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Abstract

Explainability aspects of most classification models are learnt through instance-specific anal-
ysis. However, in understanding diseases, it is important to consider population-wide anal-
ysis in order to identify affected regions that are consistently seen across cohorts of diseased
population. In this study, we report utility of Kolmogorov-Arnold Networks (KANs) in
understanding population-wide characteristics seen in subjects affected by Alzheimer’s dis-
ease (AD). KANs offer enhanced interpretability through learnable activation functions on
network edges. Thus, the learned functions reflect the characteristics of the entire span of
training data. In a KAN network trained for classification, attributions through the network
can be traced to understand how specific inputs influence the output label. In this study,
we propose a path-based attribution framework that generates global importance maps by
tracing exhaustive information flow through all potential paths. Our method initially scores
the functions on the edges of a trained KAN using an appropriate scoring function. Sub-
sequently, these scores are propagated through the network to compute path-attributions.
This approach scales linearly with network depth, and is only dependent on model training
and does not need further analysis on training data post-hoc. Evaluation on three public
AD neuroimaging datasets (OASIS, ADNI, Mendeley, totally comprising 7428 acquisitions),
were carried out on 2D brain slices as well as 3D brain volumes. The corresponding KAN
test accuracies are 93.24%, 81.85%, and 91.25% on OASIS, ADNI, and Mendeley datasets,
respectively. Alongside, competitive or improved performance via metrics such as Inser-
tion AUC, Deletion AUC and Sufficiency, is also demonstrated. The generated attribution
maps identify clinically meaningful regions including the body and genu of corpus callos-
sum, corona radiata, bilateral caudate nuclei, medial prefrontal cortex and temporal lobe
structures, aligned with established AD pathology literature. By providing voxel-level global
attributions as network-intrinsic properties, our framework addresses a critical gap in Al
interpretability and supports exploratory clinical analysis and model auditing of Al-assisted
AD diagnosis systems.

1 Introduction

The intersection of medical imaging and computational neuroscience has been driven forward by the advent
of artificial intelligence and deep learning. Imaging modalities such as magnetic resonance imaging (MRI),
such as structural MRIs (sMRI) and functional MRIs (fMRI), among several others, provide spatial and
temporal data at a very high resolution. This allows researchers to investigate the anatomy of the brain at
fine granularity, assisting in early diagnosis and understanding of disorders|Lundervold & Lundervold|(2019).
Deep learning models achieve high accuracies on brain imaging tasks, yet their opacity limits clinical adoption
and regulatory approval in neuroscience |Kelly et al.| (2019)), with model decisions often being inscrutable.

Interpretability of a network is crucial in medical analysis. Unlike consumer domains, medical decisions
require transparent reasoning, and clinicians must be able to trace model decisions to anatomically or
functionally meaningful biomarkers which can also aid in distinguishing between medically backed model
decisions and erroneous correlations which can occur due to noisy or unclean data Wang et al.| (2024)
Salahuddin et al|(2022). Several attribution methods have been put forth to understand model decisions
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and generate input attributions. Localized attribution methods such as gradient saliency maps, Layer-wise
Relevance Propagation, Integrated Gradients, and occlusion-based methods, among others, have contributed
insights to brain imaging by highlighting which voxels or regions contribute to model predictions. However,
these approaches often produce localized, sample-specific explanations, making it difficult to identify which
features or regions are consistently important across training data. While such local attributions can indicate
potential importance for individual cases such as tumor detection, where tumours are unique to the subject
and it is difficult to generalize the location a tumour across subjects, they may provide limited clarity into
patterns seen across brain populations for neurodegenerative diseases such as Alzheimer’s disease (AD) and
dementia, among others, which involve diffuse, population-level structural changes that are better captured
through global attribution methods.

Additionally, arriving at potentially thousands of local attributions for individual data-items can be difficult
to interpret. Global feature attributions, which show how features influence the decision of a model across
the entire training distribution, instead provide a consolidated view of feature importance that highlights sys-
tematic patterns learned by the model during training rather than instance-specific effects. This distinction
is particularly important in medical imaging, for problems such as Alzheimer’s detection, where clinicians
and researchers need to understand which anatomical regions the model has learned to consistently rely upon
across patient populations Munroe et al.| (2024)).

Global attributions can provide several advantages over localized attribution in medical imaging contexts. It
enables identification of biomarkers that are present across the patient distribution in training data, it also
aids model debugging by revealing biases or spurious correlations by highlighting the point of focus of the
model, enabling users to identify, with known ground-truth markers, if the model is identifying appropriate
features. By accurately highlighting clinically meaningful features learnt by the model and demonstrating
that models rely on these features alone for their decision, regulatory approval and clinical trust can be
potentially gained providing complementary insights to physician diagnosis Hill| (2024). It also bridges the
communication gap between the Al and medical world by providing population-level insights that align with
medical knowledge. By attributing global features not as an aggregated property of the inputs, but as an
intrinsic property of the trained network itself, we can generate attribution maps that highlight medically
relevant regions of the brain.

Our work utilizes the inherent functional transparency of the recently proposed Kolmogorov-Arnold Networks
(KANs). KANs, as originally proposed in |Liu et al.| (2025]), are designed to replace every scalar weight in
a multi-layer perceptron (MLP) with a learnable univariate spline function on each edge, as opposed to a
node. They leverage the Kolmogorov-Arnold Representation Theorem, which states that “any continuous
high-dimensional function can be decomposed into a finite sum of univariate continuous functions", which
has made it possible to express the transformation from an input to the output decision as an explicit graph
of simple, human interpretable univariate functions on edges that are simply added at each node. Due to the
functions on each edge being explicit and univariate, it is possible to analyze the nature of each function, and
thereby quantify the influence of the function locally. Specifically, a learned function on an edge consists of a
base component and a spline component, expressed as ¢(z) = wpb(z) + wsspline(x), where b(z) is typically
the SiLU activation function and spline(x) is a linear combination of basis splines. This structure makes
it possible to identify the individual contributions of these functions, their interactions with the rest of the
network, and their association with each individual input.

In neuroimaging, specifically in understanding the contribution of each individual voxel corresponding to
a certain part of the brain, input based attribution can prove to be particularly useful. By tracing the
decision of the model back to a particular input/set of inputs, it can be made possible to identify and rank
the features influencing the model. This makes it possible to construct faithfu]ﬂ global attribution maps at
input-level granularity by analyzing the flow of information through the network, which tell us about the
parts of the brain the model has learnt to differentiate between.

1'We use the term “faithful” to denote how closely the produced attribution maps reflect the features the model has learned
and utilizes to arrive at its decisions, with attribution quality quantified using perturbation-based metrics such as Insertion
AUC, Deletion AUC, and Sufficiency.
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In this work, we propose a path-based attribution approach for KANs to generate population-level importance
maps as a property of the trained network, by tracing information flow along explicit computational paths,
explicit represented by a KAN’s architecture, thereby scoring input importances based on the information
flow. We also evaluate its utility and reliability for neuroimaging and clinical neuroscience applications. We
demonstrate that this approach allows for faithful, global attribution maps that can provide clinically and
anatomically useful information.

Scope and focus. The proposed framework is designed for analysis of fully trained feedforward networks
in which nonlinear transformations are associated with edges, nodes aggregate incoming signals additively or
multiplicatively, and directed paths exist from input features to output neurons. KANs constitute a prime
example of architectures that satisfy these conditions, and hence we define and evaluate the framework as
such. In this work, we focus on fully trained KANs, which we apply to neuroimaging tasks due to their
high dimensionality and established interpretability challenges, and additionally evaluate the framework on
a multiclass classification task using MNIST to assess behavior in a simpler, well-controlled setting. We list
our primary contributions as follows:

i) A path-based attribution framework for KANs that aggregates importance across computational
paths.

ii) A scalable implementation of path-attribution for data such as neuroimaging.
iii) Voxel-level global-attribution maps applied through KANs for Alzheimer’s detection.

iv) A comprehensive clinical evaluation showing anatomically meaningful regions associated with
Alzheimer’s disease, supported by ROI analyses.

2 Related Literature

Several attribution methods have been proposed to understand the functioning of neural networks as "black
boxes". Gradient-based approaches, [Simonyan et al.| (2013) calculate output gradients with respect to inputs,
and |Sundararajan et al| (2017) integrate gradients along a baseline path to address gradient saturation.
Propagation-based approaches such as Layerwise Relevance Propagation (LRP) [Bach et al| (2015) have
been applied to Alzheimer’s detection, Bohle et al| (2019) using LRP on ADNI sMRI, producing maps
concentrated in temporal lobe and hippocampus. However, the authors note a high inter-patient variability in
patterns, which is a limitation in generalizing patterns across the data population. Class Activation Mapping
(CAM), particularly Eigen-CAM and Grad-CAM have also been adopted for model decision explanations,
but fail to provide faithful explanations, often cover unnecessarily large or imprecise regions, exhibit low
granularity in highlighting salient features, and suffer from instability and biases due to architectural factors
such as Global Average Pooling and gradient explosion . Game-theoretic approaches such
as LIME, DeepLIFT |Shrikumar et al| (2017) are also popular, with SHAP being implemented by
on the NACC dataset and OASIS cohort and found distinct patterns unavailable through averaging
local explanations, which were negative hippocampal values for cognitively normal subjects, positive for AD
patients. The problem with trying to arrive at a global explanation from these local attribution methods
is it conflates intrinsic feature importance and feature distribution in data |[Covert et al.| (2020)). A feature
may accumulate high average SHAP scores simply because it varies widely in training data, not because
the model relies on it for decisions. This way global maps can differ significantly from averaged local
attributions Ibrahim et al. (2019), and this theoretical insight explains the empirical observation: across all
local attribution methods (LRP, IG, Grad-CAM), importance scores fluctuate dramatically between patients
with identical diagnoses, reflecting both model variance and data noise.

To solve this problem, global attribution methods that highlight locations of important features seen through-
out training data have been proposed. SAGE (Shapley Additive Global importancE) |Covert et al.| (2020)
directly measures the contribution of features to the model’s prediction by introducing features into arbi-
trary subsets and calculates their Shapley values, but scales exponentially with dimensionality.
use a gradient-based approach to rank features based on gradient descent updating a feature’s
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weight. |Wu et al| (2020)’s framework learns global explanations by identifying which feature detectors
are most critical for each class, then testing how well those detectors respond to semantic concepts, with
Graziani et al.| (2020]) extending this to medicine, proposing a framework to explain attribute pixel-level
values to user-defined concepts. Global Attribution Mapping (GAM) [Ibrahim et al.| (2019) captures het-
erogeneous patterns across subpopulations of local explanations clustered on distance metrics to arrive at a
singular global explanation. Although faithful, this relies on local attributions computed on input data, on
which the algorithm is applied, which is time-consuming and computationally expensive. As the algorithm
also computes the distance matrix for all input samples, the time complexity scales quadratically with up
number of input samples, thereby making it unsuitable for large datasets. We aim to introduce an approach
that offers voxel-level global attribution maps and considers feature importances as properties learned by
the network itself. We implement this framework to neuroscience, or specifically, Alzheimer’s detection to
generate voxel-level global attribution maps.

2.1 KANs for attribution

With KANs being proposed as interpretable networks, there have been applications in medicine. [Dong et al.
(2025) used a KAN-based Graph Convolutional Networks (GCNs) for Alzheimer’s disease diagnosis on the
ADNI dataset, with their GCN-KAN achieved a classification accuracy of 62.6% over standard GCNs at
57.4%. They score each ROI’s importance by summing the absolute spline coefficients from the KAN layer
edges connected to that ROI. Although their GCN-KAN identified the hippocampus, inferior parietal gyrus,
and amygdala as relevant regions for AD, the approach does not work on voxel-level granularity. [Knottenbelt
et al.| (2025) proposed CoxKAN, a KAN-based framework for interpretable survival analysis, using KANs
with Cox proportional hazards regression. They discovered symbolic formulae for hazard functions, and
pruned the network using the L1-norm of the function on each edge of the KAN.

With KANs being proposed as networks that be analyzed easier than typical DNNs, they have a structure
where the flow of information throughout the network can be interpreted and input contributions can be
quantified. By tracing the decision of the model looking at the flow of information back to a particular
input/set of inputs, it can be made possible to identify and rank the features influencing the model. In [Liu
et al.| (2025), the authors utilize L1 norms to score each layer. The individual L1 norm for each activation
¢;,; is calculated, which are then summed to give the score for each layer ®, which is defined as follows:

N, n ni
1 P (5) out in
il = 5 oo (7)) 19l =203 Ioul,
s=1 i=1 j=1

Here, ¢, ; is the learnable univariate function on the edge from input j to output ¢, ngg) denotes the j-th
feature value from the s-th data sample, and N, is the total number of samples.

KAN 2.0 Liu et al.| (2024) states that this would not effectively capture the global relationships of the edge
with the rest of the network, due to L1 norms capturing just the local information. To solve this, the authors
propose a recursive scoring method utilizing standard deviations of activations on the edges and nodes.

In KAN 2.0, they consider an L-layer KAN with width [ng,nq,--- ,nz], Ei;; as the standard deviation of
activations on the (I,4,7) edge, and N, as the standard deviation on the (,7) node. They score nodes as
A;; and edges as By ; ; recursively as follows: all output node scores are set to 1; i.e., Az ; =1 for all ¢. For
l=L,L—-1,..,1:
Biis = A Lhii 4 -—iB g
l—1,4,7 — 41l,j Nl+1,j7 -1, — = l—1,i,5

This iterative computation propagates attribution scores from the output layer to the input layer, capturing
the activity of each node. We are looking to score each input with respect to the output, i.e., how much
each input contributes to the prediction of the model. We are also looking to find which combinations of
edges carry an input’s influence to the output, so a path-based attribution is required. Hence, an attribution
method that propagates edge scores throughout the network to compute the contribution of each input is
necessary.
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Figure 1: The proposed path factorization avoids double counting in KAN attribution. From left to right:
Flow of information is bottom-to-top; A multi-layer KAN showing two different sets of subpaths (orange and
blue) to the output node, with example function scores on edges. Decomposition shows how shared subpath
S factors identically into both paths, with distinguishing contributions arising only from unique sub-paths
A, and B; P and Q. The multiplicative factorization ensures that overlapping edges contribute uniformly
without additive redundancy, preserving the relative importance of each input.

3 Methodology

3.1 Edge-Scoring

KANSs have a structure in which each edge comprises a function with a linear base term and a nonlinearly
modulated spline component, with addition or multiplication at the nodes. A meaningful edge-scoring metric
must therefore reflect the influence of this function under data activations. For each edge from input node ¢
to output node o, the contribution can depend on both the learned base weight and the projection of the
input through a spline basis expansion whose coefficients are learned during training. Several edge-scoring
metrics can be used to quantify edge importance in this setting. Examples include the L2 magnitude of the
combined base and spline activations, formally defined on edge E; , as:

B /C 2
1 spline
=\ 2 (D Bt i) 0

b=1 \c=1

where By ; . is the activation of the c-th spline basis for input ¢ in sample b, erzhcne is the associated spline
weight, W23 is the base weight from i to o, and b(-) is the base activation function (e.g. SiLU). Several
other metrics can also be used to compute the edge-score, such as, the L1 norm (2025), standard-
deviation, maximum of base and spline contributions, among several others, defined over the parameters in
Eqn[[l Each of these metrics captures different aspects of edge behavior, such as total activation energy,
sparsity, variability, or peak response, and the choice of metric would be dataset-dependent, based on the
nature of the data being analyzed.

In our experiments, we evaluate multiple such scoring functions both independently and in combination with
the proposed path-based aggregation framework. These choices are not presented as theoretically optimal;
rather, they serve as representative instantiations illustrating how different notions of edge importance
interact with path-level attribution. Importantly, the proposed framework can be used in tandem with any
suitable alternative edge-scoring function that captures the contribution of the edge-function and can be
readily applied depending on the dataset, architecture, or analysis objective.
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3.2 Path-based Attribution

The formulae in Section. [3.I] capture just the local influence of the function on the edge, and hence, do
not account for the contributions of edges downstream in the network. Even if the edge has a strong local
influence, it can be canceled out by an edge later on in the network |Liu et al. (2025). To account for
downstream contribution of edges towards scoring the contribution of the input, we propose a path-based
attribution method. To prevent an explosion of the edge-score, we normalize the score with the tanh function,
with motivation from |Liu et al.| (2025). We score the paths as the absolute of the tanh of the product of
edge-scores on the path. The input is scored as a sum of all paths from the respective input node to the
output node. If there are several output nodes, all the scores from the specific input node to all the output
nodes are averaged. Formally, the importance score of an input feature i in an L-layer Kolmogorov-Arnold
Network (KAN) with n output nodes can be expressed as the average over all output neurons of the sum
over all possible paths P;_,, from input i to output neuron o:

imp, = %z”: Z H |aee|, where v, = tanh(E,). (2)

0=1pEP;, e€Ep

Here, the product is taken over all edges e along the path p from input neuron ¢ to output neuron o, and FE,
is the edge-score at edge e. For multiclass settings, the importance scores imp; can be obtained by averaging
contributions across class-specific output neurons o, as in Eqn. [2 While the proposed path-based attribution
framework is agnostic to the choice of local edge-scoring function, our experimental evaluation considers
multiple edge-scoring metrics as described in Sec. [3:] These include norm-based, variability-based, and
max-based measures, all of which are compatible with the proposed framework and are assessed empirically
across datasets. For reporting and visualization, we use magnitude-based (unsigned) edge scores, to provide
a consistent measure of how strongly an edge is utilized under data-driven activations. Importantly, none of
the evaluated edge-scoring metrics is presented as theoretically optimal or universally superior. Instead, the
choice of edge-scoring function is treated as dataset-dependent, and our results illustrate how different scoring
rules interact with path-level aggregation under varying data characteristics. The proposed framework
remains agnostic to this choice and can accommodate suitably alternative metrics without modification.

The non-linear functions in a KAN lie on its respective edges, with simple addition or multiplication per-
formed at the nodes. This means the influence of an input variable factorizes naturally along directed paths
from itself to the output. While KAN computation graphs are not path disjoint, different inputs often
traverse overlapping subnetworks due to shared spline edges. Under these architectural assumptions, where
each edge multiplies its input by a learned function and each node sums incoming signals, the network output

is expressed as a path expansion:
y=2 = > [l 3)
i PeP(i—o0) eeP

Consider the illustrative toy-example in Fig. For two paths P and @ that share a common subpath 5,
the factorization gives:

Hae<nae> 0 ). Hae<nae> I o (@

ecP eesS e€P\S ecQ e€sS e€Q\S

where the shared product ], g ae is factored in identically in both paths as a common multiplicative scalar
rather than accumulating additively. As a result, the distinguishing contribution of each path arises only
from the edges unique to that path, i.e. from Heep\s Qe VErsus HeEQ\S a,. Overlaps therefore are factored in
uniformly, propagating the same multiplicative weight to every traversing path, avoiding bias due to double
counting. The measure is non-negative and bounded, giving a faithful, overlap-neutral attribution that
is consistent with the multilayer KAN architectures used in our experiments. The path scoring accounts
for downstream effects of the edge on the rest of the network, where any cancellation upstream results
in lower-relevance and lower activity and weights downstream. This is similar to relevance propagation
in attribution methods such as DeepLIFT |Shrikumar et al.| (2017)) and Layer-wise Relevance Propagation
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Bach et al.| (2015)), where upstream inactivity diminishes contributions to later layers. The input score is
then converted to percentage-wise contribution to highlight individual contributions of each input node.
This level of granularity is useful for domains such as medical imaging, where regional interpretability is
desired. Although the path-based formulation in Eqn. captures both local edge influence and downstream
interactions, computing these scores by explicitly enumerating all input-output paths is not feasible for deep
or moderately wide KANs, since the number of possible paths grows exponentially with network depth.
Therefore, an efficient propagation mechanism is required to obtain the same path-aggregated importance
values without enumerating paths directly. We introduce such an efficient matrix-based computation in the
following section.

3.3 Efficient Path-based Attribution

For a computationally efficient attribution framework, we compute the same input-score using matrix mul-
tiplication. Let a® € R%**%-1 he the matrix of edge importances for layer I, where dy is the input
dimensionality and n is the number of output neurons. Then, the propagated importance matrix M is:

M=a® . qlD...q) ¢ Rrrxdo (5)
The importance of the i-th input neuron simplifies to imp; = % > M,

This matrix-based calculation scales linearly with the number of edges, O(Zlf‘:l dldl,l), which is same
as chained matrix multiplication compared to the exponential complexity of the naive path enumeration,
O (Hle dl), making it feasible for deeper and wider models with numerous paths.

This makes the scoring approach practical for high-dimensional neuroimaging data. For example, a structural
MRI volume of size 91 x 109 x 91 yields dy = 902,629 voxels. For a KAN with layer widths d; = 256,

do = 128, and d3 = 64, the efficient matrix-based propagation has complexity O(Zle dldl,l) = 256 -
902,629 + 128 - 256 + 64 - 128 ~ 2.31 x 108, which is significantly smaller than naive path enumeration, scaling
as O (HlL:1 dl> = 902,629-256-128-64 ~ 1.89x10*2, an increase of more than four orders of magnitude, making

exhaustive path computation infeasible. This numerical comparison highlights the necessity of the efficient
matrix-based formulation for voxel-level global attribution in high-dimensional neuroimaging settings. Once
the inputs have been attributed and scored, the scores are then converted to percentage-wise contribution to
highlight individual contributions of each input node, at input-level granularity. This resolution is especially
important in brain imaging due to the requirement of a high granularity such that individual brain regions
are highlighted and accurate medical inferences can be carried out.

4 Experimental Setup

4.1 Dataset Formulation Details

The datasets utilized in this study include the volumetric public OASIS-1 dataset [Marcus et al.| (2007))
to evaluate the framework’s performance on 3D-Volumetric data, the middle sagittal slice from the ADNI
dataset |Jack Jr et al.| (2008)), selected to analyze the volume on 2D-slice data, and the Mendeley coronal-slice
MRI collection |Yakkundi (2023). We choose the middle sagittal slice as it passes through key midline brain
structures (e.g., corpus callosum, cingulate gyrus, ventricles), which are highly informative for Alzheimer’s
pathology, while reducing dimensionality compared to full 3D volumes |Odimayo et al.| (2024))/Hoang et al.
(2023). All three datasets comprise sSMRI scans of cognitively normal individuals, subjects with mild cog-
nitive impairment (MCI), and patients diagnosed with Alzheimer’s disease (AD). These cohorts provide a
progression of disease states, and are established benchmarks for Alzheimer’s prediction on neural networks.
OASIS consists of 436 volumes of shape 91 x 109 x 91. ADNI consists of 592 volumes, from which we extract
the sagittal slice and crop it to 184 x 152. The Mendeley data cohort consists of 6400 samples of coronal
slices. Class imbalance is handled by the usage of weighted Binary Cross-Entropy loss. Standard prepro-
cessing procedures such as skull-stripping [Smith! (2002)Smith et al.| (2004)), intensity normalization [Tustison
et al.| (2010), and affine registration Avants et al.| (2009), were applied to ensure anatomical consistency
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and comparability across scans. We use these datasets with well-defined diagnostic categories to rigorously
test how KANs capture structural differences associated with cognitive decline. The path-based attribution
framework is applied to generate global attribution maps, highlighting the contribution of specific imaging
regions towards the models decision. This is quantitatively assessed using Insertion AUC (InsAUC), Dele-
tion AUC (DelAUC), and Sufficiency (Suff) metrics. Insertion AUC measures how the model’s confidence
increases as the most important features (voxels) identified by the attribution are progressively added to
a blank input. Deletion AUC assesses how quickly the model’s confidence decreases as these important
features are removed, indicating the extent to which the model relies on these features for its decision |Pet-
siuk et al.| (2018]). Sufficiency measures whether the top-ranked features alone are sufficient to maintain the
model’s predictive performance DeYoung et al. (2020). This allows for an assessment of whether the network
identifies clinically meaningful features for differentiating between healthy and diseased individuals.

4.2 Implementation Details

All experiments were conducted on a device running the Nvidia A100 GPU using PyTorch 2.5.1+cul21
as the primary deep learning framework. Supporting data processing and analysis were performed us-
ing NumPy 1.26.4, Pandas 2.2.2, and scikit-learn 1.2.2. Neuroimaging data was handled using NiBabel
5.3.2. We use a simple feedforward deep KAN, specifically, the OASIS model consists of 11 layers with
widths [D, 20, 10, 10, 10, 10, 10, 10, 10, 5, 1], the ADNI model uses [D, 800, 20, 15,15, 15,10, 10, 10,5, 1], and
the Mendeley model uses [D, 800, 20, 15,15, 10, 10, 10, 1], where D denotes the input dimensionality. All at-
tribution analyses are performed post hoc on the fully trained models. To assess and compare our methods
against other attribution methods that capture importance across training data, we utilize Insertion and
Deletion AUC metrics. Let f(-) denote a trained model, € R% an input, and A(z) an attribution map that
induces a ranking of input features.

Let S C {1,...,d} denote the set of top-k features according to this ranking. We define xg, as the input
where only features in Sy are retained and all others are replaced by a baseline value, and x5, as the input
where features in Sy are removed and replaced by the baseline. The Insertion AUC is defined as the
area under the curve obtained by evaluating f(xzs,) as k increases from 0 to d. The Deletion AUC is
defined as the area under the curve obtained by progressively removing the top-ranked features from the
input consisting the full set of features. Formally, we evaluate f(z\g,) for £ =0,1,...,d. The Sufficiency
metric measures whether the most relevant features alone are sufficient to preserve the model prediction,
and is defined as Suff(k) = f(z) — f(zs,). As a Proof-of-Concept, we also test the attribution frameworks
on 10-class MNIST classification.

To interpret model attributions and further assess their stability, we performed region-of-interest (ROI)
analyses on the attribution maps generated across 15 independent runs. Two anatomical atlases were used
for comprehensive grey and white matter coverage: the Brainnetome (BN) Atlas [Fan et al.| (2016) and the
Johns Hopkins University (JHU) ICBM-DTI White Matter Atlas Mori et al.| (2006]).

The BN Atlas provides a 246-region parcellation of the grey matter at a 2 mm isotropic resolution. It
contains both structural and functional connectivity information to define connectivity-informed cortical
and subcortical ROIs. This atlas enables detailed inference across diverse grey matter regions and aligns
well with OASIS T1-weighted MRI volumes (91 x 109 x 91 voxels) after standard MNI registration. ROI-
level intensity measures and region-based features were extracted for each subject in native space following
co-registration.

The JHU ICBM-DTT Atlas offers a 48-region parcellation of the brain’s white matter based on high-quality
diffusion tensor imaging acquired in the ICBM-152 template space, also at a 2 mm isotropic resolution. Each
region corresponds to a major white matter tract manually delineated using fiber orientation information,
ensuring standardized tract identification across subjects. For every OASIS MRI, the JHU atlas was co-
registered to native space after MNI transformation to extract regional white matter features. This facilitates
tract-based ROI inferences for comparative and cross-sectional evaluation of attribution stability within white
matter structures.
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Together, the BN and JHU atlases provide complementary insights into grey and white matter attribution
patterns, allowing for a comprehensive region-level interpretation of the model’s behavior across both tissue
domains and insights into regions affected by Alzheimer’s.

5 Results and Discussions

We train a KAN on the datasets and achieve test accuracies of 93.24%, 81.85% and 91.25% respectively on
the OASIS-1, ADNI and Mendeley test sets, respectively. We also train the KAN on MNIST classification
as a PoC and achieve a test accuracy of 99.4%. Using the proposed path-based attribution, we obtain an
Insertion AUC of 0.865 4+ 0.049, Deletion AUC of 0.282 + 0.020, and Sufficiency of 0.068 + 0.064 on the
OASIS dataset as indicated in Table[[] On ADNI, the method achieves an Insertion AUC of 0.758 =+ 0.044,
Deletion AUC of 0.380 4+ 0.051, and Sufficiency of 0.209 + 0.143. For the Mendeley cohort, we report an
Insertion AUC of 0.791 + 0.016, Deletion AUC of 0.463 + 0.099, and Sufficiency of 0.226 4+ 0.033. On
MNIST, the results are Insertion AUC 0.964 + 0.003, Deletion AUC 0.393 £ 0.022, and Sufficiency 0.072 +
0.015. These values indicate that path attributions consistently rank features that affect model confidence
under both insertion and deletion perturbations. We compare against global attribution methods from GAM,
KAN, and KAN 2.0, while also reporting results for the proposed path-attribution framework paired with
selected edge-scoring functions to illustrate its behavior under different scoring choices. It is to be noted that,
although this framework has been applied for the pathology of Alzheimer’s in this study on 3D-volumetric
and 2D-slice data, it can be applied to other neurological conditions and problems involving interpreting
KANs where global, population-level pattern identification across subjects and data is required.

5.1 Comparative Analysis

Table [I] compares the proposed path-based attribution framework against representative global attribution
and edge-scoring approaches derived from GAM, KAN, and KAN 2.0. For GAM, we adopt local attribution
scoring via Integrated Gradients (IG), which performed better than simple gradients Ibrahim et al. (2019).
We include the L2 norm (Eq. and the maximum of the base and spline contributions of the KAN edge
function as two examples of edge-scoring metrics, denoted as Path-Attr. + L2 and Path-Attr. + max.
These choices serve as representative examples of edge-scoring strategies within the proposed framework.
Statistical significance was evaluated using a two-sided paired Wilcoxon signed-rank test over 15 random
seeds, applied independently for each dataset, metric, and method comparison. For the proposed framework,
we additionally report, for each dataset—metric pair, the best-performing path-attribution variant to reflect
the framework’s upper-bound capability under the considered scoring functions. It can be observed that
the path-attribution framework achieves statistically significant improvements over baseline methods on
Mendeley and on MNIST, where the task is comparatively simple and base model accuracy is high. In
contrast, performance on Insertion AUC against GAM is statistically indistinguishable on OASIS and ADNI,
as are Deletion AUC comparisons against KAN and Sufficiency comparisons against GAM on OASIS and
KAN on ADNI, other than which, the proposed framework is significantly better than baselines. Within
the proposed framework itself, quantitative differences across edge-scoring norms are also observed: L2
attains the highest path-attribution InsAUC on all datasets (OASIS: 0.865, ADNI: 0.758, Mendeley: 0.791,
MNIST: 0.964), while competing norms produce consistently lower insertion scores by margins of 0.009-0.028,
suggesting that, for these datasets, attribution mass accumulated under L2 leads to larger increases in
prediction confidence during feature insertion. For DelAUC, the minimum values shift across datasets: L2
on OASIS, L1 on ADNI and Mendeley, and STD on MNIST, suggesting dataset-dependent differences in how
rapidly model confidence decreases under feature removal. Similarly, for Sufficiency, the lowest scores are
achieved by STD on OASIS, MAX on ADNI, and .2 on Mendeley and MNIST, suggesting differences across
datasets in the proportion of features required to retain predictive performance. Overall, the results indicate
that the advantages of the proposed path-attribution framework are dataset- and metric-dependent, with
clearer improvements emerging in settings where attribution signals are more pronounced. In cases where
differences are statistically insignificant, the results suggest comparable explanatory performance between
methods rather than definitive superiority of any single approach.
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Nevertheless, the results in Table|l|demonstrate that path-based multilayer attributions provide competitive
and often improved performance relative to established attribution baselines, without observable degradation
across the evaluated settings. These findings support the use of path-based attribution as an interpretability
tool in both neuroimaging-focused and general prediction tasks, contingent on adequate underlying model
performance.

Table 1: Comparison of Path-Attribution. variants against baselines. We include two example edge-scoring
metrics along with the best performing edge-scoring metric in tandem with the proposed framework against
baselines.

Dataset Method InsAUC 1 DelAUC | Suff |
(Accuracy, (£ std) (£ std) (£ std)
AUC) (p-value) (p-value) (p-value)
Path-Attr. (best) 12: 0.865 £ 0.049 12: 0.282 £ 0.020 std: 0.042 £ 0.068
Path-Attr. + 12 0.865 £ 0.049 0.282 £+ 0.020 0.068 £ 0.064
OASIS Path-Attr. + max 0.837 £ 0.015 0.331 £ 0.080 0.103 £ 0.076
(Ace: 93.24% GAM + IG 0.860 + 0.048 0.366 £ 0.161 0.046 £ 0.071
AUC: 95 74)’ KAN 2.0 0.845 £ 0.030 0.354 £ 0.101 0.087 £ 0.073
U KAN 0.839 £ 0.042 0.287 £ 0.024 0.072 £ 0.058
Path-Attr. (best) 12: 0.758 £ 0.044 11: 0.310 + 0.081 max: 0.201 + 0.134
Path-Attr. + 12 0.758 £ 0.044 0.380 + 0.051 0.209 £ 0.143
ADNI Path-Attr. 4+ max 0.749 £ 0.059 0.364 + 0.041 0.201 £+ 0.134
(Acc: 81.85% GAM + IG 0.746 £ 0.026 0.506 £ 0.048 0.269 £ 0.136
AUC: 91 30)’ KAN 2.0 0.716 £ 0.033 0.439 £ 0.034 0.326 £ 0.124
U KAN 0.666 = 0.016 0.376 £ 0.075 0.221 £+ 0.029
Path-Attr. (best) 12: 0.791 £+ 0.016 11: 0.296 + 0.053 12: 0.226 + 0.033
Path-Attr. + 12 0.791 £+ 0.016 0.463 =+ 0.099 0.226 £ 0.033
Mendeley Path-Attr. 4+ max 0.773 £ 0.012 0.513 + 0.067 0.265 £ 0.093
(Acc: 91.25% GAM + IG 0.767 £ 0.037 0.399 £ 0.090 0.293 £ 0.113
AUC: 96 62)’ KAN 2.0 0.781 £+ 0.019 0.554 £ 0.027 0.301 £ 0.034
U KAN 0.710 £ 0.080 0.401 £ 0.053 0.444 £ 0.102
Path-Attr. (best) 12: 0.964 + 0.003 std: 0.114 + 0.007 12: 0.052 £+ 0.015
Path-Attr. + 12 0.964 £ 0.003 0.293 + 0.022 0.052 £ 0.015
MNIST Path-Attr. + max 0.944 £ 0.004 0.269 £ 0.009 0.161 + 0.015
(Ace: 99.41% GAM + IG 0.956 + 0.004 0.380 £ 0.008 0.103 £ 0.013
AUC: 99 89)’ KAN 2.0 0.911 £ 0.010 0.326 £ 0.111 0.412 £ 0.164
U KAN 0.924 £ 0.012 0.240 £ 0.012 0.111 £ 0.015
Statistical Significance: p < 0.05 p < 0.01 p > 0.05

5.2 Visual Comparisons

The side by side heatmaps of the attribution maps are presented in Table 2] where the middle slice is plotted
along the sagittal axis for OASIS and ADNI and the coronal slice is presented for the Mendeley Dataset,
along with the MNIST global attribution maps. The KAN, KAN 2.0, GAM plots are presented alongside the
proposed path-based attribution approach. Although the general regions identified by all approaches appears
to be similar there are differences in the magnitude and number of regions highlighted. The KAN approach
has a lot of area highlighted as downstream path interactions are not considered. KAN 2.0 sees some regions
that are highlighted by our approach and GAM not highlighted as some functions that contribute equally
without a large standard deviation are suppressed.

From the ADNI attribution maps it can be observed that the slice provides a visualization of midline
structures such as the corpus callosum, cingulate gyrus, thalamic region, and the ventricular cavity, all of
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which exhibit different tissue intensity patterns. These structures are what are identified to degenerate
for Alzheimer’s. The smooth high-intensity band near the center corresponds to dense white-matter tracts
of the corpus callosum [Walterfang et al,| (2014)), while surrounding regions with moderate intensity reflect
gray-matter cortical areas. The darker cavities near the center and lower portions of the image represent
cerebrospinal fluid (CSF) spaces, primarily the lateral and third ventricles. Even though volumetric and ROI-
level analyses are not feasible on this single slice, it remains structurally informative due to the inclusion of
midline anatomy that captures the general morphological organization of the brain.

The Mendeley attributions show the coronal mid-slice showing pronounced activations along the medial tem-
poral regions, particularly surrounding the hippocampal and parahippocampal areas [Echévarri et al. (2011)),
and extending around the periventricular zones. Highlighted regions are also visible across the cortical ribbon,
outlining the gyral-sulcal boundaries along the outer cerebrum. The central midline region-corresponding
primarily to the thalamus, corpus callosum, and basal ganglia structures-appears comparatively subdued,
with minimal activation intensity. This lower response suggests that the discriminative emphasis in this slice
arises more from cortical and medial temporal morphometry than from deep gray matter contrast.

Table 2: Visual comparisons with example attribution maps

Dataset KAN KAN 2.0 GA Ours
-
OASIS
ADNI - -
Mendeley

5.2.1 Medical Insights from the OASIS Attribution Maps

The mapped ROI inferences on the OASIS volume on grey matter from the Brainnetome atlas were as
follows. The bilateral dorsal caudate nuclei (dCa_ R and dCa_ L) was found to be the most important region
pair seen in Fig. as indicated by , with mean attribution importance of 0.759+0.144
(Coefficient of Variation (CV) = 18.91%) and 0.687+0.109 (CV = 15.87%) respectively, with the regions
being fully consistent across all runs. This finding aligns with prior OASIS studies identifying caudate
involvement in AD [Kim et al| (2024). As seen in Fig. [2| the bilateral medial prefrontal cortex (A10m_ R:
0.57140.016, CV = 2.76%; A10m__L: 0.568+0.019, CV = 3.39%), left angular gyrus (A39rv_L: 0.48740.026,
CV = 5.38%), and left cuneus (cCunG_L: 0.458+0.031, CV = 6.85%) all show perfect consistency. The
medial prefrontal regions showed the highest stability among 100%-consistent ROIs, indicating highly robust
attribution patterns. This convergence of default mode network regions with frontostriatal structures is
consistent with established AD neurobiology.

Bilateral superior temporal regions (TE1.0/TE1.2_L: 0.672+0.063; TE1.0/TE1.2_R: 0.531+0.040) also were
fully consistent, indicating temporal lobe involvement in AD |Castellano et al.| (2024)). Near-perfect consis-
tency was observed for the right inferior parietal cortex (A40c_R: 0.461+0.025) The right hippocampus
(cHipp_R) appeared in 66.7% of runs with exceptional stability when present (CV = 2.90%, range 0.433-
0.476).

The top ROIs comprised prefrontal cortex (4 ROIs: bilateral A10m, A10l_R, A13_L), subcortical regions
(2 ROIs: bilateral caudate), parietal cortex (4 ROIs: A39rv_L, A40c_R/L, A40rv_R), temporal cortex
(2 ROIs: bilateral TE1.0/TE1.2), posterior cortex (1 ROI: ¢cCunG_ L), and medial temporal lobe (1 ROTI:
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(a) Axial view (b) Sagittal view (c) Coronal view

Figure 2: Top ROIs identified through attribution analysis in (a) axial, (b) sagittal, and (c) coronal views,
showing gray matter (GM) and white matter (WM) regions most contributive to model predictions. The
regions primarily highlighted in the maps were body and genu of the Corpus Callosum, Bilateral posterior
thalamic radiation, the prefrontal, parietal, temporal and posterior cortex

cHipp_ R). This distribution reflects distributed network pathology encompassing default mode, frontopari-
etal, temporal, and frontostriatal systems. Independent OASIS studies identified overlapping anatomical
regions with our findings: |Castellano et al.| (2024)) identified temporal and frontal regions as critical for clas-
sification; Kim et al, (2024) identified visual cortices, caudate and hippocampus as AD contributors. This
convergence on frontostriatal, temporal, and medial network regions across independent OASIS analyses
supports the biological validity of our attributed ROIs.

The top white matter ROIs identified from the JHU atlas were as follows. The body of corpus callosum
(importance = 2.331) and genu of corpus callosum (importance = 2.167) emerged as the highest-ranked
commissural structures, as seen in Fig. 2Bl Corpus callosum atrophy in Alzheimer’s disease reflects inter-
hemispheric commissural fiber degeneration secondary to cortical neuronal loss Tomimoto et al.| (2004). The
splenium of corpus callosum (importance = 1.236) showed third-highest importance; posterior callosal re-
gions show particular vulnerability in AD due to their connections with temporal and parietal cortices

et al (2021).

Association fiber tracts demonstrated substantial importance scores. Bilateral posterior thalamic radiation
(left: 0.866, right: 0.847) ranked among the top white matter regions of interest, consistent with established
involvement of thalamic relay structures in AD populations Biesbroek et al.| (2024)). Bilateral anterior corona
radiata (left: 0.848, right: 0.762) and bilateral superior corona radiata (left: 0.709, right: 0.632) were also
identified among the ROIs seen in Fig. 2a] The corona radiata comprises projection fibers connecting cortical
regions through the internal capsule to subcortical structures; compromised white matter microstructural
integrity within corona radiata tracts, as measured by reduced fractional anisotropy and elevated mean
diffusivity.

The middle cerebellar peduncle (importance = 0.660) emerged with moderate importance, reflecting potential
cerebellar involvement in cognitive processing deficits. Bilateral posterior corona radiata (left: 0.546, right:
0.531) completed the set of significant white matter tracts identified. Collectively, these white matter tract
findings reflect both primary axonal degeneration and secondary Wallerian degeneration consequent to gray
matter neuronal loss, with progressive global microstructural deterioration characterizing the transition from
cognitively normal aging to mild cognitive impairment and ultimately mild dementia. This convergence
supports the biological validity of our attributed ROIs and their relevance to established AD neurobiology.
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5.3 Limitations

To analyze the performance of our framework on 2D inputs, the ADNI experiments utilize only the middle
sagittal slice rather than full 3D volumes. A limitation of the proposed framework is its dependence on
model performance: attribution maps are only meaningful to the extent that the underlying model has
learned a reliable decision function, which is 93.24%, 81.85% and 91.25% accurate on the OASIS, ADNI and
Mendeley datasets. The framework currently does not provide inherently faithful class-conditional global
attribution maps in fully connected KANs. Because edge functions are learned jointly across the full training
distribution, and we analyze just the trained model without relying on input-data post-hoc, restricting path
aggregation to individual output neurons does not guarantee disentangled or class-specific explanations. As
a result, the attribution maps produced are global and cumulative, reflecting the complete learned behavior
of the model rather than class-wise patterns, and as such, we caution against using the attribution maps on
an individual level as opposed to studying population-level changes. The proposed path-based attribution is
also sensitive to architectural choices, such as network depth and width, the choice of edge-scoring function,
and to the quality of the trained model. In particular, the method is most effective in deeper networks where
meaningful information flow can be traced across multiple layers.

6 Broader Impact Statement

The proposed path-based attribution framework is intended as a research and decision-support tool for under-
standing population-level information flow in trained models, rather than as a standalone diagnostic system.
In medical imaging contexts, a primary ethical concern is the risk of automation bias, whereby clinicians
or practitioners may place undue trust in attribution maps and interpret them as ground-truth biomarkers.
Such over-reliance could lead to inappropriate clinical conclusions, particularly if the underlying model has
learned spurious correlations or dataset-specific artifacts. Accordingly, the attribution maps produced by
this framework should be interpreted as suggestive explanations that support hypothesis generation, model
auditing, and exploratory analysis, and not as definitive evidence for clinical decision-making. Any clinical
use must occur in conjunction with established diagnostic protocols and expert judgment. Furthermore, this
study relies on widely used public neuroimaging datasets, including OASIS, ADNI, and Mendeley, which
are known to exhibit demographic and socioeconomic biases and to underrepresent certain populations. Be-
cause the proposed method derives global attributions from the training distribution, the resulting maps may
underrepresent or mischaracterize patterns present in underrepresented demographic groups. As a result,
conclusions drawn from these attribution maps should be contextualized with respect to the populations on
which the models were trained. Validation on more diverse, real-world cohorts is necessary before consid-
ering any clinical translation. Finally, global attribution methods, including the one proposed here, do not
eliminate the need for careful dataset curation, robust model evaluation, and interdisciplinary collaboration.
When used appropriately, the framework can aid researchers in identifying systematic model dependencies
and potential biases, but its outputs should be interpreted cautiously and within the broader context of
clinical and scientific evidence.

7 Conclusion

We introduced a path-based attribution framework for Kolmogorov-Arnold Networks that generates global,
population-level importance maps by tracing information flow through the network’s explicit edge structure.
The path-based propagation produces faithful attribution maps that reflect intrinsic network properties
learned during training. The efficient matrix-based implementation scales linearly with network depth, mak-
ing the approach practical for high-dimensional neuroimaging applications. Our evaluation across three
publicly available Alzheimer’s disease classification datasets (OASIS, ADNI, Mendeley) and MNIST demon-
strates that the proposed method consistently performs competitively against existing global attribution
approaches in attribution metrics. The attribution maps identify clinically meaningful brain regions in-
cluding the bilateral caudate nuclei, medial prefrontal cortex, and default mode network structures, with
high consistency across multiple runs and strong concordance with established AD neurobiology literature.
Higher Insertion AUC and lower Deletion AUC values confirm that our method accurately identifies the
most informative features for model predictions.
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This work addresses a prominent gap in medical Al interpretability by providing voxel-level global attribu-
tions for KAN-based neuroimaging models. The ability to generate population-level importance maps as
network-intrinsic properties enables identification of biomarkers across patient populations, supporting clin-
ical validation and regulatory approval of Al systems. By bridging the gap between model interpretability
and medical knowledge, our framework can facilitates trust and transparency in Al-assisted diagnosis.

Several promising directions emerge from this work. Extending the framework to multi-class classification
with ways to generate disentangled class-wise maps and survival analysis would broaden its applicability.
Applying the method to other medical imaging modalities (fMRI, CT, PET) and domains beyond medicine
would validate its generalizability. Exploring ways to generate classwise attribution maps and bettering KAN
performance on larger scale data is one of our ongoing works. Finally, developing interactive visualization
tools that allow clinicians and users to explore path-level attributions could enhance trust in KAN-based
systems.
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A Appendix

A.1 Training Details for Models

All experiments were carried out using the Kolmogorov—Arnold Network with weight decay architecture and
trained on a CUDA-A100. Each model is built using a sequence of KANLinear layers, where the connection
weights are represented using B-spline functions. Unless stated otherwise, the following spline and training
settings were kept the same across all datasets:

e grid size: 5 points per input dimension,
o spline order: cubic (order 3),

e base activation function: SiLU,

e noise scale: 0.1,

o linear and spline scaling factors: 1.0,

o grid epsilon: 0.02,

o initial spline grid range: [—1,1].

Spline configuration and initialization. All KAN models use cubic B-spline basis functions with five
knots per input dimension, following the configuration recommended in the original KAN implementation
. This choice was kept fixed across all experiments to avoid introducing additional hyper-
parameter variation. Although this setting provided stable training and sufficient expressivity for the tasks
considered in this work, we do not claim that five knots are universally optimal.

Initialization noise. The noise scale refers to the standard deviation of a small additive Gaussian noise
applied during spline coefficient initialization. This initialization strategy, adopted from the original KAN
implementation, encourages smoother function learning and helps prevent degenerate spline configurations
early in training.

Spline grid and scaling across layers. Spline grids are defined over the interval [—1,1], and input
features are scaled accordingly before being passed to the first KAN layer. Subsequent layers operate on the
activations produced by preceding KAN layers; these activations remain within the effective spline support
due to the learned base and spline functions, and therefore do not require additional rescaling.

The layer widths were selected to reflect the input dimensionality and complexity of each dataset. For
OASIS-1, the network width configuration was

[D, 20, 10, 10, 10, 10, 10, 10, 10, 5, 1],

where D denotes the number of input features. This produced an 11-layer network with progressively
narrower layers for binary classification.

For ADNI, a larger first hidden layer was used to accommodate its higher input dimensionality. The width
configuration was

[D, 800, 20, 15, 15, 15, 10, 10, 10, 5, 1].
For the Mendeley dataset, a slightly shallower network was used:

[D, 800, 20, 15, 15, 10, 10, 10, 1].
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Algorithm 1: Path-Based Attribution Framework (Post-hoc)

Input: A well-trained feedforward network satisfying: (i) nonlinear functions are associated with edges,
(ii) nodes aggregate incoming signals additively or multiplicatively, (iii) directed paths exist

from input features to output neurons; saved edge functions {gby,l} and trained model
parameters.
Let L denote the number of layers, dy the input dimensionality, d; the width of layer ¢, and n = d, the
number of output neurons.
Output: Global input-level attribution scores s € R%
for each layer £ =1,...,L do
Construct the edge-importance matrix a?) € R%*de-1 with entries

¢ ¢ ¢ ¢
045.7,1 — tanh(E](,Jz) , Ej(lz = g(¢§,)€) ,

where g(+) is a fixed scalar edge-scoring functional;
Compute the propagated importance matrix

M «— Oé(L) . O[(L*l) . a(l) c ]:Rnxdg7

which aggregates contributions over all directed paths from inputs to outputs;
for each input feature i € {1,...,dp} do
1 n
Si < n 21 M|
o=

Optionally normalize s for visualization or comparison

All models were optimized using AdamW with a learning rate of 1073, An exponential learning rate scheduler
was applied by a factor of 0.8. The same optimizer and scheduler settings were used for all datasets for
reproducibility.

These configurations were sufficient for stable training across datasets and provided a controlled setting for
comparing model behaviour.

Usage of the Path-Attribution Framework. The proposed path-attribution framework is applied post
hoc to a fully trained feedforward network that satisfies the following architectural assumptions: (i) nonlinear
transformations are associated with edges, (ii) nodes aggregate incoming signals additively, and (iii) directed
paths exist from input features to output neurons. The method requires access only to the trained model
parameters, including learned edge functions and base activations, and optionally stored activation statistics
used for edge scoring. Access to the original training data is not required.

Given such a model, attribution is performed by first computing a scalar importance score for each edge
using a predefined edge-scoring function, such as the L1, L2, or max norm of the learned function or its
activations. These edge scores are then propagated layer-wise using a matrix-based formulation to implicitly
accumulate contributions along all directed paths from input features to output neurons, without explicit
path enumeration. Because computation graphs need not be path-disjoint, overlapping paths through shared
edges are naturally handled by this formulation.

For each input feature, path contributions are aggregated across all output neurons; in multi-class settings,
this aggregation is performed by averaging over outputs to obtain a global, class-agnostic attribution score.
The resulting input-level scores may optionally be normalized for stability or visualization. Finally, these
scores are mapped back to the input space (e.g., voxels or pixels) to produce a global attribution map
summarizing the model’s learned information flow across the training distribution.
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(a) Label 1 (b) Label 0 (c) Triangle with discriminative re-
gion

Figure 3: Synthetic experiment setup: L-R, Label 1 image with the hole, Label 0 image without a hole;
Theoretical triangle, the red region indicates the discriminative area with holes that attribution methods are
expected to highlight.

A.2 Synthetic Data Test for Proof-of-Concept

To complement evaluations on real-world datasets, we conduct a controlled synthetic experiment designed
to verify whether the proposed path-based global attribution framework can correctly recover known signal
regions, whilst ignoring background information.

Dataset construction. We generate a synthetic dataset consisting of 10,000 grayscale images of size
40 x 40. Each image contains a filled triangular shape centered in the frame. For 50% of the samples, a
circular/plus-shaped hole is carved out from a fixed subregion located in the lower portion of the triangle,
depicted by the red region in Fig. while the remaining samples contain no hole. Additionally, the 70%
of the triangles are stretched and squeezed, to denote background noise. The classification task is binary:
distinguishing between triangles with and without a hole, shown in Figs. and Importantly, the hole’s
general location is clearly defined across samples, ensuring that the discriminative signal is spatially localized
and known by construction .

Global-Attribution. A feedforward KAN is trained on this dataset using standard supervised learning
until convergence. After training, we apply the proposed path-based attribution method to compute a global
importance map over input pixels. Since the dataset is synthetic and the discriminative signal is explicitly
defined, the expected behavior of a faithful global attribution method is clear: the attribution map should
highlight the entire subregion of the triangle where holes occur, while assigning low importance to the rest
of the image.

Results and interpretation. The resulting attribution map accurately localizes the predefined hole-
containing subregion and assigns negligible importance to pixels outside this area, including other parts of
the triangle that are visually salient but irrelevant to the classification task, as observable in Fig. This
demonstrates that the proposed framework captures the true causal structure of the data-generating process,
rather than relying on spurious correlations or global shape cues.

Discussion. This synthetic experiment serves as a proof-of-concept sanity check, illustrating that the
proposed global attribution framework can correctly identify signal features when ground truth is known.
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- |AJA

(a) Attributed region generated by (b) An overlay of the theoretical tri- ) An overlay of the theoretical tri-
the path-attribution method angle over the actual triangle overlaid angle with the discriminative region
on the attributed region over the actual triangle overlaid on

the attributed region

Figure 4: L-R: The generated attribution map, Overlaid regular triangle region without boundary distortion
(not-noise) perfectly encompassing the highlighted region, Theoretical region and actual region

Figure 5: Global-Attribution Map (Path-Attribution + L2 edge scoring) for the MNIST dataset, the high-
lighted region focuses on the center, where digits are present, as opposed to the frame.

While such controlled settings do not reflect the full complexity of real-world data, they provide important
validation that the method behaves as intended and that observed attribution patterns on real datasets are
not merely artifacts of the evaluation metrics. We emphasize that this experiment is not meant to replace
real-data analysis, but to complement it by establishing baseline faithfulness under idealized conditions.
To complement this experiment, we also plot the global attribution plot on MNIST as seen in Fig.
and we can see the highlighted region focuses on the center, where digits are present, as opposed to the
frame. Together with the synthetic experiment, the MNIST plot and the ROI-analysis, we conclude that the
proposed framework can identify ground-truth regions effectively.
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A.3 Detailed Analysis Table

Comprehensive comparison of explanation quality metrics across four datasets (OASIS-1, ADNI, Mendeley,
and MNIST), evaluating 5 attribution methods applied to KAN and Path-Attr. models. Metrics include
Insertion/Deletion AUC (InsAUC/DelAUC), and Sufficiency (Suff). Best performance per dataset and metric
appears in bold, if there is no significantly better metric, none are bolded. The base KAN paper uses L1
norms at the input node, and we test it with different scoring functions, listed as KAN + scoring function.
Rather than claiming a universally optimal scoring rule, our results empirically compare different edg-scoring
functions on their own, in-tandem with Path-Attribution and against baselines KAN, KAN 2.0 and GAM.
Please note that KAN + edge scoring functions other than L1 are not baselines; they have been included
for edge-scoring comparisons only.

Table 3: Comparison of explanation metrics across datasets (mean £+ SD).

Method InsAUC 1t DelAUC | Suff |
OASIS (Acc: 93.24%, AUC: 95.74)

KAN + max 0.823 4+ 0.004 0.703 + 0.035 0.099 + 0.080
Path-Attr. + max 0.837 + 0.015 0.331 + 0.080 0.103 £ 0.076
GAM 0.860 % 0.048 0.366 + 0.161 0.046 £ 0.071
KAN 2.0 0.845 4+ 0.030 0.354 + 0.101 0.087 £ 0.073
Path-Attr. + 11 0.853 + 0.029 0.274 + 0.049 0.041 £ 0.057
Path-Attr. + 12 0.865 4 0.049 0.282 + 0.020 0.068 + 0.064
Path-Attr. + std 0.769 4+ 0.033 0.218 + 0.004 0.042 £ 0.068
Path-Attr. + 11__max 0.835 + 0.036 0.271 + 0.016 0.082 + 0.054
Path-Attr. + recursive 0.847 +0.019  0.299 +0.070  0.087 £ 0.080
KAN + 11 0.839 4+ 0.042 0.287 + 0.024 0.072 £+ 0.058
KAN + 12 0.846 + 0.017 0.454 + 0.075 0.066 £ 0.092
KAN + std 0.610 + 0.070 0.213 + 0.006 0.348 + 0.152
KAN + 11__max 0.692 4+ 0.053 0.188 + 0.013 0.614 £ 0.031
KAN + recursive 0.831 4+ 0.008 0.466 + 0.070 0.068 + 0.084
ADNI (Acc: 81.85%, AUC: 91.30)

Path-Attr. + 11__max 0.678 + 0.025 0.347 + 0.098 0.221 £ 0.029
KAN 2.0 0.716 + 0.033 0.439 + 0.034 0.326 +£0.124
KAN + 12 0.746 + 0.060 0.364 + 0.041 0.175 £ 0.172
GAM 0.746 + 0.026 0.506 + 0.048 0.269 £+ 0.136
Path-Attr. + 11 0.698 + 0.028 0.310 £ 0.081 0.222 4 0.030
Path-Attr. + 12 0.758 + 0.044 0.380 + 0.051 0.209 £+ 0.143
Path-Attr. + std 0.631 4+ 0.021 0.385 + 0.069 0.211 £ 0.029
Path-Attr. + max 0.749 4+ 0.059 0.364 + 0.041 0.201 £0.134
Path-Attr. + recursive 0.740 + 0.064  0.356 & 0.039  0.217 £ 0.168
KAN + 11 0.666 + 0.016 0.376 + 0.075 0.221 £+ 0.029
KAN + std 0.631 4+ 0.021 0.392 + 0.058 0.267 £+ 0.036
KAN + max 0.745 + 0.061 0.354 + 0.040 0.196 £+ 0.165
KAN + 11__max 0.658 +0.014 0.399 + 0.077 0.222 + 0.030
KAN + recursive 0.746 + 0.072 0.336 + 0.042 0.229 £ 0.174
Mendeley (Acc: 91.25%, AUC: 96.62)

KAN 2.0 0.781 + 0.019 0.554 + 0.027 0.301 £ 0.034
Path-Attr. + max 0.773 +0.012 0.513 + 0.067 0.265 £+ 0.093
Path-Attr. + std 0.679 4+ 0.065 0.332 + 0.020 0.261 £ 0.073
GAM 0.767 + 0.037 0.399 + 0.090 0.293 +£0.113
Path-Attr. + 11 0.649 4+ 0.080 0.296 £+ 0.053 0.504 4 0.103
Path-Attr. + 12 0.791 & 0.016 0.463 = 0.099 0.226 & 0.033
Path-Attr. + 11__max 0.671 + 0.073 0.300 + 0.047 0.398 £+ 0.087
Path-Attr. + recursive 0.778 4 0.026 0.431 + 0.097 0.247 £+ 0.096
KAN + 11 0.710 4 0.080 0.401 + 0.053 0.444 + 0.102
KAN + 12 0.730 £ 0.011 0.426 + 0.063 0.484 £+ 0.051
KAN + std 0.652 + 0.074 0.320 + 0.011 0.351 £0.132
KAN + max 0.758 + 0.016 0.444 + 0.064 0.443 £ 0.122
KAN + 11__max 0.683 + 0.093 0.372 + 0.048 0.501 £ 0.049
KAN + recursive 0.755 + 0.032 0.402 +0.124 0.316 £ 0.095
MNIST (Acc: 99.41%, AUC: 99.89)

Path-Attr. + 12 0.964 4+ 0.003° 0.293 £0.022 0.052 4 0.015
KAN + std 0.906 + 0.023 0.168 + 0.046 0.153 £ 0.035
KAN -+ recursive 0.936 + 0.020 0.250 + 0.053 0.111 £+ 0.044
GAM 0.956 + 0.004 0.380 + 0.008 0.103 £ 0.013
KAN 2.0 0.911 4+ 0.010 0.326 + 0.111 0.412 £ 0.164
Path-Attr. + 11 0.756 + 0.012 0.159 +0.113 0.490 £ 0.003
Path-Attr. + std 0.753 + 0.006 0.114 + 0.007 0.109 4+ 0.013
Path-Attr. + max 0.944 4+ 0.004 0.269 + 0.009 0.161 £ 0.015
Path-Attr. + 11__max 0.917 4+ 0.002 0.228 + 0.007 0.114 £ 0.039
Path-Attr. + recursive 0.938 +0.014 0.264 + 0.023 0.143 £ 0.027
KAN + 11 0.924 + 0.012 0.240 + 0.012 0.111 £ 0.015
KAN + 12 0.941 4+ 0.005 0.268 + 0.006 0.315 £ 0.015
KAN + max 0.932 +0.014 0.256 + 0.024 0.128 £+ 0.034
KAN + 11__max 0.930 + 0.015 0.248 + 0.013 0.062 £+ 0.016
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A.4 Tabulated ROIs identified across 15 runs

Table [] presents the set of regions retained after applying a data-driven importance threshold derived from
the distribution of mean ROI contributions. To determine an appropriate cutoff, we performed a one-
dimensional clustering analysis (k-means, k¥ = 4) on the mean values across all ROIs. This procedure
consistently separated the ROIs into four natural clusters, with a clear boundary between a low-intensity
cluster (centered at approximately 0.41) and a higher-intensity cluster beginning near 0.52. The transition
point between these clusters occurred between 0.485 and 0.525; accordingly, we adopted a conservative
cutoff of Mean > 0.50 to exclude regions whose contributions were statistically indistinguishable from the
lowest-value cluster.

The ROIs above this threshold form a coherent set dominated by major commissural and projection white-
matter pathways, including the corpus callosum, corona radiata, and posterior thalamic radiations, along-
side subcortical and temporal regions such as the dorsal caudate and TE1/TE1.2 auditory cortex. These
structures exhibited both high mean importance values and variability patterns consistent with known inter-
subject differences in white-matter microstructure. Importantly, the retained pattern aligns with established
neuroanatomical vulnerability profiles observed in aging and Alzheimer’s-related cohorts, supporting the
biological plausibility of the model’s feature ranking.

This thresholding procedure therefore ensures that the retained ROIs represent the statistically meaningful
and anatomically interpretable contributors to the model, while excluding regions that fall within the noise-
dominated portion of the distribution.

Table 4: ROIs retained after applying a data-driven cutoff (Mean > 0.50), sorted in descending order of the
Mean value.

Rank ROI label Mean SD CV (%)

1 WM: Body of corpus callosum 2.307  0.751 32.53
2 WM: Genu of corpus callosum 1.986 0.635 31.98
3 WDM: Splenium of corpus callosum 1.099 0.333 30.31
4 WM: Anterior corona radiata L 0.886  0.268 30.24
5 WDM: Posterior thalamic radiation (optic radiation) R 0.836  0.169 20.20
6
7
8

WDM: Posterior thalamic radiation (optic radiation) L.~ 0.827  0.209 25.32

GM: dCa_R 0.759 0.144 18.91

WM: Superior corona radiata L 0.758  0.188 24.86
9 WM: Anterior corona radiata R 0.737 0.154 20.91
10 GM: dCa_L 0.687  0.109 15.87
11 GM: TE1.0/TE1.2_L 0.672  0.063 9.42
12 WM: Superior corona radiata R 0.640 0.109 16.97
13 WM: Middle cerebellar peduncle 0.630 0.136 21.61
14 GM: A10m_R 0.571 0.016 2.76
15 GM: A10m_L 0.568 0.019 3.39
16 WM: Posterior corona radiata L 0.562  0.082 14.67
17 WM: Posterior corona radiata R 0.543  0.095 17.45
18 GM: TE1.0/TE1.2_R 0.525  0.030 5.71
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