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Abstract
Machine translation systems often struggle001
with maintaining quality in low-resource sce-002
narios, due to the lack of sufficient parallel003
data. We present a novel learning framework004
that continuously (potentially life-long) im-005
proves Large Language Model (LLM)’s per-006
formance for low-resource language machine007
translation through self-optimization. Our sys-008
tem comprises three key components: an In-009
struction Optimizer that dynamically refines010
translation prompts based on failure cases, a011
Demonstration Manager that intelligently se-012
lects relevant examples for in-context learning,013
and a Quality Estimator using multiple met-014
rics that evaluates and arranges translations for015
the Instruction Optimizer and the Demonstra-016
tion Manager. The resulting system, called017
DAIL-translation, boosts the performance in018
low-resource machine translation of moderate-019
sized LLMs (∼7B), larger-scale LLMs (∼70B)020
and OpenAI model series, with only 1k mono-021
lingual English sentences as a starting point.022

1 Introduction023

LLMs have demonstrated significant potential in024

the field of natural language processing (Yang025

et al., 2024b; OpenAI, 2023; Dubey et al., 2024).026

Some studies (Enis and Hopkins, 2024; Robin-027

son et al., 2023; Zhu et al., 2024a) have shown028

that these models perform well in neural machine029

translation (NMT) tasks for high-resource lan-030

guages but struggle with low-resource languages.031

Although most languages spoken worldwide to-032

day are low-resource languages, many languages033

within this category receive limited attention and034

resources (Joulin et al., 2017; Costa-jussà et al.,035

2022). Additionally, the data for low-resource lan-036

guages is often scarce and difficult to find online.037

Therefore, machine translation for low-resource038

languages continues to be a challenging problem.039

Effective methods for enhancing LLM capabil-040

ities primarily include: (1) Post-training meth-041

ods such as Supervised Fine-Tuning (SFT), Direct 042

Preference Optimization (DPO) (Rafailov et al., 043

2023) have demonstrated potential in improving 044

model performance. However, as indicated by 045

(Vieira et al., 2024), SFT can negatively impact 046

model performance in machine translation tasks 047

when training data is limited. While Contrastive 048

Preference Optimization (CPO) (Xu et al., 2024) 049

achieves great results in machine translation, its 050

effectiveness is mainly verified on high-resource 051

languages. (2) Prompt Engineering addresses the 052

prompt-sensitive nature of LLMs, which signif- 053

icantly affects interaction outcomes. Neverthe- 054

less, automated prompt engineering methods (Yang 055

et al., 2024c; Wang et al., 2024) often require per- 056

formance of historical prompts as feedback signals, 057

necessitating frequent and costly calls to LLMs. (3) 058

In-Context Learning (ICL), by integrating exam- 059

ples into prompts, can enhance a model’s ability 060

to understand semantics and formats. However, 061

according to (Court and Elsner, 2024), LLMs ex- 062

hibit poor retrieval performance for low-resource 063

languages, particularly when translating from low- 064

resource languages to English. This issue arises 065

due to difficulties in obtaining accurate text embed- 066

dings due to insufficient training data, leading to 067

failures in similarity-based retrieval. 068

To tackle the challenges and better apply these 069

effective methods to low-resource language trans- 070

lation, we have designed the DAIL-translation sys- 071

tem. Our system is structured around two databases 072

and three key components. One database stores 073

accurate translations, denoted as {(gq, gt)}, facili- 074

tating ICL sampling; whereas the other retains po- 075

tentially wrong translations, denoted as {(bq, bt)}, 076

which aids in prompt optimization. The Instruc- 077

tion Optimizer dynamically refines translation 078

prompts by analyzing stored failure cases, thus 079

reducing the dependency on costly, frequent inter- 080

actions with LLMs for automated prompt engineer- 081

ing. Our research also indicates that the length ratio 082
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between input and output in high-quality transla-083

tion pairs aligns with a language-specific Gaussian084

distribution. Consequently, when selecting ICL ex-085

amples, the Demonstration Manager draws from086

this length ratio distribution to enhance format com-087

prehension, complementing traditional similarity-088

based approaches for better semantic capturing. Af-089

ter translation, the Quality Estimator evaluates the090

output quality, deciding which database the trans-091

lation should populate, thereby expanding the ICL092

search space for the Demonstration Manager or pro-093

viding more bad cases for the Instruction Optimizer.094

Beyond length ratio, we have also identified that the095

perplexity ratio between input and output should096

be constrained within a certain range. Therefore,097

we employ both length ratio and perplexity as indi-098

cators for selection. Through these interconnected099

components, DAIL-translation demonstrates a ro-100

bust, self-improving mechanism that significantly101

boosts the performance of LLMs across different102

scales, including moderate-sized models (∼7B pa-103

rameters), larger models (∼70B parameters), and104

those within the OpenAI series.105

Our contributions are:106

• We propose DAIL-translation, a continuous self-107

improving system to enhance the translation ability108

of LLMs in low-resource languages without train-109

ing and using only monolingual English data.110

• With the help of past translations, we build an111

Instruction Optimizer that dynamically refines112

prompts for better translation quality.113

• We adopt both perplexity and length ratios as cru-114

cial indicators for ICL example selection, contribut-115

ing to the system’s self-improvement mechanism.116

• Our experiments show superior performance of the117

system on 5 low-resource languages across differ-118

ent LLM scales, demonstrating its versatility.119

2 Related Work120

LLMs have demonstrated remarkable capabilities121

across a range of natural language processing tasks,122

showcasing their potential to effectively tackle123

downstream machine translation tasks. Notably,124

these LLMs can achieve impressive performance125

with minimal or even no task-specific fine-tuning, a126

feature particularly advantageous for low-resource127

languages (Bawden and Yvon, 2023; Jiao et al.,128

2023). This capability is frequently attributed to129

advanced techniques such as prompt design and130

in-context learning.131

Effective communication with AI systems re- 132

quires practice and understanding of optimal inter- 133

action strategies. As such, automatic prompt opti- 134

mization (Yang et al., 2024c; Wang et al., 2024) has 135

emerged as an active area of research, with machine 136

translation being no exception. Recent studies high- 137

light significant variations in zero-shot prompting 138

performance based on the template used (Zhang 139

et al., 2023a). Additionally, it has been discovered 140

that the stylistic elements of a prompt influences 141

the quality of translation outputs (Jiao et al., 2023). 142

Turning to the field of in-context learning, the 143

strategy for selecting demonstration examples 144

plays a crucial role in performance outcomes. Re- 145

search indicates that employing diverse strategies 146

for prompt example selection can lead to varying 147

results (Zhang et al., 2023a). Furthermore, some 148

scholars argue that the intrinsic quality of an ex- 149

ample often outweighs its proximity to the cur- 150

rent source sentence in terms of importance (Vi- 151

lar et al., 2023). Few-shot demonstrations have 152

been shown to influence the output in terms of lan- 153

guage variety and formality (Garcia et al., 2023). 154

Efficient augmentation of multiple ICL prompt in- 155

puts has been found to enhance the accuracy and 156

confidence of LLM predictions (Yao et al., 2023). 157

Moreover, the accuracy of translations can vary 158

significantly based on the examples included in 159

the prompt (Merx et al., 2024): for instance, one- 160

shot task-level example improves translation qual- 161

ity (Agrawal et al., 2023), and providing LLMs 162

with specific examples or relevant contextual infor- 163

mation about the translation task substantially im- 164

proves their performance (Jiang and Zhang, 2024). 165

3 DAIL-translation Approach 166

Since we do not have enough data to fine-tune an 167

LLM, DAIL-translation enhances translation capa- 168

bilities through the integration of three intercon- 169

nected components (Figure 1). For each language, 170

the system maintains two databases—one for high- 171

quality translations and another for potentially in- 172

correct translations—alongside an instruction op- 173

timizer, a demonstration manager, and a quality 174

estimator. The translation process for a single ut- 175

terance involves four steps: (1) for a given query Q 176

to be translated, we first check if there are enough 177

number of wrong translations |{(bq, bt)}| available. 178

If so, the instruction optimizer refines the current 179

translation instruction I to generate an improved 180

instruction I ′; otherwise, this step is bypassed. (2) 181
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Figure 1: System architecture of our translation framework consisting of three main components: (1) Instruction Op-
timizer dynamically refines translation prompts based on failure cases, (2) Demonstration Manager that intelligently
retrieves relevant examples through similarity and length-based matching, and (3) Quality Estimator that evaluates
translation quality using perplexity-based, length-based, and reference-free metrics. The bottom timeline illustrates
the system’s life-long learning capability, where current translation contributes to continuous improvement - wrong
translations set aids in prompt optimization, while successful ones facilitate ICL sampling in the future.

Demonstration Manager intelligently retrieves rele-182

vant examples D from {(gq, gt)} through a combi-183

nation of similarity-based search and length-ratio-184

based sampling to assist with the translation; (3)185

LLM takes Q, I ′ and D as inputs to produce trans-186

lation output T ; (4) Quality estimator evaluates the187

output quality of T given Q, and determines which188

database the translation should be stored into.189

3.1 Instruction Optimizer190

Large Language Models (LLMs) have been shown191

to be highly sensitive to the prompt format (Zhao192

et al., 2021). Notably, semantically similar prompts193

can yield drastically different performance out-194

comes (Kojima et al., 2022; Zhou et al., 2023;195

Zhang et al., 2023b). In some instances, optimized196

prompts may include several uninterpretable to-197

kens (Wen et al., 2023), making it challenging198

for humans to discover and construct such effec-199

tive prompts manually. Recent work (Yang et al.,200

2024c; Wang et al., 2024) has shown that LLMs can201

be utilized to optimize instruction, but this often202

involves repeatedly scoring the performance of his-203

torical prompts on the same dataset, which is time-204

consuming and costly. To address this issue, we205

propose dynamically refining translation prompts206

based on past failure cases. This approach is analo-207

gous to a self-reflective process (Shinn et al., 2023;208

Ji et al., 2023), where errors serve as the foundation209

for future enhancements.210

The optimization process is conducted in a black-211

box manner, making it applicable to both open-212

source models and LLMs that are accessible only213

through API calls. In each optimization step, we 214

provide the optimizer LLM with the instruction 215

trajectory as contextual hints, current {(bq, bt)} as 216

semantic gradients, and a description of the opti- 217

mization goal as well as how to utilize the provided 218

information. It is important to note that the poten- 219

tially wrong translations are removed following the 220

completion of the optimization step. The prompt 221

templates used for this process can be diverse, a 222

sample of which is detailed in Appendix A. 223

3.2 Demonstration Manager 224

In-context parallel examples enhance machine 225

translation by providing the model with knowledge 226

of the task and the desired output format (Agrawal 227

et al., 2023). It is well-established that selecting 228

ICL examples based on cosine similarity outper- 229

forms random selection because it provides more 230

contextually relevance to the previously unseen 231

source sentence. However, in translation tasks in- 232

volving low-resource languages, particularly when 233

they are the source language, identifying multi- 234

ple highly similar examples becomes challenging. 235

This difficulty can stem from: (1) the limited avail- 236

ability of the parallel data from which to retrieve 237

examples; and (2) the relatively weak tokenizer and 238

embedding models for low-resource languages. 239

With the aim of identifying an efficient solution 240

that complements traditional similarity-based meth- 241

ods, we draw inspiration from the Gale-Church 242

alignment algorithm (Gale and Church, 1991; Liu 243

et al., 2024), which highlights that the character- 244

level length ratio (length ratio for short in following 245
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Figure 2: Fitted Gaussian distribution of length ratios for three different low-resource languages.

Figure 3: Fitted distribution of Perplexity Ratios for three different low-resource languages.

texts) between source and target sentences typically246

varies around a fixed value, generally following247

a Gaussian distribution. Our analysis across ten248

datasets reveals that the length ratio between low-249

resource and English pairs conforms to a language-250

specific Gaussian distribution. This insight implies251

that if the parameter (i.e. mean and standard de-252

viations) of this distribution can be determined,253

the desired target sentence length can be estimated254

from the source sentence. Accordingly, when se-255

lecting ICL examples, the Demonstration Manager256

utilizes this length ratio distribution to enhance the257

model’s comprehension of the output format.258

Parameter Estimation. The parameters of the259

distribution are determined by fitting them to260

{(gq, gt)}. This set can be cold-started using261

pseudo parallel examples (Zhang et al., 2023a),262

where we translate a collection of English sen-263

tences into low-resource languages via zero-shot264

prompting. Specifically, (1) We uniformly sam-265

ple 1,000 English sentences from the dataset pro-266

vided by (Maillard et al., 2023), who extracted267

sentences from Wikimedia’s List of articles ev-268

ery Wikipedia should have. (2) We translate them269

into low-resource languages with GPT-4o. This270

method simulates the common scenario where low-271

resource text is scarce, whereas English monolin-272

gual corpora are abundant and readily accessible.273

Since assumed distribution is Gaussian, length ra-274

tios that deviate beyond 3σ are considered outliers275

and removed for LLM-generated translation. The 276

resulting distribution closely aligns with that of 277

human translations. Consequently, we utilize data 278

translated by LLMs as the initial {(gq, gt)}. The 279

distribution for different languages are illustrated in 280

Figure 2. For each query, we sample one example 281

from {(gq, gt)} according to the fitted distribution. 282

3.3 Quality Estimator 283

After each translation, the query-translation pair 284

denoted as (Q,T ) is allocated to one of {(bq, bt)} 285

or {(gq, gt)}. The assignment is determined by 286

the Quality estimator, which evaluates the output 287

quality to ascertain its appropriate position. This 288

mechanism not only expands the ICL search space 289

for the Demonstration Manager but also providing 290

more bad cases for the Instruction Optimizer. 291

Like mentioned before, the length ratio could 292

be served as crucial indicators for selection. If 293

the length ratio is in-distribution, we arrange them 294

to {(gq, gt)}, otherwise to {(bq, bt)}. Besides we 295

also discover that the perplexity ratio between Q 296

and T should be constrained within a certain range. 297

Perplexity of a sentence can be defined as: 298

Perplexity(x) = exp(
1

N

N∑
i=1

− logP (xi|x<i)),

(1) 299

where x is a sequence of tokens of length N . 300

In contrast to the approach proposed by (Liu 301
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Table 1: BLEU and chrF++ scores for five low-resource languages (xxx-eng). Bold numbers denote the highest
scores across all systems. Statistical significance compared to the second-best system is indicated by dark blue (p <
0.05) and dark yellow (p >= 0.05), computed using paired bootstrap resampling (Koehn, 2004). Note that for token
efficiency, we only compare Zero-shot GPT-4o with our model.

LLM Method
fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva

BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑

Qwen-27B

Zero-shot 17.7 43.0 21.4 46.5 20.0 44.5 12.2 37.7 17.0 43.7
CoT 16.5 40.8 18.5 42.7 19.1 43.4 11.3 35.7 15.2 41.1
ICL 22.8 47.5 25.7 50.5 25.0 49.1 12.6 38.3 17.0 43.6

CoT & ICL 23.1 47.8 25.9 50.7 25.4 49.5 14.1 39.9 19.7 45.9
Ours 23.3 48.0 26.3 51.0 25.5 49.6 14.7 40.7 20.1 46.5

p-value 0.007 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Qwen-272B

Zero-shot 26.7 50.5 28.5 52.1 26.9 50.2 16.3 40.5 24.3 48.8
CoT 24.2 47.2 24.9 46.7 23.7 45.6 13.1 33.9 22.4 45.5
ICL 33.3 56.9 37.0 59.9 34.3 57.6 22.0 47.6 29.9 54.6

CoT & ICL 32.8 56.4 36.5 59.4 34.2 57.6 22.3 47.7 30.1 54.6
Ours 34.5 58.4 38.0 61.0 35.3 58.7 23.5 49.4 31.0 56.1

p-value 0.000 0.070 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000

LLAMA-38B

Zero-shot 24.7 49.6 26.4 51.1 23.2 47.6 15.5 42.0 18.0 45.1
CoT 23.9 48.6 25.3 50.0 21.4 45.9 13.9 39.7 17.0 43.7
ICL 31.7 55.5 32.8 56.4 29.8 54.1 19.1 45.3 23.2 49.5

CoT & ICL 31.6 55.5 32.8 56.4 29.5 53.7 19.1 45.3 23.2 49.5
Ours 32.2 56.0 33.6 57.2 30.5 54.8 19.9 46.2 23.8 49.9

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.177 0.090 0.041

LLAMA-370B

Zero-shot 32.8 57.3 33.7 57.7 27.5 51.4 19.6 46.5 25.0 51.6
CoT 31.8 56.4 32.8 56.9 19.4 40.3 18.9 45.6 24.3 50.9
ICL 39.9 62.8 41.1 63.3 37.1 60.0 25.0 51.2 32.7 57.9

CoT & ICL 39.9 62.8 41.0 63.3 35.9 58.9 25.1 51.4 33.0 58.4
Ours 40.1 63.1 41.4 63.6 38.0 60.8 25.7 51.9 33.9 59.1

p-value 0.170 0.184 0.043 0.002 0.026 0.378 0.003 0.292 0.001 0.203

GPT-4o
Zero-shot 41.2 64.2 43.1 65.4 40.4 63.1 29.5 55.2 42.4 66.2

Ours 44.1 66.1 47.0 68.1 43.7 65.6 32.1 57.1 46.0 68.8

et al., 2024), who model the perplexity ratio as fol-302

lowing a Gaussian distribution, our analysis reveals303

a different understanding of this model-specific304

metric. Experimenting on Llama3-8B (Dubey et al.,305

2024), we observed that the distribution of perplex-306

ity ratios exhibits a severely left-skewed Gaussian307

shape, as illustrated in Figure 3. This discovery has308

one important implication: The observed distribu-309

tion provides a potential upper bound on expected310

perplexity ratio values. This upper limit serves as a311

valuable constraint in selection mechanisms, allow-312

ing for more informed decision-making processes313

when evaluating model outputs. Hence it is impor-314

tant to emphasize that while our findings challenge315

the assumption of a standard Gaussian distribution,316

they do not diminish the utility of perplexity ratios317

as indicators for selection tasks. On the contrary,318

the understanding enhances their potential as dis-319

criminative features by providing a more accurate320

representation of their behavior. The combination321

of these two metrics allows for a more robust selec-322

tion mechanism that can account for both content323

and form variations.324

4 Experiments 325

In this section, we present analysis of results us- 326

ing automatic evaluation metrics against 5 low- 327

resource languages from the FLORES-200 bench- 328

mark (Costa-jussà et al., 2022). 329

4.1 Data and Large Language Models 330

Following (Maillard et al., 2023), we select two 331

distinct clusters of related languages to investigate 332

the efficacy of our proposed approach across differ- 333

ent linguistic families and script systems. The first 334

cluster comprises three languages from the Italic 335

branch (fur_Latn, lij_Latn, lmo_Latn), written 336

in Latin script; The second cluster focuses on four 337

languages from the Indo-Aryan branch written in 338

Devanagari script (bho_Deva, hne_Deva). Each 339

language dataset has 1012 samples. Our experimen- 340

tal design adopts an English-centric approach, a 341

common paradigm in machine translation research 342

that allows for systematic evaluation and compari- 343

son across diverse language pairs. Specifically, we 344

focus on two primary translation directions: (1) 345
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Table 2: BLEU and chrF++ scores for five low-resource languages (eng-xxx). Bold numbers denote the highest
scores across all systems. Statistical significance compared to the second-best system is indicated by dark blue (p <
0.05) and dark yellow (p >= 0.05), computed using paired bootstrap resampling (Koehn, 2004). Note that for token
efficiency, we only compare Zero-shot GPT-4o with our model.

LLM Method
fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva

BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑ BLEU↑ chrF++↑

Qwen-27B

Zero-shot 2.7 24.3 1.9 23.0 1.7 18.4 2.3 20.1 3.9 23.9
CoT 3.0 25.4 2.3 24.0 1.9 19.0 2.7 20.7 4.0 24.5
ICL 3.9 24.5 3.4 27.6 3.3 21.7 3.2 20.3 4.8 26.4

CoT & ICL 3.3 22.9 4.1 28.9 3.1 21.2 3.3 20.4 5.0 26.6
Ours 5.0 29.0 4.1 29.2 3.8 25.1 3.6 23.1 5.1 26.8

p-value 0.000 0.000 0.000 0.000 0.019 0.000 0.113 0.000 0.000 0.028

Qwen-272B

Zero-shot 3.8 27.9 3.8 28.4 4.1 27.1 4.7 25.3 5.6 27.3
CoT 3.8 27.6 3.7 28.0 4.2 26.4 4.0 21.3 5.3 24.2
ICL 7.0 30.3 5.1 30.2 4.2 24.9 6.0 27.6 7.6 30.1

CoT & ICL 6.2 27.8 5.3 30.5 3.7 23.1 6.1 27.5 7.6 30.2
Ours 8.1 34.1 5.4 30.9 5.1 28.9 6.8 29.4 8.8 33.8

p-value 0.000 0.455 0.008 0.000 0.014 0.001 0.060 0.102 0.000 0.000

LLAMA-38B

Zero-shot 6.1 32.3 4.0 28.1 3.2 24.7 4.5 26.0 5.3 28.9
CoT 6.0 32.2 4.0 27.2 3.2 23.8 4.5 26.0 5.6 29.2
ICL 9.3 32.8 6.5 31.5 4.0 22.6 4.8 23.4 6.9 28.5

CoT & ICL 9.6 33.1 6.9 32.0 3.4 20.4 5.1 24.1 7.9 32.4
Ours 12.0 38.3 7.2 32.8 5.9 29.2 6.9 30.2 8.4 33.3

p-value 0.000 0.000 0.196 0.000 0.000 0.000 0.000 0.000 0.116 0.003

LLAMA-370B

Zero-shot 21.1 48.7 9.6 37.9 6.4 32.8 8.8 34.4 7.1 32.7
CoT 20.8 48.2 9.7 37.9 6.4 32.7 8.7 34.1 7.1 32.6
ICL 22.9 49.5 11.4 40.1 7.0 32.2 11.5 36.7 12.5 40.1

CoT & ICL 23.4 49.4 11.4 40.0 6.9 32.1 11.6 36.6 12.7 40.2
Ours 23.9 50.3 11.6 40.5 7.3 33.6 11.7 37.7 13.6 41.3

p-value 0.000 0.000 0.046 0.000 0.000 0.005 0.001 0.001 0.000 0.000

GPT-4o
Zero-shot 20.6 46.8 8.8 36.7 7.4 34.2 13.7 41.0 13.7 41.3

Ours 23.0 49.6 9.8 38.7 7.6 33.6 13.9 41.0 15.6 44.4

xxx-eng: Translation from any of the selected lan-346

guages to English; (2) eng-xxx: Translation from347

English to any of the selected languages.348

LLMs are specifically selected to represent dif-349

ferent scales, architectures, and training paradigms350

to ensure a broad and representative assessment.351

The models chosen are: (1) LLAMA-38B and352

LLAMA-370B (Dubey et al., 2024); (2) Qwen-27B353

and Qwen-272B (Yang et al., 2024a); (3) GPT-354

4o (Hurst et al., 2024) accessed through API.355

4.2 Baselines and Experimental Setup356

Baselines. We consider the following comparisons:357

• Zero-shot: LLMs are prompted without any addi-358

tional aids or context.359

• Chain-of-thought (Wei et al., 2022) (CoT): LLMs360

are provided with instructions that encourage step-361

by-step reasoning, specifically, "please think step362

by step" is added to the end of the prompt.363

• ICL (Brown et al., 2020): LLMs are prompted with364

exemplars of successful translations. Note that all365

ICL examples are provided at the beginning and 366

remain static throughout the test. 367

• CoT & ICL: Combination of CoT and ICL. 368

Experimental Setup. To ensure efficient and scal- 369

able inference, we deploy our selected LLMs on 370

up to 4 GPUs using vLLM serving system (Kwon 371

et al., 2023). The sampling parameters involves 372

a temperature of 0.0, a maximum output length 373

of 200 tokens, with stop tokens as “< |eot_id| >” 374

and “< |start_header_id| >”. 375

4.3 Results 376

To evaluate the effectiveness of DAIL-translation, 377

we conduct experiments on five language pairs in 378

both xxx-eng and eng-xxx directions across differ- 379

ent LLM architectures. The results are shown in 1 380

and 2. The statistical significance is computed us- 381

ing paired bootstrap resampling (Koehn, 2004): we 382

generate 1,000 virtual test sets by randomly sam- 383

pling sentences with replacement from the orig- 384

inal test collection. The evaluation metrics are 385

computed for each system on these bootstrapped 386
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Table 3: Performance changing when xxx-eng di-
rection prompt is optimized on fur_Latn for gpt-4o.
Shallow blue / Shallow yellow indicates the translation
performance increases / decreases after optimization.

Data
chrF++ BLEU

before after before after

fur_Latn 46.8 48.8 20.6 21.6
lij_Latn 38.7 38.0 8.8 8.6
lmo_Latn 34.2 33.8 7.4 7.4
bho_Deva 41.0 39.0 13.9 12.7
hne_Deva 41.3 37.0 13.7 11.1

samples, enabling us to determine statistical sig-387

nificance between different approaches. We have388

following observations: (1) For both xxx-eng and389

eng-xxx translations, DAIL-translation consistently390

outperforms all baseline approaches. Our method391

consistently achieves the highest BLEU and chrF++392

scores, and is statistically significant compared to393

the second-best systems in most of the cases. This394

suggests that our approach is particularly effective395

at handling the challenges posed by low-resource396

language translation, providing superior translation397

quality compared to existing methods. (2) DAIL-398

translation improves the translation performance in399

the Qwen and LLAMA family across different pa-400

rameter sizes indicates that our method effectively401

enhances the model’s cross-lingual transfer capa-402

bilities regardless of the underlying architecture.403

(3) Comparing CoT (CoT & ICL) with Zero-shot404

(ICL), we reveal an interesting finding: CoT yields405

only marginal improvements or even decreases per-406

formance. While CoT has proven beneficial in407

many NLP tasks, these results suggest it may not408

be well-suited for low-resource translation tasks.409

5 Analyses410

In this section, we present analysis of results from411

the perspective of the instruction optimization pro-412

cess; and investigate if our system enhances the413

model’s ability to understand the length format of414

the translation pairs.415

5.1 Are optimized instructions transferable?416

A crucial part of the system, mentioned in § 3.1, is417

the instruction optimizer. In this section, we would418

like to dive deep into the properties of the optimized419

instructions. Based on Table 3, our findings reveal420

several key observations:421

Table 4: Distribution of English prompts across differ-
ent translation directions and languages. The total 20
prompts consists of the best-5 prompts for 4 open-source
LLMs. For instance, when translating from English to
hne_Deva, none of the prompts are in English.

Data fur_Latn lij_Latn lmo_Latn bho_Deva hne_Deva

xxx-eng 20/20 20/20 20/20 20/20 20/20
eng-xxx 17/20 17/20 20/20 1/20 0/20

Figure 4: Translation prompts in source and target lan-
guage with their respective BLEU scores for English-to-
Chhattisgarhi translation using Llama3-70B.

First, the instruction optimization process im- 422

proves the performance for the source language 423

(fur_Latn), with absolute gains of +2.0 and +1.0 424

points in chrF++ and BLEU scores, respectively. 425

This confirms the effectiveness of our optimization 426

approach within the target domain. 427

However, this improvement may not be trans- 428

ferable. We can observe consistent performance 429

degradation when applying the optimized prompt 430

to other languages, with varying degrees. No- 431

tably, languages sharing the Latin script (lij_Latn, 432

lmo_Latn) show relatively minor degradation (-0.1 433

and -0.55 on average for BLEU and chrF++ scores 434

respectively); In contrast, languages utilizing the 435

Devanagari script (bho_Deva, hne_Deva) demon- 436

strate significant performance drops (-1.4 and -3.15 437

respectively), indicating potential script-specific 438

barriers about prompt optimization. These find- 439

ings have important implications for multilingual 440

prompt optimization strategies. 441

5.2 How to choose the language of prompt? 442

Understanding the optimal prompt language is cru- 443

cial for effective machine translation, especially 444

when dealing with low-resource languages using 445

different scripts. To investigate this, we analyze 446

the language of prompts in our translation setup 447

across different language pairs and directions. Ta- 448

ble 4 shows the number of English prompts out 449

of 20 total prompts for different translation direc- 450

tions, the 20 prompts consists of the best-5 prompts 451
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Figure 5: KL Divergence between Length Ratio Distributions of Ground Truth and Three Methods.

for 4 open-source LLMs. For xxx-eng direction,452

all prompts are consistently in English regardless453

of the source language. However, for eng-xxx di-454

rection, the prompt language depends on the tar-455

get script: languages using Latin script maintain456

English prompts, while languages using Devana-457

gari script require prompts in their respective target458

languages, resulting in very few English prompts.459

This finding is further supported by empirical re-460

sults in Figure 4 where translating to hne_Deva461

achieved better performance (13.6 BLEU) when462

using prompts in Devanagari script compared to En-463

glish prompts (12.5 BLEU), suggesting that match-464

ing the prompt script to the target language is bene-465

ficial for Devanagari script languages.466

5.3 Are length ratios getting better in our467

system?468

To evaluate whether our system improves the han-469

dling of length relationships, we employ KL di-470

vergence to measure how closely the length ratio471

distributions match between different translation472

methods. The experimental results demonstrate473

several notable patterns in KL divergence across474

different language pairs and translation methods:475

(1) The proposed method achieves the lowest KL476

divergence values consistently, followed by ICL,477

while Zero-shot shows the highest divergence. This478

indicates that ICL can enhance the model’s abil-479

ity to understand formats, and select ICL exam-480

ples based on length ratio further improves this481

desired property. (2) Devanagari script languages482

exhibit higher divergence compared to Latin script483

languages, possibly due to greater structural differ-484

ences from English which is also written in Latin.485

(3) We can observe directional asymmetry, where486

eng-xxx translations show slightly higher diver-487

gence than xxx-eng, which is consistent with the488

previous findings, who have shown that current489

LLMs are most effective at machine translation490

when English is the target language (Enis and Hop-491

kins, 2024; Zhu et al., 2024b) (i.e. they are better 492

at xxx-eng translation than eng-xxx translation). 493

6 Conclusion 494

In this paper, we propose DAIL-translation, a sys- 495

tem to improve the translation ability of LLMs 496

in endangered languages with minimal cost. Our 497

system consists of three components: Instruction 498

Optimizer, Demonstration Manager, and Quality 499

Estimator; aided by two databases. Starting from 500

1k monolingual English sentences, our system 501

achieves good performance through self-improving 502

on 5 low-resource languages across different LLM 503

parameter scales. 504

During investigation, we discover that optimized 505

instructions are language-specific and may not 506

transferable; however, there may exist a script- 507

dependent transfer pattern which helps general- 508

ization. We also find that for Devanagari script 509

languages, matching the prompt script to the tar- 510

get language can be beneficial. Our finding shows 511

that length-based parallel example selection can 512

provide a complementary advantage to similarity- 513

based searching by enhancing the model’s ability 514

to understand formats. 515

7 Limitations 516

The major limitation of our experiments is eval- 517

uation type. Because the languages that we 518

work with in this paper are low-resource, it was 519

not feasible to find native speakers to do hu- 520

man evaluation (at least for us) on the output of 521

our models. Furthermore, previous work (Xu 522

et al., 2024) has shown that metrics like BLEU 523

may focus on lexical matches but lack semantic 524

depth; however, reference-free evaluation models 525

such as XCOMET (Guerreiro et al., 2024) and 526

KIWI-XXL (Rei et al., 2022) doesn’t support low- 527

resource languages used in the paper, hence we 528

don’t do reference-free evaluation. 529
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A Prompt Optimization Template 819

Objective: Optimize system prompts for
high-quality translation in a low-resource
language setting.
Optimization Framework: 1. Prompt Varia-
tion Methodology
- Generate diverse prompt variations
- Systematically modify:
a) Role specification
b) Instruction clarity
c) Contextual examples
d) Linguistic guidance
2. Evaluation Criteria
- BLEU score (0-100)
- Chrf++ score (0-100)
3. Iteration Strategy
- Analyze current top-performing prompts
- Identify common successful patterns
- Generate new prompts building on these
insights
4. Challenging Case Analysis
- Catalog translation difficult cases
- Use bad cases to inform prompt refinement
- Create targeted variations addressing spe-
cific challenges
Deliverables:
- Ranked prompt variations
- Detailed performance breakdown
- Insights into prompt design effectiveness
Previous system prompts are arranged in
ascending order based on their bleu scores,
where higher scores indicate better quality.
{prompt_with_scores}
Here is a list of challenging cases for the
given prompts:
{challenge_cases}
Write your new text that is different from the
old ones and has a score as high as possible.

820
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