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Abstract

Recommender systems help users navigate large volumes of online content by offering person-
alized recommendations. However, the increasing reliance on deep learning-based techniques
has made these systems opaque and difficult to interpret. To address this, XRec (Ma et al.,
2024) was introduced as a novel framework that integrates collaborative signals and textual
descriptions of past interactions into Large Language Models (LLMs) to generate natural
language explanations for recommendations. In this work, we reproduce and expand upon
the findings of Ma et al. (2024). While our results validate most of the original authors’
claims, we were unable to fully replicate the reported performance improvements from in-
jecting collaborative information into every LLM attention layer, nor the claimed effects
of data sparsity. Beyond replication, our contributions provide evidence that the Graph
Neural Network (GNN) component does not enhance explainability. Instead, the observed
performance improvement is attributed to the Collaborative Information Adapter, which
can act as a form of soft prompting, efficiently encoding task-specific information. This
finding aligns with prior research suggesting that lightweight adaptation mechanisms can
condition frozen LLMs for specific downstream tasks. Our implementation is open-source1.

1 Introduction

Recommender systems (Resnick & Varian, 1997) help users filter through vast amounts of online content
by providing personalized suggestions tailored to their preferences and interests (Cheng et al., 2021; 2022).
Explainable recommendation models (Zhang et al., 2020) have emerged to enhance trust, decision-making,
and satisfaction by providing explanations for their suggestions (Zhang, 2019).

Recent advancements in Large Language Models (LLMs) (e.g., Touvron et al. 2023; Grattafiori et al. 2024)
have revolutionized the field of explainable recommendations. Earlier work, such as PETER (Li et al.,
2021), used transformers to generate explanations, while more recent works, like PEPLER (Li et al., 2023),
integrated GPT-2 (Radford et al., 2019) with user-item IDs as prompts to produce contextually rich and co-
herent justifications. Building on these foundations, LLM2ER (Yang et al., 2024b) introduced a personalized
prompt module, overcoming the limitations of relying solely on user-item IDs for explanation generation.

A more recent study, XRec: Large Language Models for Explainable Recommendation (Ma et al., 2024),
introduces a novel model-agnostic approach to address the limited availability of explanation data and the
poor generalization of ID-based methods in zero-shot scenarios. This framework integrates collaborative
signals—patterns of user interactions, such as reviews—into LLMs by injecting them into both the input
prompt and the model layers, allowing XRec to extract meaningful insights from user preferences.

This paper attempts to reproduce and extend the main findings of Ma et al. (2024) through the following:

• Reproducing XRec results: We use the codebase of the original paper2 to replicate its experi-
ments, verify the authors’ claims, and analyze the required computational resources.

1https://anonymous.4open.science/r/ReXRec/
2https://github.com/HKUDS/XRec
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• Extending the ablation study: We investigate the role of collaborative signals by evaluating dif-
ferent GNN-based recommender systems that capture such signals from graph structures, including
LightGCN (He et al., 2020) and NGCF (Wang et al., 2019). Additionally, we test three ablations
that entirely remove graph-based collaborative information. We extend the evaluation by using
STS (Thakur et al., 2020) and introducing LLMScore.

• Addressing data leakage: During our analysis, we identified two instances of data leakage caused
by the original data generation process. The first involves using the same review to generate both
the ground truth and the input to the framework, while the second is caused by the inclusion of test
set information within the training data. We propose solutions to address these issues and analyze
their impact.

• Code adaptation and improvement: We modify and improve the original codebase to support
open-source LLMs for dataset generation and evaluation, facilitating future extensions and repro-
ducibility. Additionally, we add scripts for tasks like dataset creation and data-sparsity testing.

After performing the above steps, we verified that XRec (Ma et al., 2024) outperforms baseline models.
Our findings also confirm that incorporating user and item profile information improves performance and
that both the profile and the injection component can contribute to improved personalization. However,
we encountered challenges in reproducing the claims that injecting collaborative information across all LLM
attention layers improves performance and that XRec is more effective under increased data sparsity.

Furthermore, our in-depth analysis of the impact of collaborative information reveals that the performance
improvement in XRec (Ma et al., 2024) can be attributed to the Collaborative Information Adapter. We hy-
pothesize this occurs because (1) collaborative signals may be redundant when unique identification features
are available, even if randomly assigned, since the adapter can learn these signals as effectively as GNN-
based models and (2) the adapter functions as a form of soft prompting, efficiently encoding task-specific
information (Lester et al., 2021; Li et al., 2021).

While reproducing the datasets proposed by Ma et al. (2024), we identified two instances of data leakage,
which we subsequently addressed in our attempt to reproduce the datasets. Despite the presence of these
data leakage cases, our observations indicate that they did not significantly affect the overall claims or results.

Overall, our replication efforts yielded mixed results. While some performance trends aligned with the
original study, some inconsistencies emerged. Moreover, performance gains were mainly driven by the Col-
laborative Information Adapter. This suggests that XRec’s effectiveness depends on lightweight adaptation
–whether through implicit learning of collaborative relationships or by soft prompting – rather than on
explicit integration of collaborative information.

2 Scope of reproducibility

Ma et al. (2024) introduced XRec, a post-hoc technique that improves recommender system explainability
by providing user-level personalization. Ma et al. (2024) make five key claims, which we investigate:

• Claim 1: XRec improves over baselines in explainability and stability. The model im-
proves explanations in recommender systems by integrating collaborative information and textual
descriptions into LLMs, outperforming state-of-the-art baselines in both explainability and stability.

• Claim 2: Collaborative information injection improves explainability and stability. XRec
achieves higher accuracy by injecting collaborative information across all attention layers of the LLM,
rather than simply passing it as input.

• Claim 3: User and item profiles improve explainability and stability. Adding user and
item profiles to the input prompt improves explainability and stability by providing contextual
information.
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• Claim 4: XRec has superior performance with increasing sparsity. The model demon-
strates robust performance across varying sparsity levels, showing improved results as user frequency
decreases. Moreover, in zero-shot scenarios, its performance is comparable to other sparsity levels.

• Claim 5: The model generates personalized explanations. XRec generates customized
explanations for each distinct user-item interaction, offering users meaningful and unique insights.

Moreover, we extend the work by answering the following research questions:

• RQ 1: How do Graph Neural Network (GNN)-based collaborative signals and the Collaborative
Information Adapter influence the explainability and stability of XRec?

• RQ 2: What are the effects of dataset reproduction in XRec on explainability and stability, especially
when addressing sources of data leakage?

3 Methodology

This section covers XRec’s architecture (Section 3.1) and the metrics used to evaluate it (Section 3.2).

3.1 Model description

XRec (Ma et al., 2024) is a framework that uses a Large Language Model (LLM) to generate natural language
explanations of why a recommender system suggested an item to a user. Figure 1 shows the framework with
its four main components: a Graph Neural Network (GNN)-based recommender system, a Collaborative
Information Adapter, User and Item Text-Based profiles, and an Attention Injection Mechanism.
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Figure 1: Overall XRec framework. XRec consists of 4 components: (i) GNN-based recommender sys-
tem (top left): embeds user-item interactions. (ii) Collaborative Information Adapter (MoE Adapter):
transforms user and item embeddings to LLM input space. (iii) User and Item Text-Based Profiles
(bottom left): text profile of users and items generated by a LLM (iv) Attention Injection Mechanism:
injects collaborative information directly into each LLM attention layer. Reprinted from Ma et al. (2024).

GNN-based recommender system The GNN-based recommender system models user-item interactions
as a graph, with users and items as nodes and interactions as edges. GNNs embed users and items into
fixed-size vectors using a message-passing mechanism (Gilmer et al., 2017), which aggregates information
from neighboring nodes. XRec employs LightGCN (He et al., 2020), a model with a simple message-passing
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mechanism which lacks linear transformations and nonlinear activations during aggregation. This is shown
by Eq. 1, where e(l)

x is the embedding of node x at layer l, and Nx is the set of neighbors of node x.

e(l+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e(l)
i (1)

To investigate how the GNN affects XRec’s performance, we experiment by replacing LightGCN with NGCF
(Wang et al., 2019). NGCF has a more complex message-passing mechanism that uses nonlinear activations
and learnable weight matrices (W1, W2), as shown in Eq. 2.

e(k+1)
u = σ

(
W1e(k)

u +
∑

i∈Nu

1√
|Nu| |Ni|

(
W1e(k)

i + W2

(
e(k)

i ⊙ e(k)
u

)))
(2)

Both GNNs are trained with the Bayesian Personal Ranking loss (Rendle et al., 2009) (Eq. 3), which favors
higher scores for observed interactions. ℓ2 regularization is also applied. Here, L denotes the loss function,
M is the number of users, ŷui refers to the predicted rating of user u for item i, σ represents the sigmoid
function, E(0) denotes the embedding matrix, and λ is the ℓ2 regularization parameter.

L = −
M∑

u=1

∑
i∈Nu

∑
j /∈Nu

ln σ(ŷui − ŷuj) + λ∥E(0)∥2 (3)

Collaborative Information Adapter To effectively incorporate the collaborative information learned
by the recommender system into the LLM, XRec uses an adapter which transforms the user and item
embeddings into the input space of the LLM. This adapter uses a Mixture-of-Experts (MoE) architecture
which effectively captures diverse aspects of the collaborative information.

User and Item Text-Based Profiles In addition to the adapted GNN embeddings, XRec takes as input
textual profiles of users and items. Item profiles are created by prompting an LLM to summarize each item’s
description, while user profiles are generated by summarizing descriptions of items the user has interacted
with. XRec’s input is constructed as shown in Figure 1, where <USER_EMBED> and <ITEM_EMBED>
are the embeddings generated by the GNN.

Attention Injection Mechanism A potential issue with prompt construction is that collaborative infor-
mation, which is crucial for capturing user-item relationships, is limited to a single token. This could reduce
its effectiveness in longer prompts and deeper layers. To address this, an attention injection mechanism is
used, where collaborative information is directly integrated into the key, query, and value of all self-attention
layers. This is shown in Eq. 4, where W is the projection matrix, ai represents the adapted user or item
embedding, and foriginal

{q,k,v} and fnew
{q,k,v} denote the query, key, and value before and after injection, respectively.

fnew
{q,k,v}(xi) = foriginal

{q,k,v} (xi) + W{q,k,v} · ai (4)

3.2 Evaluation metrics

We evaluate the model using LLM-based metrics, as they better reflect human judgment and capture context-
aware semantic similarity, rather than relying solely on token-level analysis. First, we use GPTScore (Wang
et al., 2023) to ensure a fair comparison with the baseline model performance reported by Ma et al. (2024).
GPTScore prompts the gpt-3.5-turbo model from OpenAI to assess the semantic similarity between ground
truth and generated explanations. GPTScore’s use of a closed-source model limits accessibility and repro-
ducibility and introduces model-specific bias. To address these limitations, we propose LLMScore, which
averages the scores of multiple open-source LLMs, to mitigate model-specific biases and improve accessibility.
Scores are obtained over five runs to ensure stability. The models used are Llama 3.1 8b-instruct, Llama
3.2 3b-instruct (Grattafiori et al., 2024), Gemma2 9b-it (Team et al., 2024), and Qwen2.5 7b-instruct (Yang
et al., 2024a). The prompt used for scoring is provided in Appendix A.
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In addition to LLMScore, we employ several established evaluation measures to capture different aspects of
explanation quality. BERTScore (Zhang et al., 2019) measures the cosine similarity of BERT (Kenton &
Toutanova, 2019) embeddings, allowing for a fine-grained token-level comparison that accounts for synonymy
and paraphrasing. Complementing this, BARTScore (Yuan et al., 2021) measures the likelihood of regen-
erating ground-truth text using pre-trained BART (Lewis, 2019), making it effective for assessing fluency
and coherence. To further align with human judgment, we include BLEURT (Sellam et al., 2020), a fine-
tuned BERT model trained on human-annotated text pairs, which enhances sensitivity to subtle differences
in meaning.

Beyond semantic quality, we assess personalization by measuring the diversity of generated explanations.
We use USR (Unique Sentence Ratio ) (Li et al., 2020) - the ratio of unique to total explanations,
providing insight into the variability of generated content. To build on this, we introduce STS (Sentence
Transformer Similarity) (Thakur et al., 2020), which uses SBERT (Reimers, 2019) embeddings and cosine
similarity to evaluate the semantic similarity of generated explanations.

Finally, to compare the performance of LightGCN (He et al., 2020) and NGCF (Wang et al., 2019), we
employ four metrics: Precision@K measures the proportion of relevant items among the top K recom-
mendations, indicating accuracy; Recall@K measures the proportion of relevant items retrieved, indicating
coverage; NDCG@K (Normalized Discounted Cumulative Gain) measures ranking quality by weigh-
ing relevance and position, prioritizing relevant items appearing earlier and MRR@K (Mean Reciprocal
Rank) focuses on the rank of the first relevant item, rewarding higher-ranked relevant items. We choose
K = 20 by default.

4 Results

This section outlines our experimental set-up and results. We begin by describing the datasets used (Section
4.1), followed by an explanation of our training configurations (Section 4.2). We proceed with a detailed
reproduction of the experiments from Ma et al. (2024) (Section 4.3) and conclude with an extended analysis
that uncovers new insights beyond the original study (Section 4.4).

4.1 Datasets

Dataset processing To build XRec, Ma et al. (2024) use three datasets, each containing user reviews
for various items: Amazon Review Data3 (Ni et al., 2019), Google Local Data4 (Li et al., 2022; Yan
et al., 2023), and Yelp Open Dataset5. These were processed into what we refer to as [Og]Amazon,
[Og]Google, and [Og]Yelp datasets. As we were unable to find the exact procedure used to create the
datasets, we independently reproduce them and refer to them as [Re]Amazon, [Re]Google, and [Re]Yelp.
Detailed processing steps for these datasets, along with information about data splitting, can be found in
Appendix B. Table 1 presents a statistical comparison between the original and reproduced datasets.

Table 1: Dataset statistics from Ma et al. (2024) ([Og]) and our reproduced version ([Re]).

Dataset [Og]Amazon [Re]Amazon [Og]Google [Re]Google [Og]Yelp [Re]Yelp
#Users 15,349 15,069 22,582 19,503 15,942 15,962
#Items 15,247 15,028 16,557 18,998 14,085 14,085
#Interactions 360,839 350,644 411,840 400,038 393,680 393,680

Train-test overlap XRec is trained in two phases: (1) training the recommender system using the full
interaction dataset, and (2) training the Collaborative Information Adapter using the explanation dataset
(a subset of the interaction dataset). We observed overlap between the train, validation, and test splits of

3https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
4https://jiachengli1995.github.io/google/index.html
5https://business.yelp.com/data/resources/open-dataset/
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the original explanation and interaction datasets proposed in Ma et al. (2024), with overlap percentages
provided in Appendix D. This issue is addressed in the reproduced datasets.

Ground-truth and profile generation For the original datasets, ground truth explanations are gener-
ated based on user reviews in order to make user preferences explicit. For item profiles, the Google and
Amazon datasets use item names and descriptions, while the Yelp dataset also includes all user reviews
of that item. User profiles are generated based on information from each item a user has interacted with,
including the item’s name, its associated profile, and the review the user left for that item. To improve
dataset reproducibility, we employ Llama3.1 8B Instruct (Grattafiori et al., 2024) for generation, replacing
the closed-source GPT model used in Ma et al. (2024).

Input contamination The user generation process introduces dataset leakage across all original datasets,
while the Yelp item profile generation process introduces additional leakage specific to Yelp. This occurs
because user reviews are used to generate both the ground-truth explanations and the input (profiles). This
raises two issues: (1) It creates an overlap between the input and ground truth, potentially causing the model
to rely on this overlap instead of learning meaningful patterns from user-item interactions, which hinders
generalization during testing as this shortcut is unavailable (2) It compromises the evaluation process by
leaking ground-truth test information into the test input profile. To address this in our reproduced datasets,
we exclude all review information from input prompts used to generate profiles.

4.2 Training Configurations

The training process consists of two phases: training the GNN model and training the Collaborative In-
formation Adapter module. The training process followed the hyperparameter configurations specified in
Ma et al. (2024). An early stopping criterion is applied to the GNN-based models based on the Recall@20
metric. The LLM model used is LLaMA2-7B Touvron et al. (2023), which remains frozen throughout the
training process. Appendix C shows the exact hyperparameter values for each phase.

Computational requirements: Training and inference are conducted using a single NVIDIA A100 40GB
GPU, while evaluation is performed on two NVIDIA T4 16GB GPUs. Training takes approximately 15 hours
for the Amazon and Google datasets and 12 hours for the Yelp dataset, for both the original and reproduced
versions. Inference requires about 4 hours per dataset, and evaluation takes around 1.5 hours per dataset.

We estimate the carbon emissions from the experiments using the CO2e = CI × PUE × P × t formula,
where the carbon intensity (CI) in the Netherlands is 0.370 CO2e emissions per kWh. The power usage
effectiveness (PUE) values for the different setups are 1.2 and 1.1. The power consumption is 0.25 kW for
A100 GPUs and 0.07 kW for T4 GPUs, with runtime durations of 280 hours and 160 hours, respectively.
Based on these calculations, the estimated carbon emissions for the experiments amount to approximately
31 kg CO2e and 4.5 kg CO2e. In total, the experiments resulted in approximately 35.5 kg CO2e emissions.

4.3 Results reproducing original paper

This section details our reproduction of the findings of Ma et al. (2024), where we retrain the XRec model and
its ablations.. Our goal is to validate key claims regarding the model’s explainability and stability, ensuring
consistency with the original results. For comparisons with the baselines, we use GPTScore to ensure fairness,
while for the ablation studies and other analyses throughout this section, we rely on LLMScore.

Claim 1: XRec improves over baselines in explainability and stability. We reproduce the results of Ma et al.
(2024) by retraining (1) XRec on the original datasets, as well as (2) XRec (w/o Profile), where user and item
profiles were excluded from the input prompts to ensure a fair comparison with the baselines that did not
have access to profile information. Table 2 presents the original XRec (Ma et al., 2024) results alongside the
scores from our reproduced models. Our reproduction shows an improvement in GPTScore and a decrease
in GPTstd across all datasets. While we cannot determine the cause of this change given that the metric

6



Under review as submission to TMLR

Table 2: Comparison of baseline models and our reproduced results. We obtained the values for all baseline
models and XRec (denoted as [Orig]XRec) from (Ma et al., 2024). Our results are denoted as XRec and in
italics. The subscripts P, R, and F1 represent Precision, Recall, and F1 Score, respectively. The values in
bold show the highest score, whereas the underlined show the second highest.

Metrics Explainability ↑ Stability ↓
GPTScore BERTP BERTR BERTF1 BARTScore BLEURT USR GPTstd BERTP

std BERTR
std BERTF1

std BARTstd BLEURTstd

[Og]Amazon

Att2Seq† 76.08 0.3746 0.3624 0.3687 -3.9440 -0.3302 0.7757 12.56 0.1691 0.1051 0.1275 0.5080 0.299
NRT† 75.63 0.3444 0.3440 0.3443 -3.9806 -0.4073 0.5413 12.82 0.1804 0.1035 0.1321 0.5101 0.3104
PETER† 77.65 0.4279 0.3799 0.4043 -3.8968 -0.2937 0.8480 11.21 0.1334 0.1035 0.1098 0.5144 0.2667
PETER+† 76.07 0.4119 0.3626 0.3876 -3.9647 -0.3293 0.4493 11.99 0.1576 0.1077 0.1245 0.5131 0.2805
PEPLER† 78.77 0.3506 0.3569 0.3543 -3.9142 -0.2950 0.9563 11.38 0.1105 0.0935 0.0893 0.5064 0.2195
[Orig]XRec† 82.57 0.4193 0.4038 0.4122 -3.8035 -0.1061 1.0000 9.60 0.0836 0.0920 0.0800 0.4832 0.1780
[Orig]XRec (w/o profile)† 81.77 0.4194 0.4004 0.4106 -3.8218 -0.1294 1.0000 9.60 0.0819 0.0955 0.0786 0.4799 0.1803
XRec 83.75 0.4139 0.4037 0.4095 -3.7773 -0.1793 1.0000 9.40 0.0863 0.0933 0.0817 0.4985 0.2256
XRec (w/o profile) 83.28 0.4207 0.3967 0.4094 -3.8328 -0.1839 1.0000 9.16 0.0802 0.0888 0.0772 0.4801 0.2178

[Og]Yelp

Att2Seq† 63.91 0.2099 0.2658 0.2379 -4.5316 -0.6707 0.7583 15.62 0.1583 0.1074 0.1147 0.5616 0.247
NRT† 61.94 0.0795 0.2225 0.1495 -4.6142 -0.7913 0.2677 16.81 0.2293 0.1134 0.1581 0.5612 0.2728
PETER† 67.00 0.2102 0.2983 0.2513 -4.4100 -0.5816 0.8750 15.57 0.3315 0.1298 0.2230 0.5800 0.3555
PETER+† 67.98 0.2594 0.3097 0.2833 -4.3973 -0.5355 0.8637 13.80 0.2522 0.1174 0.1701 0.5665 0.3421
PEPLER† 67.54 0.2920 0.3183 0.3052 -4.4563 -0.3354 0.9143 14.18 0.1476 0.1044 0.1050 0.5777 0.2524
[Orig]XRec† 74.53 0.3946 0.3506 0.3730 -4.3911 -0.2287 1.0000 11.45 0.0969 0.1048 0.0852 0.5770 0.2322
[Orig]XRec (w/o profile)† 71.81 0.3879 0.3427 0.3657 -4.4035 -0.2486 1.0000 12.71 0.1087 0.1072 0.0919 0.5717 0.2272
XRec 79.72 0.3541 0.3504 0.3527 -4.2969 -0.3089 1.0000 10.65 0.1126 0.1108 0.0967 0.5758 0.2334
XRec (w/o profile) 75.68 0.3814 0.3451 0.3636 -4.3717 -0.3303 1.0000 11.13 0.1218 0.1110 0.1014 0.5676 0.2514

[Og]Google

Att2Seq† 61.31 0.3619 0.3653 0.3636 -4.2627 -0.4671 0.5070 17.47 0.1855 0.1247 0.1403 0.6663 0.3198
NRT† 58.27 0.3509 0.3495 0.3496 -4.2915 -0.4838 0.2533 19.16 0.2176 0.1267 0.1571 0.6620 0.3118
PETER† 65.16 0.3892 0.3905 0.3881 -4.1527 -0.3375 0.4757 17.00 0.2819 0.1356 0.2005 0.6701 0.3272
PETER+† 66.74 0.4125 0.3975 0.4047 -4.1273 -0.3467 0.4887 15.23 0.1893 0.1244 0.1411 0.6515 0.3095
PEPLER† 69.71 0.3806 0.4093 0.3987 -4.1542 -0.2047 0.8660 17.11 0.1602 0.1154 0.1353 0.6800 0.3114
[Orig]XRec† 69.12 0.4546 0.4069 0.4311 -4.1647 -0.2437 0.9993 14.24 0.0972 0.1031 0.0937 0.5700 0.2114
[Orig]XRec (w/o profile)† 69.71 0.4427 0.4187 0.4310 -4.1142 -0.2026 0.997 14.09 0.1180 0.1171 0.1034 0.6465 0.2439
XRec 71.13 0.4632 0.4025 0.4331 -4.1686 -0.2366 0.9993 13.22 0.0986 0.1163 0.0935 0.6560 0.2509
XRec (w/o profile) 71.66 0.4594 0.4191 0.4395 -4.1237 -0.1829 1.000 13.05 0.1001 0.1150 0.0931 0.6529 0.2392

† This score was taken from Ma et al. (2024).

relies on a closed-source model6, we observe that the general performance trends remain consistent with the
original results.

For BERT-based metrics, BARTScore, and BLEURT, the results remain consistent with the original trends,
with minor negligible variations. These metrics confirm that XRec maintains high explainability and stability,
as the best and second-best scores are consistently achieved by our reproduced models. Additionally, while
XRec (w/o Profile) performs slightly worse than XRec, it still consistently outperforms the baselines. This
suggests that even when restricted to the same level of information as the baselines, XRec has superior
performance. Overall, these results support Claim 1, demonstrating that XRec outperforms the baselines
in both explainability and stability across multiple evaluation metrics and datasets.

Table 3: Comparison of GPTScore and LLMScore when evaluating the full XRec model and XRec without
profile on the original datasets. LLMScore results are averaged over five runs.

Dataset Model GPTScore LLMScore

[Og]Amazon XRec 83.75 67.53 ± 11.65
XRec (w/o profile) 83.28 66.95 ± 11.65

[Og]Yelp XRec 79.72 61.67 ± 12.61
XRec (w/o profile) 75.68 59.82 ± 12.11

[Og]Google XRec 71.13 55.81 ± 13.04
XRec (w/o profile) 71.66 56.49 ± 12.98

To verify this claim, we use GPTScore for a fair comparison with the baselines from Ma et al. (2024). However,
reproducing results is challenging since GPTScore is closed-source. Instead, we propose LLMScore, which
employs multiple open-source language models for scoring. Table 3 shows that LLMScore mirrors GPTScore’s

6This prevents us from verifying whether the same model version and internal system prompt were used in both cases.
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patterns: best performance on Amazon, worst on Google, and reduced performance without profiles except
on Google. Therefore, LLMScore is the primary evaluation metric for the remaining experiments.
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Figure 2: Ablation study results of the original datasets on the full model and three variants: without profile,
without injection and without both.

Claim 2: Collaborative information injection improves explainability and stability. To evaluate this claim,
we conducted ablation studies using four configurations: (1) XRec, (2) XRec (w/o profile), where user and
item profiles are not given as input (3) XRec (w/o injection), where embeddings are not injected into the
attention layers, and (4) XRec (w/o profile & injection). Following Ma et al. (2024), we evaluate these
models using LLMScore and BERT F1 .

Figure 2 shows that on LLMScore, XRec follows a similar trend as reported by Ma et al. (2024), outperforming
the other configurations on Yelp and ranking second on Amazon. However, on the Google dataset, XRec
performs the worst. Moreover, in terms of BERT F1 , XRec consistently ranks last or ties for the worst
performance across all three datasets. On the other hand, for LLMScore and LLMStability, XRec (w/o
injection) outperforms all other ablations on two datasets (Amazon and Google), and ranks second on the
other dataset (Yelp). These results contradict Claim 2 and suggest that, on average, injection reduces
performance rather than enhancing it.

One possible explanation for the lack of performance improvement from injecting collaborative information
lies in the characteristics of the underlying graph neural network (GNN). According to Qin et al. (2024),
injection is most effective when the model can disentangle the various latent factors that shape user prefer-
ences and item attributes. However, LightGCN (He et al., 2020) lacks this property, which may explain its
negative impact on performance.

Claim 3: User and item profiles improve explainability and stability. We evaluate this claim with the ablation
studies presented in Figure 2. XRec (w/o profile) performs worse than XRec in terms of LLMScore and
LLMStability on Amazon and Yelp. Similarly, XRec (w/o injection & profile) underperforms across all three
datasets compared to XRec (w/o injection). However, models without a profile exhibit a slight yet negligible
improvement in BERT F1 compared to those that incorporate profiles. These findings support Claim 3,
suggesting that integrating user and item profiles generally improves the explainability and stability of the
system, although not significantly.

Claim 4: XRec has superior performance with increasing sparsity. We investigate the model’s performance
under varying levels of data sparsity. Specifically, as done in Ma et al. (2024), we divided the test data into six
groups: one for zero-shot users (users absent from the training data) and five quantiles representing increasing
ranges of user interactions. Appendix E provides interaction frequency ranges and statistics for each group.
As shown in Figure 3, this grouping reveals that while BERTScore shows a slight improvement for users
with sparser interactions—with stability remaining constant—the LLM-based metrics behave differently:
explainability decreases and stability increases with growing sparsity. These conflicting trends suggest that
Claim 4 is not reproducible and warrants further investigation. Overall, however, the general trend indicates
that performance improves with higher interaction frequency.

Claim 5: The model generates personalized explanations. Ma et al. (2024) quantify personalization using the
Unique Sentence Ratio (USR) (Li et al., 2020). However, we argue that USR captures only lexical uniqueness

8



Under review as submission to TMLR

zero-shot tst1 tst2 tst3 tst4 tst5
50

55

60

65

70

LL
M

Sc
or

e 

zero-shot tst1 tst2 tst3 tst4 tst5

10

11

12

13

LL
M

St
ab

ili
ty

 

zero-shot tst1 tst2 tst3 tst4 tst5
0.325

0.350

0.375

0.400

0.425

0.450

0.475

BE
RT

Sc
or

e_
F1

 

zero-shot tst1 tst2 tst3 tst4 tst5

0.07

0.08

0.09

0.10

BE
RT

St
ab

ili
ty

_F
1 

[Og]Amazon [Og]Google [Og]Yelp

Figure 3: XRec’s performance on six data splits with increasing sparsity level on the original datasets.

and fails to account for semantically equivalent sentences. For example, the sentences "I am going to the
store" and "I am heading to the store" receive a USR score of 1.0, even though they are semantically identical.
To test this hypothesis, we sampled user-item interactions from each dataset and generated 100 explanations
per sample. In all cases, USR was 1.0 even though the explanations conveyed the same meaning. This
suggests that USR is not an appropriate measure of personalization. To address this, we use Sentence
Transformer Similarity (STS) (Thakur et al., 2020). We compute an aggregate STS score by averaging the
pairwise STS values, providing an estimate of the overall personalization of generated explanations. On this
dataset of 100 explanations, STS yields an average score of 0.78, indicating that the explanations are highly
similar in meaning despite minor lexical differences. However, STS tends to assign higher similarity scores
to sentences with similar structures, which is often the case with our generated explanations. Despite this
limitation, STS provides a more meaningful measure of similarity than USR.

Table 4: Evaluation results of different XRec variations of the original datasets on the STS metric.

Dataset XRec XRec (w/o profile) XRec (w/o injection) XRec (w/o profile & injection) XRec (w/o GNN)
[Og]Amazon 0.5667 0.6563 0.6614 0.6936 0.4139
[Og]Yelp 0.3802 0.3601 0.3671 0.4149 0.2759
[Og]Google 0.5891 0.5910 0.6006 0.5863 0.2807

Table 4 presents the average pairwise STS scores for each dataset. The [Og]Amazon and [Og]Google explana-
tions exhibit overall high STS, suggesting a lower degree of personalization in comparison to the explanations
for [Og]Yelp. This difference can be attributed to the higher level of detail in Yelp reviews compared to
the other datasets. This shows that data quality affects the personalization capabilities of XRec. Addi-
tionally, we observe that for [Og]Amazon, incorporating user-profiles and injection improves personalization.
However, for [Og]Google, these factors do not significantly impact the STS score. Finally, we notice that
removing the GNN makes generated explanations more diverse. We hypothesize that this is due to the fact
that when XRec is trained with the GNN component, the MoE adapter learns to prompt the model in such a
way that the explanations follow a similar structure. As a result, removing this component allows the model
to produce more diverse explanations, but at the cost of reduced explainability scores as shown in Table 2.

4.4 Results beyond original paper

This section explores additional aspects of XRec’s performance. We analyze the impact of GNN collaborative
signal, MoE adapter and assess the effect of data leakage mitigation. These extensions provide deeper insights
into the model’s capabilities and potential limitations.

4.4.1 Impact of GNN and Collaborative Information Adapter

RQ 1: How do Graph Neural Network (GNN)-based collaborative signals and the Collaborative Information
Adapter influence the explainability and stability of XRec? To assess the impact of GNN-based collabo-
rative signals on XRec, we replace its originally used LightGCN (He et al., 2020) GNN component with
NGCF (Wang et al., 2019), referring to this variant as XRec w/ NGCF. For clarity, we refer to XRec with its
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original GNN architecture as XRec w/ LightGCN in this section. Additionally, we evaluate three ablations
that entirely exclude collaborative signals: one that replaces GNN outputs with fixed random embeddings
(XRec w/o GNN, fixed), another that replaces them with variable random embeddings (XRec w/o GNN,
random), and a third that removes both the GNN and the Collaborative Information Adapter (MoE) (XRec
w/o GNN & MoE).

Table 5: Performance comparison of LightGCN and NGCF models. The best values are in bold.

Dataset Model Recall NDCG Precision MRR

[Og]Amazon LightGCN 0.0719 0.0426 0.0175 0.0724
NGCF 0.0514 0.0319 0.0131 0.0587

[Og]Yelp LightGCN 0.0614 0.0382 0.0160 0.0677
NGCF 0.0571 0.0365 0.0156 0.0668

[Og]Google LightGCN 0.0791 0.0433 0.0129 0.0575
NGCF 0.0571 0.0327 0.0094 0.0455

First, we compare the performance of the two GNN-based recommender systems on the item recommendation
task. Table 5 shows that LightGCN outperforms NGCF across all evaluation metrics and datasets.

We use the embeddings from these two models as input to the MoE Adapter. Table 6 shows that XRec (w/
NGCF) outperforms XRec (w/ LightGCN) on average, achieving higher BERT-based scores on two datasets
and a higher LLMScore on one. This suggests that better performance in item recommendation does not
necessarily translate to better explainability in XRec.

Table 6: Performance comparison of XRec with LightGCN and NGCF as collaborative information algo-
rithms, as well as three variants where explicit collaborative information is removed. The subscripts P, R,
and F1 represent Precision, Recall, and F1 Score, respectively. Values in bold indicate the highest score,
while underlined values denote the second-best. LLMScore and LLMStability is averaged after five runs.

Metrics Explainability ↑ Stability ↓
LLMScore BERT P BERTR BERTF1 BARTScore BLEURT STS LLMStability BERTP

std BERTR
std BERTF1

std BARTstd BLEURTstd

[Og]Amazon
XRec (w/ LightGCN) 67.53 ± 11.61 0.4139 0.4037 0.4095 -3.7773 -0.1783 0.57 10.67 ± 4.59 0.0863 0.0933 0.0817 0.4985 0.2256
XRec (w/ NGCF) 67.97 ± 11.66 0.4277 0.4088 0.4164 -3.7789 -0.1445 0.62 10.58 ± 4.57 0.0825 0.0934 0.0806 0.4913 0.2118
XRec (w/o GNN, fixed) 68.05 ± 11.69 0.4200 0.3963 0.4089 -3.8171 -0.1461 0.67 10.19 ± 4.65 0.0077 0.0899 0.0764 0.4766 0.2077
XRec (w/o GNN, random) 65.33 ± 11.81 0.4361 0.3984 0.4179 -3.8575 -0.1264 0.69 11.31 ± 4.38 0.0842 0.0940 0.0816 0.4861 0.1990
XRec (w/o GNN & MoE) 62.66 ± 12.14 0.2909 0.3102 0.3013 -4.0502 -0.4729 0.42 11.05 ± 4.29 0.1007 0.0796 0.0804 0.4336 0.2439

[Og]Yelp
XRec (w/ LightGCN) 61.67 ± 12.61 0.3541 0.3504 0.3527 -4.2969 -0.3089 0.38 10.65 ± 4.73 0.1126 0.1108 0.0967 0.5758 0.2334
XRec (w/ NGCF) 60.95 ± 12.49 0.3828 0.3635 0.3736 -4.2719 -0.3053 0.33 10.67 ± 4.76 0.0953 0.1047 0.0841 0.5657 0.2128
XRec (w/o GNN, fixed) 61.20 ± 12.49 0.3737 0.3572 0.3658 -4.3070 -0.2971 0.36 10.61 ± 4.78 0.1103 0.1039 0.0897 0.5694 0.2104
XRec (w/o GNN, random) 59.34 ± 12.01 0.4376 0.3476 0.3926 -4.4425 -0.2608 0.45 11.00 ± 4.46 0.0967 0.1098 0.0877 0.5790 0.2112
XRec (w/o GNN & MoE) 58.68 ± 13.56 0.2796 0.2609 0.2710 -4.6124 -0.3615 0.27 11.51 ± 4.80 0.1045 0.1088 0.0953 0.5392 0.2174

[Og]Google
XRec (w/ LightGCN) 55.81 ± 13.05 0.4632 0.4025 0.4331 -4.1686 -0.2366 0.59 11.84 ± 4.35 0.0986 0.1163 0.0935 0.6560 0.2509
XRec (w/ NGCF) 55.04 ± 13.29 0.4517 0.3943 0.4233 -4.2445 -0.2652 0.54 12.12 ± 4.30 0.1027 0.1136 0.0946 0.6558 0.2635
XRec (w/o GNN, fixed) 57.25 ± 12.87 0.4414 0.4192 0.4306 -4.1158 -0.1776 0.53 12.04 ± 4.44 0.1081 0.1141 0.0959 0.6488 0.2398
XRec (w/o GNN, random) 56.71 ± 12.89 0.4520 0.4094 0.4310 -4.1595 -0.1780 0.63 11.96 ± 4.45 0.0958 0.1187 0.0937 0.6542 0.2390
XRec (w/o GNN & MoE) 50.40 ± 14.29 0.2094 0.2806 0.2456 -4.5504 -0.5188 0.28 12.17 ± 4.58 0.1049 0.1019 0.0918 0.5725 0.2451

We observe that removing both the collaborative information and the adapter in XRec (w/o GNN & MoE)
results in the lowest performance, highlighting the importance of these components. Additionally, we note
that while explainability and stability decrease when the GNN and MoE components are removed, person-
alization, as measured by STS, improves.

However, when comparing with XRec (w/o GNN, fixed), which uses a random embedding vector instead of
embeddings generated by GNNs, we do not observe any performance drop. Instead, we find that it achieves
the best performance on two datasets and ranks second-best on the other. Meanwhile, XRec (w/o GNN,
random) performs worse than models with the MoE adapter but better than those without it. This suggests
that removing collaborative signals from the GNN has minimal impact on explainability and that the MoE
effectively learns meaningful information, though it struggles when the input is random rather than fixed.

We hypothesize that this effect arises from two possible causes, though further research is needed to confirm
the exact mechanism. First, the MoE adapter may interpret the embedding vector as a set of unique
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identifiers, enabling it to implicitly learn collaborative signals even without GNN-based embeddings. The
poorer performance of XRec (w/o GNN, random) supports this hypothesis, as the randomized inputs disrupt
the model’s ability to retain meaningful identification information. Second, both STS scores and manual
inspection revealed structural differences in sentence composition between models with and without the
MoE adapter. This suggests that incorporating the lightweight adapter, positioned almost as a prefix to
the prompt, may unintentionally act as a form of soft prompting. This effect aligns with prior work in
prompt tuning Lester et al. (2021); Li et al. (2021), which demonstrated that small, lightweight adapters
can condition LLMs for downstream tasks without requiring full fine-tuning.

4.4.2 Effect of Data Leakage Mitigation

RQ 2: What are the effects of dataset reproduction in XRec on explainability and stability, especially when
addressing train-test overlap and the use of shared reviews for both profile generation and ground truth
creation? We identified two cases of data leakage in the original datasets of Ma et al. (2024): Input
Contamination, where the same reviews are used to generate both ground-truth explanations and input
profiles; and Train-Test Leakage, where training, validation, and test sets overlap. To assess the impact
this leakage may have, we train XRec on both the original datasets and our reproduced versions, where these
issues have been mitigated.

Table 7: XRec performance on (1) Original ([Og]) datasets with data leakage and (2) Reproduced ([Re])
datasets with mitigated leakage. Subscripts P, R, and F1 denote Precision, Recall, and F1 Score. The best
values are in bold. LLMScore and LLMStability is averaged after five runs.

Metrics Explainability ↑ Stability ↓
LLMScore BERTP BERTR BERTF1 BARTScore BLEURT STS LLMStability BERTP

std BERTR
std BERTF1

std BARTstd BLEURTstd

[Og]Amazon 67.53 ± 11.61 0.4139 0.4037 0.4095 -3.7773 -0.1793 0.5667 10.67 ± 4.59 0.0863 0.0933 0.0817 0.4985 0.2256
[Re]Amazon 64.80 ± 11.25 0.4563 0.4218 0.4396 -3.8135 -0.1474 0.7489 11.84 ± 3.99 0.0986 0.1049 0.0943 0.5583 0.2599
[Og]Yelp 61.67 ± 12.61 0.3541 0.3504 0.3527 -4.2969 -0.3089 0.3802 10.65 ± 4.73 0.1126 0.1108 0.0967 0.5758 0.2334
[Re]Yelp 62.75 ± 11.89 0.4382 0.4207 0.4300 -4.0250 -0.1765 0.5186 10.78 ± 4.52 0.1002 0.1076 0.0937 0.5813 0.2176
[Og]Google 55.81 ± 13.05 0.4632 0.4025 0.4331 -4.1686 -0.2366 0.5891 11.84 ± 4.35 0.0986 0.1163 0.0935 0.6560 0.2509
[Re]Google 59.72 ± 12.45 0.4450 0.4238 0.4349 -3.9298 -0.1283 0.6074 12.57 ± 4.43 0.1004 0.1107 0.0960 0.6089 0.2451

Table 7 demonstrates that mitigating data leakage generally improves the explainability of XRec, as reflected
in higher BERTScore and BLEURT values. This result is counterintuitive since input contamination typically
inflates performance by providing the model with direct access to ground-truth information. However,
we cannot definitely attribute these improvements solely on data leakage mitigation, as other factors—
such as variations in selected reviews, or differences in the models used to generate the ground truth and
explanations—may have steered the results in this direction.

Figure 4 shows a similar data sparsity trend as Figure 3, indicating that data leakage does not impact the
model’s behaviour across sparsity levels. The consistency between these results indicates that eliminating
data leakage does not alter the overall pattern observed in the model. In other words, mitigating leakage
does not compromise the validity of the findings.
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Figure 4: XRec’s performance on six data splits with increasing sparsity level on the reproduced datasets.
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5 Conclusion

Our reproduction study and analysis of XRec confirm that the model improves over baselines in both
explainability and stability. While our results verify the impact of user and item profiles, they do not support
the claim that collaborative information injection through the layers of the LLM improves explainability and
stability, as XRec without injection performs better on two out of three datasets. Additionally, we find that
explainability and stability improve with more information about the specific user, contradicting the claim
that XRec performs better with increasing data sparsity. However, this suggests that the model learns user
preferences. Lastly, our evaluation of personalization using both USR and STS yielded inconclusive results.
We found out that while STS provides a more nuanced evaluation, it also favours similar writing styles,
potentially misjudging semantically equivalent sentences written differently. We suggest future research into
developing more reliable methods for evaluating personalization in explainable recommender systems.

Through additional experiments, we find that removing the GNN-based recommendation system has minimal
impact on model explainability, as without it performance remains stable or slightly improves. We hypothe-
size that this occurs because (1) when distinct identification features of users and items are present—even if
randomly assigned—the MoE can effectively capture collaborative patterns without relying on a GNN-based
model, making those signals potentially redundant, and (2) the MoE adapter acts similarly to soft prompt-
ing, embedding task-specific knowledge in a way that enhances explainability (Lester et al., 2021; Li et al.,
2021). The latter effect may be exacerbated by evaluation metrics that favour structurally similar sentences
over semantic meaning. Future work should examine the MoE’s influence on the structure and meaning of
explanations, as well as explore more robust evaluation metrics.

Lastly, we attempted to reproduce the datasets while addressing the data leakage present in the original ones.
Our experiments showed that removing data leakage led to improvements in model performance across most
evaluation metrics. However, we cannot definitively attribute these improvements solely to data leakage
mitigation, as other factors—such as variations in selected reviews, or differences in the models used to
generate the ground truth and explanations—may have played a role. Based on our findings, we conclude
that data leakage had no significant impact on model performance. However, due to limited resources, our
experiments were not exhaustive. We recommend that future work conduct more comprehensive experiments
to fully validate all claims from the original paper on the reproduced datasets.

What was easy Ma et al. (2024) provided most of the model implementation with documentation on run-
ning the training process. The model architecture description was detailed and easy to follow. Additionally,
the authors provided evidence linked to specific claims, simplifying the reproduction process.

What was difficult Certain aspects of the reproduction study required more effort than anticipated. For
instance, the provided code for dataset pre-processing was an incomplete example procedure for the Yelp
dataset. Reproducing the full pipeline for all datasets required time and insight into the intended data
requirements. The codebase also required modifications to run ablations and evaluations. Additionally, the
documentation lacked details on evaluation metrics and dataset-specific configurations.

Communication with original authors They promptly responded to our questions and clarified details
about the data generation process and the hyperparameters we could alter to replicate their datasets.
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A GPTScore Prompt

To acquire a GPTScore and LLMScore for each XRec explanation we use the following prompt proposed by
Ma et al. (2024):

System Prompt:

Score the given explanation against the ground truth on a scale from 0 to 100,
focusing on the alignment of meanings rather than the formatting.
Provide your score as a number and do not provide any other text.

Prompt:

{
"prediction" : <XREC explanation>,
"reference" : <ground truth explanation>

}

B Datasets

B.1 Dataset Processing

To evaluate XRec, Ma et al. (2024) use three datasets from distinct domains, which they subsequently
process. The first dataset, Amazon Review Data7, proposed by Ni et al. (2019), includes reviews and
product metadata, where only the book subset is used for XRec. The second dataset, Google Local Data8,
introduced by Li et al. (2022); Yan et al. (2023), contains Google Maps reviews and business metadata,
where only the California subset is used. Finally, the Yelp Open Dataset9, includes reviews and business
metadata, and the entire dataset serves as input.

Ma et al. (2024) provide example processing code for the Yelp Open Dataset. Their approach involves:

1. Filtering out items without a name, description, or categories;

2. Filtering out all reviews with a rating of 3 or less;

3. Randomly subsampling the remaining users;

4. Retaining only interactions within the 8-core interaction graph10.

We follow these steps to reproduce the datasets, which we refer to as [Re]Amazon, [Re]Google, and [Re]Yelp
to distinguish them from the original Amazon, Google, and Yelp datasets in XRec’s repository. However,
whereas Ma et al. (2024) use the full Google dataset and work with a manually extracted 8-core subgraph, we
use the smaller 10-core version to reduce computational overhead. For consistency, we process the Amazon
and Yelp datasets into 10-core versions.

The ground-truth explanations are generated from a subset of interactions, taken from the pre-processed
dataset, following the original procedure in Ma et al. (2024). For the Amazon and Google datasets, we
include reviews with more than 10 words in order to reduce noise.

7https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
8https://jiachengli1995.github.io/google/index.html
9https://business.yelp.com/data/resources/open-dataset/

10A "k-core" of a graph is a subgraph in which every node has a degree of at least k, meaning each node is connected to at
least k other nodes. For example, in an 8-core graph, every user or item must have at least 8 interactions to be included.
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B.2 Data Splitting

We provide the Train, Validation, and Test splits for the reproduced interaction datasets—[Re]Amazon,
[Re]Google, and [Re]Yelp—in Table 8. These interaction datasets are used to train the Recommender System.
From each interaction dataset, we extract a subset containing interactions with ground truth explanations,
which we refer to as the explanation dataset. This explanation dataset is used to train the XRec framework.
To ensure consistency, the splits for the explanation dataset were designed to match the numbers of the
corresponding original datasets (Ma et al., 2024), and the same split ratios were applied to the interaction
datasets.

Table 8: Train, Validation, and Test splits for [Re]Amazon, [Re]Google, and [Re]Yelp datasets.

[Re]Amazon [Re]Google [Re]Yelp
Split Explanations Interactions Explanations Interactions Explanations Interactions
Train 95,841 303,246 94,663 345,846 74,212 337,797
Validation 11,980 37,905 11,833 43,231 9,277 42,227
Test 3,000 9,493 3,000 10,961 3,000 13,656
Sum 110,821 350,644 109,496 400,038 86,489 393,680

C Hyperparameters

The models were trained and evaluated using the parameters listed in 9:

Table 9: Hyperparameter configurations for the GNN-based recommender system and the Information Col-
laboration Adapter module (MoE), both optimized using Adam (Kingma & Ba, 2015).

Hyperparameter GNN MoE
Batch size 1024 1
Number of epochs 300 1
Optimizer Adam Adam
Learning rate 0.001 0.001
Number of layers 4 -
Embedding size 64 -
Early Stopping Patience 10 epochs -
Number of experts - 8
Dropout rate - 0.2
Gating Router Noise Factor - 0.01

D Overlap Between Original Dataset Splits

Ma et al. (2024) train their system using two datasets: (1) the full interaction dataset (for training the
recommendation system) and (2) the explanation dataset (a subset of the interaction dataset, used to train
the Information Collaboration Adapter). The explanation dataset includes textual explanations of reviews
corresponding to specific interactions. However, we observed that during the splitting of these datasets,
overlaps occasionally occur, leading to instances where data from one dataset is exposed to the other. In this
section, we present the percentage of overlap between the train, validation, and test splits of the explanation
and interaction datasets. Tables 10, 11, and 12 summarize these overlaps for the Amazon, Google, and Yelp
datasets introduced by Ma et al. (2024).
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Table 10: Percentage of overlap between the splits of the Explanations and the Interactions Amazon datasets.

Interactions
Train (%) Validation (%) Test (%)

Explanations
Train 79% 10% 10%
Validation 79% 10% 9%
Test 79% 9% 10%

Table 11: Percentage of overlap between the splits of the Explanations and the Interactions Google datasets.

Interactions
Train (%) Validation (%) Test (%)

Explanations
Train 80% 9% 10%
Validation 80% 9% 9%
Test 78% 10% 10%

Table 12: Percentage of overlap between the splits of the Explanations and the Interactions Yelp datasets.

Interactions
Train (%) Validation (%) Test (%)

Explanations
Train 79% 10% 10%
Validation 80% 10% 9%
Test 81% 9% 9%

E Data sparsity statistics

Table 13 provides the statistics of all sparsity sets used to reproduce Claim 4.
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Table 13: Data sparsity set statistics including user interaction frequency intervals, and the percentage of
data allocated to each sparsity set from the test set which includes 3000 interactions.

Sparsity Set zero-shot tst1 tst2 tst3 tst4 tst5
[Og]Amazon
Interaction Frequency [0, 0] [1, 9] (9, 20] (20, 42] (42, 95] (95, 548]
Percentage of Test Set 12% 17% 18% 17% 18% 18%
[Og]Google
Interaction Frequency [0, 0] [1, 4] (4, 7] (7, 10] (10, 17] (17, 113]
Percentage of Test Set 9% 20% 19% 16% 18% 18%
[Og]Yelp
Interaction Frequency [0, 0] [1, 4] (4, 8] (8, 14] (14, 28] (28, 262]
Percentage of Test Set 10% 19% 20% 16% 17% 18%
[Re]Amazon
Interaction Frequency [0, 0] [1, 4] (4, 6] (6, 11] (11, 28] (28, 251]
Percentage of Test Set 2% 27% 13% 19% 20% 19%
[Re]Google
Interaction Frequency [0, 0] [1, 3] (3, 6] (6, 9] (9, 16] (16, 110]
Percentage of Test Set 2% 21% 26% 16% 17% 18%
[Re]Yelp
Interaction Frequency [0, 0] [1, 3] (3, 5] (5, 8] (8, 15] (15, 134]
Percentage of Test Set 4% 28% 17% 15% 17% 19%
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