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ABSTRACT

Searching large and highly complex design spaces for a global optimum can
be infeasible and unnecessary. A practical alternative is to iteratively refine the
neighborhood of an initial design using local optimization methods such as gradient
descent. We propose local entropy search (LES), a Bayesian optimization paradigm
that explicitly targets the solutions reachable by the descent sequences of arbitrary
iterative optimizers. The algorithm propagates the posterior belief over the objective
through the optimizer, yielding a probability distribution over descent sequences.
It then selects the next evaluation by maximizing mutual information with that
distribution, using a practical combination of analytic entropy calculations and
Monte-Carlo sampling of descent sequences. Empirical results on high-complexity
synthetic objectives and benchmark problems show that LES achieves strong
sample efficiency compared to existing local and global Bayesian optimization
methods.

1 INTRODUCTION

Many practical optimization problems can be solved to the desired accuracy by relying solely on
iterative search strategies such as gradient descent, quasi-Newton methods, or evolutionary algorithms.
These methods do not necessarily discover a global minimizer, but refine the current solution. Local
optimization has repeatedly demonstrated its effectiveness in finding good solutions particularly in
high-dimensional and complex search spaces. Indeed, gradient-based methods remain state-of-the-art
forsolving extreme-scale problems such as training deep neural networks with billions of parameters
(Chowdhery et al., 2023). However, those local optimization methods cannot directly be applied to
expensive-to-evaluate black-box functions due to their poor sample-efficiency.

Bayesian optimization (BO) (Garnett, 2023) methods are popular for expensive-to-evaluate black-box
functions, yet they typically aim to minimize regret relative to the global optimum. Global search
requires reducing uncertainty across the entire domain, which can be intractable in large and high-
dimensional spaces (Hvarfner et al., 2024; Xu et al., 2025). Thus, the emphasis on global search in
BO stands in contrast to the demonstrated effectiveness of local optimization for complex problems.

We introduce local entropy search (LES)1, an information-theoretic framework for local BO that
transfers the idea of iterative local optimizers to the expensive-to-evaluate black-box setting. LES
explicitly targets the solution obtainable by an iterative optimizer starting from an initial design. LES
propagates the uncertainty of a Gaussian process (GP) surrogate through the local optimizer, yielding
a distribution over the descent sequence and the local optimum (see Fig. 1). At each iteration, LES
chooses the next evaluation to maximize the mutual information with the distribution over the descent
sequence, thereby reducing its uncertainty.

While several recent efforts (see Sec. 2.1) have brought local strategies to BO framework, acquisition
functions have so far provided only partial use of the iterative descent structure or have focused on
special cases. Our approach builds directly on entropy search principles (Hennig & Schuler, 2012) but
shifts the focus from the global optimum to the reachable local optimum as defined by the optimizer’s
descent trajectory.

1Code available in the supplementary material.
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Figure 1: Left: Local optimization on the true objective function. Middle: Prior belief over the
objective function, the descent sequences. The local optimum distribution is centered around x0.
Right: Posterior belief after sampling two data points. The optimum distribution is now shifted
toward higher x-values. The next point is chosen to minimizes the entropy of the descent sequences.

To ensure tractability, LES combines analytic predictive entropy calculations with Monte-Carlo
conditioning over sampled descent sequences. We evaluate LES against state-of-the-art local and
global BO methods on high-dimensional synthetic objectives with varying complexity and policy
search tasks. LES achieves lower simple and cumulative regret with fewer evaluations especially in
high-complexity tasks. In summary, our contributions are:

• We formulate local entropy search (LES) as an information-theoretic Bayesian optimization
paradigm that targets the terminal iterate of an arbitrary optimizer, making LES the first
entropy-based approach explicitly focusing on local optima rather than the global optimum.

• We present a computationally lightweight instantiation of LES as an active learning problem
over descent sequences by propagating the posterior belief through the optimizer via Monte-
Carlo approximation based on efficient GP sampling (Wilson et al., 2020).

• We provide empirical evidence that this LES instantiation surpasses both global entropy-
search baselines and existing local BO methods on high-complexity benchmarks.

In addition, we adapt a recent stopping criterion for BO (Wilson, 2024) to the LES setting, guarantee-
ing a probabilistic local regret bound (see Appx. F).

2 PRELIMINARIES

In this section, we discuss the related work on local BO and entropy search and briefly introduce GPs
and an analytical approximation of their sampling paths.

2.1 RELATED WORK

Bayesian optimization is a popular method for many challenging real-world applications such as
AutoML (Barbudo et al., 2023), drug discovery (Colliandre & Muller, 2023), and policy search
(Paulson et al., 2023). For a recent introduction and overview see (Garnett, 2023). Below we present
related work in entropy search and local BO – the two BO subfields most relevant to LES.

Entropy Search Global entropy search acquisition functions use an information-theoretic perspec-
tive to select the next BO query point (See Appx. A for a detailed introduction). They find a point
that maximizes the expected information gain about properties of the global optimum. The original
entropy search (ES) (Hennig & Schuler, 2012) and predictive entropy search (PES) (Hernández-
Lobato et al., 2014) maximize the information gain about the location of the optimum. In contrast,
max-value entropy search (MES) (Wang & Jegelka, 2017) maximize the information gain about the
function value of the optimum. MES is computationally more efficient than both ES and PES. Joint
entropy search (Hvarfner et al., 2022; Tu et al., 2022) maximizes the information gain about the joint
distribution of location and function value of the optimum. Entropy search has been extended to
constrained (Perrone et al., 2019), multi-objective (Belakaria et al., 2020), and multi-fidelity (Marco
et al., 2017) optimization. With LES we propose the first local version of entropy search by targeting
a local optimum instead of a global one.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Local BO There are two main approaches commonly used for local BO, trust regions (Akrour
et al., 2017; Fröhlich Lukas P. et al., 2019; Eriksson et al., 2019) and line search (Kirschner et al.,
2019; Müller et al., 2021; Nguyen et al., 2022; Wu et al., 2023; Fan et al., 2024). Trust-region BO
such as TuRBO (Eriksson et al., 2019) explicitly maintain a subset of the search space X and restricts
queries to be within this subset. In contrast, BO methods based on line search maintain an incumbent
solution and iteratively choose a search direction and step size to improve the candidate. For example,
gradient information BO (GIBO) (Müller et al., 2021) leverages the GP model of the objective’s
gradient ∇f to find its search direction and step size. Similar to these methods, LES starts its search
from an incumbent solution but in contrast to GIBO and its variants does not use the learned gradient
to update it but instead learns about the entire descent sequence.

Recent works showed that vanilla Bayesian optimization can solve high-dimensional problems if
model complexity, specifically length scales of the GP kernel, is chosen appropriately (Hvarfner et al.,
2024; Xu et al., 2025). While assumed model complexity is an important consideration for BO, the
design of suitable prior assumption can benefit local and global BO methods and the acquisition
strategy is mostly orthogonal. In Section 6, we show empirically that local BO and especially LES
outperforms global BO for complex and high-dimensional tasks.

2.2 GPS AND EFFICIENT POSTERIOR GP SAMPLING

In this paper, BO uses a Gaussian Process (GP) (Rasmussen & Williams, 2006) as a fast-to-evaluate
probabilistic surrogate for the unknown scalar function f(x). We denote a GP as

p(f) = GP(f ;µ, k), (1)

where µ : X → R is the prior mean and k : X × X → R is the prior covariance function, with

µ(x) = E[f(x) | x], k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′)], (2)

where E is the expectation. Without loss of generality, we assume µ(x) = 0. Given a dataset of noisy
observations y(x) = f(x) + ϵt, where the noise realization ϵt is modeled as a draw from a normal
distribution N (0, σ2

n), denoted as Dt = {(x1, y1), ..., (xt, yt)} the posterior belief over a function
value f(x) is a normal distribution denoted as

p(f(x) | Dt) = N (f(x);µ(x | Dt), k(x,x | Dt)) . (3)

Here, we denote µ(x | Dt) as the posterior mean and k(x,x′ | Dt) as the posterior covariance
between two points x and x′. The predictive variance for a noisy observation is σ2

y(x | Dt) =

k(x,x | Dt) + σ2
n. See (Rasmussen & Williams, 2006) for details on GP regression.

To draw samples from the posterior distribution of objective functions p(f | Dk) we follow the
analytical approximation proposed by (Wilson et al., 2020) that relies on Matheron’s rule (Journel &
Huijbregts, 1978) (see Appx. C.1). We denote f l

t as a sample from p(f | Dt):

f l
t(·) =

I∑
i=1

wl
iϕi(·)︸ ︷︷ ︸

weight-space prior

+

t∑
j=1

vjk (·,xj)︸ ︷︷ ︸
function-space update

, (4)

where wl
i are randomly drawn weights, ϕi(·) are basis functions and vj is calculated from the training-

data covariance matrix. The sample approximations of (4) are analytic which means we can easily
differentiate with respect to x and apply iterative optimizers such as gradient descent. LES can be
applied to other probabilistic models from which we can efficiently draw posterior samples, e.g.,
variational Bayesian last layer models (Brunzema et al., 2024).

3 PROBLEM STATEMENT

The local black-box optimization problem is to find the best reachable solution from a given initial
design x0

given x0 ∈ X , find x∗ = argmin
x∈X (x0)⊆X

f(x), (5)

where f : X → R is the black-box objective function and X (x0) is some neighborhood around x0.
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We consider local optimization where an iterative (and possibly stochastic) optimization routine O
generates a sequence of iterates – the descent sequence – converging to a local optimum x∗ as

Ox0 : F(X ) −→ XN , Ox0(f) := (z0 = x0, z1, . . . ) ⊂ X (6)
where

x∗ = lim
n→∞

zn, (7)

or x∗ = zN for finite descent sequences. We assume that the chosen optimizer converges for all
sample paths of the GP prior (1). For instance, under suitable assumptions, gradient descent with an
appropriate step size η produces the convergent sequence

GDx0
(f) :=

{
z0 = x0, z1 = z0 − η∇f(z0), z2 = z1 − η∇f(z1), . . .

}
. (8)

When f is known we can directly apply O. However, we are in the standard BO black-box setting,
where we cannot directly create this sequence. We instead consider the bandit setting with sequential
queries to an expensive-to-evaluate black-box function with noisy zero-order evaluations yt =
f(xt)+ ϵt at locations xt. Therefore, the objective of this work is to find a practical strategy that best
approximates the solution to (5) in a data-efficient manner by learning about the descent sequence.

4 ENTROPY MINIMIZATION OF UNCERTAIN DESCENT SEQUENCES

Overview. We aim to apply the entropy search principle not to the global optimum but to the descent
sequence started from x0. Goal: Choose the next query x that most reduces uncertainty about the
entire descent sequence starting from x0, i.e., the sequence generated by an iterative optimizer O.
Once we know the descent sequence, we also know the local optimum x∗. Idea: Treat the descent
sequence itself as the object of interest and apply the entropy-search principle to it: select x to
maximize information gain about that sequence. We target the mutual information between (x, y(x))
and the random descent sequence induced by the GP posterior and O. The remainder of this section
formalizes this idea. After the formalization we give a practical algorithm in Sect. 5.

Given p(f) as a distribution over functions, applying an optimizer O from x0 induces a random
descent sequence with observations R, as

Qx0 = ((z0, R0), (z1, R1), . . . ) . (9)
where zn are iterates and Rn are some observation of the objective function f at x depending
on O. Examples are function values Rn := f(zn) (e.g., hill climbing) or gradient information
Rn := ∇f(zn) (e.g. gradient descent). Reducing the uncertainty about Qx0 also reduces uncertainty
about the local optimum x∗ (see Fig. 1).

To apply the entropy search framework (Hennig & Schuler, 2012) to this problem, we minimize
the entropy H(Qx0

) of the descent sequence. Minimizing the entropy with a new observation is
equivalent to maximizing the mutual information between the new observation (x, y(x)) and the
descent sequence Qx0 conditioned on the current data Dt. Therefore, in LES we reduce entropy over
Qx0 by selecting queries that maximize mutual information with this distribution, as

αLES(x) = I ((x, y(x)); Qx0
| Dt) , (10)

which we reformulate into a tractable form in Sect. 5. Note, that the observations R needs to contain
the information the iterative optimizer requires to determine the next iterate. Therefore, (10) requires
knowledge about the inner workings of the iterative optimizer to determine Q. We will discuss the
case of gradient descent sequences as an example at the end of this section.
Remark 1. An alternative formulation for LES is to define the random variable O∗

x0
directly over the

local optimum x∗ of Ox0
(f). The distribution of O∗

x0
is the push-forward of p(f) under Ox0

and
taking the limit as in (7). Unfortunately, the mutual information

I
(
(x, y(x)); O∗

x0
| Dt

)
. (11)

is not tractable in the general case since we would need to condition a GP on the event O∗
x0

= x∗

which involves the entire descent sequences (see Appx. B.1). We propose and evaluate an alternative
approximation in Appx. G.2.

A tractable special case is gradient descent that terminates after the first step. The resulting acquisition
function is GIBO (Müller et al., 2021) with entropy instead of the trace of the covariance matrix (see
Appx. B.2).
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Figure 2: Illustration of LES on a 2D example: a) After three initial evaluations, the distribution over
reachable local optima is wide. b, c) As LES selects new points, evaluations concentrate near the
descent sequence, and the distribution of the local optimum narrows. d) Convergence behavior of
LES. After 14 evaluations, the convergence criterion (see Appx. F.1) stops the optimization.

4.1 LOCAL ENTROPY SEARCH WITH GRADIENT DESCENT SEQUENCES

Before we move on to the next section, we discuss the LES acquisition function for the gradient
descent algorithm. The descent sequence is defined through the initial design x0 and the gradient of
the function ∇f at the locations zn as x∗ = limn→∞

∑n
i=0 zi − η∇f(zi).

Since we can easily condition a GP on gradient information (Rasmussen & Williams, 2006) a LES
acquisition function for local optimization via gradient descent is

αLES−GD(x) = I ((x, y(x));Qx0 | Dt) , (12)
with Qx0

= ((z0 = x0,∇f(z0)), (z1,∇f(z1)), . . . ). In words: We are looking for the query whose
outcome will reveal the most information about gradients of the function at the (distribution of)
locations of the descent sequence. Generally, the design of the sequence Qx0 is dependent on the
optimizer choice O and the properties of the GP samples (see Appx. C.2). The performance and
computational burden of LES depends on the design choices. We investigate alternative choices for
gradient descent in Section 6.
Remark 2. For GPs with a squared exponential kernel the push-forward of gradient-descent sequences
is dense in X . This means, in principle, there can be sequences arbitrarily close to any point in the
domain and no region is a priori “forbidden.” In addition, all descent sequences are possible under
this prior. For details, see Appx. H.2.

5 LOCAL ENTROPY SEARCH

This section casts the general local entropy search paradigm (Sec. 4) into a practical algorithm; see
Fig. 2 for an illustrative example and Algorithm 1. We first derive the acquisition function (Sec. 5.1),
afterwards we describe how to approximate the distribution of gradient descent sequences and how to
condition on them (Sec. 5.2).

5.1 THE LES ACQUISITION FUNCTION

The LES acquisition function follows the entropy-search principle: ask where an observation
(x, y(x)) would tell us most about the optimizer’s descent sequence Qx0 – their mutual infor-
mation. In practice this means comparing two entropies: (i) the predictive entropy at x, which
measures the overall uncertainty about y(x) under the GP, and (ii) the expected entropy that remains
if we condition on how x would influence the descent sequences drawn from the GP posterior.

αLES(x) = I ((x, y(x));Qx0
| Dt)

= H[y(x) | Dt]︸ ︷︷ ︸
predictive entropy

−Ef [H [y(x) | Dt, Qx0 ]]︸ ︷︷ ︸
conditional entropy

. (13)

The predictive entropy (see Fig. 3, b)) can be calculated in closed form, as

H[y(x) | Dt] =
1

2
log

(
2π e σ2

y(x | Dt)
)
. (14)
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Figure 3: Illustration of the LES acquisition function after three evaluations. Left: the GP posterior
mean after conditioning on the observations. Second: the predictive entropy is high in regions
with large posterior variance. Third to fifth: The information gain (the LES acquisition function)
between sampled descent sequences and query locations in X : it is high at points that are both far
from existing observations and aligned with likely descent sequences, i.e., those that most reduce the
sequence’s uncertainty.

The expectation over the conditional entropy is more challenging. We do not have a closed form
expression of the distribution of Qx0

as this would mean to apply the optimization routine O to the
distribution p(f |Dt). Thus, we cannot analytically calculate the expectation from it. Therefore, we
approximate it by L Monte-Carlo samples:

Ef [H [p (y(x) | Dt, Qx0
)]] ≈ 1

L

L∑
l=1

H
[
p
(
y(x) | Dt, Q

l
x0

)]
. (15)

To approximate Qx0 , we first draw L sample paths from the posterior GP according to (4) to retrieve
samples f1

t , ..., f
l
t . Then we apply the optimization routine O to each sample to retrieve the descent

sequences Ql
x0

=
(
(x0, R

l
0), (x

l
1, R

l
1), ...

)
and the local optima xl,∗.

For example, in the case of gradient descent, we get Ql
x0

=(
(zl

0 = x0, R
l
0 = ∇f l(x0)), (z

l
1 = x0 −∇f l(x0), R

l
1 = ∇f l(zl

1)), . . .
)
.

To condition on the parameter observation pairs Ql
x0

, we add them to the already existing observations
and analytically compute the predictive posterior variance and entropy. Note that we approximate
Ql

x0
with a finite sequence to compute (15) (see Sec. 5.2). By inserting (14) and the approximation

(15) into (13) we get the final LES acquisition function (see Fig. 3):

αLES(x) ≈
1

2
log

(
2π e σ2

y(x | Dt)
)
− 1

L

L∑
l=1

1

2
log

(
2π e σ2

y

(
x | Dt ∪Ql

x0

))
. (16)

Extension of the LES acquisition function to the batch case is straight forward (see Appx. C.3).

Algorithm 1 Local Entropy Search with stopping rule

1: Input: initial design and corresponding observation D1 = (x0, y0), local optimizer O
2: for t ∈ 1, 2, ... do
3: GPt ← fit GP model of f(x) using Dt with MAP hyperparameter optimization
4: x̂∗

t , f̂
∗
t ← identify current optimum from Dt

5: f1, . . . , fL ← draw L samples from GPt ▷ cf. (4)
6: for l ∈ 1, ..., L do Ql ← apply O to f l starting from x̂∗

t

7: xt+1 = argmaxx∈Q1,...,QLαLES(x) ▷ Maximize LES acquisition function cf. Sec. 5.1
8: for l ∈ 1, ..., L do rlt = f l(x̂∗

t )− f l(xl,∗) ▷ Estimate local regret
9: if

∑L
l=1 1

(
rlt ≤ ϵ

)
≥ ktest do stop ▷ Stopping rule for probabilistic regret. See Appx. F.

10: yt+1 ← evaluate objective with xt+1

11: Dt+1 ← Dt ∪ {(xt+1, yt+1)}
12: end for
13: return x̂∗

6
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Figure 4: Median, 25-, and 75-percent quantiles for the best function values found for 20 GP samples
with medium complexity (see Tab. 1). LES outperforms baselines as dimensionality increases.

5.2 ADDITIONAL APPROXIMATIONS AND IMPLEMENTATION DETAILS

To make LES a practical algorithm we introduce additional approximations and design choices. For
hyperparameter values, we refer to Appx. E.1. To solve the original problem (see Sec. 3) we need to
apply the local optimizer from a fixed initial design x0. However, in practice, we always start the
descent sequence from the current best guess x̂∗

t . Additionally, instead of ensuring convergence of the
local optimizer, we simply stop all the iterative optimizers after finitely many steps. Still, conditioning
on all elements in Ql

x0
can be prohibitively expensive. Thus, we choose to only condition on P

equally spaced elements along the interpolated descent sequence. Additionally, we condition on
function values instead of gradient observations which reduces runtime while achieving similar
performance (see Appx. E.5). Optimizing any acquisition function is challenging in high-dimensions
as it is non-convex (see Fig. 3). Fortunately, the approximation of Qx0

gives us access to promising
candidates. Thus we optimize the acquisition function under the finite candidate set Q1

x0
, ..., QL

x0

with L times P candidate points.

Practical LES in one paragraph (i) Draw L posterior GP samples. (ii) For each sample, run
O for a finite number of steps starting at the current incumbent x̂∗

t to obtain a descent sequence;
discretize each sequence to P support points. (iii) Compute the predictive entropy at candidate x and
the average conditional entropy after conditioning on those discretized sequences; their difference is
the acquisition function in (16) (Fig. 2). (iv) To keep optimization tractable, maximize the acquisition
over the finite candidate set given by the union of all discretized sequences. (v) Evaluate, update the
GP, and repeat (Alg. 1).

6 EMPIRICAL RESULTS

In this section, we empirically evaluate LES and compare it against other local and global BO variants
(additional results in Appx. E). As objectives, we use GP-samples with varying lengthscales to
increase complexity as well as synthetic and application-oriented benchmarks.

6.1 ABLATIONS AND BENCHMARK ALGORITHMS

LES Variants We evaluate LES with three local optimization algorithms: gradient descent, ADAM
(Kingma & Ba, 2015), and covariance matrix adaptive evolutionary search (CMA-ES) (Hansen
& Ostermeier, 2001). Results show that LES-ADAM and LES-GD perform best depending on
problem complexity, while LES-CMA-ES shows a more global search behavior which is beneficial
for low dimensional problems (see Appx. E.6). Additionally, we show that the more accurate the
acquisition function approximation (higher L and P ), the better the performance at the cost of higher
runtime. Below, we investigate LES-ADAM with a medium approximation accuracy resulting in an
average runtime of 17.8 sec per iteration in 50 dimensions excluding hyperparameter optimization
(see Appx. E.5 for runtime comparisons).

Baselines We compare LES-ADAM to two other local BO paradigms: TuRBO (Eriksson et al.,
2019) is based on trust-regions and high-confidence improvement Bayesian optimization (HCI-GIBO)
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Table 1: Median final objective for LES, logEI, TuRBO, and Sobol random sampling. Bold indicates
performance not statistically significantly below the best. *Hyperprior as in (Hvarfner et al., 2024).

Complexity Method d = 5 d = 10 d = 20 d = 30 d = 50

high: p(l; d) =
logn(−2.5

√
2 + log

√
d,
√
3/5)

E[p(l; 50)] = 0.25

LES (ours) −2.8 −4.8 −7.4 −9.0 −10.8
logEI −3.9 −4.4 −2.9 −3.2 −2.9
TuRBO −3.5 −4.8 −7.2 −8.0 −7.1
Sobol random −2.4 −2.7 −2.8 −3.2 −3.0

medium: p(l; d) =
logn(−2.0

√
2 + log

√
d,
√
3/4)

E[p(l; 50)] = 0.52

LES (ours) −2.9 −4.4 −7.3 −8.6 −10.4
logEI −3.6 −5.3 −7.1 −8.4 −9.6
TuRBO −3.1 −4.8 −7.0 −8.5 −7.9
Sobol random −2.5 −2.7 −2.8 −2.9 −2.7

low: p(l; d) =
logn(−1.0

√
2 + log

√
d,
√
3/2)

E[p(l; 50)] = 2.65

LES (ours) −2.1 −3.7 −5.5 −6.8 −8.8
logEI −2.9 −4.1 −5.8 −6.6 −8.5
TuRBO −2.4 −3.6 −5.5 −6.5 −8.1
Sobol random −2.0 −2.3 −2.9 −2.8 −3.0

extremely low*: p(l; d) =
logn(1.0

√
2 + log

√
d,
√
3)

E[p(l; 50)] = 96.2

LES (ours) −0.6 −0.8 −1.2 −1.5 −3.0
logEI −0.6 −0.9 −1.3 −1.5 −3.0
TuRBO −0.6 −0.8 −1.2 −1.5 −2.8
Sobol random −0.5 −0.7 −1.0 −1.0 −1.5

is a gradient-based approach. HCI-GIBO (He et al., 2025) is a recent GIBO (Müller et al., 2021)
extension. As a global ES alternative we choose max-value entropy search (MES) (Wang & Jegelka,
2017). Additionally, we compare to logEI (Ament et al., 2023) and Sobol random sampling.

Other Local Information-Theoretic Strategies We propose and evaluate two other search strate-
gies as special cases of the LES paradigm: local Thompson sampling and conditioning only on the
final point of the descent sequence. They empirically perform worse confirming that conditioning on
the whole sequences and Monte-Carlo sampling (see Appx. G.2).

6.2 GAUSSIAN PROCESS SAMPLES

Model Complexity Recent work by (Hvarfner et al., 2024) highlights model complexity as a
key factor in high-dimensional BO performance. The assumed difficulty of the problem – encoded
through the model complexity in the form of length scale priors – determines global BO performance.
Smaller length scales yield more complex functions with more local optima (Adler, 2010, Chapt. 6).
Building on this insight, we construct benchmark functions with varying problem difficulty by
sampling functions from a GP with different model complexities. Specifically, we generate functions
by scaling the log-normal length scale prior p(l) proposed in (Hvarfner et al., 2024). We consider
four complexity levels across 5 to 50 dimensions (see Tab.1) where the lowest model complexity
corresponds to the one used in (Hvarfner et al., 2024).

Within Model Comparison To assess the performance of the proposed acquisition function
independently of the effects of hyperparameter optimization, we first use known hyperparameters
in all evaluated BO algorithms. Results on medium model complexity (Fig. 4) show that, after
400 evaluations, LES outperforms all baselines as dimensionality increases. The asymptotical
performance benefits of searching globally with logEI is only seen for d = 10. MES, the global
entropy search benchmark is not competitive. For other problem complexities the same trends can
be observed (see Tab.1 and Appx. E.3). Performance differences increase with increasing problem
complexity with LES clearly outperforming other methods for high complexity tasks in higher
dimensions (see Appx. E.3).

Out-Of-Model Comparison Appx. E.3 reports detailed results for learned length-scales, showing
that LES outperforms baselines including logEI-DSP (Hvarfner et al., 2024) in high-complexity
settings. With less prior knowledge, i.e., in out-of-model comparison, performance differences
between methods are generally smaller.

8
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Figure 5: Median, 25-, and 75-percent quantiles for the best (normalized) function values found.

Cumulative Regret The local search behavior inherent to LES leads to a substantially lower
cumulative cost for all problems except for d = 5 and the lowest complexity (Appx. E.3).

6.3 SYNTHETIC TEST FUNCTIONS AND OTHER EXAMPLES

We evaluate LES on additional analytic benchmarks (Fig. 5) and application-oriented tasks, with
further results in Appx. E.4. On single-optimum functions (square), all methods reliably identify the
solution, though LES and TuRBO achieve lower cumulative regret, highlighting the conservative
exploration behavior inherent to local search. On the 30-d Ackley function, LES and TuRBO
outperform global methods but LES shows high run-to-run variance due to the many local optima.
For the rover (Wang et al., 2018) and Mopta08 (Jones, 2008) tasks, LES, logEI, and TuRBO perform
similarly, with LES best on rover and logEI best on Mopta08.

Additional experiments, including benchmarks designed to expose weaknesses of local search are
presented in Appx. E.4. In these cases, LES frequently gets trapped in local optima, leading to high
run-to-run variance and overall poor performance relative to global methods. These results highlight
the limitations of LES on highly multimodal landscapes.

7 DISCUSSION AND CONCLUSION

This paper introduces LES, the first entropy-search paradigm tailored to local optimization. By
propagating the GP posterior through the optimizer’s descent sequence, LES selects each evaluation
to maximize mutual information with that sequence, thereby reducing uncertainty over possible
descent sequences.

Empirically, LES delivers strong sample efficiency. Across high-complexity GP samples and policy-
search benchmarks, the ADAM-based variant consistently attains lower simple regret than global
entropy-search baselines and other local BO strategies, especially as dimensionality grows. Addition-
ally, we show in Appx. E.4 that local search has a more conservative exploration behavior than global
BO. This can be a great asset when optimizing on hardware, e.g., in robot learning. A probabilistic
stopping rule guarantees bounded local regret by detecting convergence to a local optimum without
additional overhead by reusing the samples from the acquisition step (Appdx. F).

LES inherits the fundamental properties of local optimization, which can be a limitation. Once
it settles in a basin it depends on restarts to explore elsewhere. Globalization strategies such as
multi-start or switching heuristics between local and global optimization based on estimated objective
complexity are interesting directions for future research. LES is entropy-search based and therefore
future work can naturally extend LES to more complex settings, such as multi-fidelity, constrained,
batch (see Appx. C.3), or asynchronous optimization. See Appx. D for additional discussions.

9
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REPRODUCIBILITY STATEMENT

All code necessary to reproduce the results is available in the supplementary material and will be
published upon publication. Additionally, we elaborate on approximations and implementation details
in Sec. 5.2. We report hyperparameter values in Appx. E.
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Rafael Barbudo, Sebastián Ventura, and José Raúl Romero. Eight years of automl: categorisation,
review and trends. Knowledge and Information Systems, 65(12):5097–5149, 2023. doi: 10.1007/
s10115-023-01935-1.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for multi-
objective bayesian optimization with constraints. Workshop on Machine Learning and the Physical
Sciences (NeurIPS), 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Paul Brunzema, Mikkel Jordahn, John Willes, Sebastian Trimpe, Jasper Snoek, and James Harrison.
Variational last layers for bayesian optimization. In NeurIPS 2024 Workshop on Bayesian Decision-
making and Uncertainty, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with pathways. Journal of
Machine Learning Research, 24(240):1–113, 2023.

Lionel Colliandre and Christophe Muller. Bayesian optimization in drug discovery. In High
Performance Computing for Drug Discovery and Biomedicine, pp. 101–136. Springer, 2023.
doi: 10.1007/978-1-0716-3449-3 5.

Bach Do, Nafeezat A Ajenifuja, Taiwo A Adebiyi, and Ruda Zhang. Sampling from gaussian
processes: A tutorial and applications in global sensitivity analysis and optimization. arXiv
preprint arXiv:2507.14746, 2025.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local Bayesian optimization. In Advances in Neural Information Processing
Systems, pp. 5496–5507, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zheyi Fan, Wenyu Wang, Szu Hui Ng, and Qingpei Hu. Minimizing ucb: a better local search strategy
in local bayesian optimization. In Advances in Neural Information Processing Systems, volume 37,
pp. 130602–130634, 2024.
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A INTRODUCTION TO BAYESIAN OPTIMIZATION WITH ENTROPY SEARCH

Because evaluating f(x) is costly, BO leverages all data obtained until iteration t to choose the next
parametrization xt+1 in Domain X . After tinit random samples are evaluated, BO takes two steps
to maximize the utility of the next experiment. First, a GP is trained on all past observations to
approximate f(x). Second, this model is used in an acquisition function to balance exploration and
exploitation. The acquisition function α uses the probabilistic GP predictions to calculate the utility
of an experiment. It is maximized to find the next query:

xt+1 = argmaxXα(GPk). (17)

Approximately solving (17) is much easier than the original problem because only the fast-to-evaluate
GP model needs to be evaluated. This new query is evaluated, new data is received, and the next
iteration is started by again updating the GP model. This way, the GP model is iteratively refined in
promising regions. We refer to (Garnett, 2023) for a detailed introduction to BO.

Global entropy search methods use an information-theoretic perspective to select where to evaluate.
They find a query point that maximizes the expected information gain about the global optimum
x∗
g = argmaxx ∈ Xf(x) whose value f∗ = f(x∗) achieves the global maximum of the function

f .

The original entropy search (ES) (Hennig & Schuler, 2012) and predictive entropy search (PES)
(Hernández-Lobato et al., 2014) maximize the information gain about the location of the optimum:

αt(x) = I
(
{x, y(x)};x∗

g | Dt

)
(18)

The random variable y(x) denotes the predictive distribution of the noisy observation at the query
location x and x∗

g denotes the estimated distribution of the global optimizer. The information gain
can be expressed as the difference between predictive entropy of noisy observation at the query
location, H

(
p
(
x∗
g | Dt

))
and the expectation of the predictive conditioned on the distribution of

minimizers E [H (p (x∗ | Dt ∪ {x, y}))]. Calculating those terms requires expensive approximations
that do not scale well especially in high dimensions.

Max-value entropy search (MES) (Wang & Jegelka, 2017) maximize the information gain about the
function value of the optimum:

αt(x) = I
(
{x, y}; f∗

g | Dt

)
(19)

This approach is computationally significantly more efficient than ES and PES, because the expec-
tation and entropy need to be only calculated over the one dimensional distribution of optimum
values.

Joint entropy search (JES) (Hvarfner et al., 2022; Tu et al., 2022) maximizes the information gain
about the joint distribution of location location and function value of the optimizer

αJES(x) = I
(
(x, y);

(
x∗
g, f

∗
g

)
| Dn

)
(20)

This paper applies the entropy search paradigm to local BO. Up to here, we only discussed entropy
search for single objective optimization. It can be extended to other BO paradigms such as constrained
(Perrone et al., 2019), multi-objective (Belakaria et al., 2020), and multi-fidelity (Marco et al., 2017)
optimization.
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B EXACT INFORMATION GAIN MAXIMIZATION OF THE LOCAL OPTIMIZER

In LES, we do not directly minimize the entropy of the solution of the local optimization algorithm but
instead minimize the entropy of the descent sequence. This section shows why directly minimizing
the entropy of the solution is not possible in general. Furthermore, we show that the entropy search
version of GIBO is a special case for one step gradient descent, where it actually is possible.

B.1 IMPRACTICABILITY IN THE GENERAL CASE

Suppose we want to directly minimize the entropy of the local optimizer:

max
x∈X

I
(
(x, y(x)); O∗

x0
| Dt

)
. (21)

One way of going forward is to reformulate it in the standard entropy search way:

I
(
(x, y(x));O∗

x0
| Dt

)
= H[y(x) | Dt]︸ ︷︷ ︸

predictive entropy

−Ef

[
H
[
y(x) | Dt, O

∗
x0

]]︸ ︷︷ ︸
conditional entropy

. (22)

After Monte-Carlo approximation we get:

Ef

[
H
[
p
(
y(x) | Dt, O

∗
x0

)]]
≈ 1

L

L∑
l=1

H
[
p
(
y(x) | Dt, O

∗,l
x0

)]
. (23)

Unfortunately, we can condition a GP efficiently only on point-wise observations of, for example,
function values or gradients by adding them to the original data set as virtual points. It is not possible
to condition a GP directly on O∗,l

x0
being a location that can be reached by gradient descent from x0.

In Appendix G.2 we show how we can condition on O∗,l
x0

being a local optimum with zero gradient
and positive Hessian. However, this loses information about the sequence to the local optimum. An
alternative approach would be the following reformulation:

α(x) = I
(
(x, y(x));O∗

x0
| Dt

)
= H[O∗

x0
| Dt]︸ ︷︷ ︸

predictive entropy

−Ey(x)

[
H
[
O∗

x0
| Dt, y(x)

]]︸ ︷︷ ︸
conditional entropy

. (24)

In principle, we can approximate the conditional entropy in (24) with Monte-Carlo approximation
because we only have to condition a GP on realizations of y(x). However, this is prohibitively
expensive because it would require a new Monte-Carlo approximation of O∗

x0
to evaluate α at a new

query location x. Therefore, we do not consider this possibility any further.

B.2 EXACT INFORMATION GAIN MAXIMIZATION IN ENTROPY-BASED GIBO

This paragraph shows that the information theoretic version CAGES (Tang & Paulson, 2024) of the
GIBO (Müller et al., 2021) acquisition function can be seen as a special case of LES (11). This
special case arises when considering a one step gradient descent algorithm that produces the following
descent sequence

GSx0
(f) :=

{
z0 = x0, z1 = z0 − η∇f(z0)}. (25)

Now suppose that the local optimum is the last element of that sequence O∗
x0

= x0 − η∇f(x0).
Inserting in equation (24) yields:

αGES(x) = H[O∗
x0

| Dt]− Ey(x)

[
H
[
O∗

x0
| Dt, y(x)

]]
= H[x0 − η∇f(x0) | Dt)]− Ey(x) [H [x0 − η∇f(x0) | Dt, y(x)]]

(26)

Since x0 and η are non-random variables, we get:

αGES(x) = H[∇f(x0) | Dt]− Ey(x) [H [∇f(x0) | Dt ∪ (x, y(x)]] (27)

Inserting the entropy of a multivariate normal distribution, we get the original GES acquisition
function (Tang & Paulson, 2024, Eq. (8)):

αGES (x) =
1

2
log |Σ′ (x0 | Dt)| −

1

2
log |Σ′ (x0 | Dt ∪ (x, y(x))| (28)
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The covariance of the gradient at location x0 given data Dt is denoted as Σ′ (x0 | Dt). Note that the
expectation over y(x) can be ignored because the predictive variance of the gradient is independent
of y(x) and only depends on x. The small difference between the CAGES and the GIBO acquisition
function is that the GIBO acquisition function uses the trace operator instead of the determinant
operator | · | in (28).

This observation highlights that GIBO-style acquisition functions learn about one step of the gradient
descent sequence, whereas LES maximizes the information gain about the whole descent sequence.
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C ADDITIONAL DETAILS ON LES

C.1 GP-SAMPLE APPROXIMATION STRATEGIES

In this work, we approximate GP sample paths using the decoupled method of (Wilson et al., 2020)
(Eq. (4)), which we regard as state-of-the-art and computationally attractive. It has been shown to
outperform alternatives, is readily available in TensorFlow and PyTorch, and is still recommended
in recent tutorials on GP sampling (Do et al., 2025). We therefore do not empirically investigate
alternative sampling strategies for LES.

By contrast, the GP-sample benchmarks in GIBO (Müller et al., 2021) and follow-up work (Nguyen
et al., 2022) adopt a different approach: they sample the posterior at fixed locations and then re-
interpolate these points with a GP. In our preliminary experiments, this led to overly smooth sample
functions in low dimensions.

Exploring how different sampling strategies affect LES remains an interesting direction for future
work, both to assess robustness and to better understand potential biases introduced by approximation
schemes.

C.2 RELATIONSHIP BETWEEN PROPERTIES OF TARGET FUNCTION, MODEL SAMPLES AND
LOCAL OPTIMIZER

The choice of local optimizer O is constrained by the properties of the GP sample paths and practically
by their approximations. For instance, if O is gradient-based, the sample paths f l must be at least
once differentiable. More generally, the samples need to be differentiable to the same order required
by O. LES, however, is not limited to gradient-based methods: zeroth-order optimizers such as hill
climbing or pattern search can be used when samples are non-differentiable. We illustrate this in
Appx. E.6 with LES-CMAES, which employs a zeroth-order evolutionary optimizer.

Different kernels also practically affect optimizer choice. For example, Matérn-1/2 or Matérn-3/2
kernels often generate sample paths with many shallow local minima. In such cases, an optimizer
that incorporates momentum (e.g., Adam) may help to avoid undesired convergence to these minima.

Crucially, these requirements apply to the GP sample paths, not to the true objective. Indeed, GPs
can approximate sub-gradients of non-differentiable functions, as shown in (Wu et al., 2023).

C.3 QLES: BATCHED LOCAL ENTROPY SEARCH

The LES paradigm can be straightforwardly extended to the batch case. This serves as an example
of the versatility of entropy search methods and their potential for local optimization. We simply
maximize the mutual information between the joint predictive distribution of multiple samples
y(x1), ..., y(xq) and the distribution of descent sequences. Equation (13) becomes:

αqLES(x1, ...,xq) = I (x1, ...,xq, y(x1), ..., y(xq));Qx0
| Dt)

= H[y(x1), ..., y(xq) | Dt)]︸ ︷︷ ︸
predictive entropy

−Ef [H [y(x1), ..., y(xq) | Dt, Qx0 ]]︸ ︷︷ ︸
conditional entropy

. (29)

With this, the only change to the acquisition function calculation is the entropy calculation. The
entropy of the predictive and conditional entropies can still be calculated in closed form and omitting
the intermediate steps, the acquisition function (16) becomes:

αqLES(x1, ...,xq) ≈
1

2
log det (Σy(x1, ...,xq | Dt))

− 1

L

L∑
l=1

1

2
log det

(
Σy

(
x1, ...,xq | Dt ∪Ql

x0

))
.

(30)

The term Σy(x1, ...,xq | Dt) denotes the predictive covariance matrix of the posterior GP at the
query locations x1, ...,xq given data Dt.

Optimizing (30) becomes more computationally expensive as q increases. However, we expect this
increase to be relatively minor. The most expensive parts of the LES formalisms, i.e., generating L

17
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GP samples, locally optimizing them and then conditioning L GPs on the descent sequences have to
be done only once, independently of q.
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D LIMITATIONS

The proposed method delivers a fast, model-aware route to a nearby optimum, yet this focus on
locality is also its most obvious constraint. Once the algorithm commits to a basin, it possesses no
intrinsic mechanism for escape; achieving coverage of the full design space therefore requires an
external multi-start or adaptive-restart policy. Here, the stopping rule introduced in Section F.1 can
be used to trigger a restart instead of stopping.

LES inherits the strengths and weaknesses of its surrogate. All acquisition decisions are driven by
posterior samples; if the model is misspecified, the algorithm will exploit the wrong belief. Moreover,
approximating the mutual information in (16) at each iteration requires drawing and optimizing
hundreds of surrogate realizations, with the number of samples increasing with dimensionality and
model complexity.

The present formulation tackles unconstrained, single-objective optimization. Extending entropy-
based local search to other objectives remains open for future work.

Finally, LES currently lacks finite-time regret guarantees of the GP-UCB type (Srinivas et al., 2012),
and the current theoretical claims are limited to the high-probability certificate of local optimality
offered by the stopping test. In addition, a bound on the difference between local and global regret for
GP sample paths would strengthen the practical intuition that one should choose local optimization in
high-dimensional problems.

We show that LES is beneficial especially in the high-dimensionality and high-complexity case.
Unfortunately, in real-world use cases it may be difficult to determine the problem complexity a-
priori. This issue could be circumvented by implementing globalization strategies in LES such as
multi-start or an initial global sampling phase.
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E EMPIRICAL EVALUATION

This section gives additional results and details on the empirical evaluation. Most notably, we show
that the local exploration behavior results in reduced cumulative cost (E.3,E.4) and show extended
results on GP-samples with varying problem complexity for the within and out of model comparison
setting (E.3). Additional results are the impact of the discretizations on runtime and quality (E.5) and
the impact of the local optimizer choice (E.6).

E.1 LES ALGORITHM HYPERPARAMETER

Table 2 summarizes the main LES hyperparameter. In summary, LES has four types of hyper
parameters: (a) GP-hyperparameter as any other BO algorithm (see Tab. 3, 9). (b) L and P that
govern the accuracy of the acquisition function approximation. They should be chosen as large as
computational resources permit (see Appx. E.5) (c) parameter of the stopping rule of the stopping
rule (see Appx. F) (d) the local optimizer and its parameters (see Appx. E.6).

Table 2: Default hyperparameter of LES

Name Description Value

Number of initial uniform random samples 2

L Monte-Carlo samples of gradient descent sequences 250
P discretizations of the gradient descent sequences 8
M prior features of the GP posterior sampling 1024

ϵ stopping criterion optimality 0.1, 0.01
δ total risk 0.05
δest estimation risk 0.0025
Tdec samples between each decision 25

Local Optimizer ADAM
Number of Local Optimization Steps 500
Learning Rate 0.002
Momentum Parameters Keras Default

E.2 BENCHMARK ALGORITHM HYPERPARAMETER

For HCI-GIBO we choose α = 0.9 and perform hyperparameter optimization after each gradient
step. We use the BoTorch (Balandat et al., 2020) implementations of MES, logEI, and TuRBO. MES
uses a candidate set of 5000 points and both MES and TuRBO use default parameters of the BoTorch
implementation. Again, all algorithm use identical GP parameters with the exception of logEI-DSP,
where the hyperprior of (Hvarfner et al., 2024) is chosen.

E.3 ADDITIONAL DETAILS AND RESULTS ON GP SAMPLES

General Setup. Table 3 summarizes the GP hyperparameters used in the GP-sample experiments.
Following (Hvarfner et al., 2024), we employ a log-normal hyperprior p(l) for the length scales
and assume a constant, known measurement noise distribution. Test functions are generated by first
sampling length scales from the hyperprior and then drawing functions according to (4). To vary
problem difficulty, we scale the log-normal hyperpriors of (Hvarfner et al., 2024) (see Sec. 6.2);
expected length scales are reported in Table 4. Note that the original hyperprior assumes very large
average length scales, whereas in the high-complexity scenario the expected length scale at d = 50 is
E[p(l)] = 0.25, which is still reasonable.

Across all experiments, data is not standardized, each algorithm is evaluated on 20 random seeds, and
the two initial points are chosen randomly.
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Table 3: GP hyperparameters for out of model comparison on GP samples

Name Description Value

k(·, ·) kernel SE-ARD
p(l; d) length-scale hyper prior Log Normal (see Tab. 4)
σn observation noise fixed at 0.002
σk GP output scale variable - init at 1
linit length scale initialization E[p(l; d)]

hyperparameter optimization frequency after every sample2

standardize data yes

Table 4: Expected length scales E[p(l; d)] for the different hyperpriors.

Complexity d = 5 d = 10 d = 20 d = 30 d = 50

high: p(l; d) =
logn(−2.5

√
2 + log

√
d,
√
3/5)

0.08 0.11 0.15 0.19 0.25

medium: p(l; d) =
logn(−2.0

√
2 + log

√
d,
√
3/4)

0.16 0.23 0.33 0.4 0.52

low: p; d(l) =
logn(−1.0

√
2 + log

√
d,
√
3/2)

0.83 1.19 1.67 2.05 2.65

extremely low (Hvarfner et al., 2024): p(l; d) =
logn(1.0

√
2 + log

√
d,
√
3)

21.86 30.92 34.73 53.56 69.15

Within-Model Comparison. In this setting, all BO algorithms are given access to the sampled
ground-truth hyperparameters (length scales, output scale, and noise variance). Tables 5 and 6
summarize the results, with statistical significance determined by the signed rank test. Entries not in
bold are statistically significantly worse than the best-performing algorithm. Figures 6–13 show the
convergence curves.

LES achieves statistically significant improvements in high-dimensional, high-complexity settings,
particularly in terms of cumulative regret. Global BO methods only outperform LES in high-
complexity, low-dimensional cases.

3Except for the GIBO variants, where we optimize the hyperparameter only after each step.
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Table 5: Best achieved function value after full budget for within model comparison on GP samples.
Entries not in bold are statistically significantly worse than the best preforming algorithm. Smaller is
better.

Complexity Method d = 5 d = 10 d = 20 d = 30 d = 50

high

LES (ours) −2.8 −4.8 −7.4 −9.0 −10.8
MES −2.4 −2.6 −3.0 −2.9 −2.8
logEI −3.9 −4.4 −2.9 −3.2 −2.9
TuRBO −3.5 −4.8 −7.2 −8.0 −7.1
HCI-GIBO −2.7 −2.0 −2.3 −1.8 −0.7
Sobol random −2.4 −2.7 −2.8 −3.2 −3.0

medium

LES (ours) −2.9 −4.4 −7.3 −8.6 −10.4
MES −3.4 −2.0 −2.8 −2.9 −2.9
logEI −3.6 −5.3 −7.1 −8.4 −9.6
TuRBO −3.1 −4.8 −7.0 −8.5 −7.9
HCI-GIBO −2.9 −3.6 −2.9 −2.0 −1.7
Sobol random −2.5 −2.7 −2.8 −2.9 −2.7

low

LES (ours) −2.1 −3.7 −5.5 −6.8 −8.8
MES −2.9 −4.0 −4.9 −4.6 −3.9
logEI −2.9 −4.1 −5.8 −6.6 −8.5
TuRBO −2.4 −3.6 −5.5 −6.5 −8.1
HCI-GIBO −2.1 −3.4 −5.0 −5.9 −7.3
Sobol random −2.0 −2.3 −2.9 −2.8 −3.0

extremely low

LES (ours) −0.6 −0.8 −1.2 −1.5 −3.0
MES −0.6 −0.9 −1.3 −1.5 −2.7
logEI −0.6 −0.9 −1.3 −1.5 −3.0
TuRBO −0.6 −0.8 −1.2 −1.5 −2.8
HCI-GIBO −0.6 −0.8 −1.1 −1.3 −2.7
Sobol random −0.5 −0.7 −1.0 −1.0 −1.5

Table 6: Cumulative observed function values after full budget for within model comparison on GP
samples. Entries not in bold are statistically significantly worse than the best preforming algorithm.
Smaller is better.

Complexity Method d = 5 d = 10 d = 20 d = 30 d = 50

high

LES (ours) −260.1 −842.1 −2515.1 −2938.4 −3214.3
MES 35.8 22.3 0.1 1.1 4.0
logEI −176.6 −230.6 −17.1 −0.8 6.5
TuRBO −247.9 −672.5 −1783.3 −1503.0 −977.9
HCI-GIBO −59.5 −28.3 −16.6 −19.8 −24.7
Sobol random 1.5 −1.7 −7.2 7.2 3.7

medium

LES (ours) −272.8 −811.4 −2464.3 −2861.7 −3159.1
MES −97.1 167.3 288.4 6.5 −0.6
logEI −163.7 −645.5 −2111.3 −2071.3 −1378.3
TuRBO −246.7 −697.6 −1876.0 −1924.9 −1375.1
HCI-GIBO −114.5 −121.3 −51.4 −27.4 −4.2
Sobol random 6.4 3.0 0.6 5.3 1.3

low

LES (ours) −192.9 −685.7 −2059.5 −2415.1 −2969.3
MES −97.6 −358.9 −682.8 −276.7 337.6
logEI −88.1 −434.0 −1679.0 −2144.8 −2795.6
TuRBO −201.8 −637.6 −1916.6 −2048.7 −2390.1
HCI-GIBO −169.8 −581.9 −1638.9 −1874.3 −2224.6
Sobol random 7.1 1.7 −42.8 −0.2 −1.5

extremely low

LES (ours) −56.8 −160.5 −471.9 −591.0 −1142.4
MES −13.0 −7.5 −132.2 −69.1 −252.3
logEI −51.0 −122.5 −357.4 −320.6 −581.0
TuRBO −57.1 −152.3 −456.3 −516.8 −896.0
HCI-GIBO −54.3 −145.2 −420.7 −496.1 −913.7
Sobol random −1.9 21.1 −74.3 61.9 −88.9
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Figure 6: Within Model Comparison, Complexity - high: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 7: Within Model Comparison, Complexity - high: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 8: Within Model Comparison, Complexity - medium: Median, 25-, and 75-percent
quantiles - detailed results
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Figure 9: Within Model Comparison, Complexity - medium: Median, 25-, and 75-percent
quantiles - detailed results
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Figure 10: Within Model Comparison, Complexity - low: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 11: Within Model Comparison, Complexity - low: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 12: Within Model Comparison, Complexity - extremely low: Median, 25-, and 75-percent
quantiles - detailed results
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Figure 13: Within Model Comparison, Complexity - extremely low: Median, 25-, and 75-percent
quantiles - detailed results
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Out of Model Comparison. The out-of-model setup is identical to the within-model one except
that GP hyperparameters are now estimated via MAP according to Table 3. As in the main paper, all
methods use the correct hyperprior, except for logEI-DSP, which assumes a hyperprior with longer
length scales set according to Hvarfner et al. (2024). Tables 7 and 8 report best and cumulative
evaluations, and Figures 14–21 show the corresponding convergence plots.

The overall results pattern mirrors the within-model case. Interestingly, logEI performs better when
using the wrong (less complex) hyperprior, as in logEI-DSP which supports the claims made in
(Hvarfner et al., 2024).

Table 7: Best achieved function value after full budget for out-of-model comparison on GP samples.
Entries not in bold are statistically significantly worse than the best preforming algorithm. Smaller is
better.

Complexity Method d = 5 d = 10 d = 20 d = 30 d = 50

high

LES (ours) −2.9 −5.0 −7.2 −8.5 −7.8
MES −1.9 −2.5 −2.8 −2.8 −3.0
logEI −4.0 −4.3 −2.8 −2.9 −3.0
logEI-DSP −3.7 −4.1 −4.0 −4.0 −4.1
TuRBO −3.7 −5.0 −7.1 −8.2 −7.1
HCI-GIBO −2.3 −2.2 −1.9 −2.0 −1.8
Sobol random −2.4 −2.7 −2.8 −3.2 −3.0

medium

LES (ours) −3.0 −4.6 −7.1 −8.6 −8.8
MES −3.6 −2.1 −2.9 −2.8 −2.9
logEI −3.6 −5.1 −7.2 −8.1 −4.5
logEI-DSP −3.6 −5.0 −7.0 −7.9 −7.0
TuRBO −3.1 −4.9 −7.0 −7.9 −8.0
HCI-GIBO −2.9 −3.7 −2.9 −2.0 −1.6
Sobol random −2.5 −2.7 −2.8 −2.9 −2.7

low

LES (ours) −2.1 −3.7 −5.2 −6.6 −8.5
MES −2.9 −4.0 −5.1 −5.4 −3.7
logEI −2.9 −4.1 −5.7 −6.4 −8.4
logEI-DSP −2.9 −4.1 −5.7 −6.6 −8.1
TuRBO −2.4 −3.7 −5.4 −6.4 −7.7
HCI-GIBO −2.2 −3.5 −4.9 −5.9 −7.5
Sobol random −2.0 −2.3 −2.9 −2.8 −3.0

extremely low

LES (ours) −0.6 −0.8 −1.2 −1.5 −2.9
MES −0.6 −0.9 −1.2 −1.4 −2.5
logEI −0.6 −0.9 −1.3 −1.5 −3.0
logEI-DSP −0.6 −0.9 −1.3 −1.5 −3.0
TuRBO −0.6 −0.8 −1.2 −1.5 −2.9
HCI-GIBO −0.6 −0.7 −1.3 −1.5 −2.5
Sobol random −0.5 −0.7 −1.0 −1.0 −1.5
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Table 8: Cumulative observed function values after full budget for out of model comparison on GP
samples. Entries not in bold are statistically significantly worse than the best preforming algorithm.
Smaller is better.

Complexity Method d = 5 d = 10 d = 20 d = 30 d = 50

high

LES (ours) −259.0 −867.2 −2298.3 −2482.5 −2081.9
MES 56.9 13.6 11.6 −0.2 10.7
logEI −172.9 −197.7 0.4 3.4 2.8
logEI-DSP −130.4 −169.4 −128.1 −127.2 −119.3
TuRBO −257.0 −649.4 −1789.6 −1565.5 −927.9
HCI-GIBO −50.6 −24.5 −27.7 −18.1 −8.9
Sobol random 1.5 −1.7 −7.2 7.2 3.7

medium

LES (ours) −269.6 −819.0 −2267.5 −2494.5 −2427.1
MES −111.1 176.1 34.3 −3.5 −5.4
logEI −172.8 −667.3 −1949.7 −1597.4 −110.1
logEI-DSP −150.1 −524.4 −1912.4 −1644.4 −652.1
TuRBO −250.9 −673.5 −1900.0 −1737.7 −1352.6
HCI-GIBO −160.1 −109.0 −40.8 −15.1 −19.9
Sobol random 6.4 3.0 0.6 5.3 1.3

low

LES (ours) −182.3 −662.1 −1883.7 −2183.6 −2572.6
MES −102.5 −373.0 −666.8 −443.0 317.9
logEI −101.7 −448.3 −1639.7 −2049.2 −2691.8
logEI-DSP −88.9 −380.8 −1563.4 −1966.1 −2604.0
TuRBO −204.1 −620.1 −1764.8 −1848.2 −2151.1
HCI-GIBO −148.5 −456.3 −1454.9 −1783.2 −2128.8
Sobol random 7.1 1.7 −42.7 −0.1 −1.5

extremely low

LES (ours) −54.2 −146.5 −475.7 −580.9 −1063.6
MES −22.8 −10.7 −147.1 −84.6 −243.6
logEI −43.6 −102.3 −338.4 −318.6 −629.5
logEI-DSP −40.7 −103.1 −335.6 −310.1 −623.9
TuRBO −54.7 −155.0 −466.0 −554.3 −1053.0
HCI-GIBO −40.9 −88.7 −318.1 −296.4 −371.1
Sobol random −1.9 21.1 −74.2 61.9 −88.8
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Figure 14: Out of model comparison, complexity - high: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 15: Out of model comparison, complexity - high: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 16: Out of model comparison, complexity - medium: Median, 25-, and 75-percent quantiles
- detailed results
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Figure 17: Out of model comparison, complexity - medium: Median, 25-, and 75-percent quantiles
- detailed results
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Figure 18: Out of model comparison, complexity - low: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 19: Out of model comparison, complexity - low: Median, 25-, and 75-percent quantiles -
detailed results
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Figure 20: Out of model comparison, complexity - extremely low: Median, 25-, and 75-percent
quantiles - detailed results
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Figure 21: Out of model comparison, complexity - extremely low: Median, 25-, and 75-percent
quantiles - detailed results
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E.4 ADDITIONAL DETAILS AND RESULTS ON SYNTHETIC FUNCTIONS AND OTHER TASKS

In total, we evaluate LES on nine benchmark functions (Fig.23 and 24). On functions with a single
local optimum (square function f(x) = xx⊤), all methods reliably identify the optimum, though
LES and TuRBO achieve lower cumulative regret, underscoring the advantage of local search in this
setting. In contrast, the 5-d Ackley function – designed as a failure case for LES – leads all methods,
including LES and the global baselines, to perform poorly (Appx. E.4). Surprisingly, for 30-d Ackley,
LES and TuRBO outperform global methods. However, LES has a high run-to-run variance which
indicates that some runs get stuck in local optima.

In the rover (Wang et al., 2018) and Mopta08 (Jones, 2008) tasks, LES, logEI and TuRBO perform
similarly with LES being best in the rover task and logEI being best in the Mopta08 task. In the lunar
lander task (Brockman et al., 2016), LES is not competitive. The lunar lander task has multiple local
optima where LES is getting stuck in some runs (see Fig. 22).

The lunar lander problem (Fig. 22) and the Ackley function both contain many local minima, which
makes them particularly challenging for our local method. Interestingly, LES performs still best on
the 30-dimensional Ackley function. Overall, LES achieves the lowest cumulative regret – sometimes
tied with other algorithms – except on low-dimensional problems with many local optima (Ackley-
d = 5, Lunar). For logEI, high exploration costs occur only in low dimensions, which may be
explained by its tendency to repeatedly sample the same location once it has found a (local) optimum.
In terms of simple regret, LES matches the baselines except on the low-dimensional, multi-modal
benchmarks (5-d Ackley and Lunar).

All BO algorithms use the hyperparameter as presented in Table 9. Hyperparameters follow (Xu
et al., 2025), using a box hyperprior and length scale initialization scaled by

√
d to favor low model

complexity. Observations are generated without noise. We use 20 seeds for the policy search tasks
and 10 seeds for the synthetic functions.

Table 9: Model Hyperparameters for synthetic functions and other tasks

Name Description Value

k(·, ·) kernel SE-ARD
p(l) length-scale hyper prior None
σn observation noise fixed at 0.001
σk GP output scale variable
lmax length scale upper bound

√
d

lmin length scale lower bound 0.05

linit length scale initialization 0.2
√
d

hyperparameter optimization frequency after every sample3

standardize data yes

4Except for the GIBO variants, where we optimize the hyperparameter only after each step.
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Figure 22: A random slice through the deterministic lunar lander objective function. Although
the objective is deterministic, we see multiple noise-like local optima and a prominent step in the
objective function landscape. Both properties are hard to model with a GP using an SE kernel with
small observation noise.
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Figure 23: Median, 25-, and 75-percent quantiles - other tasks and analytic test functions
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Figure 24: Median, 25-, and 75-percent quantiles of cumulative cost - other tasks tasks and analytic
test functions
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E.5 ABLATIONS ON APPROXIMATION ACCURACIES AND RUNTIME

Figure 25 illustrates the effect of the number of Monte Carlo samples L and the number of equally
spaced points P taken from each descent sequence. We evaluate this in the out-of-model GP sample
scenario with medium complexity (see Sec. 6.2). As expected, more accurate approximations yield
better performance, with the differences most pronounced in the d = 50 case. While L = 250 and
P = 16 performs best, we adopt L = 250 and P = 8 in our experiments as a compromise between
runtime and accuracy.

We further verify that conditioning on function values instead of gradients in the descent sequence
does not substantially harm performance. For runtime and memory reasons, gradient conditioning
(LES-ADAM-Grad.-Cond.) was only run with coarse discretizations, up to 300 samples and excluding
d = 50.
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Figure 25: Comparing different acquisition function approximation accuracies - the better the
approximation (larger value of P and L) the better the results (Out-Of-Model Comparison on
GP-Samples - medium complexity).

The computational cost of LES is closely related to the chosen discretization, i.e., the values of L
and P . To compare the influence of the acquisition function choice on overall runtime we evaluate
it in the within-model comparison case. Table 10 shows the results for medium complexity. For
comparison, we also include the runtime of our baselines. Additionally, Figure 26 shows the average
runtime per iteration.

Our proposed approximation of LES requires roughly 10 times the wall-clock time compared to
TuRBO, with an average of 17 seconds per iteration to select the next query. Notably, BoTorch’s
logEI has a similar runtime.

As a caveat, runtime depends strongly on several factors, including settings for acquisition function
optimization. We used the default configurations from BoTorch tutorials for all baselines and did not
optimize any baseline or our implementation for speed.
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Table 10: Average computation time per iteration of LES-ADAM for the medium complexity within
model comparison, i.e., without GP hyperparameter optimization. Results are given in seconds and
are averaged over 20 seeds.

d = 5 d = 10 d = 20 d = 30 d = 50

LES: L = 250, P = 8 (default) 11.4 12.6 16.5 17.1 17.6
LES: L = 250, P = 4 10.6 11.7 14.0 14.3 15.4
LES: L = 250, P = 16 13.8 16.6 24.5 24.1 25.3
LES: L = 20, P = 8 3.5 3.8 4.0 4.2 4.3
MES 8.2 2.1 5.1 1.8 1.3
TuRBO 0.4 0.4 1.2 1.4 1.4
logEI 0.3 0.5 15.5 23.0 24.0
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Figure 26: Evaluating LES with different local optimizers (Out-Of-Model Comparison on GP-
Samples - low complexity)

E.6 COMPARING DIFFERENT ITERATIVE OPTIMIZERS

If not stated otherwise, the ADAM optimizer was employed as the local optimization algorithm
throughout this work. However, the general framework is applicable to any kind of iterative optimiza-
tion. Therefore, we evaluated the impact of different iterative optimization schemes on the overall
performance. We use the out of model comparison GP sample scenarios (see Sec. 6.2).

ADAM For Adam we use 500 local optimization steps a step size of 0.002, and default Keras
momentum hyperparameter (β1 = 0.9, β2 = 0.999). As an alternative, we also evaluate a LES-
ADAM variant with less aggressive gradient smoothing (β1 = 0.5). Instead of conditioning on the
gradient observations, we condition on function values. We show in Appx. E.5 that this simplification
is justified empirically.

Gradient Descent For Gradient Descent (GD) we also use 500 local optimization steps and a
smaller learning rate of 0.0001. Preliminary results with a larger step size (the same as in ADAM)
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has produced oscillating behavior. Similarly to ADAM we condition on function values instead of
gradient observations.

CMAES As a third optimizer we choose CMAES and run it for 50 steps. We approximate the
descent sequence by the mean of the parameter distribution. The σ hyperparameter is set to 0.5 and
similar to ADAM and GD we warm-start CMAES from the best solution found so far. Due to the
high computational cost of running CMAES on multiple GP samples in each iteration, we evaluate it
only in the 5-d and 10-d case and use a coarse discretization. Note that CMAES is a zeroth-order
optimization algorithm and therefore does not require the GP-samples to be differentiable.

Figures 27 to 29 show the results for low, medium, and high complexity. LES-CMAES performs
better than the other algorithms for d = 5 and low problem complexity. This may hint to a more
global search behavior and may indicate that the optimizer’s properties on the individual samples
may carry over to the respective LES version. However, already at d = 10 or higher complexity LES-
CMAES falls behind. This can be attributed to the worse performing global optimization or to the
descent sequence approximation using the mean of the population not being accurate enough. Both
LES-ADAM version perform similar in all complexities. LES-GD performs worse than LES-ADAM
in the low-complexity case. However, in the medium and high complexity cases LES-GD performs
best.

Overall, results highlight that investigating various local optimizers for different model properties is
an interesting direction for future research.
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Figure 27: Evaluating LES with different local optimizers (Out-Of-Model Comparison on GP-
Samples - low complexity)
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LES-ADAM: L = 250, P = 8 (default)
LES-ADAM (beta_1 = 0.5): L = 250, P = 8
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LES-CMAES: L = 20, P = 8

Figure 28: Evaluating LES with different local optimizers (Out-Of-Model Comparison on GP-
Samples - medium complexity)
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Figure 29: Evaluating LES with different local optimizers (Out-Of-Model Comparison on GP-
Samples - high complexity)
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F STOPPING CRITERION

F.1 METHOD

In practical applications, it is essential to determine when to terminate the optimization. In the
previous section, we performed local optimization on multiple posterior samples. This enables us
to adopt the Monte-Carlo-based stopping criterion proposed by (Wilson, 2024) in a local setting
without incurring significant additional cost, as we can directly reuse the samples generated during
the acquisition step. To achieve this we define a new notion of local regret:

Definition 1 (Local simple regret). Given the posterior GP ft at BO step t, the local simple regret
with respect to the model-based local optimum f⋆

t of a candidate point x ∈ X is

rOt (x) = f⋆
t − ft(x). (31)

Local regret formalizes how close we are to the best value reachable from the user’s initial guess by
the optimizer O. This is attractive when the global optimum is irrelevant or unattainable in practice.
We stop the optimization if the current solution is within ε of the optimum with probability δ, i.e.,
when it is (ε, δ) locally optimal:

Definition 2 ((ε, δ)-local optimality). Fix tolerances ε > 0 and δ ∈ (0, 1). A point x observed up to
step t is (ε, δ)-locally-optimal (with respect to x0 and optimizer O) if

Pr
[
rOt (x) ≤ ε

]
≥ 1− δ. (32)

We estimate the probability of the regret being smaller than epsilon using Monte-Carlo sampling:

Pr (rt ≤ ϵ) ≈ 1

L

L∑
l=1

1
(
rlt ≤ ϵ

)
=

1

L

L∑
l=1

1
(
f l(x̂∗

t )− f l(xl,∗) ≤ ϵ
)
. (33)

We follow (Wilson, 2024) and design a probabilistic stopping rule that leads to bounded local regret
(31) with high (within-model) probability. Next, we restate the formal results from (Wilson, 2024)
for LES.

Assumption 1.

• The search space is the unit hyper-cube X = [0, 1]D.
• There exists a constant Lk > 0 so that ∀x, x′ ∈ X ,

∣∣k(x, x)− k(x, x′)
∣∣ ≤ Lk ∥x− x′∥∞.

• The sequence of query locations (xt) is almost surely dense in X .

We show in Appx. H.1 that LES fulfills the third assumption for specific kernels.

Theorem 1 (Proposition 2, (Wilson, 2024)). Assume 1. Given a risk tolerance δ > 0, define
non-zero probabilities δmod and δest such that δmod + δest ≤ δ and let

(
δttest

)
t≥0

be a positive
sequence so that

∑∞
t=0 δ

t
test ≤ δest. For any regret bound ε > 0, if the Monte-Carlo test of (Wilson,

2024, Alg. 2) is run at each step t ∈ N0 with tolerance δttest to decide whether a point satisfies

Pr
[
rOt (x) ≤ ε

]
≥ 1 − δmod, then LES almost surely terminates and returns a solution with

probabilistic regret that satisfies Definition 2.

F.2 RESULTS

The stopping times (Sec. F.1) for LES on the out-of-model comparison with low model complexity
are in Tab. 11. For d ≥ 30 fewer than half the runs stop within the budget of 400 evaluations. When
compared to the results in (Wilson, 2024) these results show that the local optimization needs fewer
samples before stopping. These results reinforce the intuition that reaching a local optimum is easier
than reaching a global one – even in black-box optimization problems.
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Table 11: Median stopping times with decision every 25 queries (δ = 0.05) - out of model comparison.

ε d = 5 d = 10 d = 20

0.1 50 150 325

0.01 50 175 350

Table 12 summarizes the results for the stopping rule in the within model comparison case with low
problem complexity. For comparison, (Wilson, 2024) reported an average stopping time after 100
queries for the 4-d within-model case. Note that we choose the results of (Wilson, 2024) for the low
noise case, since it is most fitting to our experiments. The parameters reported in Table 2 lead to a
BO run being stopped after kmax = 248 out of L = 250 samples show local regret smaller than ε.

Table 12: Number of queries until half of the runs are stopped (δ = 0.05). Decision every 25 queries
- within model comparison.

ε d = 5 d = 10 d = 20

0.1 50 150 275

0.01 50 175 300

G ALTERNATIVE INFORMATION-THEORETIC LOCAL ACQUISITION
FUNCTIONS

We propose two additional information-theoretic local acquisition functions that are closely related
to the local entropy search paradigm: Local Thompson sampling and local-optimum LES. Both are
conceptually more straight forward and easier to compute than LES but perform worse.

G.1 LOCAL THOMPSON SAMPLING

In local Thompson sampling (L-TS) we sample only one path from the GP, which we then minimize
locally using the ADAM optimizer and query at its minimum. This method proves to be significantly
more computationally efficient than the entropy search approach, as it avoids the need for the relatively
costly Monte Carlo approximation outlined in equation (16).

We assess local Thompson sampling to better understand the benefits of considering the distribution
over descent sequences at each iteration, as implemented in LES. We expect that L-TS may not
perform as well as LES, since L-TS optimizes a single descent sequence in a greedy manner. In
contrast, LES recognizes that multiple descent sequences exist and seeks to maximize information
gain across all of them.

G.2 CONDITIONING ONLY ON THE LOCAL OPTIMUM

In Appx. B.1, we have shown that directly conditioning on the local optimum is not possible in
general. That is, we cannot condition a GP on O∗,l

x0
in

Ef

[
H
[
p
(
y(x) | Dt, O

∗
x0

)]]
≈ 1

L

L∑
l=1

H
[
p
(
y(x) | Dt, O

∗,l
x0

)]
. (34)

We cannot encode that the local optimum at location x∗,l was reached through a local optimizer from
point x0. What we can encode is that x∗,l is a local optimum defined by a gradient of zero and a
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positive (known) Hessian:

1

L

L∑
l=1

H
[
p
(
y(x) | Dt, O

,l
x0

)]
≈ 1

L

L∑
l=1

H
[
p
(
y(x) | Dt ∪ (x∗,l, f l(x∗,l)), (x∗,l,∇f l(x∗,l)), (x∗,l,∆f l(x∗,l)))

)] (35)

Note that the exact values of the observations again are irrelevant for the conditional entropy. This
gives rise to the LES-ADAM Opt. Cond. acquisition function.

We evaluate LES-ADAM Opt. Cond. because we aim to demonstrate that the sequence leading to the
local optima contains valuable information; merely conditioning on the local optimum—the final
point of this descent sequence—is insufficient.

G.3 RESULTS

Figure 30 shows that LES-ADAM outperforms the other information-theoretic approaches, with
the performance gap widening in higher dimensions. The experiments are conducted in the out-of-
model GP sample scenario with medium complexity (see Sec. 6.2). Overall, the results indicate that
considering multiple descent sequences per iteration, as well as the entire descent sequence rather
than only the distribution of local optima, improves performance.
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Figure 30: Median, 25-, and 75-percent quantiles, out-Of-model comparison on GP-Samples -
medium complexity).
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H THEORETICAL RESULTS

This section contains some theoretical results in support of the main claims of the paper. We use the
notational shorthand kt(·, ·) = k(·, · | Dt).

H.1 LES QUERIES ARE DENSE

Lemma 1 (Density of LES maximizers). Assume X = [0, 1]D and let kt : X × X → R be a
continuous, positive-definite kernel that admits the no-empty-ball property (Wilson, 2024, Definition
3), ∀x,x′ ̸∈ Dt k(x,x

′) > 0, and the descent sequence (zn) contains at least one z ̸∈ Dt almost
surely. Fix a noise variance γ2 ≥ 0 and denote by kt, σ2

t the posterior covariance and predictive
variance after t evaluations. Then, for every t ∈ N and all x,x′ ∈ X ,

kt(x,x) > kt(x
′,x′) = 0 =⇒ αLES,t(x) > αLES,t(x

′) (36)

Consequently the sequence (xt) of maximizers xt ∈ argmaxx∈X αLES,t(x) form a dense sequence
in X almost surely.

Proof. If kt(x′,x′) = 0, positive-semidefiniteness implies kt(x′, z) = 0 for every z ∈ X . Hence,
σ2
t (x

′) = σ2
t |XDS

(x′) = γ2 for every Monte-Carlo draw XDS, so αLES,t(x
′) = 0.

Take x with kt(x,x) > 0. Because the the descent sequence (zn) contains at least one z ̸∈ Dt

almost surely the posterior covariance is not zero the covariance vector kt(x, XDS) is non-zero. The
GP variance update gives

σ2
t |XDS

(x) = σ2
t (x)− kt(x, XDS)

[
Kt(XDS, XDS) + γ2I

]−1
kt(XDS,x), (37)

and the quadratic form on the right is strictly positive, hence σ2
t |XDS

(x) < σ2
t (x). Therefore each

logarithm inside αLES,t(x) is positive and their expectation is strictly positive αLES,t(x) > 0.

Density of the query points now follow from (Wilson, 2024, Proposition 4).

H.2 GRADIENT DESCENT PATHS UNDER A GP PRIOR WITH A SQUARED EXPONENTIAL
KERNEL

In this section we zoom in on a specific instantiation of LES that samples candidate points by running
gradient-descent (8) on functions drawn from a squared-exponential (SE) GP prior. This section
explains why that particular pairing is a sensible starting point. We show, with a suitably step size, a
gradient descent sequence starting from an initial design can reach any subset of the domain with
positive prior probability. In addition, for any finite horizon the distribution of such sequences has full
support on the corresponding product space and can therefore realize any finite sequence. Importantly,
these reachability and support guarantees ensure that no part of the search space is ruled out by
construction in this setting.
Assumption 2 (Design domain). The search space X ⊂ Rd is non-empty, compact, convex, and has
non-empty interior.

We formalize the assumptions as follows.
Assumption 3 (Step size). Let X ⊂ RD be compact. For every realized objective f ∈ C1(X ) denote
by L(f) the global Lipschitz constant of its gradient. Choose a step size η(f) > 0 satisfying

η(f)L(f) < 1.

With this choice the gradient–descent map Φf (x) = x− η(f)∇f(x) is a strict contraction on X .
Assumption 4 (Squared–exponential prior). The objective is a random draw from p(f) ∼
GP

(
0, kSE

)
, so that f ∈ C∞(X ) almost surely and the associated RKHS is dense in C∞(X )

with the C1-norm.
Lemma 2 (Open–set reachability of GD paths). Let Assumption 2, 3, 4 hold. Define the gradi-
ent–descent iterates as in (8) so that

z0 ∈ X , zn+1 = zn − η∇f(zn), n ≥ 0. (38)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Then for every non-empty open set U ⊂ X

Pr
f

[
(zn) ∩ U ̸= ∅

]
> 0. (39)

Proof. Fix U ̸= ∅ open and choose u ∈ U and a horizon m ∈ N.

Since the map Φf (z) = z − η∇f(z) is a contraction (Assumption 3) one can constructs a smooth
function f⋆ ∈ C∞(X ) such that

zm(f⋆) = u, ∥∇f⋆∥Lip ≤ L⋆. (40)

Since the RKHS HkSE of the squared–exponential kernel is dense in C∞(X ), every C1–ball
Bε(f

⋆) = {f : ∥f − f⋆∥C1 < ε} contains at least one element of HkSE
. By the Gaussian–measure

support theorem (Vaart, van der & Zanten, van, 2008, Lem. 5.1), every open set that intersects HkSE

has positive prior probability, hence

Pr
[
∥f − f⋆∥C1 < ε

]
> 0. (41)

The mapping C1(X ) ∋ g 7−→ Φ
(m)
g (x0) is continuous in the C1-norm when ηL⋆ < 1. Hence there

exists ε > 0 such that ∥f − f⋆∥C1 < ε =⇒ xm(f) ∈ U.

Combining this with (41) gives Pr
[
xm(f) ∈ U

]
> 0, which implies (39).

Corollary 1 (Full support of finite GD paths). Fix an integer horizon N ≥ 0 and define

O : C1(X ) −→ XN+1, O(f) := (x0,x1, . . . ,xN ), (42)

where (xt) are obtained by gradient descent. Under Assumptions 2–4, the push-forward measure
O♯

[
GP (0, kSE)

]
has full support on XN+1; i.e., for every open cylinder set U0×· · ·×UN ⊂ XN+1

with all Ut open and non-empty,

Pr
f

[
(x0, . . . ,xN ) ∈ U0 × · · · × UN

]
> 0. (43)

Proof. Proceed inductively on N .

Base case N = 0: trivial because x0 is fixed.

Inductive step: Assume the claim holds up to horizon N − 1. Given open U0, . . . , UN , the induction
hypothesis provides a function f⋆ and ε > 0 such that ∥f − f⋆∥C1 < ε implies (x0, . . . ,xN−1) ∈
U0 × · · · × UN−1. Apply Lemma 2 with starting point xN−1(f

⋆) and target open set UN to obtain
a further refinement ε′. Choose δ = min{ε, ε′} and use the support property (41) to conclude the
probability is positive.

As long as kt(x,x) > 0 ∀x ∈ X the same applies to the posterior. The proofs are identical because
conditioning on finitely many points does not change the RKHS nor the support of the measure; it
only shifts the mean.

In summary, Lemmas 2 and 1 together show that, in the SE-prior/GD instantiation of LES, the
candidate-generation mechanism is fully expressive: no open region is inaccessible and no finite GD
sequence is excluded.
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