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Abstract
In this work, we study the impact of QA fine-
tuning data on downstream factuality. We show
that fine-tuning on lesser-known facts that are
poorly stored during pretraining yields signifi-
cantly worse factuality than fine-tuning on well-
known facts, even when all facts are seen during
pretraining. We prove this phenomenon theoreti-
cally, showing that training on lesser-known facts
can lead the model to ignore subject entity names
and instead output a generic plausible response
even when the relevant factual knowledge is en-
coded in the model. On three question answer-
ing benchmarks (PopQA, Entity Questions, and
MMLU) and two language models (Llama-2-7B
and Mistral-7B), we find that (i) finetuning on a
completely factual but lesser-known subset of the
data deteriorates downstream factuality (5-10%)
and (ii) finetuning on a subset of better-known ex-
amples matches or outperforms finetuning on the
entire dataset. Ultimately, our results shed light on
the interaction between pretrained knowledge and
finetuning data and demonstrate the importance
of taking into account how facts are stored in the
pretrained model when fine-tuning for knowledge-
intensive tasks.

1. Introduction
Large language models store large amounts of factual knowl-
edge in their weights during pretraining (Jiang et al., 2020;
Petroni et al., 2019; Mallen et al., 2023). As a result, they
have shown promise on a variety of knowledge intensive
tasks, including factual question-answering (Roberts et al.,
2020; Radford et al., 2019). However, these abilities are un-
reliable and language models are prone to generate plausible,
but incorrect responses to queries (Huang et al., 2023).
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A natural avenue to improve factuality is via fine-tuning, as
studied in several recent works (Kazemi et al., 2023; Joshi
et al., 2023; Ouyang et al., 2022; Tian et al., 2023a; Yang
et al., 2023). Multiple works, however, have shown that lan-
guage models answer questions incorrectly even when they
know the right answer, suggesting that current approaches
to fine-tuning may be suboptimal (Burns et al., 2022; Li
et al., 2023a; Liu et al., 2023b). In order to achieve better
fine-tuning or uncover the ceiling of such approaches, we
need to understand what factors determine the performance
of fine-tuning. What is the mechanism by which fine-tuning
improves factuality?

We can distill prior understanding of this question into three
factors. Joshi et al. (2023) posits that fine-tuning on truthful
data influences the model to adopt a credible persona. This
theory suggests that ensuring the factual accuracy of the
finetuning data is sufficient for downstream factuality. An-
other view from Kazemi et al. (2023) and Allen-Zhu & Li
(2023) is that fine-tuning familiarizes the pretrained model
with the QA format, which varies from the way that facts
are observed during pretraining. This implies that finetun-
ing examples should cover question formats likely to be
seen during testing. Finally, Schulman (2023) and Yang
et al. (2023) hypothesize that fine-tuning examples must be
drawn from facts that the model sees during pretraining.

In this work, we find that the impact of fine-tuning examples
depends on how well they are stored in the model, beyond
simply their factuality or whether they are grounded in the
pretraining corpus. Concretely, fine-tuning on QA examples
about facts that the pretrained model knows well signifi-
cantly improves factuality. Conversely, fine-tuning on QA
examples regarding less well-encoded facts actively harms
downstream factuality, causing the model to incorrectly re-
spond to questions it could otherwise get right. We make
this finding in a synthetic setting, after ensuring that all
QA examples are factually accurate, representative of the
downstream task, and seen during pretraining.

Why does the encoding of facts seen in finetuning affect
factuality downstream? We propose the following intuitive
mechanism. When presented with a factual question, a
model can either respond using relevant memorized knowl-
edge or leverage more general “shortcuts” that enable it to
propose a plausible, but incorrect response. For example,
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when asked about a person’s occupation, a language model
could potentially take the shortcut of responding with a word
that is generally associated with occupations (i.e. actor). If
shortcut usage is reinforced during fine-tuning, this can
drown out the influence of memorized knowledge, causing
the model to behave less factually on test data. Our obser-
vations suggest that the composition of the fine-tuning data
controls which mechanism is amplified: less well-known
facts can lead to more aggressive use of shortcuts. We
conceptually illustrate our hypothesis in Figure 1.

In Section 4, we prove this intuition in a one-layer trans-
former. We introduce a quantity termed factual salience that
measures how well a fact is learned by the one-layer trans-
former. Next, we demonstrate that a one-layer transformer
can resort to using shortcuts through attention imbalance:
attending only to more general tokens (for example those
that specify the question type) rather than the specific en-
tities in the question. We prove that fine-tuning gradients
on less salient facts contribute to the formation of attention
imbalance, while those on more salient facts counteract it.
Furthermore, we show the effect of attention imbalance is
amplified when looking at downstream performance on less
well-known facts. Our results have a counterintuitive conse-
quence: for less well-known facts, it is worse to fine-tune
on similar less well-known facts and better to fine-tune on a
different distribution of more well-known facts.

We test the implications of our analysis on three real-world
QA datasets (PopQA, MMLU, and Entity Questions) and
two LLM models (Llama-2-7B and Mistral-7B). As pre-
dicted by our theory, we find that fine-tuning on well-known
knowledge (top 50%) outperforms fine-tuning on less well-
known knowledge (bottom 50%) by 7% on MMLU, 6%
on PopQA, and 4% on EntityQuestions. Moreover, we can
match the performance of fine-tuning on the entire dataset
by finetuning on just the top 50%. On MMLU, we find that
finetuning on the top 30% well-known facts outperforms
finetuning on the entire dataset by up to 2.5%.

To summarize, via theory and experiments, we uncover an
important factor that determines the effect of finetuning
on downstream factuality—how well the finetuned facts
are encoded in the pretrained model. Beyond a conceptual
understanding, our findings have immediate practical con-
siderations for finetuning data curation: it can suffice to
focus on a smaller number of well-known facts even when
trying to improve factuality on less well-known facts.

2. Preliminaries and Setup
Language models are presented with large quantities of fac-
tual knowledge during pretraining, for example in books and
articles in the pretraining corpora (Jiang et al., 2020; Petroni
et al., 2019; Mallen et al., 2023). When users interact with

Figure 1. Conceptual Mechanism of Finetuning on Popular ver-
sus Unpopular Knowledge. When finetuning on less popular
knowledge, the model can learn to heavily upweight relation fea-
tures which enables it to make a plausible guess about the correct
answer. However, training on popular, well-encoded facts discour-
ages this imbalance. At testing time, heavy reliance on relation
features can result in less popular knowledge being overwritten.

language models, however, it is most desirable for them
to extract knowledge in a QA format, which varies from
how facts are seen in pretraining. As a result, LLMs must
undergo finetuning to learn to apply their pretrained knowl-
edge to these downstream QA tasks. Here, we introduce
a formalization of this process which guides our synthetic
experiments (Section 3) and theory (Section 4).

Definition of Factual Knowledge Following prior works
(Petroni et al., 2019; Elsahar et al., 2018), we abstractly
represent a fact as the mapping from a subject-entity s and
relation-type r to an answer a. We can represent these
mappings as knowledge triples (s, r, a) where s ∈ S , r ∈ R,
and a ∈ A and S, R, A are the set of all subject entities,
relations, and answers, respectively. Importantly a single
(s, r, a) triple can be expressed in multiple ways in natural
language. Here, we model a natural language as the set of
sequences of tokens lying in a token set T .

Knowledge Formatting Functions Previously, we pre-
sented a definition of factual knowledge but observed that a
fact can be presented textually in many formats. We formal-
ize this intuition by introducing the notion of a formatting
function g : S × R × A → T k which maps an (s, r, a)
triple to a series of tokens lying in the set T . One such g,
for example, could map the knowledge triple (USA, capital,
Washington D.C.) to the tokenization of the sentence “The
capital of the USA is Washington D.C.”

Pretraining and Fine-tuning Now, we are ready to formal-
ize the interaction of the pretraining and finetuning stages.
Given a set of knowledge triples Dk = {(s, r, a)Ni=1} and a
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pretraining formatting function, we generate a pretraining
corpus Dpre = {gpre(s, r, a)|(s, r, a) ∈ Dk}. Next, for a
downstream formatting function gdown, we generate a down-
stream dataset Ddown = {gdown(s, r, a)|(s, r, a) ∈ Dk}. In
practice, the finetuning dataset is often limited relative to
pretraining so we partition Ddown into Dft and Deval and use
Dft for finetuning and Deval as a held-out test set.

In QA settings, gpre presents facts as they would be seen in
books and articles, while gdown presents facts as question-
answer pairs (i.e. ”What is the capital of the USA? Wash-
ington D.C.”). The goal of QA finetuning is thus to enable
facts observed in the pretraining format to be extracted by
prompting in question-answering (QA) format.

3. Synthetic Experiments
In this section, we study the role of fine-tuning data on
factuality in a synthetic setup. This setup allows us to inves-
tigate the role of the pretraining process, which would be
impractical to do in real large language models.

3.1. Synthetic Setup

We consider the following simulated setup based on the
formalism introduced in Section 2. We consider that there
is a single token for each subject, relation, and answer. We
take gpre(s, r, a) = (s, r, a) (i.e. the pretraining formatting
function simply maps to the sequence of subject, relation,
and answer tokens). To simulate the change in formatting
that occurs in downstream tasks, we introduce a QA-prompt
token pr for each relation type. The QA-prompt tokens are
unseen during pretraining but used in the downstream for-
matting function: gdown(s, r, a) = (s, pr, a). Thus, during
finetuning, the language model must learn to respond to a
prompt (s, pr) as if it had been prompted with (s, r). Our
token space is thus T = S ∪R ∪A ∪ {pr|r ∈ R}.

During pretraining, (s, r, a) triples are sampled i.i.d. from
the distribution s ∼ Zipf(S), r ∼ Unif(R) at each step.
This modeling choice simulates the fact that pretraining
corpora often contain both very popular entities as well
as many obscure, rarely seen ones. During fine-tuning,
however, we perform standard batch based training on Dft.
We assume that all knowledge sequences presented to the
model (in both pretraining and downstream formats) are
consistent with the ground truth (s, r, a) triples in Dk. This
allows us to study the role of finetuning data beyond factual
correctness as is the focus of prior work (Joshi et al., 2023).

Finally, we emphasize that all facts in the downstream fine-
tuning (Dft) and test datasets (Deval) are present in Dpre. As
a result, our simulation results do not arise from the impact
of finetuning on new knowledge as has been hypothesized
in prior works (Schulman, 2023).

3.2. Observations in Simulation

Main Finding: Fine-tuning Fact Popularity Impacts
Downstream Performance In Figure 2(a), we plot the ac-
curacy of training on the most popular (FT-Top) and least
popular (FT-Bottom) entities in the finetuning dataset.
We find that the choice of finetuning dataset significantly
impacts downstream QA factuality. Concretely, fine-tuning
on examples corresponding to the most popular facts in pre-
training results in a 10% improvement in factuality. This
difference is amplified as we include relatively less popular
data in the test set. For example, the difference between
FT-Top and FT-Bottom doubles when we extend our
test set from the top 5% to the top 10% most popular entities
and persists as we include increasingly unpopular entities.

Impact of Long-Tailedness in Pretraining Corpus In
Figure 2(b), we examine the impact of the Zipf α param-
eter on this phenomena. Intuitively, as α increases, the
difference in frequency between more and less popular facts
increases. On the other hand, lower α values result in a more
uniform distribution over facts. We observe that increas-
ing α exacerbates the differences between the fine-tuning
datasets, whereas lowering α largely closes the gap. These
findings suggest that differing impacts of the fine-tuning
datasets is correlated with how significantly facts differ in
their pretraining frequency.

Impact of the Number of Pretraining Steps Previously,
we observed that the long-tailedness of the pretraining dis-
tribution controls sensitivity to the fine-tuning dataset. One
hypothesis to explain this could be that less frequent facts
might not be stored in the model, but we observe that the
gap between more and less popular facts is present even
when all facts can be extracted in (s, r) form, as evidenced
by the pretraining memorization accuracy in Figure 2(a).
This suggests that the gap is driven primarily by differences
in the internal fact-storage. In Figure 2(c), we investigate
this by plotting the gap between FT-Top and FT-Bottom
as a function of pretraining steps. We find that with more
pretraining steps, the gap decreases, indicating that these
internal differences in fact storage disappear as all facts are
seen a sufficient number of times. However, achieving this
in real large language models would likely be impractical
due to the large scale of pretraining data, and the regime
of practical interest shows vast difference in downstream
performance depending on the finetuning distribution.

3.3. Conceptual Model: Factual Salience

Our findings in simulation suggest a continuous progression
in whether a model “knows” a particular fact. This controls
how well a fact can be extracted in downstream settings, as
seen in the decline of downstream accuracy with popularity
in Figure 2(a). Moreover, the extent to which the model
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(a) Impact of Finetuning Dataset (b) Effect of Zipf Alpha (c) Effect of Pretraining Steps

Figure 2. Simulation Study of Finetuning for Knowledge Extraction (a) We plot the downstream factuality of finetuning on more
versus less popular facts, finding that finetuning on more popular facts improves downstream factuality (b) We plot the difference between
finetuning on FT-Top and FT-Bottom as a function of the subject Zipf parameter. We find that on increasingly long-tailed datasets,
the impact of finetuning dataset is amplified. (c) We plot the difference between finetuning on FT-Top and FT-Bottom as a function of
pretraining steps, finding that the difference between the finetuning datasets is mitigated with additional training.

knows a fact also determines its behavior in finetuning, as
evidenced by the gap between FT-Top and FT-Bottom
in Figure 2(a). We refer to this intuitive quantity of how
well a model knows a fact as the fact salience and provide a
formal analysis in Section 4.

Our simulated results indicate that fact salience is related to
the frequency of facts in the pretraining corpus. In particu-
lar, we see that differences in the salience are exacerbated
as the pretraining distribution becomes more long-tailed.
However, we also find that these differences are mitigated
with additional pretraining, suggesting that they are driven
primarily by facts that have been seen only a few times. Im-
portantly, this matches the regime of typical language model
training, where roughly single-epoch training is performed
over a diverse and long-tailed pretraining corpus. In this
setting, many facts are likely to be seen only a few times,
since multiple passes are not performed.

4. Theoretical Analysis of Factual Salience
In the previous section, we intuitively introduced fact
salience and hypothesized that it plays a central role in fac-
tuality. We now formalize this intuition in a one-layer trans-
former. We give a quantitative definition of fact salience in
this simplified setting (Section 4.2) and justify its relation-
ship to downstream fact extractability (Theorem 4.2). Next,
we demonstrate that fine-tuning on less salient facts can
suppress pretrained knowledge (Theorem 4.5). Finally, we
prove that the factual salience increases as a fact is seen dur-
ing pretraining, justifying the use of pretraining frequency
as a proxy (Section 4.4). In Appendix C.1, we validate our
theory numerically.

Simplified Model We analyze a one-layer, single-headed
transformer model with fixed, orthogonal token embeddings
(denoted as ϕ(t) for token t ∈ T ). Our model has two learn-
able parameters: the value matrix, WV, and the key-query
matrix WKQ and we assume that WV,WKQ ∈ R|T |×|T | (i.e.

the value, key and query projections preserve the dimen-
sions of the embeddings). We fix the output head to be the
identity operation. The forward pass of our model on the
input sequence (s, r) can thus be decomposed as follows:

X =
[
ϕ(s) ϕ(r)

]
In the first step, the token sequence is embedded and con-
catenated to an input embedding matrix X .

Self-Att(X;WV,WKQ) = WVXσ(XWKQX−1)

Next, the input embedding matrix passes through a single
head of self-attention to compute the last-token activation.

f(s, r;WV,WKQ) = σ(Self-Att(X;WV,WKQ))

Finally, we compute a probability distribution over the next
token f(s, r;WV,WKQ) as a softmax over the last output of
the self-attention layer. An extended analysis of this model
is provided in Appendix A.1.

Remark. Since WV is full rank, the parameterization above
is sufficiently expressive to achieve 100% argmax decoding
accuracy (as described in Appendix A.1) on any pretrain-
ing dataset where every (s, r) has a unique answer (see
Appendix A.2 for proof).

4.1. Quantifying Factual Salience

In Section 3, we hypothesized that facts are stored with
different strengths in the model weights after pretraining,
impacting both their extractability and their behavior in fine-
tuning. In this section, we explicitly quantify this strength
in a one-layer transformer.
Definition 4.1 (Fact Salience). For a fact (s, r, a), we define
the fact salience S(s, r, a) as ϕ(a)⊤WVϕ(s).

Since we fix the model’s output transformation to be
the identity, WVϕ(s) can be viewed as encoding an un-
normalized probability distribution over the next token, con-
ditioned only on s. Thus, S(s, r, a) measures how well the

4



Understanding Finetuning for Factual Knowledge Extraction

model ”stores” the correct answer in relation to s. Intuitively,
for the fact to be extractable downstream (when prompted
by (s, pr)), the model can only rely on information stored
in s because pr is unseen during pretraining. Additionally,
we observe that S(s, r, a) does not depend on the atten-
tion parameters as all memorization is implemented by WV
(as demonstrated in Appendix A.2). In the next section,
we demonstrate the role played by WKQ in modulating the
contribution of this stored knowledge to the model’s output.

4.2. Attention Imbalance

In the previous section, we defined a measure of how well
knowledge is internally stored in a one-layer transformer. In
this section, we study the role of the attention mechanism
in controlling how this stored knowledge contributes to the
model’s output. In particular, we show that imbalances in
the attention scores of s and pr can suppress pretrained
knowledge.

Theorem 4.2 (Attention imbalance can lead to hidden
knowledge). For pretraining data Dpre, where all a ap-
pear at least once, suppose there exists a value matrix
WV satisfying mild assumptions A.2 to A.4. Then the
one-layer transformer f(s, pr;WV, 0) achieves 100% ac-
curacy under argmax decoding, but there exists WKQ s.t.
f(s, pr;WV,WKQ) does not achieve 100%.

We provide the specific construction in Appendix A.3 and
discuss the relevant assumptions. To summarize, for each
relation r, we can ensure that a subset of facts with that
relation is predicted incorrectly by sending the attention
weight on the subject token towards 0 (equivalently,
increasing the attention on the prompting token towards
1). However, not all facts are equally susceptible to being
suppressed in this way as we highlight below:

Fact Salience Controls Robustness to Attention Imbal-
ance Our proof of Theorem 4.2 relies on ensuring that the
attention to the subject token when prompting with (s, pr)
is sufficiently low. In Appendix A.3, we demonstrate that an
incorrect prediction occurs when the attention to the subject
token Atts ≤ d

S(s,r,a) , for a constant d. This formalizes
our intuition that fact salience determines how robustly a
fact is stored: a small attention imbalance can only force an
incorrect response on facts that are less salient.

Next, we make a connection to the phenomena of hidden
knowledge, where a LLM outputs an incorrect response
despite the correct response being extractable through other
probing methods.

Remark: Hidden Knowledge As Theorem 4.2 does not
allow any modification of the value matrix, all factual as-
sociations are still stored in WV and could potentially be
extracted by examination of the model’s internal parameters.

As such, our theory agrees with empirical findings where
factually correct knowledge can be extracted from model
representations, despite an incorrect generation.

Ultimately, we observe that even when factual knowledge is
stored in model parameters, it can be suppressed from the
output by attention imbalance. In Section 4.3, we study the
fine-tuning process and demonstrate how attention imbal-
ance can arise.

4.3. Fine-tuning Attention Dynamics

In Section 4.2, we showed that imbalances in attention can
harm factuality by suppressing stored knowledge. Here, we
prove that the facts seen in finetuning play an important
role in controlling this imbalance. Concretely, finetuning
on low-salience facts can exacerbate attention imbalance,
while the inclusion of high-salience facts can counteract
it. We begin by defining two quantities that appear in the
WKQ gradient during finetuning (i.e. updating on (s, pr, a)
triples).
Definition 4.3 (Subject Token Relevance). srel = (ϕ(a)−
f(s, pr;WV,WKQ))

⊤(WVϕ(s))

and correspondingly the relation token relevance:

Definition 4.4 (Relation Token Relevance). prel = (ϕ(a)−
f(r, pr;WV,WKQ))

⊤WVϕ(pr).

As derived in the appendix, the update to the attention matrix
takes the form

− ∂L

∂WKQ
∝ (srel − prel)(ϕ(s)ϕ(pr)

⊤ − ϕ(pr)ϕ(pr)
⊤).

The term ϕ(s)ϕ(pr)
⊤ increases the attention on s, while the

term ϕ(pr)ϕ(pr)
⊤ increases attention on pr. Thus, the WKQ

gradient up-weights attention on the most relevant token (as
measured by srel and prel).
Theorem 4.5 (Factuality vs. Nonfactuality Inducing Gradi-
ents). When finetuning on a fact (s, pr), if srel−prel < 0 then
the attention update − ∂L

∂WKQ
decreases the attention on all s′

when prompting with (s′, pr), whereas when srel − prel > 0,
− ∂L

∂WKQ
increases the attention on all s′ when prompting

with (s′, pr).

We postpone the formal proof to Appendix A.5 but provide
the following key observations.

Role of Factual Salience: Observe that the definition of
subject token relevance (Def. 4.3) includes the previously
defined fact salience. Intuitively, gradient steps taken on
less salient facts (relative to the token’s correlation with the
final output f(s, r;WV,WKQ)) downweight attention on the
s token (where pretraining knowledge is stored) and push
the transformer globally towards attention imbalance.
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Global Effect of pr Attention Updates: The term
ϕ(pr)

⊤WKQϕ(pr) appears in the forward pass of all facts
with relation r. Therefore, updates on a fact where srel −
prel < 0 implicitly decrease attention on all s ∈ S (by
increasing the attention score on pr). When training on
many such (s, pr), these updates can accumulate and con-
tribute to significant attention imbalance. Conversely, when
srel − prel > 0 the attention on pr will be decreased, im-
plicitly up-weighting the subject attention for all s ∈ S.
Importantly, this is not a specific consequence of the (s, pr)
ordering examined in this work: it holds whenever the final
prompt token is not subject-specific.

4.4. Fact Popularity and Salience

While our analysis so far has relied on how strongly facts
are internally stored by the model (S(s, r, a)), it is unclear
how to compute this quantity beyond the simplified one-
layer transformer setting. Here, we verify that the number
of times a fact is seen during pretraining correlates with
its salience, as suggested by our results in Section 3. This
suggests pretraining popularity as a proxy for salience.

Theorem 4.6 (Lower bound on fact salience). Consider
pretraining f(s, r;WV,WKQ) on a dataset Dpre of size
N for one epoch with learning rate ϵ. Suppose that the
∥WKQ∥∞ < CKQ and ∥WV ∥∞ < CV throughout training.
Suppose that the combination (s, r) appears n times and
s appears no more than n

exp(−CKQ)(|T |−1)
2 exp(CV ) times. Then

S(s, r, a) ≥ nc1ϵ where c1 > 0.

We postpone the proof to Appendix A.4.

Ultimately, our examination of the one-layer transformer
provides a tight-fitting conceptual explanation of our simu-
lated observations in Section 3. We quantify how strongly
a fact is stored in the pretrained weights (fact salience) and
demonstrate it grows with pretraining frequency (Theorem
4.6). Our analysis illustrates that fact salience plays a cen-
tral role in determining (a) the suppression of pretrained
knowledge (Theorem 4.5) and (b) how robustly a fact can be
extracted at test time (Theorem 4.2). We verify this intuition
in large language models in Section 5.

5. Large Language Model Experiments
In this section, we verify our findings on the role of the QA
dataset when finetuning pretrained large language models
(Llama 7B and Mistral-7B). Unlike Section 3, where we
prescribed an idealized model of the pretraining distribu-
tion, the settings examined here test our theory with models
trained on large-scale pretraining corpora.

Table 1. Construction of PopQA-Controlled

Question Ans Pop.

FT-Top
In what country is Chrysler? USA 55586
What sport does Matty Blair play? Soccer 50643
What is Vanessa Angel’s occupation? Actor 157667

FT-Bottom
In what country is Robinson? USA 142
What sport does Patrick Edema play? Soccer 46
What is Edwin Wallock’s occupation? Actor 68

Table 2. Results on PopQA-Controlled

Method Test-Acc

Zero-Shot Prompting 20.1%
FT-Top 44.5 %
FT-Bottom 37.4%

5.1. Controlled Experiment

We first perform a controlled experiment to test the impact
of fact salience without confounders.

Controlled Setup To isolate the effect of fact salience
on downstream performance, we construct two fine-tuning
datasets that differ in fact salience but have the same make-
up of relation types and corresponding answers. We use a
subset of the PopQA dataset (Mallen et al., 2023) consisting
of the country, sport and occupation relations, which we
refer to as PopQA-Controlled. We take all questions from
each relation with the most frequent answer (respectively
USA, Soccer, and Actor) and divide them into more and less
popular halves (respectively FT-Top and FT-Bottom).
Examples from the two fine-tuning datasets are shown in
Table 1. We disambiguate whether the fine-tuned mod-
els learn to use their pretrained knowledge or shortcuts in
fine-tuning by testing on questions whose answers are not
one of the three seen in fine-tuning. Our theory predicts
that fine-tuning on more salient facts would encourage the
model to use pretrained knowledge, resulting in better test
performance.

Results In Table 2, we observe a significant decrease (7%) in
the factual accuracy of models finetuned on FT-Bottom
versus FT-Top. Our results establish that both (a) the
varying impact of finetuning on popular versus unpopular
knowledge occurs in language models and (b) this effect
cannot be explained by correlations between popularity and
answer entities or relation types.

Stratified Analysis In Figure 4, we additionally ob-
serve a surprising trend: the gap between FT-Top and
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(a) Average Subject Attention Score (b) Attention Pattern on FT-Top versus FT-Bottom

Figure 3. Analysis of Llama-7B Attention Patterns (a) We plot the maximum attention score over subject tokens for Llama-7B models
finetuned on FT-Top and FT-Bottom across layers, where the maximum attention score is averaged over the heads in each layer. All
results are averaged over examples in the PopQA-Controlled test set. (b) We compare the attention patterns for a specific question between
the FT-Top and FT-Bottom fine-tuned models. The tokens corresponding to the subject are enclosed within the green rectangle.

Figure 4. PopQA-Controlled Test Accuracy on Popularity Per-
centiles We plot the accuracy on the top x popularity percentiles of
the PopQA-Controlled test set as a function of x. We compare the
performance of finetuning on FT-Top versus FT-Bottom. We
observe that while both finetuning datasets perform comparably on
the most popular facts in the test set, training on the less popular
data significantly underperforms on relatively less popular test
questions.

FT-Bottom increases as we consider increasingly less
popular test set examples. While both finetuning datasets
yield similar results in the most-popular 20% of the test
set, the gap between the methods widens as we include in-
creasingly unpopular questions, dropping sharply around
the 70th popularity percentile. This finding evinces that our
observations are not merely a result of matching the finetun-
ing distribution to the test set in popularity (where we would
expect large gains for FT-Top on more popular knowl-
edge). Counter-intuitively, skewing the finetuning dataset to
more popular examples appears to be especially beneficial
in improving performance on less popular knowledge.

Analysis of Attention Patterns We study the attention pat-
terns of models fine-tuned on FT-Top versus FT-Bottom
and find that they match the theoretical predictions made in
Section 4. In the left panel of Figure 3 we plot the average
attention to the subject tokens (over the test set) as a function

of Llama-7B layer index and find that FT-Top trained mod-
els attend significantly more to the subject than do models
fine-tuned on FT-Bottom. On the right panel, we visual-
ize the attention patterns of the FT-Top and FT-Bottom
trained models and see that the attention to the subject-
relevant tokens (highlighted in green) is suppressed after
training on FT-Bottom. In this setting, these results pro-
vide evidence that the mechanistic prediction made in our
one-layer transformer model in Section 4 is reflective of
what occurs in a real large language model. Further experi-
mental results are presented in Appendix A.5.

5.2. Real QA Datasets

Previously, we demonstrated the impact of the fine-tuning
QA dataset on question-answering ability in a controlled
setting. In this section, we test the implications of our
findings for improving factual QA performance.

5.2.1. SETUP

Datasets We specialize our evaluation to short answer and
multiple choice QA involving facts of varying popularity
(frequency in the pretraining data). Mallen et al. (2023)
introduce the PopQA dataset which is sampled to include
questions about a range of popular and less-popular top-
ics. We also examine a subset of the Entity Questions (Sci-
avolino et al., 2022) dataset, which includes a diverse range
of popular and less popular facts. In both datasets, we utilize
the Wikipedia page count of the question subject-entity as
a proxy for pretraining fact frequency (Mallen et al., 2023;
Razeghi et al., 2022). This is necessary as it is challenging
to directly measure fact popularity on large-scale pretrain-
ing corpora. Finally, we examine a subset of the MMLU
dataset (Hendrycks et al., 2021) consisting of history ques-
tions. Here, we use the pretrained model’s loss as a proxy
for fact popularity as introduced by Kang et al. (2024).

7
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Table 3. MMLU-History

Finetuning Dataset Llama-7B Mistral-7B

FT-Top 61.4% (0.3) 68.7% (0.5)
FT-Bottom 55.6 % (0.4) 59.4% (0.5)
FT-Whole 58.8% (0.2) 67.4 %(0.4)

Models Our experiments are performed on the Llama 7B
(Touvron et al., 2023) and Mistral-7B (Jiang et al., 2023)
pretrained base language models. Restricting to base (non-
chat-tuned) models allows us to directly study the effect
of pretraining knowledge frequency without confounding
introduced by prior finetuning stages. In all experiments, we
use the best of LoRA (Hu et al., 2021) and full fine-tuning.
In addition, we tune over standard regularization techniques
including weight decay, early stopping, and learning rate
individually for each model and fine-tuning dataset (further
details in Appendix B.2).

Evaluation We evaluate the performance of models on
short-answer QA by appropriately normalizing all model
predictions and ground-truth answers and checking for ex-
act string matches. We describe the specific normalization
techniques in Appendix B.2. We note that both short answer
datasets used in this work provide multiple synonymous
ground-truth answers, mitigating the potential harshness of
exact-match-based evaluations. For multiple-choice evalu-
ation (MMLU), we evaluate the exact match of the model
with the ground-truth answer choice.

5.2.2. RESULTS

Unpopular Facts Harm Downstream Factuality In Figure
5, we observe that finetuning on the least popular knowl-
edge consistently under-performs across both QA datasets
(PopQA and Entity-Questions) and models (Llama-7B and
Mistral). Similar results are also seen in Table 3 on the
MMLU dataset, where finetuning on less confident exam-
ples performs significantly (7-10%) worse than both the top
and whole datasets. The consistency of this observation
across models and tasks supports that our observations are
a general property of the finetuning process, rather than an
artifact of a particular LLM or dataset.

Impact Relative to Test Popularity Figure 5 displays sim-
ilar trends relative to test-set popularity as those seen in
the more restricted settings. In particular, we observe that
the gap between fine-tuning on more versus less popular
examples widens away from the most popular 10% of the
test points as we include more unpopular points in our test
set. The advantage of training on more popular examples
persists even when we include the least popular test points.
This finding provides further evidence of our hypothesis
that although some highly popular facts are relatively in-

variant to the choice of fine-tuning dataset, performance on
relatively less popular facts varies more significantly.

Popular Facts Mitigate Unpopular Surprisingly, we find
that even a randomly selected 50% subset (plotted sky-blue
in Figure 5) significantly outperforms FT-Bottom, per-
forming only slightly worse than FT-Top across all set-
tings. This suggests that some popular points (which would
be present in FT-Random but not FT-Bottom) can sig-
nificantly mitigate the damage incurred by finetuning on less
popular knowledge. Moreover, this conclusion is supported
by our theoretical analysis: the gradients on more popular
examples globally counteract attention imbalance, as shown
in Theorem 4.5.

Finetuning Data Quantity in Question-Answering In Fig-
ure 5, we compare the performance of the best top popu-
larity subset with fine-tuning on the entire training dataset.
Across all settings, we observe that training on a smaller
subset of the most popular facts performs comparably or
better than using the entire dataset. Moreover, these vari-
ations are amplified on the same percentiles as the differ-
ence between FT-Top and FT-Bottom (i.e. between the
30th-60th popularity percentiles). In Table 3, we similarly
observe that training only on the most familiar MMLU ex-
amples performs better than using the whole dataset across
both models. This suggests that (a) only a subset of the most
popular training points are actually helpful in fine-tuning
for factual question-answering and that (b) including the
additional QA examples could be harmful to facts that are
especially sensitive to finetuning distribution.

6. Related Works
Impact of Unfamiliar Knowledge Recent works have ex-
amined the impact of unfamiliar examples during finetuning.
Kang et al. (2024) argues that unfamiliar examples in the
fine-tuning dataset determine how a model responds to un-
familiar test examples. However, they do not consider the
impact of unfamiliar fine-tuning examples on the general
factuality of the model as is the focus of this work. Concur-
rently to this work, Gekhman et al. (2024) demonstrate em-
pirically that finetuning on unfamiliar examples can worsen
factuality, characterizing it as a result of overfitting. In
this paper, however, we present a conceptual model of this
phenomena, demonstrating that it arises from suppression
of pretrained knowledge in favor of generic “shortcuts”.
Our theory additionally explains the varying impact that
different fine-tuning strategies have on test points of varying
popularity or familiarity.

Reliable Factuality of Language Models Prior works have
extensively studied challenges and approaches for improv-
ing the factuality of LLMs. Mallen et al. (2023) and Kandpal
et al. (2023) demonstrate that LLMs often underperform

8
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Figure 5. Finetuning Performance on Real Datasets We plot the factual QA accuracy across two models and question-answering datasets
under different fine-tuning strategies. FT-Top denotes finetuning on the most popular half of data, FT-Whole denotes finetuning on the
whole training dataset, FT-Random denotes finetuning on a randomly selected half of the data, and FT-Bottom denotes finetuning on
the lower 50% of the data, sorted by popularity. We plot performance restricting to the top-x popularity percentiles of the test set.

on obscure or long-tailed knowledge. Li et al. (2023a) find
that the factuality of language models can be improved by
upweighting certain attention heads. Similarly, Burns et al.
(2022) demonstrate that unsupervised internal probes can
reveal factual associations in language models, even when
they ultimately output an incorrect response. Chuang et al.
(2023) demonstrate that contrasting the final prediction from
earlier layers of language models can improve factual accu-
racy. Prior works have also examined methods to improve
factuality via abstention.Varshney et al. (2023) demonstrate
that low confidence outputs can be hallucinations. Similarly,
Yuksekgonul et al. (2023) use token attention scores to de-
tect when language models hallucinate. On the other hand,
Yang et al. (2023); Zhang et al. (2023); Schulman (2023)
introduce fine-tuning techniques to induce large-language
models to refuse questions that are outside their knowledge
boundary. Collectively, these prior works demonstrate fail-
ure modes of factual reliability in language models, at times
even when they can output the correct answer. In this work,
on the other hand, we study the impact of the fine-tuning
distribution on the model’s downstream factuality.

Understanding LLM Mechanisms and Training Dynam-
ics Many prior works have sought to explain the behaviors
of language models and understand their failure modes.
Allen-Zhu & Li (2023) examine the conditions on pretrain-
ing data necessary for facts to be stored in an extractable
form on a synthetic dataset. Geva et al. (2023) identify
the mechanisms by which facts are stored and extracted in
language models. Li et al. (2023b) study one-layer trans-
former pretraining dynamics on a topic modeling task. Chen
et al. (2024) empirically studies the pretraining dynamics of
syntax acquisition in masked language models. Tian et al.
(2023b) analyze the attention dynamics of one-layer trans-
formers, demonstrating that uniquely co-occurring tokens
are upweighted in attention. Liu et al. (2023a) examine
long-range reasoning failures of large language models, at-
tributing them to erroneous attention scores. In this work,

we focus on understanding the mechanics of fine-tuning
relating to promoting or suppressing pretrained knowledge,
thereby impacting the extractability of facts downstream.

7. Discussion
In this work, we investigate the impact of QA dataset com-
position on model factuality, making a notable finding: fine-
tuning on questions about well-known facts uniformly im-
proves factuality over fine-tuning on less known facts. We
observe this trend across a range of simulation and real-
world settings and develop a conceptual model of QA fine-
tuning in a simplified one-layer transformer. Our results
challenge intuitive heuristics for designing QA fine-tuning
datasets. In particular, over-representing well-known facts
in QA fine-tuning can actually be beneficial. Our results
can inform principled methods to improve the downstream
factuality of language models. Guided by our theory, a
valuable area for future work can be developing regular-
ization techniques to mitigate attention imbalance during
finetuning. Another promising avenue is curriculum learn-
ing, which could enable more obscure facts to be trained
on after finetuning on more popular knowledge to mitigate
attention imbalance. Finally, we hypothesize that our con-
ceptual model can guide the development of synthetic data
to efficiently improve knowledge extractability.
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A. Theory Appendix
A.1. Notations and Setup

Representation of Tokens We consider a synthetic language with a token set T where |T |. When representing tokens,
we consider them to be integers in the interval [0, |T |]. To represent factual associations, we further partition T =
S ∪R ∪A ∪ {pr|r ∈ R}. As such S, R, A, and {pr|r ∈ R} are sets of integers, representing the underlying tokens.

Embedding Layer As introduced in Section 4, we consider fully fixed, fully orthogonal token embeddings (i.e. the
embedding matrix is the identity matrix) and the embedding of a token i is ei ∈ R|T | (i.e. a vector with all entries 0 except
for the i-th component). Moreover, the embedding and unembedding modules are considered to be weight-tied as examined
in Li et al. (2023b). In this setting, we have that the embedding of a token i is the i-th basis vector (i.e. ei), and as a
result the embeddings of the different tokens are orthogonal to one another. In addition, the i-th component of the model
output f(s, r,WV,WKQ)i is the probability of token i being the next token (as we discuss further when introducing argmax
decoding).

One-Layer Transformer Architecture We consider a one-headed, one-layer transformer in this work with fully orthogonal
and weight-tied embedding and unembedding layers. We assume that the key, query, and value matrices are square, thereby
preserving the dimensions of the embedding. We additionally assume that the language modeling head corresponds to an
identity transformation (this is possible due to the projections preserving the dimensions of the embedding).

Denote a matrix of embedded inputs X ∈ R|T |×l, where l is the sequence length. We can then write the output of this single
head of attention (given parameters WK ,WQ, WV ) as :

Self-Att(X;WQ,WK ,WV) = (WVX)σ((WKX)T (WQX))

where σ denotes the column-wise softmax operation.

In our simplified model, we consider only one self-attention layer and consider that the language modeling head is the
identity, which is possible because the embeddings, query, key, and value projections all lie in R|T |. We can then write the
next-token prediction function, given a sequence of tokens t1, ..., tl, as f : T l → ∆(T ) where l is the sequence length and
∆(T ) is the space of probability distributions over the token space T . Applying our simplifying assumptions, we can write
that

f([t1, , , .tl],W
Q,WK ,WV ) = σ(Self-Att(X;WQ,WK ,WV):−1)

where the subscript : −1 denotes the last column of the matrix. Thus, we take the softmax of the (post-self-attention)
embedding of the last input token to predict the next token. Note that this can be rewritten:

f([t1, , , .tl],W
Q,WK ,WV ) = σ((WV X)σ((WKX)TWQX:−1)).

.

Note that the actual computation depends only on the product (WK)⊤WQ and thus, we will reparameterize as WKQ =
(WK)⊤WQ. For convenience, in the main text, we redefine the Self-Att function to map from an input sequence embedding
matrix to the last token’s embedding (i.e. Self-Att : R|T |×l → R|T |) and we parametrize with only WV and WKQ. Thus,
we use the definition

Self-Att(X;WV,WKQ) = (WV X)σ(XTWKQX:−1).

For most of our analysis, we will focus on the specialized setting of next-token prediction given the context (s, r) or (s, pr).
In this specialized setting (considering (s, r) for instance), we have that X =

[
ϕ(s) ϕ(r)

]
. We can write the following

f(s, r;WV,WKQ) = σ(WV
[
ϕ(s) ϕ(r)

]
σ(

[
ϕ(s)⊤

ϕ(r)⊤

]
WKQϕ(r)).

Finally, we will rewrite this in order to more clearly demonstrate the contribution of different tokens to the final prediction.
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σ(

[
ϕ(s)⊤

ϕ(r)⊤

]
WKQϕ(r))0WVϕ(s) + σ(

[
ϕ(s)⊤

ϕ(r)⊤

]
WKQϕ(r))1W

V ϕ(r).

In the following proofs, we will often abbreviate Atts = σ(

[
ϕ(s)⊤

ϕ(r)⊤

]
WKQϕ(r))0 and Attr = σ(

[
ϕ(s)⊤

ϕ(r)⊤

]
WKQϕ(r))1. Thus,

the pre-softmax output of the one-layer transformer can be written as

AttsWVϕ(s) + AttrWV ϕ(r).

argmax Decoding Recall that the language model embedding layer is is fixed to be an identity matrix. In addition, the
output projection is defined to be an identity transformation. Thus, the final token output of the self-attention layer can be
interpreted as an un-normalized probability distribution over the token space T . We then define argmax-decoding as:

argmax
t∈T

(f(s, r;WV,WKQ))t.

That is, the index of the maximum value in the one-layer transformer output corresponds to the index of the next token.
Additionally, due to the softmax layer preserving the ordering of the vector’s components, this is equivalent to:

argmax
t∈T

(Self-Att(X;WV,WKQ))t.

A.2. One-Layer Transformer Can Memorize All Facts

In this section, we prove that despite its simplified nature, a one-layer transformer is capable of memorizing all facts in the
pretraining dataset. This helps establish that our simplified model does not restrict the ability to learn facts in our setting.

Theorem A.1 (One-layer transformer can fully memorize the pretraining dataset). Consider any pretraining dataset
Dpre = {(s(1), r(1), a(1)), ..., (s(N), r(N), a(N)} such that any (s, r) combination appears exactly once. There exists a
one-layer transformer with parameters f(s, r;WV,WKQ) s.t. argmax f(s, r;WV,WKQ) = a ∀(s, r, a) ∈ Dpre.

Proof. We will prove that the choice of parameters: WV =
∑

(s,r,a)∈Dpre
ϕ(a)ϕ(s)⊤ + ϕ(a)ϕ(r)⊤ and WKQ = 0 satisfies

the result of the theorem.

Observe that f(s, r;WV, 0) = σ( 12WVϕ(s
∗) + 1

2WVϕ(r
∗)). Next, we will define two sets As∗ and Ar∗

As∗ = {a|(s∗, r, a) ∈ Dpre ∀r ∈ R}
Ar∗ = {a|(s, r∗, a) ∈ Dpre ∀s ∈ S}

Intuitively, As∗ denotes the set of all answers that are observed associated with s∗ (as r is allowed to vary), and likewise As∗

is the set of answers seen with r∗ as s is allowed to vary. Using these sets and applying the orthogonality of the embeddings,
we can simplify the expression for f to

f(s, r;WV,WKQ) = σ(
1

2

∑
a∈As∗

1{a}+ 1

2

∑
a∈Ar∗

1{a}).

We can further simplify by pulling out the term corresponding to a ∈ As∗ ∩ Ar∗. We will abbreviate A∩ = As∗ ∩ Ar∗,
Ar∗

\ = Ar∗ \ A∩, and As∗

\ = As∗ \ A∩

f(s, r;WV,WKQ) = σ(
∑
a∈A∩

ϕ(a) +
1

2
(
∑

a∈As∗
\

ϕ(a) +
∑

a∈Ar∗
\

ϕ(a))).

For the remainder of the proof, we will examine the pre-softmax output of the one-layer transformer, which we will write as

Z =
∑
a∈A∩

ϕ(a) +
1

2
(
∑

a∈As∗
\

ϕ(a) +
∑

a∈Ar∗
\

ϕ(a)).
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Observe that each (s, r) tuple is associated with only one a in the pretraining dataset Dpre, implying that Ar ∩ As = {a∗}
where we define a∗ such that (s∗, r∗, a∗) ∈ Dpre. This implies that (using orthogonality) that:

ϕ(a∗)⊤Z = 1.

On the other hand, we have

ϕ(a)⊤Z =
1

2
∀a ∈ Ar∗

\ ∪ Ar∗

\ .

Finally, by orthogonality, we have for all a ∈ A \ (As∗ ∪ Ar∗ ∪ A∩)

ϕ(a)⊤(WVϕ(s) +WVϕ(r)) = 0.

Therefore argmaxãϕ(ã)
⊤( 12

∑
a∈As ϕ(a) + 1

2

∑
a∈Ar ϕ(a)) = a∗ and we have completed the proof since this holds for

arbitrary (s, r).

Intuitively, the full-rank nature of the embedding and value matrices enable us to use the value matrix as a key-value store
which encodes the mapping (s, r) → a.

A.3. Proof of Theorem A.5

In this theorem, we demonstrate that despite potentially having all factual associations encoded in the value matrix WV , the
attention weights can be modified such that information is suppressed from the output layer. Our construction here depends
primarily on the attention scores becoming imbalanced against the subject token, which we will demonstrate occurs during
fine-tuning in the next section. We introduce three additional assumptions regarding the structure of the value matrix and
the fact distribution. These assumptions are largely minor in nature: Assumption A.2 simply requires that the activations
ϕ(a)⊤WV ϕ(s) are not all identical. In a similar vein, we assume that each answer is seen at least once in the dataset.
Finally, as indicated in the hypothesis of the theorem, we assume that all the facts are memorized. Note that Assumption
A.4 is a significantly weaker consequence of the one-layer transformer achieving 100% accuracy – however it is all that is
needed for the proof.

Assumption A.2 (Non-Uniform Relation Marginal). ∀rmaxa∈Ar ϕ(a)⊤WVϕ(pr)−mina∈Ar ϕ(a)⊤WVϕ(pr) > 0

Assumption A.3 (Answer Diversity). ∀r ∀a ∈ Ar ∃s ∈ S such that(s, r, a) ∈ Dpre

Assumption A.4 (All Facts Memorized). ∀s ∈ S ∀r ∈ R ϕ(a)⊤WV ϕ(s) ≥ maxa′∈Ar ϕ(a′)⊤WVϕ(r)− ϕ(a)⊤WV ϕ(r)

For simplicity, we will additionally assume that all entries of the value matrix WV are greater than or equal to 0. This can
be achieved by simply shifting all entries in the matrix, without changing the relative orderings of the activations.

Theorem A.5 (Attention imbalance can lead to hidden information). Consider any value matrix WV satisfying assumptions
A.2 throug A.4. Then a one-layer transformer with parameters [WV , 0] achieves 100% accuracy but there exists WQK s.t.
f[WV,WKQ]([s, r]) does not achieve 100%.

Proof. We will construct a WKQ such that f does not achieve 100% accuracy. By Assumption A.3, ∀r we have that there is
at least one s such that (s, r, a′) ∈ Dpre where a′ ̸= argmaxa∈A ϕ(a)⊤WVϕ(r).

We will refer to Dmin = {(s, r, a) ∈ Dpre | a ̸= argmaxa∈A ϕ(a)⊤WVϕ(r)} (i.e. the set of (s, r, a) triples whose answers
are not the most strongly encoded with respect to relation token r). We will show that we can construct WKQ(without
modifying WV ) such that all points in Dmin are incorrectly responded to.

Consider (s, r, a) ∈ Dmin. At balanced attention, we have that argmaxa′∈A ϕ(a′)⊤(WVϕ(s) +WVϕ(r)) = a because the
one-layer transformer achieves 100% accuracy. However we also have that argmaxa′∈A ϕ(a′)⊤WVϕ(r) ̸= a by the con-

struction of Dmin. Denote the last-token attention scores given an attention matrix WQK as
[

Atts
Attr

]
= σ(

[
ϕ(s)⊤WKQϕ(r)
ϕ(r)⊤WKQϕ(r)

]
).

We have that if Atts(ϕ(a)⊤WVϕ(s)) ≤ Attr(maxa′∈A ϕ(a′)⊤WVϕ(r)− ϕ(a)⊤WVϕ(r)) then f(s, r;WV,WKQ) ̸= a. We
can see this by rearranging this inequality, yielding

ϕ(a)⊤(AttsWVϕ(s) + AttrWVϕ(r)) ≤ Attrϕ(ã)⊤WVϕ(r)) ≤ ϕ(ã)⊤(AttsWVϕ(s) + AttrWVϕ(r)).
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where ã = argmaxa∈A ϕ(a)⊤WVϕ(r). This implies that f(s, r;WV,WKQ) ̸= a. We will term
maxa′∈Ar ϕ(a′)⊤WVϕ(r) − ϕ(a)⊤WVϕ(r) as a relation specific constant d. Then we can achieve erasure of the fact
(s, r) by ensuring

σ(

[
ϕ(s)⊤WKQϕ(r)
ϕ(r)⊤WKQϕ(r)

]
)0 ≤ σ(

[
ϕ(s)⊤WKQϕ(r)
ϕ(r)⊤WKQϕ(r)

]
)1

d

ϕ(a)⊤WVϕ(s)
,

Since both the terms ϕ(s)⊤WKQϕ(r) and ϕ(r)⊤WKQϕ(r) are free variables, we will fix ϕ(r)⊤WKQϕ(r) = 0 without loss of
generality and compute the required constraint on the term ϕ(s)

⊤
WKQϕ(r). For convenience, we will use the abbreviation

c = ϕ(s)⊤WKQϕ(r).

Substituting these simplifications, we have the following inequality

exp{c}
exp{c}+ 1

≤ 1

exp{c}+ 1

d

ϕ(a)⊤WVϕ(s)
.

We have that setting c = ϕ(s)⊤WKQϕ(r) ≤ log dr

ϕ(a)⊤WVϕ(s)
achieves this. This confirms our intuition that as fact salience

ϕ(a)⊤WVϕ(s) becomes large, we must set the entry ϕ(s)⊤WKQϕ(r) increasingly negative to ensure that an incorrect answer
is output.

A.4. Results on Token Learning

In this section, we establish some theory relating to the representations of tokens after pretraining. First, we prove the
following theorems regarding bounded softmax functions.

Theorem A.6 (Softmax on ℓ∞ bounded vectors). Consider x ∈ Rd and suppose ∥x∥∞ ≤ C. Then maxi(σ(x))i ≤ e2k

d−1

and mini(σ(x))i ≥ e−2k

d

Proof. σ(x)i = exp(xi)∑
j∈d

exp(xj)
≤ exp(C)

exp(C)+(d−1) exp(−C) = exp(2C)
exp(2C)+(d−1) ≤ exp(2C)

d−1 . Likewise σ(x)i ≥

exp(−C)
exp(−C)+(d−1) exp(C) =

exp(−2C)
exp(−2C)+(d−1) ≥

exp(−2C)
d .

Now we will prove a result on the activation of a token t, WVϕ(t) when trained by gradient descent with Cross Entropy loss
with learning rate ϵ and updated N times. We will make the following assumptions:

Assumption A.7 (Attention Matrix Bounded). ∀t ∈ T ∥WKQϕ(t)∥∞ ≤ CKQ

2

Assumption A.8 (Value Matrix Bounded). ∀t ∈ T ∥WVϕ(t)∥∞ ≤ CV

2

We require that Assumptions A.8 and A.7 hold throughout the training trajectory we consider. Now, consider a fixed token
t∗ ∈ T and a pretraining dataset Dpre. Let Dt = {(t∗, t1, ta1

), ..., (t∗, tn, tan
)} be all examples in Dpre where t∗ occurs.

Furthermore consider that ta1 , ..., tan ∈ T a and that |T a| = k, i.e. that T ∗ = {ta1 , ..., tak}. Finally let ni denote the number
of time tai appears in Dpre. Now we are ready to state the theorem.

Theorem A.9 (Token Training Dynamics). Consider training a one-layer transformer with parameters [WV,WKQ] starting
at 0 initialization with batch size 1 and learning rate ϵ. Assume throughout training, we satisfy Assumptions A.7 and A.8.
Then after one pass through Dpre we have that ∀tai ∈ T a ϕ(tan

)⊤(WV ϕ(t∗)) ≥ (
ni exp(−CKQ)

2 − n exp(CV )
|T |−1 )ϵ.

Proof. We have that the single gradient step update for WV on example (t∗, ti, t
a
j ) can be written:

WT+1
V = WT

V + (Attt∗(ϕ(taj )− f(t∗, ti;WV,WKQ))ϕ(t
∗)⊤ + Attti(ϕ(t

a
j )− f(t∗, ti;WV,WKQ))ϕ(ti)

⊤)

where we denote the attention scores respectively on t∗ and ti as Attt∗ and Attti . Since we are primarily focused on the
value matrix projection of t∗, we will discard the ti term in what follows (due to orthogonality).

We will first establish an upper bound on the pre-softmax output of the transformer, Z, in terms of the ℓ∞ norm. By
expanding and applying the triangle inequality we have

∥Z∥∞ = ∥Attt∗WVϕ(t
∗) + AtttiWVϕ(ti)∥∞ ≤ Attt∗∥WVϕ(t

∗)∥∞ + Attti∥WVϕ(ti)∥∞.
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By Assumption A.8 we have that ∥WVϕ(t
∗)∥∞ ≤ CV

2 and
∥∥WV ϕ(ti)

∥∥
∞ ≤ CV

2 . This implies that

∥Z∥∞ ≤ Attt∗∥WVϕ(t
∗)∥∞ + Attti∥WVϕ(ti)∥∞ ≤ CV

2
(Attt∗ + Attti) =

CV

2

where the final equality comes from softmax property that Attt∗ + Attti = 1

Next observe that f(t∗, ti;WV,WKQ) = σ(Z). We can then apply Theorem A.6 to upper and lower bound the components
of f(t∗, ti;WV,WKQ). In particular, we have that ∀i ∈ [0, |T |]

exp(−CV )

|T |
≤ (f(t∗, ti;WV,WKQ))i ≤

exp(CV )

|T | − 1
.

Now, we will examine the attention term, we have that[
Attt∗
Attti

]
= σ(

[
ϕ(t∗)⊤WKQϕ(ti)
ϕ(ti)

⊤WKQϕ(ti)

]
).

By Assumption A.7 we have that ∥∥∥∥[ϕ(t∗)⊤WKQϕ(ti)
ϕ(ti)

⊤WKQϕ(ti)

]∥∥∥∥
∞

≤ CKQ

2

and thus, by Theorem A.6 we have that for t ∈ {t∗, ti} we have that

exp(−CKQ)

2
≤ Attt ≤ exp(CKQ).

Next for any tai ∈ T a, the co-ordinate ϕ(tai )
⊤(WVϕ(t

∗)) receives ni updates of the form +ϵAttt∗ and n updates of the form
−f(t∗, t′;WV,WKQ)Atts. We can then lower bound the quantity ϕ(tai )

⊤(WVϕ(t
∗)) ≥ niϵ

exp(−CQK)
2 − n exp(CV )

|T |−1 ϵ (where
we have upper bounded the attention score in the second term by 1), thereby yielding the desired claim.

Now, we are ready to prove the Theorem 4.6, as a straightforward application of Theorem A.9. We restate Theorem 4.6
below for convenience.

Theorem A.10 (Lower bound on fact salience). Consider pretraining f(s, r;WV,WKQ) on a dataset Dpre of size N for one
epoch with learning rate ϵ. Suppose that the ∥WKQ∥∞ < CQK and ∥WV ∥∞ < CV throughout training. Suppose that the
combination (s, r) appears n times and s appears no more than s appears no more than ntot < n

(|T |−1) exp(−CKQ)
2 exp(CV ) times.

Then (ϕ(a)⊤)(WV ϕ(s)) ≥ nc1ϵ where c1 > 0.

Proof. We can simply treat the set {a|(s, r, a) ∈ Dpre} as T a in the theorem above. Then we have that ni = n (for the
purposes of Theorem A.9) and finally that n < ntot. This implies that ϕ(a)⊤(WV ϕ(s)) ≥ (n

exp(−CKQ)
2 − ntot

exp(CV )
|T −1| )ϵ.

We have that by the hypothesis of the theorem, (n exp(−CKQ)
2 − ntot

exp(CV )
|T −1| ) > 0 which gives the desired result

A.5. Results on Attention Dynamics

Now, we examine the process by which attention is learned in the one-layer transformer. Preliminarily, we have that the
update corresponding to the attention matrix WKQ on an abstract gradient update (s, r, a) is

− ∂L

WKQ
= c ((ϕ(a)− f(s, r;WV,WKQ))

⊤(WVϕ(r))︸ ︷︷ ︸
correlation of r with update

(ϕ(r)ϕ(r)⊤ − ϕ(s)ϕ(r)⊤)︸ ︷︷ ︸
increase attention on r

+

(ϕ(a)− f(s, r;WV,WKQ))
⊤(WVϕ(s))︸ ︷︷ ︸

correlation of s with update

(ϕ(s)ϕ(r)⊤ − ϕ(r)ϕ(r)⊤)︸ ︷︷ ︸
increase attention on s
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Table 4. Large Language Model Hyperparameters

Hyperparameter Range

Learning Rate 1e-5, 1e-4, 1e-3
Weight Decay 1e-6, 1e-5, 1e-4, 1e-3, 1e-2
(LoRA rank, LoRA α) (8,16), (16,32), (32, 64), (64,128)
LoRA True, False

where c > 0, arising from the gradient of the softmax term. For subsequent convenience, we will condense the update as

− ∂L

WKQ
= (ϕ(a)− f(s, r;WV,WKQ))

⊤(WVϕ(r)−WVϕ(s))(ϕ(r)ϕ(r)
⊤ − ϕ(s)ϕ(r)⊤).

On this basis, we now prove Theorem A.11, first restating it for convenience.

Theorem A.11 (Factuality vs. Nonfactuality Inducing Gradients). When finetuning on a fact (s, pr), if srel − prel < 0
then the attention update − ∂L

∂WKQ
globally decreases the attention on all s′ when prompting with (s′, pr), whereas when

srel − prel > 0, − ∂L
∂WKQ

globally increases the attention on all s′.

Proof. Beginning with the update of the query-key matrix, we observe that when srel − prel < 0, then we have (denoting
the post-update value matrix as W

′

KQ).

ϕ(r)⊤W
′

KQϕ(r) = ϕ(r)⊤WKQϕ(r) + t

where t > 0. This follows from the update rule:

W
′

KQ = WKQ + t(ϕ(r)ϕ(r)⊤ − ϕ(s)ϕ(r)⊤)

since the embeddings ϕ(r) are unit norm and we can omit the impact of the ϕ(s)ϕ(r)⊤ term by orthogonality.

Next, to show the global nature of the update, we consider an arbitrary subject token s′ and compare the attention before and
after the update on the prompt [s′, r]. We will denote the pre-update subject token attention as Attts′ and the post-update
subject token attention as Attt+1

s′ . Then, we have

Attt−1
s′ =

exp
(
ϕ(s′)⊤WKQϕ(r)

)
exp(ϕ(s′)⊤WKQϕ(r)) + exp(ϕ(pr)⊤WKQϕ(pr))

and the attention on the subject after the update is

Attts′ =
exp

(
ϕ(s′)⊤WKQϕ(r)

)
exp(ϕ(s′)⊤WKQϕ(r)) + exp(ϕ(pr)⊤WKQϕ(pr) + t)

Thus, by the monotonicity of exp and the fact that f(x) = x−1 is decreasing, we have that Attt−1
s′ > Attts′ . In the second

case srel − prel > 0, the update to WKQ is −tϕ(r)ϕ(r)⊤ and we have the result by the same reasoning.

B. Experimental Details
B.1. Hyperparameters and Tuning

Across all experiments, we tune the following hyper-parameters on the ranges shown in Table 4 on a held-out validation
set. The LoRA entry refers to selecting whether LoRA or full-finetuning is used. In all experiments, we found that LoRA
achieved better validation performance than full-finetuning. We report the performance after tuning on a held-out validation
set in all experiments. Tuning is performed individually for each fine-tuning dataset.
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(a) Accuracy (b) Subject Attention (c) Relation Attention

Figure 6. Numerical Results on One-Layer Transformer We consider the same pretraining data distribution as previously but with
training a one-layer transformer rather than a multi-layer transformer. This represents an exact simulation of the setting of our theoretical
model from Section 4. In (a) we plot the factual accuracy as a function of the finetuning step. In (b), we plot the attention score on the
subject token, and in (c) the attention score on the relation token.

B.2. Evaluation

For short answer questions, we normalize the LLM output (generating up to 10 tokens), llm out by the following:

llm out norm = llm out.lower().rstrip().lstrip()

Given a list of possible ground-truth answers in the dataset gt list, we compute whether the LLM response is correct as:

any([x in llm out norm for x in gt list])

We consider the LLM’s output on a multiple choice dataset as:

torch.argmax(out scores[token set])

where out scores are the next token prediction scores on and token set are the indices of the answer choice tokens
(i.e. A, B, C, or D).

B.3. Attention Mechanism Analysis

We denote the subject attention as the maximum attention score over the tokens corresponding to the subject entity (relative
to the final prompt token), as proposed in (Yuksekgonul et al., 2023). The attention score for each layer is computed by
averaging over all attention heads in that layer. On the left panel, we show the average attention score to the subject entity
averaged over the PopQA test set. We observe, past the initial few layers, that the attention to the subject significantly drops
in the model fine-tuned on FT-Bottom, providing mechanistic evidence of our hypothesis in a large language model.

C. Additional Experimental Results
C.1. Numerical Experiments with One-Layer Transformer

In this section, we provide numerical evidence of our 1-layer transformer theory introduced in Section 4. We replicate our
experiments in the synthetic language seen in Section 3 in a one-layer transformer. As introduced in (Li et al., 2023b), we
consider the initialization setting in which both the value and query-key matrices are initialized from a normal distribution
with very low variance (0.001).

As a result of this configuration, the attention matrix initially is not updated (i.e. steps 1-10), because the magnitude of the
update depends on the entries of the value matrix which are initially small. Later on in training, the attention matrices begin
to update (in this case once all facts are learned). This results in the attention shifting. This can be seen as an example of
two-stage training dynamics for a one-layer transformer, as is observed in (Li et al., 2023b).

In Figure C.1, we plot the attention to the relation token as a function of finetuning training steps. We observe that the
attention to the relation token grows throughout training, eventually approaching 1 (i.e. the one-layer transformer entirely
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Figure 7. Additional Attention Maps We include additional example-specific attention maps for models fine-tuned with FT-Top and
FT-Bottom, respectively. Overall, we find the trends predicted by our analysis of the one-layer transformer continue to hold. In
particular, subject attention is markedly reduced for models that are fine-tuned on FT-Bottom.

ignores the subject token) and similarly, the subject attention declines to 0. As a result of this, we see that the performance
of the model steeply declines as training continues, demonstrating ”hidden information” caused by the imbalanced attention
that we present in our theory.

C.2. Additional Attention Maps

Due to space constraints, we include additional attention maps of models trained on FT-Top and FT-Bottom in Figure 7.
Overall, we observe a reduction of attention scores when evaluating on the FT-Bottom model, as we describe in Section 5.
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