge of the LA function – since CNN
training is blinded to the locations of RFCA lesions. The explanation is that the structural
features constitute pro-arrhythmogenic LA regions (e.g., fibrotic regions are well-known for
their ability to harbour rotors sustaining AF) that need to be targeted by ablation. Such
mechanistic explanations should increase clinician’s confidence in using the DL predictions.
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Garcia, Oscar Camara, Nicolo Savioli, Pablo Lamata, and Jichao Zhao. A global bench-
mark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac
magnetic resonance imaging. Med. Image Anal., 67:101832, January 2021.

Wang Yubing, Xu Yanping, Ling Zhiyu, Chen Weijie, Su Li, Du Huaan, Xiao Peilin, Liu
Zengzhang, and Yin Yuehui. Long-term outcome of radiofrequency catheter ablation for
persistent atrial fibrillation. Medicine, 97(29):e11520, July 2018.

Muhammad Rehman Zafar and Naimul Khan. Deterministic local interpretable Model-
Agnostic explanations for stable explainability. Machine Learning and Knowledge Ex-

traction, 3(3):525–541, June 2021.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
November 2013.

12



Deep Learning Interpretability for predicting successful ablation therapy

Appendix A. Data Preprocessing

Figure 2: Workflow of 2D LA tissue disk processing pipeline. The figure illustrates the
process of how the 2D LA tissue models are obtained from LGE MRI by LA
segmentation, thresholding fibrosis from healthy tissue and mapping onto 2D
tissues.

Appendix B. 2D LA Simulation Justification

The reason for using 2D LA simulations in our study was the e�ciency in providing the
needed proof of concept: (i) running 3D atrial simulations for several hundred cases would
take years of simulations on a supercomputer, which would be a misuse of computational
power; (ii) standardised 2D unfolded LA images allowed us to easily generate a large num-
ber of additional synthetic images, which is crucial for training CNNs. Hence, image-based
2D LA models provided a sensible balance between realistic details (such as fibrosis distri-
butions) and computational e�ciency (i.e., the ability to run a large number of simulations
and train the CNN). Our previous work has shown that atrial wall thickness is distributed
more or less evenly in the LA outside of PVs (Varela et al., 2017) and that slow conduction
in fibrotic areas is the main determinant of the rotor dynamics (Roy et al., 2018; ?).

Appendix C. Future Direction and Clinical Translation

The main benefit of the DL approach is the ability of CNNs to make fast predictions from
a combination of structural (imaging) and functional (simulation) data. While image-based
simulations can provide useful information about structure-function relationships during
AF, its downsides include (i) huge computational power needed to simulate multiple AF
scenarios in the detailed 3D atrial models, and (ii) the need to rerun the models each time
novel data is integrated into them, which makes the application of models in a clinical setting
impractical. DL can overcome these limitations and (after careful validation/integration of
clinical data) provide a fast and flexible tool to predict ablation strategies for a large patient
population. The simulations in our study only provide labels (RFCA strategy success) for
a patient image, and the labelled image is used to train the CNN. The trained CNN can
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then make predictions about suitable RFCA strategies from patient images only. This
builds confidence in the DL approach, which can then be used for images labelled using
real data from patients (should such data be available/reliable) and help make clinically
valid predictions. Moreover, the approach is not restricted to three specific RFCA strategies
considered in our study – it can include any other promising strategies, and a trained CNN
can help pick the most suitable one for each patient.

Appendix D. Deep Learning Model

Figure 3: Diagram of CNN with parameters to predict RFCA simulation strategy success
from 2D left atrium tissue disk.
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Appendix E. Synthetic and Real Data Accuracy Metrics

Table 3: Mean AUC score (with standard deviation) of DL model trained with real data
only and with synthetic and real data from a leave-one-out cross-validation on a
hold-out test (of ⇠ 20 % of the total of the respective dataset).

Strategy Real Data Real + Synthetic Data
PVI 0.73 ± 0.03 0.78 ± 0.04
FIBRO 0.80 ± 0.03 0.92 ± 0.02
ROTOR 0.49 ± 0.06 0.77 ± 0.02

To train a DL model e↵ectively, a considerable amount of data is needed. There are only
122 real data subjects in this study, while if we combine this with synthetic data subjects,
we get a total dataset of 321 subjects. Furthermore, this is reflected in (Table 3), where the
DL model has higher prediction accuracy (AUC) with a real and synthetic dataset.

Table 4: Mean AUC score on independent hold-out test set (with standard deviation) for
each RFCA strategy and type of data.

Strategy Real Data Real + Synthetic Data
PVI 0.67 ± 0.03 0.78 ± 0.04
FIBRO 0.85 ± 0.02 0.92 ± 0.02
ROTOR 0.62 ± 0.05 0.77 ± 0.02
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Appendix F. Sensitivity to FA Maps Thresholding

Figure 4: Lesion percentage and IoU values for each interpretability method and ablation
strategy with informative threshold value 25 % above the average.
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Figure 5: Lesion percentage and IoU values for each interpretability method and ablation
strategy with informative threshold value 25 % below the average.
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Appendix G. Examples of FA maps

Figure 6: Correct and incorrect classification examples of FA maps (LIME, GradCAM and
occlusions) for FIBRO.
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Figure 7: Correct and incorrect classification examples of FA maps (LIME, GradCAM and
occlusions) for ROTOR.
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Figure 8: Correct and incorrect classification examples of FA maps (LIME, GradCAM and
occlusions) for PVI.
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