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Abstract

Recommender systems help users navigate large volumes of online content by offering person-
alized recommendations. However, the increasing reliance on deep learning-based techniques
has made these systems opaque and difficult to interpret. To address this, XRec (Ma et al.,
2024) was introduced as a novel framework that integrates collaborative signals and textual
descriptions of past interactions into Large Language Models (LLMs) to generate natural
language explanations for recommendations. In this work, we reproduce and expand upon
the findings of Ma et al. (2024). While our results validate most of the original authors’
claims, we were unable to fully replicate the reported performance improvements from in-
jecting collaborative information into every LLM attention layer, nor the claimed effects
of data sparsity. Beyond replication, our contributions provide evidence that the Graph
Neural Network (GNN) component does not enhance explainability. Instead, the observed
performance improvement is attributed to the Collaborative Information Adapter, which
can act as a form of soft prompting, efficiently encoding task-specific information. This
finding aligns with prior research suggesting that lightweight adaptation mechanisms can
condition frozen LLMs for specific downstream tasks. Our implementation is open-source1.

1 Introduction

Recommender systems (Resnick & Varian, 1997) help users filter through vast amounts of online content
by providing personalized suggestions tailored to their preferences and interests (Cheng et al., 2021; 2022).
Explainable recommendation models (Zhang et al., 2020) have emerged to enhance trust, decision-making,
and satisfaction by providing explanations for their suggestions (Zhang, 2019).

Recent advancements in Large Language Models (LLMs) (e.g., Touvron et al. 2023; Grattafiori et al. 2024)
have revolutionized the field of explainable recommendations. Earlier work, such as PETER (Li et al.,
2021), used transformers to generate explanations, while more recent works, like PEPLER (Li et al., 2023),
integrated GPT-2 (Radford et al., 2019) with user-item IDs as prompts to produce contextually rich and co-
herent justifications. Building on these foundations, LLM2ER (Yang et al., 2024b) introduced a personalized
prompt module, overcoming the limitations of relying solely on user-item IDs for explanation generation.

∗Equal contribution.
1https://github.com/tr2512/ReXRec
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A more recent study, XRec: Large Language Models for Explainable Recommendation (Ma et al., 2024),
introduces a novel model-agnostic approach to address the limited availability of explanation data and the
poor generalization of ID-based methods in zero-shot scenarios. This framework integrates collaborative
signals (patterns of user interactions, such as reviews) into LLMs by injecting them into both the input
prompt and the model layers, allowing XRec to extract meaningful insights from user preferences. We chose
to focus on XRec because, to our knowledge, it was one of the first methods to combine Graph Neural
Networks with LLMs to generate explainable recommendations, achieving state-of-the-art performance.

This paper attempts to reproduce and extend the main findings of Ma et al. (2024) through the following:

• Reproducing XRec results: We use the codebase of the original paper2 to replicate its experi-
ments, verify the authors’ claims, and analyze the required computational resources.

• Extending the ablation study: We investigate the role of collaborative signals by evaluating dif-
ferent GNN-based recommender systems that capture such signals from graph structures, including
LightGCN (He et al., 2020) and NGCF (Wang et al., 2019). Additionally, we test three ablations
that entirely remove graph-based collaborative information. We extend the evaluation by using
Sentence Transformer Similarity (STS) (Thakur et al., 2020) and introducing LLMScore.

• Addressing data leakage: We identified two instances of data leakage caused by the original data
generation process. The first involves using the same review to generate both the ground truth and
the input to the framework, while the second is caused by the inclusion of test set information within
the training data. We propose solutions to address these issues and analyze their impact.

• Code adaptation and improvement: We modify and improve the original codebase to support
open-source LLMs for dataset generation and evaluation, facilitating future extensions and repro-
ducibility. Additionally, we add scripts for tasks like dataset creation and data-sparsity testing.

After performing the above steps, we verified that XRec (Ma et al., 2024) outperforms the baseline models.
Our findings also confirm that incorporating user and item profile information improves performance and
that both the profile and the injection component can contribute to improved personalization. However,
we encountered challenges in reproducing the claims that injecting collaborative information across all LLM
attention layers improves performance and that XRec is more effective under increased data sparsity.

Furthermore, our in-depth analysis of the impact of collaborative information reveals that the performance
improvement in XRec (Ma et al., 2024) can be attributed to the Collaborative Information Adapter. We hy-
pothesize this occurs because (1) collaborative signals may be redundant when unique identification features
are available, even if randomly assigned, since the adapter can learn these signals as effectively as GNN-
based models and (2) the adapter functions as a form of soft prompting, efficiently encoding task-specific
information (Lester et al., 2021; Li et al., 2021).

While reproducing the datasets proposed by Ma et al. (2024), we identified two instances of data leakage,
which we subsequently addressed in our attempt to reproduce the datasets. Despite the presence of these
data leakage cases, our observations indicate that they did not significantly affect the overall claims or results.

2 Scope of reproducibility

Ma et al. (2024) introduced XRec, a post-hoc technique that improves recommender system explainability
by providing user-level personalization. Ma et al. (2024) make five key claims, which we investigate:

• Claim 1: XRec improves over baselines in explainability and stability. The model im-
proves explanations in recommender systems by integrating collaborative information and textual
descriptions into LLMs, outperforming state-of-the-art baselines in both explainability and stability.

2https://github.com/HKUDS/XRec
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• Claim 2: Collaborative information injection improves explainability and stability. XRec
achieves higher accuracy by injecting collaborative information across all attention layers of the LLM,
rather than simply passing it in the input prompt.

• Claim 3: User and item profiles improve explainability and stability. Adding user and item
profiles to the prompt improves explainability and stability by providing contextual information.

• Claim 4: XRec has superior performance with increasing sparsity. The model demon-
strates robust performance across varying sparsity levels, showing improved results as user frequency
decreases. Moreover, in zero-shot scenarios, its performance is comparable to other sparsity levels.

• Claim 5: The model generates personalized explanations. XRec generates customized
explanations for each distinct user-item interaction, offering users meaningful and unique insights.

Moreover, we extend the work by answering the following research questions:

• RQ 1: How do Graph Neural Network (GNN)-based collaborative signals and the Collaborative
Information Adapter influence the explainability and stability of XRec?

• RQ 2: What are the effects of dataset reproduction in XRec on explainability and stability, especially
when addressing sources of data leakage?

3 Methodology

3.1 Model description

XRec (Ma et al., 2024) is a framework that uses a Large Language Model (LLM) to generate natural language
explanations of why a recommender system suggested an item to a user. XRec (Ma et al., 2024), as visualized
in Figure 1, is a framework that uses an LLM to generate natural-language explanations for recommendations.
It consists of four main components: (i) a Graph Neural Network (GNN)-based recommender system that
learns user-item interaction patterns, (ii) an adapter that transforms these learned embeddings into the
LLM’s input space, (iii) textual profiles of users and items constructed via summarization, and (iv) an
attention injection mechanism that reinforces collaborative signals during explanation generation.

GNN-based recommender system The GNN-based recommender system models user-item interactions
as a graph, with users and items as nodes and interactions as edges. GNNs embed users and items into
fixed-size vectors using a message-passing mechanism (Gilmer et al., 2017), which aggregates information
from neighboring nodes. XRec employs LightGCN (He et al., 2020), a model with a simple message-passing
mechanism which lacks linear transformations and nonlinear activations during aggregation. This is shown
by Eq. 1, where e(l)

x is the embedding of node x at layer l, and Nx is the set of neighbors of node x.

e(l+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e(l)
i (1)

To investigate how the GNN affects XRec’s performance, we experiment by replacing LightGCN with NGCF
(Wang et al., 2019). NGCF has a more complex message-passing mechanism that uses nonlinear activations
and learnable weight matrices (W1, W2), as shown in Eq. 2.

e(l+1)
u = σ

(
W1e(l)

u +
∑

i∈Nu

1√
|Nu| |Ni|

(
W1e(l)

i + W2

(
e(l)

i ⊙ e(l)
u

)))
(2)

Both GNNs are trained with the Bayesian Personalized Ranking loss (Rendle et al., 2009) (Eq. 3), which
favors higher scores for observed interactions. ℓ2 regularization is also applied. Here, L denotes the loss
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Figure 1: XRec framework consisting of (i) GNN-based recommender system (top left): embeds user-
item interactions. (ii) Collaborative Information Adapter (MoE Adapter): transforms user and item
embeddings to LLM input space. (iii) User and Item Text-Based Profiles (bottom left): text profile of
users and items (iv) Attention Injection Mechanism: injects collaborative information into each LLM
attention layer. Embeddings and profiles are combined into a prompt that is processed by the LLM, where
collaborative signals are used throughout to generate the final explanation. Reprinted from Ma et al. (2024).

function, M is the number of users, ŷui refers to the predicted rating of user u for item i, σ represents the
sigmoid function, E(0) denotes the embedding matrix, and λ is the ℓ2 regularization parameter.

L = −
M∑

u=1

∑
i∈Nu

∑
j /∈Nu

ln σ(ŷui − ŷuj) + λ∥E(0)∥2 (3)

Collaborative Information Adapter To effectively incorporate the collaborative information learned
by the recommender system into the LLM, XRec uses an adapter which transforms the user and item
embeddings into the input space of the LLM. This adapter uses a Mixture-of-Experts (MoE) architecture
which effectively captures diverse aspects of the collaborative information.

User and Item Text-Based Profiles In addition to the adapted GNN embeddings, XRec takes as input
textual profiles of users and items. Item profiles are created by prompting an LLM to summarize each item’s
description, while user profiles are generated by summarizing descriptions of items the user has interacted
with. XRec’s input is constructed as shown in Figure 1, where <USER_EMBED> and <ITEM_EMBED>
are the embeddings generated by the GNN.

Attention Injection Mechanism A potential issue with prompt construction is that collaborative in-
formation, which is crucial for capturing user-item relationships, is limited to a single token. To ensure the
collaborative signal is not lost in a long prompt, it is injected into the key, query, and value of all self-attention
layers. This is shown in Eq. 4, where W is the projection matrix, ai represents the adapted user or item
embedding, and foriginal

{q,k,v} and fnew
{q,k,v} denote the query, key, and value before and after injection, respectively.

fnew
{q,k,v}(xi) = foriginal

{q,k,v} (xi) + W{q,k,v} · ai (4)

3.2 Evaluation metrics

We evaluate the model using LLM-based metrics, as they better reflect human judgment and capture context-
aware semantic similarity, rather than relying solely on token-level analysis. First, to ensure a fair comparison
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with the baseline model performance reported by Ma et al. (2024), we use GPTScore (Wang et al., 2023).
GPTScore uses an LLM as a judge by prompting GPT-3.5 Turbo to assess the semantic similarity between
ground-truth explanations and generated explanations. Wang et al. (2023) showed that GPTScore has a high
correlation with human judgment and shows a deep semantic understanding, making it suitable for assessing
the alignment between generated explanations and groundtruth explanations. However, GPTScore’s use of
a closed-source model limits accessibility and reproducibility and introduces model-specific bias.

To address these limitations, we propose LLMScore, which uses multiple open-source LLMs as a jury (Verga
et al., 2024), each outputting an alignment score with the same prompt used by GPTScore. LLMScore
averages these scores to mitigate model-specific biases and improve accessibility. Scores are obtained over five
runs to ensure stability. The models used are LLaMA 3.1 8B Instruct, LLaMA 3.2 3B Instruct (Grattafiori
et al., 2024), Gemma 2 9B-IT (Rivière et al., 2024), and Qwen 2.5 7B-Instruct (Yang et al., 2024a). The
prompt used for scoring is provided in Appendix B.

In addition to LLMScore, we use several other metrics to capture explanation quality. BERTScore (Zhang
et al., 2019) computes cosine similarity over BERT (Kenton & Toutanova, 2019) embeddings for token-
level comparison of synonyms and paraphrases. Ma et al. (2024) reports Precision, Recall, and F1, but we
use only F1 since it combines the other two. Precision and Recall details are reported in Appendix E.2.
Complementing this, BARTScore (Yuan et al., 2021) measures the likelihood of regenerating ground-truth
text using pre-trained BART (Lewis, 2019), making it effective for assessing fluency and coherence. To
further align with human judgment, we include BLEURT (Sellam et al., 2020), a fine-tuned BERT model
trained on human-annotated text pairs, which enhances sensitivity to subtle differences in meaning.

Beyond semantic quality, we assess personalization by measuring the diversity of generated explanations. We
use USR (Unique Sentence Ratio) (Li et al., 2020) - the ratio of unique to total explanations, providing
insight into the variability of generated content. To build on this, we use STS (Sentence Transformer
Similarity) (Thakur et al., 2020), which uses SBERT (Reimers, 2019) embeddings and cosine similarity to
evaluate the semantic similarity of generated explanations.

Finally, to compare the performance of LightGCN (He et al., 2020) and NGCF (Wang et al., 2019), we
employ four metrics: Precision@20 measures the proportion of relevant items among the top 20 recom-
mendations, indicating accuracy; Recall@20 measures the proportion of relevant items retrieved, indicating
coverage; NDCG@20 (Normalized Discounted Cumulative Gain) measures ranking quality by weigh-
ing relevance and position, prioritizing relevant items appearing earlier and MRR@20 (Mean Reciprocal
Rank) focuses on the rank of the first relevant item, rewarding higher-ranked relevant items.

4 Results

4.1 Datasets

Dataset processing To build XRec, Ma et al. (2024) use three datasets, each containing user reviews
for various items: Amazon Review Data3 (Ni et al., 2019), Google Local Data4 (Li et al., 2022; Yan
et al., 2023), and Yelp Open Dataset5. These were processed into what we refer to as [Og]Amazon,
[Og]Google, and [Og]Yelp datasets. As we were unable to find the exact procedure used to create the
datasets, we independently reproduce them and refer to them as [Re]Amazon, [Re]Google, and [Re]Yelp.
Detailed processing steps for these datasets, along with information about data splitting, can be found in
Appendix C. Table 1 presents a statistical comparison between the original and reproduced datasets.

Train-test overlap XRec is trained in two phases: (1) training the recommender system using the full
interaction dataset, and (2) training the Collaborative Information Adapter using the explanation dataset
(a subset of the interaction dataset). We observed overlap between the train, validation, and test splits of
the original explanation and interaction datasets proposed in Ma et al. (2024), with overlap percentages
provided in Appendix C.3. This issue is addressed in the reproduced datasets.

3https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
4https://jiachengli1995.github.io/google/index.html
5https://business.yelp.com/data/resources/open-dataset/
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Table 1: Dataset statistics from Ma et al. (2024) ([Og]) and our reproduced version ([Re]).

Dataset [Og]Amazon [Re]Amazon [Og]Google [Re]Google [Og]Yelp [Re]Yelp
#Users 15,349 15,069 22,582 19,503 15,942 15,962
#Items 15,247 15,028 16,557 18,998 14,085 14,085
#Interactions 360,839 350,644 411,840 400,038 393,680 393,680

Ground-truth and profile generation For the original datasets, ground truth explanations are gener-
ated based on user reviews in order to make user preferences explicit. For item profiles, the Google and
Amazon datasets use item names and descriptions, while the Yelp dataset also includes all user reviews
of that item. User profiles are generated based on information from each item a user has interacted with,
including the item’s name, its associated profile, and the review the user left for that item. To improve
dataset reproducibility, we use LLaMA 3.1 8B Instruct (Grattafiori et al., 2024) for generation, replacing
the closed-source GPT model used in Ma et al. (2024).

Input contamination The user generation process introduces dataset leakage across all original datasets,
while the Yelp item profile generation process introduces additional leakage specific to Yelp. This occurs
because user reviews are used to generate both the ground-truth explanations and the input (profiles). This
raises two issues: (1) It creates an overlap between the input and ground truth, potentially causing the
model to rely on this overlap instead of learning meaningful patterns from user-item interactions, which
limits generalization during testing as this shortcut is unavailable (2) It compromises the evaluation process
by leaking ground-truth test information into the test input profile. To address this in our reproduced
datasets, we exclude all review information from input prompts used to generate profiles.

4.2 Training Configurations

The training process consists of two phases: training the GNN model and training the Collaborative In-
formation Adapter module. The training process followed the hyperparameter configurations specified in
Ma et al. (2024). An early stopping criterion is applied to the GNN-based models based on the Recall@20
metric. The LLM model used is LLaMA 2 7B (Touvron et al., 2023), which remains frozen throughout the
training process. Appendix A shows the exact hyperparameter values for each phase.

Training and inference are conducted using a single NVIDIA A100 40GB GPU, while evaluation is performed
on two NVIDIA T4 16GB GPUs. Training takes approximately 15 hours for the Amazon and Google datasets
and 12 hours for the Yelp dataset, for both the original and reproduced versions. Inference requires about 4
hours per dataset, and evaluation takes around 1.5 hours per dataset.

4.3 Results reproducing original paper

This section details our reproduction of the findings of Ma et al. (2024), where we retrain the XRec model and
its ablations. Our goal is to validate key claims regarding the model’s explainability and stability, ensuring
consistency with the original results.

Claim 1: XRec improves over baselines in explainability and stability. We reproduce the results of Ma et al.
(2024) by retraining (1) XRec on the original datasets, and (2) XRec (w/o Profile), where user and item
profiles were excluded from the input prompts to ensure a fair comparison with the baselines that did not
have access to profile information. Table 2 presents the original XRec (Ma et al., 2024) results alongside the
scores from our reproduced models. Our reproduction shows an improvement in GPTScore and a decrease in
GPTstd across all datasets. While we cannot determine the cause of this change, because the metric relies on
a closed-source model6, we observe that the performance trends remain consistent with the original results.

For BERT-based metrics, BARTScore, and BLEURT, the results remain consistent with the original trends,
with minor negligible variations. These metrics confirm that XRec maintains high explainability and stability,

6This prevents us from verifying whether the same model version and internal system prompt were used in both cases.
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Table 2: Comparison of baseline models and our reproduced results. Values for all baselines and XRec
(denoted [Orig]XRec) are from (Ma et al., 2024), while our reproduced XRec results appear in italics.
BERTF 1 aggregates Precision and Recall, which are reported in Appendix E.2. Bold indicates the highest
score; underlined indicates the second highest.

Metrics Explainability ↑ Stability ↓
GPTScore BERTF1 BARTScore BLEURT USR GPTstd BERTF1

std BARTstd BLEURTstd

[Og]Amazon

Att2Seq† 76.08 0.3687 -3.9440 -0.3302 0.7757 12.56 0.1275 0.5080 0.299
NRT† 75.63 0.3443 -3.9806 -0.4073 0.5413 12.82 0.1321 0.5101 0.3104
PETER† 77.65 0.4043 -3.8968 -0.2937 0.8480 11.21 0.1098 0.5144 0.2667
PETER+† 76.07 0.3876 -3.9647 -0.3293 0.4493 11.99 0.1245 0.5131 0.2805
PEPLER† 78.77 0.3543 -3.9142 -0.2950 0.9563 11.38 0.0893 0.5064 0.2195
[Orig]XRec† 82.57 0.4122 -3.8035 -0.1061 1.0000 9.60 0.0800 0.4832 0.1780
[Orig]XRec (w/o profile)† 81.77 0.4106 -3.8218 -0.1294 1.0000 9.60 0.0786 0.4799 0.1803
XRec 83.75 0.4095 -3.7773 -0.1793 1.0000 9.40 0.0817 0.4985 0.2256
XRec (w/o profile) 83.28 0.4094 -3.8328 -0.1839 1.0000 9.16 0.0772 0.4801 0.2178

[Og]Yelp

Att2Seq† 63.91 0.2379 -4.5316 -0.6707 0.7583 15.62 0.1147 0.5616 0.247
NRT† 61.94 0.1495 -4.6142 -0.7913 0.2677 16.81 0.1581 0.5612 0.2728
PETER† 67.00 0.2513 -4.4100 -0.5816 0.8750 15.57 0.2230 0.5800 0.3555
PETER+† 67.98 0.2833 -4.3973 -0.5355 0.8637 13.80 0.1701 0.5665 0.3421
PEPLER† 67.54 0.3052 -4.4563 -0.3354 0.9143 14.18 0.1050 0.5777 0.2524
[Orig]XRec† 74.53 0.3730 -4.3911 -0.2287 1.0000 11.45 0.0852 0.5770 0.2322
[Orig]XRec (w/o profile)† 71.81 0.3657 -4.4035 -0.2486 1.0000 12.71 0.0919 0.5717 0.2272
XRec 79.72 0.3527 -4.2969 -0.3089 1.0000 10.65 0.0967 0.5758 0.2334
XRec (w/o profile) 75.68 0.3636 -4.3717 -0.3303 1.0000 11.13 0.1014 0.5676 0.2514

[Og]Google

Att2Seq† 61.31 0.3636 -4.2627 -0.4671 0.5070 17.47 0.1403 0.6663 0.3198
NRT† 58.27 0.3496 -4.2915 -0.4838 0.2533 19.16 0.1571 0.6620 0.3118
PETER† 65.16 0.3881 -4.1527 -0.3375 0.4757 17.00 0.2005 0.6701 0.3272
PETER+† 66.74 0.4047 -4.1273 -0.3467 0.4887 15.23 0.1411 0.6515 0.3095
PEPLER† 69.71 0.3987 -4.1542 -0.2047 0.8660 17.11 0.1353 0.6800 0.3114
[Orig]XRec† 69.12 0.4311 -4.1647 -0.2437 0.9993 14.24 0.0937 0.5700 0.2114
[Orig]XRec (w/o profile)† 69.71 0.4310 -4.1142 -0.2026 0.997 14.09 0.1034 0.6465 0.2439
XRec 71.13 0.4331 -4.1686 -0.2366 0.9993 13.22 0.0935 0.6560 0.2509
XRec (w/o profile) 71.66 0.4395 -4.1237 -0.1829 1.000 13.05 0.0931 0.6529 0.2392

† This score was taken from Ma et al. (2024).

as the best and second-best scores are consistently achieved by our reproduced models. Additionally, while
XRec (w/o Profile) performs slightly worse than XRec, it still consistently outperforms the baselines. This
suggests that even when restricted to the same level of information as the baselines, XRec has superior
performance. Overall, these results support Claim 1.

Table 3: Comparison of GPTScore and LLMScore for XRec and XRec (w/o profile) on the original datasets,
with LLMScore averaged over five runs. Given their high correlation, only LLMScore is used in later analyses.

Dataset Model GPTScore LLMScore

[Og]Amazon XRec 83.75 67.53 ± 11.65
XRec (w/o profile) 83.28 66.95 ± 11.65

[Og]Yelp XRec 79.72 61.67 ± 12.61
XRec (w/o profile) 75.68 59.82 ± 12.11

[Og]Google XRec 71.13 55.81 ± 13.04
XRec (w/o profile) 71.66 56.49 ± 12.98

To verify Claim 1, we use GPTScore for a fair comparison with the baselines from Ma et al. (2024). However,
reproducing results is challenging since GPTScore is closed-source. Instead, we propose LLMScore, which
employs multiple open-source language models for scoring. Table 3 shows that LLMScore mirrors GPTScore’s
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patterns: best performance on Amazon, worst on Google, and reduced performance without profiles except
on Google. Therefore, LLMScore is the primary evaluation metric for the remaining experiments.
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Figure 2: Ablation study results of the original datasets on the full model and three variants: without profile,
without injection and without both. The vertical bars represent the standard deviation obtained over 5 runs.
BERT F1 is deterministic and is shown without error bars.

Claim 2: Collaborative information injection improves explainability and stability. To verify this claim, we
perform ablation studies using: (1) XRec, (2) XRec (w/o profile), where user and item profiles are not given
as input, (3) XRec (w/o injection), where embeddings are not injected into the attention layers, and (4)
XRec (w/o profile & injection). Following Ma et al. (2024), we evaluate them using LLMScore and BERT F1 .

Figure 2 shows that on LLMScore, XRec follows a similar trend as reported by Ma et al. (2024), outperforming
the other configurations on Yelp and ranking second on Amazon. However, on the Google dataset, XRec
performs the worst. Although there is high variance in LLMScore, we include an explanation in Appendix
E.1 and show that all scoring LLMs exhibit the same trend, confirming the conclusiveness of these results.

Moreover, in terms of BERT F1 , XRec consistently ranks last or ties for the worst performance across all
three datasets. On the other hand, for LLMScore and LLMStability, XRec (w/o injection) outperforms all
other ablations on two datasets (Amazon and Google), and ranks second on the other dataset (Yelp). These
results contradict Claim 2 and suggest that, on average, injection reduces performance.

One possible explanation for the lack of performance improvement from injecting collaborative information
lies in the characteristics of the underlying graph neural network (GNN). According to Qin et al. (2024),
injection is most effective when the model can disentangle the various latent factors that shape user prefer-
ences and item attributes. However, LightGCN (He et al., 2020) lacks this property, which may explain its
negative impact on performance.

Claim 3: User and item profiles improve explainability and stability. We evaluate this claim with the
ablation study in Figure 2. XRec (w/o profile) performs worse than XRec in terms of LLMScore and
LLMStability on Amazon and Yelp. Similarly, XRec (w/o injection & profile) underperforms across all three
datasets compared to XRec (w/o injection). However, models without a profile exhibit a slight yet negligible
improvement in BERT F1 compared to those that incorporate profiles. These findings support Claim 3.

Claim 4: XRec has superior performance with increasing sparsity. We investigate the model’s performance
under varying levels of data sparsity. Specifically, as done in Ma et al. (2024), we divided the test data
into six groups: one for zero-shot users (users absent from the training data) and five quantiles representing
increasing ranges of user interactions. Appendix C.4 provides interaction frequency ranges and statistics for
each group. As shown in Figure 3, this grouping reveals that while BERTScore shows a slight improvement
for users with sparser interactions, the LLM-based metrics behave differently: explainability decreases and
stability increases with growing sparsity. These conflicting trends suggest that Claim 4 is not reproducible
and needs further investigation, though performance generally improves with higher interaction frequency.

Claim 5: The model generates personalized explanations. Ma et al. (2024) measure personalization using
USR (Li et al., 2020), which captures lexical uniqueness but overlooks semantic equivalence. For instance, "I
am going to the store" and "I am heading to the store" both score 1.0, despite being semantically identical.
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Figure 3: XRec’s performance on six data splits with increasing sparsity level on the original datasets.

To test this, we sampled user-item interactions from each dataset and generated 100 explanations per sample.
In all cases, USR was 1.0 even though the explanations conveyed the same meaning. This suggests that USR
is not an appropriate measure of personalization. To address this, we compute an aggregate STS score by
averaging the pairwise STS values (Thakur et al., 2020), providing an estimate of the overall personalization
of generated explanations. On the same explanations, STS yields an average score of 0.78, indicating that the
explanations are highly similar in meaning despite minor lexical differences. However, STS tends to assign
higher similarity scores to sentences with similar structures, which is often the case with our generated
explanations. Despite this limitation, STS provides a more meaningful measure of similarity than USR.

Table 4: Evaluation results of different XRec variations across datasets on the STS metric.

Dataset XRec XRec (w/o profile) XRec (w/o injection) XRec (w/o profile & injection) XRec (w/o GNN)
[Og]Amazon 0.5667 0.6563 0.6614 0.6936 0.4139
[Og]Yelp 0.3802 0.3601 0.3671 0.4149 0.2759
[Og]Google 0.5891 0.5910 0.6006 0.5863 0.2807

Table 4 presents the average pairwise STS scores for each dataset. The [Og]Amazon and [Og]Google explana-
tions exhibit overall high STS, suggesting a lower degree of personalization in comparison to the explanations
for [Og]Yelp. This difference can be attributed to the higher level of detail in Yelp reviews compared to
the other datasets. This shows that data quality affects the personalization capabilities of XRec. Addi-
tionally, we observe that for [Og]Amazon, incorporating user-profiles and injection improves personalization.
However, for [Og]Google, these factors do not significantly impact the STS score. Finally, we notice that
removing the GNN makes generated explanations more diverse. We hypothesize that this is due to the fact
that when XRec is trained with the GNN component, the MoE adapter learns to prompt the model in such a
way that the explanations follow a similar structure. As a result, removing this component allows the model
to produce more diverse explanations, but at the cost of reduced explainability scores as shown in Table 2.

4.4 Results beyond original paper

This section explores additional aspects of XRec’s performance. We analyze the impact of GNN collaborative
signals and the MoE adapter, and assess the effect of data leakage mitigation. These extensions provide
deeper insights into the model’s capabilities and potential limitations.

4.4.1 Impact of GNN and Collaborative Information Adapter

RQ 1: How do Graph Neural Network (GNN)-based collaborative signals and the Collaborative Information
Adapter influence the explainability and stability of XRec? To assess the impact of GNN-based collaborative
signals on XRec, we replace its originally used LightGCN (He et al., 2020) with NGCF (Wang et al., 2019),
referring to this variant as XRec w/ NGCF. For clarity, we refer to XRec with its original GNN architecture
as XRec w/ LightGCN in this section. NGCF (Wang et al., 2019) is selected due to its similar architecture
to LightGCN (He et al., 2020), with only additional linear transformation and non-linear activation. This
allows us to investigate the relationship between GNN recommendation performance and XRec explainability
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while minimizing confounding factors from architectures. Additionally, we test three collaborative-signal
ablations: XRec (w/o GNN, fixed), where GNN outputs are replaced with fixed random embeddings, XRec
(w/o GNN, random), where these are replaced with variable random embeddings, and XRec (w/o GNN &
MoE), removing both the GNN and the Collaborative Information Adapter (MoE).

Table 5: Performance comparison of LightGCN and NGCF models. The best values are in bold.

Dataset Model Recall NDCG Precision MRR

[Og]Amazon LightGCN 0.0719 0.0426 0.0175 0.0724
NGCF 0.0514 0.0319 0.0131 0.0587

[Og]Yelp LightGCN 0.0614 0.0382 0.0160 0.0677
NGCF 0.0571 0.0365 0.0156 0.0668

[Og]Google LightGCN 0.0791 0.0433 0.0129 0.0575
NGCF 0.0571 0.0327 0.0094 0.0455

We compare the performance of the two recommender systems on the item recommendation task. Table 5
shows that LightGCN outperforms NGCF across all evaluation metrics and datasets. We use the embeddings
from these two models as input to the MoE Adapter. Table 6 shows that XRec (w/ NGCF) outperforms XRec
(w/ LightGCN) on average, achieving higher BERT-based scores on two datasets and a higher LLMScore
on one. This suggests that better item recommendations do not guarantee improved XRec explainability.

Table 6: Performance comparison of XRec with LightGCN and NGCF as collaborative information algo-
rithms, as well as three variants where explicit collaborative information is removed. BERTF 1 aggregates
Precision and Recall, which are reported in Appendix E.2. Values in bold indicate the highest score, while
underlined values denote the second-best. LLMScore and LLMStability are averaged over five runs.

Metrics Explainability ↑ Stability ↓
LLMScore BERTF1 BARTScore BLEURT STS LLMStability BERTF1

std BARTstd BLEURTstd

[Og]Amazon
XRec (w/ LightGCN) 67.53 ± 11.61 0.4095 -3.7773 -0.1783 0.57 10.67 ± 4.59 0.0817 0.4985 0.2256
XRec (w/ NGCF) 67.97 ± 11.66 0.4164 -3.7789 -0.1445 0.62 10.58 ± 4.57 0.0806 0.4913 0.2118
XRec (w/o GNN, fixed) 68.05 ± 11.69 0.4089 -3.8171 -0.1461 0.67 10.19 ± 4.65 0.0764 0.4766 0.2077
XRec (w/o GNN, random) 65.33 ± 11.81 0.4179 -3.8575 -0.1264 0.69 11.31 ± 4.38 0.0816 0.4861 0.1990
XRec (w/o GNN & MoE) 62.66 ± 12.14 0.3013 -4.0502 -0.4729 0.42 11.05 ± 4.29 0.0804 0.4336 0.2439

[Og]Yelp
XRec (w/ LightGCN) 61.67 ± 12.61 0.3527 -4.2969 -0.3089 0.38 10.65 ± 4.73 0.0967 0.5758 0.2334
XRec (w/ NGCF) 60.95 ± 12.49 0.3736 -4.2719 -0.3053 0.33 10.67 ± 4.76 0.0841 0.5657 0.2128
XRec (w/o GNN, fixed) 61.20 ± 12.49 0.3658 -4.3070 -0.2971 0.36 10.61 ± 4.78 0.0897 0.5694 0.2104
XRec (w/o GNN, random) 59.34 ± 12.01 0.3926 -4.4425 -0.2608 0.45 11.00 ± 4.46 0.0877 0.5790 0.2112
XRec (w/o GNN & MoE) 58.68 ± 13.56 0.2710 -4.6124 -0.3615 0.27 11.51 ± 4.80 0.0953 0.5392 0.2174

[Og]Google
XRec (w/ LightGCN) 55.81 ± 13.05 0.4331 -4.1686 -0.2366 0.59 11.84 ± 4.35 0.0935 0.6560 0.2509
XRec (w/ NGCF) 55.04 ± 13.29 0.4233 -4.2445 -0.2652 0.54 12.12 ± 4.30 0.0946 0.6558 0.2635
XRec (w/o GNN, fixed) 57.25 ± 12.87 0.4306 -4.1158 -0.1776 0.53 12.04 ± 4.44 0.0959 0.6488 0.2398
XRec (w/o GNN, random) 56.71 ± 12.89 0.4310 -4.1595 -0.1780 0.63 11.96 ± 4.45 0.0937 0.6542 0.2390
XRec (w/o GNN & MoE) 50.40 ± 14.29 0.2456 -4.5504 -0.5188 0.28 12.17 ± 4.58 0.0918 0.5725 0.2451

We observe that removing both the collaborative information and the adapter in XRec (w/o GNN & MoE)
results in the lowest performance, highlighting the importance of these components. However, this boosts
personalization as measured by STS.

When comparing with XRec (w/o GNN, fixed), which uses a random embedding vector instead of embeddings
generated by GNNs, we do not observe any performance drop. Instead, we find that it achieves the best
performance on two datasets and ranks second-best on the other. Meanwhile, XRec (w/o GNN, random)
performs worse than models with the MoE adapter but better than those without it. This suggests that
removing collaborative signals from the GNN has minimal impact on explainability and that the MoE
effectively learns meaningful information, though it struggles when the input is random rather than fixed.

We hypothesize that this effect arises from two possible causes, though further research is needed to confirm
the exact mechanism. First, the MoE adapter may interpret the embedding vector as a set of unique
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identifiers, enabling it to implicitly learn collaborative signals even without GNN-based embeddings. The
poorer performance of XRec (w/o GNN, random) supports this hypothesis, as the randomized inputs disrupt
the model’s ability to retain meaningful identification information. Second, both STS scores and manual
inspection revealed structural differences in sentence composition between models with and without the
MoE adapter. This suggests that incorporating the lightweight adapter, positioned almost as a prefix to
the prompt, may unintentionally act as a form of soft prompting. This effect aligns with prior work in
prompt tuning Lester et al. (2021); Li et al. (2021), which demonstrated that small, lightweight adapters
can condition LLMs for downstream tasks without requiring full fine-tuning.

4.4.2 Effect of Data Leakage Mitigation

RQ 2: What are the effects of dataset reproduction in XRec on explainability and stability, especially when
addressing train-test overlap and the use of shared reviews for both profile generation and ground truth
creation? We identified two cases of data leakage in the original datasets (Ma et al., 2024): Input Con-
tamination, where the same reviews are used to generate both ground-truth explanations and input profiles;
and Train-Test Leakage, where training, validation, and test sets overlap. To assess the impact of the
leakage, we train XRec on the original datasets and our reproduced versions, where the issues are mitigated.

Table 7: XRec performance on Original ([Og]) datasets with data leakage and Reproduced ([Re]) datasets
with mitigated leakage. BERTF 1 aggregates BERTScore Precision and Recall, which are reported in Ap-
pendix E.2. The best values are in bold. LLMScore and LLMStability are averaged over five runs.

Metrics Explainability ↑ Stability ↓
LLMScore BERTF1 BARTScore BLEURT STS LLMStability BERTF1

std BARTstd BLEURTstd

[Og]Amazon 67.53 ± 11.61 0.4095 -3.7773 -0.1793 0.5667 10.67 ± 4.59 0.0817 0.4985 0.2256
[Re]Amazon 64.80 ± 11.25 0.4396 -3.8135 -0.1474 0.7489 11.84 ± 3.99 0.0943 0.5583 0.2599
[Og]Yelp 61.67 ± 12.61 0.3527 -4.2969 -0.3089 0.3802 10.65 ± 4.73 0.0967 0.5758 0.2334
[Re]Yelp 62.75 ± 11.89 0.4300 -4.0250 -0.1765 0.5186 10.78 ± 4.52 0.0937 0.5813 0.2176
[Og]Google 55.81 ± 13.05 0.4331 -4.1686 -0.2366 0.5891 11.84 ± 4.35 0.0935 0.6560 0.2509
[Re]Google 59.72 ± 12.45 0.4349 -3.9298 -0.1283 0.6074 12.57 ± 4.43 0.0960 0.6089 0.2451

Table 7 demonstrates that mitigating data leakage improves the explainability of XRec, as reflected in higher
BERTScore and BLEURT values. This result is counterintuitive since input contamination typically inflates
performance by providing the model with direct access to ground-truth information. However, we cannot
definitely attribute these improvements solely on data leakage mitigation, as other factors—such as variations
in selected reviews, or differences in the models used to generate the ground truth and explanations—may
have steered the results in this direction. Additionally, Figure 4 shows a similar data sparsity trend as Figure
3, indicating that data leakage does not impact the model’s behaviour across sparsity levels. The consistency
between these results indicates that mitigating leakage does not compromise the validity of earlier findings.
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Figure 4: XRec’s performance on six data splits with increasing sparsity level on the reproduced datasets.
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5 Conclusion

Our reproduction study and analysis of XRec (Ma et al., 2024) confirm that the model improves over
baselines in both explainability and stability. Although our results verify the impact of user and item
profiles, they do not support the claim that collaborative information injection through the layers of the
LLM improves explainability and stability, as XRec without injection performs better on two out of three
datasets. Additionally, we find that explainability and stability improve with more information about the
specific user, contradicting the claim that XRec performs better with increasing data sparsity.

Additional experiments show that removing the GNN-based recommendation system has a minimal impact
on model explainability, as performance remains stable or slightly improves without it. We hypothesize that
this occurs because (1) when distinct identification features of users and items are present, even if randomly
assigned, the MoE can effectively capture collaborative patterns without relying on a GNN-based model,
making those signals potentially redundant, and (2) the MoE adapter acts similarly to soft prompting,
embedding task-specific knowledge in a way that improves explainability (Lester et al., 2021; Li et al., 2021).

Limitations and Future Work Our experiments show performance gains after removing data leakage,
but these cannot be conclusively attributed to leakage alone, as factors such as review selection and model
differences can also play a role. While the results suggest data leakage may affect performance, its exact
impact remains unclear. Future work should explore this through additional experiments.

Another limitation is in the personalization metrics. USR focuses on uniqueness, which may miss personal-
ization quality, while STS can favor similar structures over truly personalized meaning. These issues limit
conclusions about personalization effectiveness. Future work should develop metrics that better capture
meaningful personalization beyond surface-level similarity.

Finally, while we hypothesize that the MoE acts as soft prompting, this may be amplified by metrics favoring
structural similarity over meaning. Future work should examine the MoE’s impact on explanation structure
and meaning, and develop more robust evaluation metrics.

We believe future work on explainable recommendations can build on our study by improving the evaluation
metrics. We recommend adopting LLMScore as the primary evaluation metric to mitigate language models’
inherent bias toward favoring their own generated text or models consistent with them (Panickssery et al.,
2024). To reduce variation in scores, evaluations should use a limited rating scale (e.g., 0-5) and include
in-context examples based on human-annotated judgments (Stureborg et al., 2024). Alternatively, an LLM
could act as a discriminator in pairwise comparisons (Wu et al., 2024), choosing the better of two generated
explanations against a ground-truth reference. Lastly, we encourage future work to perform data generation
and evaluation using distinct models due to the same self-consistency issue (Panickssery et al., 2024).

What was easy: Ma et al. (2024) provided most of the model implementation with documentation on run-
ning the training process. The model architecture description was detailed and easy to follow. Additionally,
the authors provided evidence linked to specific claims, simplifying the reproduction process.

What was difficult: Some parts of this study were more challenging than expected. The dataset pre-
processing code was incomplete, making it difficult to rebuild the full pipeline. Ablation and evaluation
scripts were also not provided, and documentation lacked details on metrics and dataset-specific settings.

Communication with original authors: They promptly responded to our questions and clarified details
about the data generation process and the hyperparameters we could alter to replicate their datasets.
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A Hyperparameters

The models were trained and evaluated using the parameters listed in Table 8:

Table 8: Hyperparameter configurations for the GNN-based recommender system and the Information Col-
laboration Adapter module (MoE), both optimized using Adam (Kingma & Ba, 2015).

Hyperparameter GNN MoE
Batch size 1024 1
Number of epochs 300 1
Optimizer Adam Adam
Learning rate 0.001 0.001
Number of layers 4 -
Embedding size 64 -
Early Stopping Patience 10 epochs -
Number of experts - 8
Dropout rate - 0.2
Gating Router Noise Factor - 0.01

B GPTScore Prompt

To acquire a GPTScore and LLMScore for each XRec explanation we use the following prompt proposed by
Ma et al. (2024):

System Prompt:

Score the given explanation against the ground truth on a scale from 0 to 100,
focusing on the alignment of meanings rather than the formatting.
Provide your score as a number and do not provide any other text.

Prompt:

{
"prediction" : <XREC explanation>,
"reference" : <ground truth explanation>

}
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C Datasets

C.1 Dataset Processing

To evaluate XRec, Ma et al. (2024) use three datasets from distinct domains, which they subsequently
process. The first dataset, Amazon Review Data7, proposed by Ni et al. (2019), includes reviews and
product metadata, where only the book subset is used for XRec. The second dataset, Google Local Data8,
introduced by Li et al. (2022); Yan et al. (2023), contains Google Maps reviews and business metadata,
where only the California subset is used. Finally, the Yelp Open Dataset9, includes reviews and business
metadata, and the entire dataset serves as input.

Ma et al. (2024) provide example processing code for the Yelp Open Dataset. Their approach involves:

1. Filtering out items without a name, description, or categories;

2. Filtering out all reviews with a rating of 3 or less;

3. Randomly subsampling the remaining users;

4. Retaining only interactions within the 8-core interaction graph10.

We follow these steps to reproduce the datasets, which we refer to as [Re]Amazon, [Re]Google, and [Re]Yelp
to distinguish them from the original Amazon, Google, and Yelp datasets in XRec’s repository. However,
whereas Ma et al. (2024) use the full Google dataset and work with a manually extracted 8-core subgraph, we
use the smaller 10-core version to reduce computational overhead. For consistency, we process the Amazon
and Yelp datasets into 10-core versions.

The ground-truth explanations are generated from a subset of interactions, taken from the pre-processed
dataset, following the original procedure in Ma et al. (2024). For the Amazon and Google datasets, we
include reviews with more than 10 words in order to reduce noise.

C.2 Data Splitting

We provide the Train, Validation, and Test splits for the reproduced interaction datasets—[Re]Amazon,
[Re]Google, and [Re]Yelp—in Table 9. These interaction datasets are used to train the Recommender System.
From each interaction dataset, we extract a subset containing interactions with ground truth explanations,
which we refer to as the explanation dataset. This explanation dataset is used to train the XRec framework.
To ensure consistency, the splits for the explanation dataset were designed to match the numbers of the
corresponding original datasets (Ma et al., 2024), and the same split ratios were applied to the interaction
datasets.

Table 9: Train, Validation, and Test splits for [Re]Amazon, [Re]Google, and [Re]Yelp datasets.

[Re]Amazon [Re]Google [Re]Yelp
Split Explanations Interactions Explanations Interactions Explanations Interactions
Train 95,841 303,246 94,663 345,846 74,212 337,797
Validation 11,980 37,905 11,833 43,231 9,277 42,227
Test 3,000 9,493 3,000 10,961 3,000 13,656
Sum 110,821 350,644 109,496 400,038 86,489 393,680

7https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
8https://jiachengli1995.github.io/google/index.html
9https://business.yelp.com/data/resources/open-dataset/

10A "k-core" of a graph is a subgraph in which every node has a degree of at least k, meaning each node is connected to at
least k other nodes. For example, in an 8-core graph, every user or item must have at least 8 interactions to be included.
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C.3 Overlap Between Original Dataset Splits

Ma et al. (2024) train their system using two datasets: (1) the full interaction dataset (for training the
recommendation system) and (2) the explanation dataset (a subset of the interaction dataset, used to train
the Collaborative Information Adapter). The explanation dataset includes textual explanations of reviews
corresponding to specific interactions. However, we observed that during the splitting of these datasets,
overlaps occasionally occur, leading to instances where data from one dataset is exposed to the other. In this
section, we present the percentage of overlap between the train, validation, and test splits of the explanation
and interaction datasets. Table 10 summarize these overlaps for the [Og]Amazon, [Og]Google, and [Og]Yelp
datasets introduced by Ma et al. (2024).

Table 10: Percentage of overlap between the splits of Explanations and Interactions for [Og]Amazon,
[Og]Google and [Og]Yelp datasets.

Dataset Expl. split Interactions (%)
Train Validation Test

Amazon
Train 79 10 10
Validation 79 10 9
Test 79 9 10

Google
Train 80 9 10
Validation 80 9 9
Test 78 10 10

Yelp
Train 79 10 10
Validation 80 10 9
Test 81 9 9

C.4 Data sparsity statistics

Figure 5 provides the statistics of all sparsity sets used to reproduce Claim 4.
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Figure 5: Data sparsity set statistics including user interaction frequency intervals and the percentage of
data allocated to each sparsity set from the test set consisting of 3000 interactions. Each panel corresponds
to one dataset and displays the proportion of interactions in each sparsity set (zero-shot, tst1–tst5) for both
original ([Og]) and reproduced ([Re]) datasets. The bottom x-axis shows the exact frequency intervals, while
the top x-axis indicates sparsity-set names.

D Carbon Emissions

We estimate the carbon emissions from the experiments using the CO2e = CI × PUE × P × t formula,
where the carbon intensity (CI) in the Netherlands is 0.370 CO2e emissions per kWh. The power usage
effectiveness (PUE) values for the different setups are 1.2 and 1.1. The power consumption is 0.25 kW for
A100 GPUs and 0.07 kW for T4 GPUs, with runtime durations of 280 hours and 160 hours, respectively.
Based on these calculations, the estimated carbon emissions for the experiments amount to approximately
31 kg CO2e and 4.5 kg CO2e. In total, the experiments resulted in approximately 35.5 kg CO2e emissions.
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E Extended Results

E.1 Ablation Results per LLM Judge

The error bars are computed by first obtaining five stochastic predictions from the LLM for each individual
test instance, calculating a within-instance standard deviation (σi), and subsequently averaging these σi

across the dataset. While informative for capturing prediction-level noise, this procedure inadvertently
inflated uncertainty estimates at the dataset level. The inflation occurs for two primary reasons: (1) each
σi, computed from only five samples, inherently possesses significant sampling error; and (2) averaging σi

across all instances preserves prediction-level variability without benefiting from the typical
√
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that occurs when averaging metrics at the corpus level.
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Figure 6: Scores from individual LLM judges (colored lines) evaluating XRec explanations across ablations
on the [Og]Amazon, [Og]Google, and [Og]Yelp datasets. The average score across these judges ("Aggre-
gated" dashed line) represents the final LLMScore reported in Figure 2. All LLMs show agreement on
the [Og]Amazon and [Og]Google datasets, while for the [Og]Yelp dataset, all LLMs agreed except for the
Gemma2 model.

E.2 BERTScore Precision and Recall

In this section, we present the extended results with BERT Precision (Zhang et al., 2019)(BERT p), BERT
Recall (Zhang et al., 2019) (BERT R) metric. Given the predicted sentence BERT representation is x̂ =
[x̂1, x̂2, ...x̂n] and the reference sentence representation is x = [x1, x2, ...xm]. BERT Precision, BERT Recall
and BERT F1 is defined as in Equations 5, 6 and 7. The detailed BERT Precision and Recall are presented
in Tables 11, 12, and 13.

BERT R = 1
n

∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j (5)

BERT P = 1
m

∑
x̂j∈x̂

max
xi∈x

x⊤
i x̂j (6)

BERT F 1 = 2 BERT P · BERT R

BERT P + BERT R
(7)
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Table 11: Comparison of baseline models and our reproduced results for BERTScore Precision (BERTP )
and Recall (BERTR). Baseline and original XRec results (denoted as [Orig]XRec) are taken from (Ma et al.,
2024), while our reproduced results (XRec) are shown in italics. Bold indicates the highest score, and
underlined indicates the second highest. Table 2 aggregates these results under BERTF 1 (F1 Score).

Metrics Explainability ↑ Stability ↓
BERTP BERTR BERTP

std BERTR
std

[Og]Amazon

Att2Seq† 0.3746 0.3624 0.1691 0.1051
NRT† 0.3444 0.3440 0.1804 0.1035
PETER† 0.4279 0.3799 0.1334 0.1035
PETER+† 0.4119 0.3626 0.1576 0.1077
PEPLER† 0.3506 0.3569 0.1105 0.0935
[Orig]XRec† 0.4193 0.4038 0.0836 0.0920
[Orig]XRec (w/o profile)† 0.4194 0.4004 0.0819 0.0955
XRec 0.4139 0.4037 0.0863 0.0933
XRec (w/o profile) 0.4207 0.3967 0.0802 0.0888

[Og]Yelp

Att2Seq† 0.2099 0.2658 0.1583 0.1074
NRT† 0.0795 0.2225 0.2293 0.1134
PETER† 0.2102 0.2983 0.3315 0.1298
PETER+† 0.2594 0.3097 0.2522 0.1174
PEPLER† 0.2920 0.3183 0.1476 0.1044
[Orig]XRec† 0.3946 0.3506 0.0969 0.1048
[Orig]XRec (w/o profile)† 0.3879 0.3427 0.1087 0.1072
XRec 0.3541 0.3504 0.1126 0.1108
XRec (w/o profile) 0.3814 0.3451 0.1218 0.1110

[Og]Google

Att2Seq† 0.3619 0.3653 0.1855 0.1247
NRT† 0.3509 0.3495 0.2176 0.1267
PETER† 0.3892 0.3905 0.2819 0.1356
PETER+† 0.4125 0.3975 0.1893 0.1244
PEPLER† 0.3806 0.4093 0.1602 0.1154
[Orig]XRec† 0.4546 0.4069 0.0972 0.1031
[Orig]XRec (w/o profile)† 0.4427 0.4187 0.1180 0.1171
XRec 0.4632 0.4025 0.0986 0.1163
XRec (w/o profile) 0.4594 0.4191 0.1001 0.1150

† This score was taken from Ma et al. (2024).
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Table 12: BERTScore Precision (BERTP ) and Recall (BERTR) comparison of XRec with LightGCN and
NGCF as collaborative information algorithms, as well as three variants where explicit collaborative informa-
tion is removed. Values in bold indicate the highest score, while underlined values denote the second-best.
Table 6 aggregates these results under BERTF 1 (F1 Score).

Metrics Explainability ↑ Stability ↓
BERT P BERTR BERTP

std BERTR
std

[Og]Amazon
XRec (w/ LightGCN) 0.4139 0.4037 0.0863 0.0933
XRec (w/ NGCF) 0.4277 0.4088 0.0825 0.0934
XRec (w/o GNN, fixed) 0.4200 0.3963 0.0077 0.0899
XRec (w/o GNN, random) 0.4361 0.3984 0.0842 0.0940
XRec (w/o GNN & MoE) 0.2909 0.3102 0.1007 0.0796

[Og]Yelp
XRec (w/ LightGCN) 0.3541 0.3504 0.1126 0.1108
XRec (w/ NGCF) 0.3828 0.3635 0.0953 0.1047
XRec (w/o GNN, fixed) 0.3737 0.3572 0.1103 0.1039
XRec (w/o GNN, random) 0.4376 0.3476 0.0967 0.1098
XRec (w/o GNN & MoE) 0.2796 0.2609 0.1045 0.1088

[Og]Google
XRec (w/ LightGCN) 0.4632 0.4025 0.0986 0.1163
XRec (w/ NGCF) 0.4517 0.3943 0.1027 0.1136
XRec (w/o GNN, fixed) 0.4414 0.4192 0.1081 0.1141
XRec (w/o GNN, random) 0.4520 0.4094 0.0958 0.1187
XRec (w/o GNN & MoE) 0.2094 0.2806 0.1049 0.1019

Table 13: BERTScore Precision (BERTP ) and Recall (BERTR) comparison of XRec on (1) Original ([Og])
datasets with data leakage and (2) Reproduced ([Re]) datasets with mitigated leakage. The best values are
in bold. Table 7 aggregates these results under BERTF 1 (F1 Score).

Metrics Explainability ↑ Stability ↓
BERTP BERTR BERTP

std BERTR
std

[Og]Amazon 0.4139 0.4037 0.0863 0.0933
[Re]Amazon 0.4563 0.4218 0.0986 0.1049
[Og]Yelp 0.3541 0.3504 0.1126 0.1108
[Re]Yelp 0.4382 0.4207 0.1002 0.1076
[Og]Google 0.4632 0.4025 0.0986 0.1163
[Re]Google 0.4450 0.4238 0.1004 0.1107
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