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ABSTRACT

Large language models (LLMs) have shown remarkable capabilities in natural
language processing; however, they still face difficulties when tasked with un-
derstanding lengthy contexts and executing effective question answering. These
challenges often arise due to the complexity and ambiguity present in longer texts.
To enhance the performance of LLMs in such scenarios, we introduce the Long
Question Coreference Adaptation (LQCA) method. This innovative framework
focuses on coreference resolution tailored to long contexts, allowing the model
to identify and manage references effectively. The LQCA method encompasses
four key steps: resolving coreferences within sub-documents, computing the dis-
tances between mentions, defining a representative mention for coreference, and
answering questions through mention replacement. By processing information
systematically, the framework provides easier-to-handle partitions for LLMs, pro-
moting better understanding. Experimental evaluations on a range of LLMs and
datasets have yielded positive results, with a notable improvements on OpenAl-ol-
mini and GPT-40 models, highlighting the effectiveness of leveraging coreference
resolution to bridge context gaps in question answering. Our code is public at
https://github.com/OceannTwT/LQCA.

1 INTRODUCTION

Large language models (LLMs) (Brown, 2020;
Chowdhery et al.| 2023; |Ouyang et al., 2022)) have
demonstrated exceptional competitiveness across [

‘Honey to the Bee" is a song by English singer turned
actress Billie from her debut studio album.

-~ ‘Another e:sh
o question!

A

>
. . . . . <
various tasks, including question answering, sum- L
marization, and generation (Wang et al.,[2023). Re- ekl ool e C s e
. standing for?
cently, many new versions of LLMs have begun leventh 5""g‘°‘°"‘h”‘°‘ 199 ==
(6000 words) <»

(Yang et al, 2024} [Dubey et al.|[2024). Both open- | paying with lightning now-ow-ov.* Band member Tom

. Parker said of the song, "We all felt it was a sound like
source and proprietary models show some profi- e nerdone bekr, mt?epe,fec'jprel..d;rm e
ciency in understanding long texts and support ex- o R e e T
tended reading (Zhang et al.l [2024a). However,
LLMs still struggle to accurately identify key pas-
sages from the middle of long contexts (Liu et al.,
2024) and generate effective responses or expected
content based on these passages when overwhelmed
by excessive information (Shi et al., [2023). This
suggests that despite having larger context windows,
many LLMs still face challenges in handling long-
text tasks (L1 et al., 2024Db)).

Too many rem
to understand)_

to extend their capability to handle longer contexts
"I know it's a little bit fughlemng we might as well be J

°o

(3000 words)

.. due for release on the sth of September, 2023. Studio . -8

: So long c
albums Extended plays Singles Featured singles Other A rustrated nowl

charted songs Music videos Footnotes. —=~
<,

Figure 1: The complexity arises from multiple enti-
ties and coreference relations in long contexts, mak-
ing it difficult for large models to effectively learn
contextual information.
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Currently, a range of studies are being conducted on long-text reasoning, covering areas such as
foundational models for long texts, long-text datasets (L1 et al., [2024a; |An et al., [2024), task types,
and multi-turn dialogues. To more efficiently retrieve contextual information, techniques like retrieval-
augmented methods (Phan et al.||2024; [Bai et al., 2024; Zhu et al.,|2024a)) for slicing long contexts or
compressing (Huang et al.,|2024) and reinterpreting articles are rapidly advancing.

In the domain of information extraction, LLMs still fall short in tasks such as entity extraction,
coreference resolution, and event detection, often described as large but not precise” (Isik et al.,[2024;
Kumar, 2024). Recent research has attempted coreference resolution through prompt engineering,
while some studies based on the DeBERTa (He et al., [2021)) model series have shown improvements
in coreference resolution tasks (Martinelli et al., [2024)). However, these models remain limited by
their smaller parameter sizes and constrained context windows (Otmazgin et al., [2023)).

Although LLMs exhibit some capabilities in handling long-text tasks, their performance remains
highly dependent on the quality of the text. In lengthy texts, the use of numerous similar referring
expressions, modifiers, and varying noun phrases can pose significant comprehension challenges for
the models. This is especially critical when dealing with ambiguous sentences, where LLMs are
prone to confusion (Shi et al.,|2023). Therefore, improving the quality of reasoning for long-text
tasks and focusing on the quality of long-text content have become critical research topics.

To address the challenges of LLMs in understanding long contexts and question answering, we
propose the Long Question Coreference Adaptation (LQCA) method, an efficient framework for
long-context coreference resolution and question answering. The LQCA framework is capable of
resolving all mentions in long contexts and selecting the best answer mention to replace the original
text. This framework consists of four steps: coreference resolution on sub-document, mentions
distances computation, defining coreference representative mention, and question answering with
mention replacement. These four steps systematically process information within long contexts,
ultimately replacing it with partitions that are easier for large models to understand. We conducted
experiments on five large models with varying parameter sizes and nine datasets focused on long-
context questions. The results indicate that long contexts processed through coreference resolution
perform best during inference with language models, achieving a 3.61% improvement on GPT-4.
Our method demonstrates the advantages and capabilities of information extraction and coreference
resolution in understanding long contexts while emphasizing the importance of text quality for model
inference.

Our Contributions. Our main contributions can be summarized as follows:

* We propose the LQCA framework, a coreference resolution method designed to enhance the LLM
capability of long context responses. Our approach partition the context and merges coreference
information to achieve comprehensive coreference resolution results for the entire document,
replacing segments of the text to improve its quality, thereby helping the model better understand
the context.

* We demonstrate that text quality plays a crucial role in answering questions related to long text
comprehension. By optimizing text quality and eliminating ambiguity, we enable the model to
learn and reason more effectively for the target tasks.

» Extensive experiments show that our method performs exceptionally well across various tasks,
including long text question answering and long text classification, providing a new paradigm for
addressing long text issues.

2 PRELIMINARIES

Coreference Resolution and Mentions. In information extraction and dialogue systems, traditional
methods involve dealing with entities, relationships between entities, and semantic slot filling when
processing context. However, in certain contexts and dialogue scenarios, such as speaker recognition
and long context reading, the context often contains a large number of pronouns and modifiers, which
significantly affects the model’s understanding of the original information. To address this situation,
the context can be optimized through two steps. The first step is mentions extraction: Given the input
text x, extract all pronouns, nouns, noun phrases, and modifiers in the context to obtain the mention
set M = {my,ma, ..., my}. For a specific mention m;, its reference information is represented
as R(m;) — m,;. In the input text, the reference information is likely to have a large number of
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Figure 2: Our Long Question Coreference Adaptation(LQCA) method addresses the coreference resolution
problem in long texts through four steps, leveraging indirect coreference and mention relations, and providing
the resolved context to the LLM for question reasoning.

meaning-redundant references within the mention set, referred to as co-reference c. For two meaning-
redundant mentions m; and m, it holds that { R(m;), R(m;)} C c. Since mentions inherently refer
to themselves, this can also be expressed as {m;, m,} C c. By obtaining all coreference relationships
and replacing mentions in the original text, the clarity of the text can be effectively enhanced.

3 METHODOLOGY

We employ a four-step Long Question Coreference Adaptation (LQCA) method. Each step involves
the integration and extraction of information from the text. By partitioning long documents and
resolving references within each sub-document, we use clustering techniques to merge the results
from different sub-documents into the same cluster, thereby achieving overall reference resolution
for the entire document. Finally, we replace the references and provide the cleaned text to the large
model for contextual understanding and response.

3.1 COREFERENCE RESOLUTION ON SUB-DOCUMENT

The state-of-the-art reference resolution model, Maverick (Martinelli et al.| [2024) is based on the
DeBERTa-v3 (He et al.,|2021) architecture, which has specific requirements regarding the length of
the input tokens.We cannot directly perform reference resolution on the entire long input. Given an
long input context X, we initiate the process by partitioning the context into sub-documents {S;}2V |,
each constrained to a maximum length of L. N is the total number of partitioning documents. Our
partitioning is based on a sliding window approach, where each partitioning starts from the beginning
of a sentence and extends to the position of the last sentence that does not exceed the length of L. If
the last sentence exceeds this limit, truncation is applied for the whole sentence.

For each sub-document S;, we utilize the maverick—mes—ontonotesﬂmodel to perform mentions ex-
traction and coreference resolution. M = {my, ma, ..., my} represent the set of detected mentions
in the input sequence, where each mention m; is characterized by its position p;. In the coreference
resolution of sub-documents, C’Z represents the j-th coreference set in the i-th sub-document and
Ci = {cl,c?,...,cl} is the total coreferences in single sub-document. The mentions under this
coreference set belong to this reference. After providing the sub-documents to the Maverick model
through batch inference, we obtained all the coreferences C = {C;} ; and mention M correspond-
ing to the long text. The results help us in the subsequent processing of recognizing and merging the
same coreferences and mentions, allowing us to combine the information from these sub-documents.

'https://huggingface.co/sapienzanlp/maverick-mes-ontonotes
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3.2 MENTIONS DISTANCES COMPUTATION

To address the issue of co-referent mentions being distributed across multiple partitions, we construct
a sparse matrix representing mention relationships. For any two mentions m, and m; occurring in
the same sub-document, we define their co-reference score s; under a particular sub-document and a
specific reference 7 as follows:

sj(ma,mb)z L 1fma,*(nb§c§
¢ 0 otherwise

Similarly, the score for non-coreference ¢; is defined as:

1 ifmg,my ¢ cf
0 otherwise

t] (ma,mp) = {

Thus, the co-reference score for these two mentions within the sub-document is s;(mg, mp) = > y s,

and the non-co-reference score is t;(mqg, mp) = Y. j t!. Since two mentions can only belong

to the same reference in a single sub-document, the scores s;(m,, mp) and t;(m,, mp) satisfy
$i(Mma,mp) ® t;(mg, mp) = 1, indicating whether the two mentions are in the same reference.

Through this process, we can determine the co-reference relationship of any two mentions within a
sub-document. Only when both mentions are present in the sub-document can they receive a mention
score. For cross-sub-document mention relationships, we integrate information across multiple
sub-documents based on the distance between the two mentions.

For the entire long context, we define d(m,,m;) as the distance between two mentions. Since
mentions that appear in the same sub-document have already had their co-reference relationship
evaluated by the Maverick model, we can assess their distance to determine whether they refer to the
same entity in the context of the long document. The score between mentions is computed as:

Soivy si(ma,my)

N N
Y oicq Si(ma,mp) + 30,01 ti(ma, ms)

d(mg, mp) =

For mentions not in the same sub-document, since they lack coreference and coreference scores,
merging their relationships requires evaluation based on distance information. For any mention m,,
if the distance between mentions m, and m. is d(mg, m.), and the distance between mentions my
and m, is d(mp, m..), we apply the multiplication principle:

d(me, mp) = max{d(mq, m¢) X d(mp, me)}
ceM

Using this distance evaluation, the distance information between any two mentions in the mention
cluster can be calculated. This form can be easily computed using the variations of the shortest
path problem to obtain the corresponding distance information. The algorithm could be refered in

Appendix |G|

After computing the longest dot product path, we compare the longest path score to a predetermined
threshold %, and based on this information, we construct a mention relationship graph G(M, E):

(mg,mp) € E,if d(mg,mp) > k,
In the mention relationship graph, each strongly connected component C; = {u € M : Vv €
C;,u <> v} represents a set of coreferent mentions.

This classification helps bridge the gaps in context, ensuring that relevant mentions are identified as
referring to the same entity, thereby improving the model’s understanding of the document content.
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3.3 DEFINING COREFERENCE REPRESENTIVE MENTIONS

For the strongly connected components we obtained, each strong connection serves as a coreference,
and when inputting into the LLM later, all mentions under the same coreference need to be replaced,
especially those mentions that are pronouns, which should be transformed into specific, meaningful
content.

We first use the lightweight spaCy model en_core_web_sm to perform part-of-speech tagging on all
words in the article. In the tagging results, if a token in the mention span belongs to PRON, it is
marked as p(m;) = PRON. Additionally, for a coreference, we want the transformed text to select
the mention that contains the most meaningful equivalent. Let m,, be the representative mention of
reference C;, and f(my, ¢;) be the number of times mention m, appears under coreference c;. The
process could formulated as:

me, = argmax,, {f(mg,c;) x [p(m;) # PRON]}

If there are multiple mentions that satisfy this condition, we select the earliest mention based on
the principle of first selection. This representative mention serves as the normalized text for the
entire coreference. By effectively replacing vague mentions with their n the text, enabling LLMs to
maintain a coherent understanding of the context.

3.4 QUESTION ANSWERING WITH MENTIONS REPLACEMENT

We need to modify the original text into the target text by replacing all mentions in the text based on
each coreferent representative mention. When handling overlapping cases, we prioritize replacing the
mention with the largest overlapping range. If no suitable replacement is available (for example, only
pronouns), we retain the original text.

To execute the Question Answering (QA) task, we leverage the reasoning capabilities of the LLM,
formalized in the following process:

R =arg m}%n (—log P(R|C’,Q))

where P(R|C’, Q) represents the probability of generating a response R given the modified context C”
and the question (). By implementing these steps, our approach effectively addresses the coreference
issues in long texts, enabling subsequent tasks (such as QA) to interact more accurately with the
content and enhance contextual awareness. This integrated method not only tackles the challenges
posed by long texts but also effectively bridges contextual gaps, improving LLM performance in
understanding long contexts.

4 EXPERIMENTAL SETUP

4.1 DATASETS

To evaluate the performance of LQCA in long text contexts, we primarily conduct assessments on
question-answering data across three datasets, targeting different task categories including sum-
marization tasks, question-answering tasks, and multiple-choice classification tasks. Specifically,
these three datasets are LooGLE (Li et al.,|2024a), L-Eval (An et al.| 2024), and LongBench (Bai
et al 2024). For the summarization task, we select the arXiv paper abstract category from the
LooGLE dataset for evaluation. For the question-answering task, we focus on closed-ended tasks
in L-Eval, emphasizing multiple-choice and true/false question-answering tasks. For the dataset
requiring information extraction from texts, we utilize the multi-document question-answering dataset
under LongBench, primarily selecting three English-based datasets: HotpotQA (Yang et al.| 2018)),
2WikiMultihopQA (Ho et al.| [2020), and MuSiQue (Trivedi et al., 2022)). This diverse selection
enables us to better understand the performance of our approach across different tasks and datasets,
providing a comprehensive perspective on its strengths and weaknesses in multi-task scenarios. For
more details on the datasets, please refer to Appendix
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4.2 BASELINES

Currently, methods for addressing long-context issues mainly involve guiding models through chain-
of-thought techniques for specific step reasoning. One method is the compression strategy, which
condenses key information from long texts into concise paragraphs, allowing questions to be answered
and processed based on this. Another commonly used method involves slicing text segments for
retrieval. Our comparison benchmarks include the following methods:

Vanilla LM: Guides the model to generate responses through simple text input, testing its basic
ability to handle long contexts.

Zero-shot Chain-of-Thought (Kojima et al., 2022)): Utilizes prompt templates, designing specific
prompts to guide the model’s reasoning, leveraging the model’s inference capabilities without the
need for additional training data.

RAG (Lewis et al.} 2020; Ram et al.,|2023)) with Self-Corpus: Unlike traditional RAG, we do not
introduce additional knowledge but instead use slices of long text segments as the corpus. When
questioning relevant issues, we retrieve from the corpus and combine it with context for reasoning,
aiming to improve the model’s understanding and response quality to long texts.

RECOMP (Xu et al., 2024) with Self-Corpus: Builds upon RAG with an added compression
strategy, using the same long text segment slice corpus. This method improves processing efficiency
by compressing key information from long texts, aiming to optimize the model’s reasoning process
without losing important information.

4.3 MODELS

We utilize five models, including three from OpenAl’s GPT series (Brown, [2020):
01-mini-2024-09-12, gpt-40-2024-08-06, and gpt-40-mini-2024-07-18, as well as two open-
source large models from Llama-3 (Dubey et al. 2024) and Qwen-2 (Yang et al., 2024)):
1lama3-gradient-8b and gwen2-7b. The five tested large models all have a 128k context win-
dow, which meets our requirements for evaluating and testing long context datasets, reducing the
information loss caused by additional text segmentation. Comparing different models helps us
understand whether their core reference performance in long contexts is similar.

4.4 IMPLEMENTATION

Our experiments were primarily evaluated in a zero-shot setting. For inference predictions of general
models, we used default settings and adopted greedy search as the inference benchmark. For zero-shot
reasoning chains, we referred to the prompt templates as the default chain-of-thought scheme. The
evaluated models have a long context window, allowing us to retain almost all contextual information
for the questions without truncation.

Nonetheless, we still establish a safety mechanism for ultra-long texts. When the input length L
exceeds the model’s maximum context length (indicated by the name suffix), we truncate from
the middle of the input sequence S to avoid losing the beginning and end portions, which may
contain key information. During the generation process, we employed greedy decoding to ensure
the reproducibility of results. For LQCA, our default experimental setting is a coreference score
threshold of 0.9, meaning if the distance between two mentions exceeds 0.9, we consider them within
the same coreference. For the spaCy model, we used en_core_web_sm model for tokenization and
part-of-speech tagging.

In terms of benchmark comparison, we use a retrieval method, with Contriever-msmarco (1zacard
et al.L[2022) as the retrieval model responsible for slicing articles in a sliding, non-overlapping manner,
with each segment limited to 512 tokens. Additionally, in the RECOMP experiments, we choose
the abstract compression tool provided by RECOMP as the compression tool to help the model
effectively extract important information from text segments. The comparison of LQCA with other
baselines is based on the differences in the comparison datasets, evaluated using Rouge-L, accuracy
and F1 scores.
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Table 1. Evaluations of the performance of different models and methods across three datasets. Assess the long
context ability in question answering, summarization, and knowledge extraction.

| LooGLE L-Eval LongBench

‘ Avg.

Models
Arxiv paper abstract Long dependency QA°' TOEFL QuALITY Coursera SFcition HotpotQA 2WikiMultihopQA MuSiQue
(Rouge-L) (Rouge-L) (Acc.) (Acc.) (Acc.) (Acc.) (F1) (F1) (F1)
Vanilla LM
OpenAl-ol-mini 35.62 33.98 90.55 89.14 85.44 88.94 68.33 49.53 39.83 64.60
GPT-40 30.47 27.46 88.64 86.49 80.12 80.55 64.12 47.99 35.55 60.15
GPT-40-mini 27.95 25.61 85.61 87.11 75.98 80.26 62.57 40.71 33.97 5775
Llama-3-8b 6.25 9.13 66.19 52.69 46.22 60.94 44.56 32.55 23.51 38.00
Qwen2-7b 7.56 6.64 57.35 48.92 50.79 62.33 46.19 34.11 20.69 37.17
Zero-shot CoT
OpenAl-ol-mini 34.89 32.56 89.42 88.55 85.97 87.66 71.55 50.24 37.85 64.30
GPT-40 31.25 28.75 88.91 87.12 82.15 81.46 66.94 49.36 34.95 61.21
GPT-40-mini 28.56 26.11 86.14 86.23 76.33 81.03 63.23 41.97 34.12 58.19
Llama-3-8b 5.66 11.23 62.59 55.39 46.49 62.09 42.90 34.92 24.90 38.46
Qwen2-7b 6.96 7.12 58.73 47.66 49.23 61.74 43.56 35.95 22.61 37.06
RAG with self-Corpus
OpenAl-o1-mini 30.95 30.12 86.55 85.03 83.64 84.98 70.26 48.23 36.73 61.83
GPT-40 27.65 22.35 85.13 80.12 80.65 78.12 66.35 47.01 32.11 57.72
GPT-40-mini 25.71 23.14 83.22 82.23 73.92 79.19 62.94 42.55 33.52 56.26
Llama-3-8b 6.84 8.56 63.15 45.66 48.77 52.94 40.72 31.78 22.03 35.60
Qwen2-7b 8.33 5.23 58.79 43.12 46.21 58.39 41.80 34.69 19.42 35.10
RECOMP with self-Corpus
OpenAl-o1-mini 29.56 28.11 85.96 83.91 79.46 85.30 68.91 45.37 29.14 59.52
GPT-40 28.13 21.55 85.13 78.52 76.25 77.66 65.02 44.03 30.32 56.28
GPT-40-mini 24.22 20.96 82.49 79.11 74.75 75.97 63.55 42.59 27.19 54.53
Llama-3-8b 7.11 10.20 5543 46.17 4230 54.65 41.95 30.58 20.63 34.33
Qwen2-7b 7.26 523 56.17 44.96 45.19 57.92 41.62 3291 17.95 34.35
Long Question Coreference Adaptation(LQCA)

OpenAl-ol-mini 40.65 37.26 93.71 91.66 87.25 88.24 75.92 56.85 38.55 67.78
GPT-40 34.53 30.17 91.03 89.62 85.12 81.92 71.66 53.62 36.25 63.76
GPT-40-mini 29.59 2845 88.72 88.65 83.99 79.88 70.33 46.16 34.82 61.17
Llama-3-8b 6.91 9.22 69.55 54.67 49.15 58.94 46.23 34.72 25.03 39.37
Qwen2-7b 7.51 579 61.49 50.22 53.76 61.02 47.11 37.16 21.98 38.44

5 EXPERIMENTS

5.1 MAIN RESULTS

We evaluate the performances of five LLMs on multiple datasets with LQCA and baselines, and the
results are shown in the Table[ll

Context with coreference resolution. LQCA has demonstrated highly competitive performance
among other long context processing methods. It achieves the best results on almost all datasets
when applied to LLMs with a higher number of parameters and strong contextual understanding,
consistently outperforming other baseline performances on GPT-40. Meanwhile, the other two
models also achieve the best performance on 7-8 out of 9 baselines methods, respectively. Compared
to directly providing the question to the LLM, LQCA achieves an average improvement of +3.61 %
on GPT-40. On the latest o1-mini model, the coreference resolution method also significantly
improves by an average of +3.18 % across various metrics compared to other methods. At the same
time, LQCA has also achieved good performance on open-source large models with relatively small
parameter counts, showing improvements in metrics compared to direct prompting and zero-shot
chain-of-thought methods. However, due to differences in context understanding capabilities, retrieval
methods can sometimes find corresponding answers more accurately for these types of large models.
Overall, texts that have undergone coreference resolution can help models understand contextual
dependencies to varying degrees, thereby assisting models in solving various problems.

LQCA in Long dependency question. When addressing tasks involving long-dependency issues,
such as summarization,long dependency QA, and strategy-related question-answering (HotpotQA,
2WikiMHQA) tasks, coreference resolution methods demonstrate a clear advantage over other
approaches, especially when the model possesses stronger contextual understanding capabilities. For
example, in summarization tasks, the O1-mini model improved performance by +5.05% compared to
other methods. Even more notably, in datasets like HotpotQA, which contain extensive text passages
and dependencies, the impact of coreference resolution is even more pronounced. For instance, on this
dataset, GPT4o0 showed a +7.59% improvement in results after incorporating coreference resolution,
outperforming other methods by about +6.5%. The most challenging aspect of long-dependency
tasks is determining various coreference relations and the specific entities being referred to. When a
question is directly presented to the model, it may confuse these coreferences, leading to incorrect
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Figure 3: The difference between various coreference resolution variants and the LQCA method on GPT-4o(left)
and Llama-3-8b(right).

answers. Thus, effective coreference resolution enhances contextual coherence, helping the model
provide more accurate responses.

LQCA in Knowledge-based question. For knowledge-based question answering tasks, the im-
provement brought by coreference resolution methods is not as significant compared to handling
long-dependency issues. However, when dealing with long-text knowledge-based question answering,
clarifying the references within the text helps enhance the generalization ability of the model. In
addressing scientific questions, certain inherent knowledge may have specific representations and
specialized terminology, where the model’s comprehension ability becomes more important than
coreference resolution. Additionally, effective information compression and retrieval strategies
contribute to providing accurate answers in commonsense question answering. In commonsense
QA, based on four L-Eval datasets, the Llama3-8b model demonstrates an improvement of +8.44 %
compared with RECOMP method, indicating its ability to enhance the contextual understanding of
smaller models.

5.2 IMPACT OF DIFFERENT COREFERENCE REALIZATIONS

To compare the performance of different coreference resolution designs and the LQCA framework in
long document comprehension, as well as to explore the specific roles of each component, We adopt
three variations of LQCA as follows:

o LOCA-LLM: We use a LLM to perform coreference resolution on each document slice, while other
steps remain unchanged. The prompts used for the LLM are provided in Appendix [C|

o LOCA-w/o overlap: This slicing method segments the document into non-overlapping slices,
each no longer than 512 tokens. The coreference resolution results for each slice are used to
replace information in the original text, following the same replacement methods as in Defining
Representation and Mention Replacement.

o LOCA-w/ RAG: After replacing the text, we introduce a Contriever-msmarco retriever during the
question-answering phase. The retriever uses the corpus provided by the document slices, similar
to the setup of the baseline method. Compared to the original LQCA method, this approach reduces
the model’s dependency on extended context length.

As shown in Figure[3] we evaluate different methods. The coreference resolution method using the
LLM shows significant shortcomings in answering questions, likely because the model is currently
unable to effectively handle specific downstream tasks. In complex contextual environments with
extensive coreference information, expert-level models are often required to handle and annotate
mentions accurately. The non-overlapping slicing replacement method performs similarly to LQCA
in most tests, but the inability to merge coreference information between different sub-documents
slightly limits the question-answering effectiveness for long documents.

Additionally, the LOCA-w/ RAG method helps smaller models extract relevant information and even
outperforms the LQCA framework on certain metrics. This suggests that retrieval augmentation is
more suitable for models with limited capabilities and computational resources in long-document
QA tasks. By gathering more relevant information related to the question, it helps the model provide
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better answers. The experimental results of these variants further validate the effectiveness of LQCA
framework.

5.3 SETTING IN SUB-DOCUMENTS

In LQCA, two critical parameters have a significant impact on the coreference resolution performance
of the framework. The first is the length of the text segmentation. We ensure that the segmented text
length stays within the token limit of the model’s input. The second is the preset threshold parameter
K, which largely determines whether two mentions refer to the same entity. Due to variations between
different texts, the number of sub-documents generated by segmentation may differ, which influences
the model’s inference performance. To address this, we conduct a grid search on these two variables
to analyze their impact on performance, with the experimental results shown in the Figure 4]

Longer sub-documents help capture
contextual information, improving
coreference resolution performance. For
example, in the figure, when the sub-
document length approaches the upper ﬁf 59.66 53.69 57.32 54.38 55.12 58.03 56.28 57.90 56.11
limit of 512, the model shows good per-
formance with most F1 scores above 70
when the k-value is less than 0.8. Since
we resolve coreferences across multiple
documents and establish connections be-
tween mentions, longer contexts provide
more precise information.
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Coreference scores threhold is length
affected. The impact of the score thresh-
old between mentions across the entire
document on the framework’s perfor-
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mented sub-documents are shorter, a Value &
lower k value helps maintain consistency
between related mentions. However, if
the threshold is set too high, some pro-
nouns may not find the correct referent.
On the other hand, an excessively high
threshold may degrade coreference resolution performance, as incomplete information in certain
sub-documents may cause the model to misclassify mentions or assign them to separate categories.
Therefore, a moderate k value helps the framework achieve optimal performance.
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Figure 4: Performance of the LQCA method on the LongBench-
HotpotQA dataset using the GPT-40 model under different val-
ues of k and L. We use the F1 score as the evaluation metric.

5.4 EVALUATION OF KEY INFORMATION POSITIONS

Since current large language models tend to fo- )

cus more on the beginning and the end of a 3
document in long-text scenarios, they often over-
look the middle sections where answers may be
located. To better assess the effectiveness of
our framework, we conducted inference evalu- H .
ations using the GPT-40 model on the Coursera . ; )
dataset, marking the percentage position of an- s

swers within the text. We divided the positions } el
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centage value at the end of each interval as a

marker. Figure 5: The effect of the position of relevant informa-
tion on Coursera QA dataset performance.
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proved by LQCA. As shown in the Figure 3]

the model with coreference resolution significantly alleviates the issue of ignoring mid-document
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information. It can be observed that after applying coreference resolution, the accuracy of key
information in the [0.2, 0.4], [0.4, 0.6] and [0.6, 0.8] intervals improve significantly. Specifically,
the accuracy of key information in the [0.4, 0.6] interval increased by +6.1% compared to directly
providing the context. This indicates that providing accurate coreference relations enhances the
quality of context, reducing information loss and contextual ambiguity, thereby enabling the language
model to perform more effectively and accurately when answering questions.

6 RELATED WORK

6.1 LONG CONTEXT UNDERSTANDING IN LLM

Recent advancements in LLMs highlight the significance of long-context understanding across diverse
applications (Xiong et al., 2024} |Pan et al.,|2024). [Zhu et al.|(2024a) explores strategies to extend
the context window of embedding models to 32k tokens without additional training, enabling their
application in tasks with long inputs such as legal contracts. LongBench, L-eval and LooGLE
serve as multitask benchmarks, providing a comprehensive evaluation of long-context understanding
(Bai et al.| 2024} |An et al., 2024; L1 et al} |2024a)). a new context understanding benchmark has
been proposed, validating the need for improved generative models in understanding context amidst
varying training conditions (Zhu et al.;|2024b)). The study of temporal complex events through LLMs
sheds light on the ability to analyze event chains effectively, particularly when utilizing suitable
retrieval mechanisms (Zhang et al.,2024b). However, challenges persist; current LLMs struggle with
contextual relevance based on information positioning, as indicated by performance degradation in
identifying important details (Liu et al., [2024)). Our LQCA method improves text quality through
coreference resolution, thereby enhancing the long context understanding of tasks by LLMs.

6.2 COREFERENCE RESOLUTION

Coreference resolution is an important task in the field of information extraction (Lee et al., 2017}
Dobrovolskii, 2021)). Techniques such as finetuning pretrained seq2seq transformers have proven
effective, where document inputs are mapped to coreference-tagged sequences, emphasizing the
importance of model size and supervision levels (Zhang et al.,|2023)). Furthermore, a novel approach
focusing on event coreference emphasizes learning from events rather than entities, integrating
multiple representations for improved resolution (Yao et al.,[2023azb)). The complexity of coreference
evaluation is addressed by highlighting the need for standardized measurement methodologies across
different datasets (Porada et al.,[2023). Meanwhile, prompt-based methods like CorefPrompt allow
for the modeling of events and coreference simultaneously through a masked language model setup
(Xu et al., 2023). Linguistic insights contribute to performance enhancements by categorizing
mention-pairs into distinct decision types (Otmazgin et al.||2023)). We combine coreference resolution
with long context, improving text quality by replacing referents in long context texts, which aids in
enhancing downstream tasks.

7 CONCLUSIONS

This paper presents the LQCA method, a framework aims at enhancing long-context understanding
in LLMs by leveraging coreference resolution. The framework operates through four systematic
steps: resolving coreferences within sub-documents, calculating mention distances, defining a repre-
sentative mention for coreferences, and performing question answering with mention replacement.
By processing long contexts in this manner, the method simplifies the information, making it more
comprehensible for the language models. Experiments conducted on five large models and nine
long-context question datasets show a notable improvement during inference, with a recorded 3.61%
enhancement on GPT-40. The findings illustrate the effectiveness of integrating coreference resolution
with information extraction to improve comprehension of lengthy texts. Text quality remains a critical
factor influencing model inference performance. We believe this framework will contribute to the
long-term development of the long context understanding of LLMs.
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A BROADER IMPACT AND LIMITATIONS

Broader Impact. Using coreference resolution methods to optimize long contexts inference is
another significant improvement in information extraction within dialogue systems powered by large
language models. We believe that by introducing more techniques, such as semantic recognition and
entity extraction, large models can achieve better performance when handling long texts. Additionally,
we can further investigate the integration of current compression and retrieval-augmented methods
with coreference resolution techniques, exploring more potential solutions to enhance text quality.
Higher-quality question texts help us better address various downstream tasks and provide appropriate
solutions.

Limitation. LQCA presents innovative advancements in addressing long-context understanding and
question answering. However, certain limitations warrant consideration. Firstly, the coreference
resolution might struggle in dealing with ambiguous references or contexts with high complexity, pos-
sibly leading to inaccurate mention replacements. Secondly, while the method improves performance
on long-context questions, its effectiveness may diminish when applied to shorter contexts, where
the overhead of processing could outweigh the benefits. Furthermore, the reliance on pre-defined
mention distances may limit adaptability to varied linguistic structures and usages across different
domains. Future endeavors may focus on enhancing coreference resolution techniques and exploring
adaptive approaches to better manage diverse contexts and improve robustness in various settings.
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B DATASET DETAILS

B.1 LoOGLE

LooGLE (Li et al.} 20244a) is a benchmark specifically designed to evaluate large language models
(LLMs) in long-context understanding tasks. This benchmark emphasizes tasks that rely on both short-
term and long-term dependencies in text inputs, such as question answering (QA), summarization,
and cloze tasks. LooGLE supports automated evaluation metrics, such as BLEU, ROUGE, METEOR,
and BERTScore, to assess model performance. Notable baseline models include GPT-4-32K, GPT-
3.5-16K, and ChatGLM2-6B-32K, which have been evaluated on short-term dependency tasks like
cloze tests and long-term dependency tasks like document summarization.

The benchmark provides detailed configurations on how to optimize large language models for
long-context tasks, with a particular focus on retrieval-based tasks and long-form generation tasks.

B.2 L-EvVAL

L-Eval |An et al.| (2024) is part of a growing suite of long-text understanding evaluation tools.
It is designed for multilingual evaluation, testing the performance of large language models on
diverse tasks across language families. These tasks include document-level question answering,
summarization, and cloze tasks, with a particular focus on the models’ ability to handle large
amounts of contextual information. The datasets are derived from real-world domains, such as
scientific papers, narratives, and technical reports, making L-Eval highly valuable for tasks that
require extensive context retention. L-Eval is an ideal testing platform for evaluating models in
scenarios like multi-document retrieval, cross-document summarization, and multi-hop question
answering, where retaining long and diverse information is crucial.

B.3 LONGBENCH

LongBench (Bai et al., 2024)) is a bilingual, multi-task benchmark designed to test large language
models’ ability to handle long contexts, covering both English and Chinese. It evaluates model
performance on tasks such as narrative understanding, multi-domain question answering, and summa-
rization, where the datasets require handling large amounts of complex input, such as legal documents,
scientific reports, and news articles.

This benchmark includes datasets like NarrativeQA (Kocisky et al., | 2018), Qasper (Dasigi et al.,
2021)), HotpotQA (Yang et al., 2018)), and DuReader(He et al., | 2018)), offering diverse application
scenarios from multi-document retrieval to entity tracking in long narratives. The models are evaluated
not only on single-document tasks but also on multi-document tasks and zero-shot performance
tests. LongBench also incorporates Chinese-specific datasets, further extending its applicability in
multilingual scenarios.

C PROMPT FOR VARIATION OF LCQA

LCQA-LLM

Please analyze the following context, do coreference resoulution. identify the mentions, and
replace them with their corresponding golden mentions which have their actual reference and
meaning. Mentions could be Pronouns, Nouns, Noun Phrases or Modifiers. Ensure that the
revised text maintains the original meaning and reads naturally. Please only output result only
contains revised context, don’t output any other information. Here is the text to be processed:
Context: [Sentence S]

Result:

15



Published as a conference paper at ICLR 2025

Table 2. Experiments on LQCA, RAG, and Variation in perturbations of coreference in LQCA.

Model | Methods LooGLE-arxiv-paper-abstract  L-Eval-TOEFL  L-Eval-Coursera LongBench-HotpotQA  LongBench-2WikiMHQA
OpenAl-ol-mini | RAG with self-Corpus 30.95 86.55 83.64 70.26 48.23
LQCA-with 5% mentions replacement 32.51 88.22 82.98 71.66 47.55
LQCA 40.65 93.71 87.25 75.92 56.85
GPT-40 RAG with self-Corpus 27.65 85.13 80.65 66.35 47.01
LQCA-with 5% mentions replacement 28.54 8251 81.35 68.77 4723
LQCA 34.53 91.03 85.12 71.66 53.62
Llama-3-8b RAG with self-Corpus 6.84 63.15 48.77 40.72 31.78
LQCA-with 5% mentions replacement 6.56 64.25 47.29 41.29 33.69
LQCA 6.91 69.55 49.15 46.23 34.72

D PERTURBATIONS ON COREFERENCE

To assess the effectiveness of our algorithm on the accuracy of coreference, our method demonstrates
an effective filtering mechanism specifically designed to handle highly ambiguous references. Specif-
ically, in our algorithm, when the similarity between two mentions exceeds a set threshold, we ensure
that at least 9 out of the 10 subdocuments containing both mentions classify them into the same
cluster before considering them as co-referential. This establishes a higher threshold for merging
similar mention words.

Therefore, if two mention words are highly ambiguous and have a lower similarity score (e.g. both
have a score of around 0.45), they will be treated as separate co-reference clusters due to the high
threshold (0.8-0.9). This ensures that our method can robustly handle ambiguous context issues.
Furthermore, for ambiguous mentions, we treat them as an independent co-reference cluster. This
means that such mentions will not be replaced in subsequent processing, and their interpretation will
rely on the background knowledge encoded in the original model.

We provide a mechanism to simulate errors. Among all mentions, we randomly replace 5% of
them, with a replacement range of +10, to evaluate the impact of ambiguous references on the
entire reasoning process. This allows us to assess how this situation affects the robustness and
reliability of our method. Table[2]shows experimental results about perturbation. It can be observed
that after applying the disturbance, performance decreases, and the results differ from the previous
baseline. This suggests the importance of coreference resolution in the reasoning process, as model
performance can be impacted by incorrect coreference resolution.

E FUTURE SCOPE

Our LQCA implementation handles long coreference relations based on language model inference in
short texts. In long texts, a potential optimization direction is using causal inference methods. The
causal relationship measure formula C(e;, e;) = & - Reontext(€4,€5) + B - Reausai (€3, €j) combines
traditional entity relationship measures with causal inference. The traditional entity relationship
measure Reonext(€:, €;) is based on factors such as syntactic distance, entity type matching, and
co-occurrence, while the causal relationship measure Reaysai (€, €5) considers whether entities e; and
e; are in a causal chain or connected through causal events. The weight coefficients o and 3 control
the influence of these two parts. The causal relationship measure Reausal (€, €;5) reflects the causal
dependencies between entities and can be calculated as follows:

First, based on a chain of events with causal connections, if the events F; and E; associated
with entities e; and e; have a causal relationship, and if E; is the causal consequence of E;, then
Reausai(€i, €5) will be large; for example, in the case of “The storm caused the flood,” there is a strong
causal relationship between the storm and the flood. Next, using causal inference models, such as
Bayesian networks or causal graphs, the causal relationships between entities can be inferred from
the model structure; for example, in a graph neural network, the relationships between entities can be
deduced from the network structure and used to calculate Rcaysai(€;, €;). Causal inference based on
causal lexicons: causal connecting words in the text help to mark the causal relationships between
events. When one entity triggers another, the causal relationship measure will be high.

To further enhance the reasoning of relationships between entities, causal relationship constraints are
added to the entity relationship network, ensuring that connections are based not only on similarity
but also on causal inference. This helps improve the accuracy of reasoning. Some entities may be at
the cause or effect positions in a causal chain. Changes in entities can also be triggered by events,
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such as a disease triggering a change in health status. This causal relationship can be encoded through
a causal model and assist in reasoning between entities. We expect that better coreference could assist
the model to understand the context better and provide a robost result on various cases.

F ETHICS STATEMENTS

Our work is based on open-source datasets and code for experimentation. All data and information
comply with relevant code standards and data regulations, ensuring that there is no risk of privacy
breaches or information leaks. The use of large language models in our paper is primarily applied to
handling and solving long context understanding problem in most scenarios, as well as text processing
during Chinese-to-English translation in token level. This fully complies with the conference’s
requirements and privacy security guidelines.

When interacting with large language models, we may utilize relevant information from instruction.
It is important to note that hallucinations from large language models may lead to incorrect answers.
Our approach can be further integrated into other frameworks.

G LONGEST DOT PRODUCT PATH ALGORITHM

We use this algorithm to compute the distance of mentions that calculates the distance across the
entire graph. The corresponding algorithm updates paths in a manner similar to Dijkstra’s algorithm.
By extracting the node with the smallest distance from the priority queue, the algorithm traverses its
neighboring nodes, with the selection of these neighbors constrained by a range parameter to ensure
that only nodes within a given distance are considered. For each neighbor, the algorithm determines
whether to update the optimal path from the current node to that neighbor by calculating the possible
path lengths. If the newly calculated path length is greater than the currently recorded optimal path,
an update is made accordingly.

Algorithm 1 All-Pairs Longest Path for Restricted Graph

Input: Graph: G = (V, E); Weight function: w : E — RT; Range parameter: k
Output: Longest dot product path distances: d; ; forall 4,5 € V

1: for eachnode n € V do > // Initialize distances for node n
2 for each node m € V do
3 if m = n then
4: dpm — 1 > // Distance to itself is 1
5: else
6: dpm <0 > // Initial distance set to O
7 end if
8: end for
9: Q<+V > // Priority queue to store unvisited nodes
10: while () is not empty do > // Dijkstra’s algorithm
11: u + Extract-Max(Q) > // Node with the smallest distance
12: forve{meV ||m—u|<L,(u,m) € E}do > // Neighbors within range
13: alt < dy 4 X w(u,v) > // Calculate potential distance
14: if alt > d,, ,, then
15: dp.p < alt > // Update distance if longer
16: end if
17: end for
18: end while
19: end for
20: return d; ; forallé,j € V > // Return all-pairs longest path distances
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