

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FOURIER MINDS, FORGET LESS: DISCRETE FOURIER TRANSFORM FOR FAST AND RO- BUST CONTINUAL LEARNING IN LLMs

006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
**Anonymous authors**

Paper under double-blind review

## ABSTRACT

Continual learning (CL) for large language models (LLMs) is challenged by both catastrophic forgetting and efficiency constraints when facing long sequential tasks. While low-rank adaptation in LoRA-based approaches reduces per-task trainable parameters, the cumulative parameter budget grows with stream length and can be substantial. This limits their applicability in lifelong learning scenarios, especially under strict resource constraints. In this work, we explore the potential of the parameter-efficient Sparse Fourier Transform (SFT) in the context of continual learning. Our preliminary experiments reveal that directly applying SFT in CL settings leads to temporal instability and forgetting. Motivated by this finding, we propose Discrete Fourier Continual Learning (DF-CL), which leverages a spectral decomposition strategy to disentangle shared and task-specific knowledge components, facilitating more stable continual learning. By leveraging the orthogonality properties inherent to the SFT bases, DF-CL ensures that task-specific knowledge is encoded within its own dedicated parameter space, minimizing interference between tasks. Furthermore, we introduce a max-magnitude task-weight merging strategy, which enables efficient knowledge consolidation and transfer across sequential tasks. Extensive experiments on both T5-Large and LLaMA2-7B demonstrate the scalability, efficiency, and effectiveness of DF-CL.

## 1 INTRODUCTION

Continual learning (CL) aims to enable models to learn a sequence of tasks without revisiting previous data, while maintaining performance across all tasks. A key challenge in CL is catastrophic forgetting, where newly acquired knowledge interferes with previously learned information. To address this, recent CL studies have leveraged large-scale foundation models to enhance transferability and improve performance on streaming tasks. Given the substantial number of parameters in foundation models, these approaches typically incorporate Parameter-Efficient Fine-Tuning (PEFT) strategies such as LoRA (Hu et al., 2022; Liu et al., 2024), adapters (Houlsby et al., 2019; Gao et al., 2024a), and prompt-tuning (Qin & Eisner, 2021; Zhou et al., 2022). By combining CL algorithm design with PEFT techniques, they reduce the computational and memory overhead by fine-tuning only a small subset of parameters, while mitigating forgetting through task-specific adaptation.

Despite these advances, the cost of parameter tuning remains a bottleneck when scaling to long task sequences. In practice, even PEFT-based approaches often require maintaining separate modules for each task, such as task-specific prompts or low-rank adapters. As the number of tasks or the scale of the backbone model increases, these additional components accumulate and lead to substantial memory overhead. For example, the trainable parameters grow significantly when moving from T5 to LLaMA backbones, or when the task number obviously increases, as shown in Figure 1(a). This accumulation not only reduces overall parameter efficiency but also restricts the applicability of such methods in resource-constrained environments, where memory capacity is essential.

To overcome these limitations, we revisit spectral representations and explore the Sparse Fourier Transform (SFT) (Hassanieh et al., 2012) as a compact and expressive alternative. This spectral perspective offers a principled approach to continual learning: low-frequency components can represent stable, general knowledge shared across tasks, while high-frequency components can capture fine-

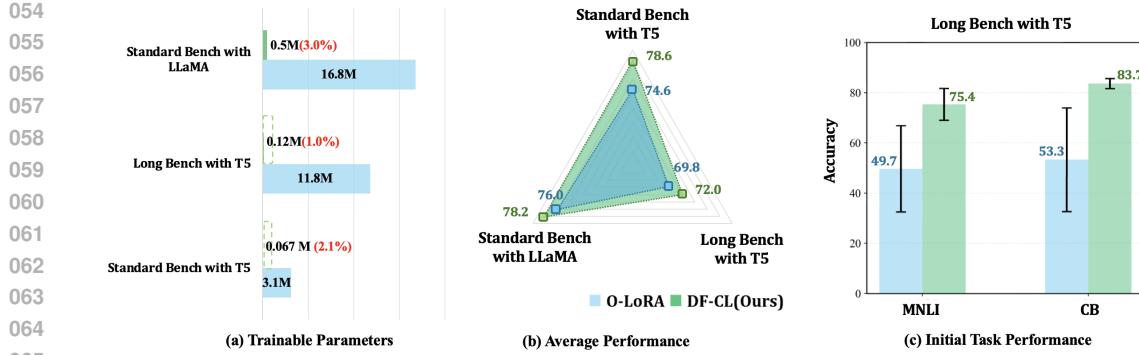


Figure 1: (a) Comparison of trainable parameters: DF-CL updates only 1–3% of total parameters compared to O-LoRA. (b) Performance comparison: DF-CL achieves up to a 4.0% improvement over O-LoRA. (c) Average accuracy and standard deviation on the initial two tasks across sequential training on Long Benchmark (Order 1), showing that DF-CL not only achieves higher accuracy, but also maintains lower variance and thus more stable performance when facing new tasks.

grained, task-specific information. However, our preliminary results show that directly applying SFT to continual learning introduces instability, with noticeable forgetting during task transitions. This is likely due to the lack of explicit constraints across tasks, which makes models prone to overwriting previous knowledge while learning new information, thus exacerbating forgetting (Figure 3(a)).

To address this instability, we introduce Discrete Fourier Continual Learning (DF-CL), a method that **explicitly decouples general and task-specific knowledge in the spectral domain**. We maintain a global set of spectral parameters to represent shared knowledge and learn a small, task-specific set for new information. To further preserve task-specific representations and prevent interference of these subspaces, considering the intrinsic orthogonal nature of fourier bases, we enforce orthogonality among task-specific spectral parameters through coefficient index selection conflict. Moreover, we discover that SFT updates, though compact, can disproportionately affect the model parameters, leading to instability across tasks (Figure 3(b)). Consequently, we propose a max-magnitude **task-weight merging strategy** that selectively integrates the most significant task-specific parameters into the global knowledge base. This merging mechanism effectively balances plasticity and stability, enabling the model to retain prior knowledge while adapting to new tasks. As a result, our **DF-CL combines the parameter efficiency of SFT with strong knowledge retention and task adaptability**, making it well-suited for continual learning. Illustrated in Figure 1, comprehensive evaluations on both T5 and LLaMA models demonstrate that DF-CL effectively preserves task stability and thus consistently outperforms several strong baselines, while requiring only about 1–3% of trainable parameters.

In summary, our key contributions are as follows:

- We are the first to introduce the SFT into the continual learning setting, aiming to further push the limits of parameter reduction while maintaining task performance.
- We design DF-CL, a spectral continual learning method that explicitly decouples general and task-specific knowledge and employs a max-magnitude merging strategy to maintain a balance between knowledge retention and task adaptability.
- Extensive experiments across multiple CL benchmarks demonstrate that DF-CL achieves superior performance while using substantially fewer trainable parameters than O-LoRA.

## 2 RELATED WORK

**Classic Continual Learning.** Traditional continual learning aims to sequentially acquire knowledge from a series of tasks, achieving strong performance on new tasks while retaining previously learned knowledge. These CL methods are generally grouped into three categories: rehearsal-based, regularization-based, and architecture-based approaches. Rehearsal-based methods (Riemer et al., 2018; Chaudhry et al., 2019; Wang et al., 2023a; 2024b) maintain a memory buffer to replay data from previous tasks, alleviating forgetting by directly revisiting old samples. Regularization-based approaches (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Lee et al., 2019; Wu et al., 2024) intro-

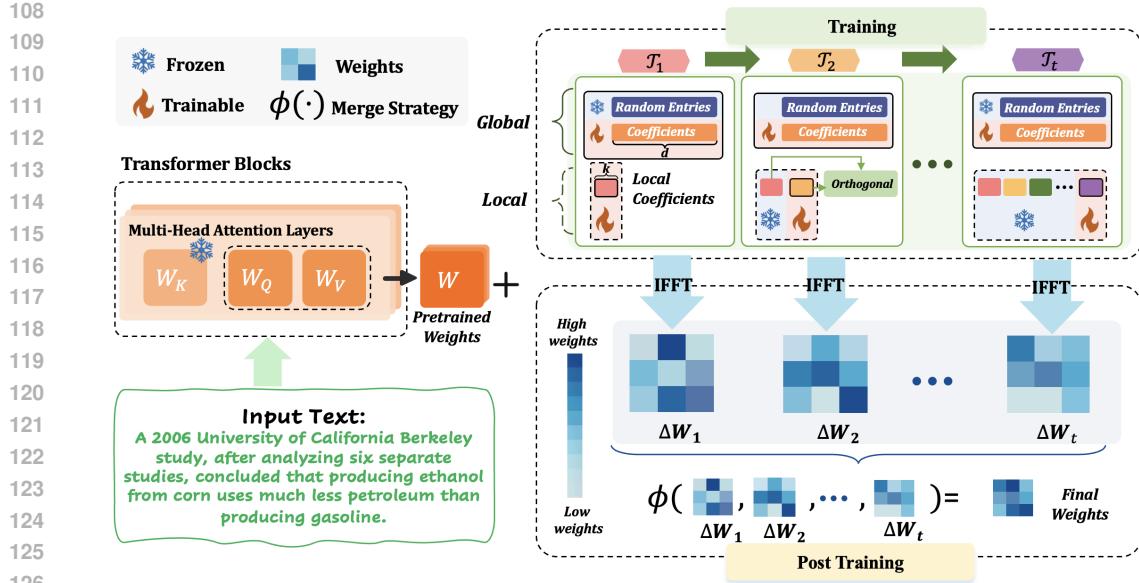


Figure 2: **Overview of the proposed DF-CL framework.** For each pre-trained weight matrix  $\mathbf{W}$ , we sequentially train a discrete spectral matrix for each task  $\mathcal{T}_t$ . A shared random spectral entry matrix is initialized and reused across all transformer layers and tasks. DF-CL maintains a global trainable coefficient vector in  $\mathbb{R}^d$  shared across all tasks, and a task-specific local coefficient vector in  $\mathbb{R}^k$  that is only updated during the current task. The weight updates  $\Delta \mathbf{W}$  are obtained by applying the inverse discrete Fourier transform (IDFT) to the updated spectral matrix. After completing all tasks, a task-weight merging strategy  $\phi(\cdot)$  is applied to produce the final adapted weights. For all  $L$  adapted layers, DF-CL stores only  $(d + k \times \mathcal{T}_t) \times L$  parameters, ensuring high parameter efficiency.

duce penalty terms to constrain sensitive parameter updates, thus preserving important knowledge. Architecture-based methods (Mallya et al., 2018; Ebrahimi et al., 2020; Ramesh & Chaudhari, 2021) expand or dynamically modify the model architecture to accommodate new tasks without interfering with existing representations. While prior CL methods effectively reduce forgetting, they are seldom combined with large foundation models, limiting their scalability. We propose DF-CL, which leverages large foundation models and employs the Discrete Fourier Transform (Xu et al., 2020; Gao et al., 2024b) to reduce trainable parameters, improving both efficiency and practicality for CL.

**CL with Foundation Models.** Recent CL works hope to leverage large foundation models to improve performance on sequential tasks. These methods typically adopt Parameter-Efficient Fine-Tuning (PEFT) techniques to adapt models effectively while mitigating forgetting. A key challenge is improving efficiency without string a large number of task-specific parameters, which is particularly important for maintaining stability in long sequential tasks Wu et al. (2025). For example, LoRA-based methods, such as O-LoRA (Wang et al., 2023b) and MO-CL (Wang et al., 2024a), enhance training efficiency by applying low-rank adaptation for task-specific tuning and incorporate various mechanisms to alleviate forgetting. While Prompt-based methods, like L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022a), and CODA-Prompt (Smith et al., 2023), introduce lightweight learnable prompts as task-specific knowledge to mitigate forgetting and improve training efficiency. In contrast to these approaches based on widely used PEFT techniques, we propose a novel method that leverages the Inverse Discrete Fourier Transform to further reduce trainable parameters more significantly. By explicitly isolating task-specific and general knowledge and adopting a merging strategy, our method further ensures stable CL performance.

**Sparse Fourier Transform.** Sparse Fourier Transform (SFT) has been introduced into deep learning to leverage sparse spectral coefficients for representation learning (Rawat et al., 2019; Ehrlich & Davis, 2019; Xu et al., 2020). Previous studies (Yang & Xie, 2016; Chen & Chi, 2013) have shown that SFT can effectively reconstruct data with extremely few parameters, even when the underlying signals are not strictly frequency-sparse. Building on these works, FourierFT (Gao et al., 2024b) applies SFT to parameter-efficient fine-tuning by modeling the weight update as a spatial-domain matrix and learning its sparse spectral coefficients. In this work, we extend FourierFT to

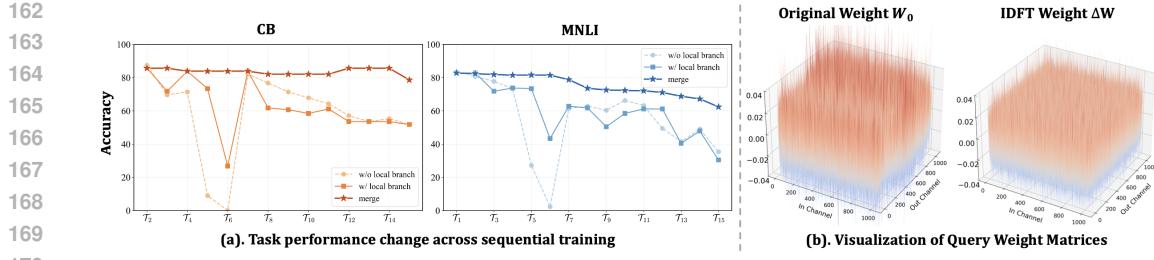


Figure 3: (a). Direct application of FourierFT leads to temporal forgetting. Adding local branches mitigates this issue, while task-weight merging further stabilizes previous task performance. (b). Perturbing only 0.5% of spectral coefficients yields an IDFT weight  $\Delta\mathbf{W}$  comparable in scale to  $\mathbf{W}_0$ , highlighting small spectral perturbations can induce large shifts in the weight domain.

the continual learning setting and propose DF-CL, a novel framework that incorporates orthogonal task-specific Fourier branches and a task-aware weight merging strategy. DF-CL effectively mitigates the transient forgetting issues observed in the original FourierFT and consistently improves overall performance across sequential tasks.

### 3 METHOD

#### 3.1 PRELIMINARIES

**Problem Formulation.** Continual learning trains predictive model  $f_\theta(\cdot)$  on a sequence of  $N$  tasks  $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_N\}$ , where each task  $\mathcal{T}_t$  is associated with a dataset  $\mathcal{D}_t = \{(\mathbf{x}_i^{(t)}, y_i^{(t)})\}_{i=1}^{|\mathcal{D}_t|}$  containing  $|\mathcal{D}_t|$  labeled samples. Under the common CL setting, past task data are unavailable during training, and the objective for the current task  $\mathcal{T}_t$  is:

$$\mathcal{L}_f = - \sum_{(\mathbf{x}, y) \in \mathcal{D}_t} \log f_\theta(y \mid \mathbf{x}). \quad (1)$$

#### 3.2 DISCRETE FOURIER CL

**Sparse Fourier Transformation.** To further explore how much we reduce training parameters without sacrificing performance, we draw inspiration from FourierFT (Gao et al., 2024b), which introduces a sparse spectral entry matrix to significantly reduce parameter overhead. Leveraging its compactness and expressiveness, we extend FourierFT to CL tasks. Specifically, to update a weight matrix  $\mathbf{W} \in \mathbb{R}^{m \times n}$ , we randomly initialize a *spectral entry matrix*  $\mathbf{M} \in \mathbb{R}^{2 \times d}$ , where each column defines a discrete 2D frequency coordinate. A corresponding coefficient vector  $\mathbf{x} \in \mathbb{R}^d$  is initialized from a standard Gaussian distribution. The sparse *spectral matrix*  $\mathbf{N} \in \mathbb{R}^{m \times n}$  is constructed as:

$$\mathbf{N}_{u,v} = \begin{cases} x_l & \text{if } u = \mathbf{M}_{0,l} \wedge v = \mathbf{M}_{1,l}, \\ 0 & \text{otherwise.} \end{cases} \quad (2)$$

Then, the *spatial matrix*  $\mathbf{S} \in \mathbb{C}^{m \times n}$  is recovered using the inverse 2D Discrete Fourier Transform (IDFT):

$$\mathbf{S}_{p,q} = \mathcal{F}^{-1}(\mathbf{N})_{p,q} = \sum_{u=0}^{m-1} \sum_{v=0}^{n-1} \mathbf{N}_{u,v} \cdot e^{i2\pi(\frac{pu}{m} + \frac{qv}{n})}, \quad (3)$$

where  $\mathcal{F}^{-1}(\cdot)$  denotes the inverse Fourier transform. The final  $\Delta\mathbf{W}$  is obtained by taking the real part of the spatial matrix, scaled by a stable scalar  $\beta$ :

$$\mathbf{W} = \mathbf{W}_0 + \beta \cdot \Delta\mathbf{W} = \mathbf{W}_0 + \beta \cdot \Re(\mathbf{S}). \quad (4)$$

By sharing the same spectral indices  $\mathbf{M}$ , it achieves substantial parameter savings compared to LoRA or prompt-based methods. For a LLM with  $L$  layers, this reduces the total number of trainable parameters to  $d \times L$ , where  $d$  is the number of selected frequency entries.

216 **DF-CL.** While the Sparse Fourier Transform offers the advantage of significantly reducing the  
 217 number of trainable parameters, its applicability to CL has not yet been explored. To bridge this  
 218 gap, we extend the SFT framework to the CL setting. However, a straightforward application fails  
 219 to address the problem of forgetting and suffers from the stability gap problem, as shown in Figure 3  
 220 (a). The stability gap refers to the phenomenon where a model experiences severe temporary forget-  
 221 ting during the CL process (De Lange et al., 2022). For example, in a preliminary experiment, the  
 222 performance on the CB dataset dropped drastically from 71.43 to 8.93 immediately after training on  
 223 task five (QPP). Although the final accuracy on CB recovered to 51.79 after completing the full task  
 224 sequence, such temporary degradation is unacceptable in real-world applications.

225 (*Task-specific Branch.*) To overcome this limitation, we first hypothesize that the observed stability  
 226 gap stems from the use of a shared coefficient vector  $\mathbf{x}$  across all tasks. While parameter-efficient,  
 227 this design neglects task-specific knowledge and is prone to forgetting when the data distribution  
 228 shifts significantly between tasks. To address this limitation, we introduce a **task-specific coefficient**  
 229 **vector**  $\mathbf{x}_t \in \mathbb{R}^k$  for each new task  $\mathcal{T}_t$ . This enables the construction of a task-specific spectral  
 230 matrix  $\mathbf{N}_t$ . Meanwhile, the **global spectral matrix**  $\mathbf{N}_{\text{global}}$  serves as a shared base across tasks,  
 231 while during task  $\mathcal{T}_t$ , we jointly optimize the shared coefficients  $\mathbf{x}_{\text{global}}$  and the task-specific vector  
 232  $\mathbf{x}_t$ . Formally, the overall weight update at task  $\mathcal{T}_t$  is given by:

$$\begin{aligned} \mathbf{W} &= \mathbf{W}_0 + \beta \cdot \Delta \mathbf{W}^{(t)} = \mathbf{W}_0 + \beta \cdot \Re(\mathcal{F}^{-1}(\mathbf{N}^{(t)})) \\ &= \mathbf{W}_0 + \beta \cdot \Re(\mathcal{F}^{-1}(\mathbf{N}_{\text{global}} + \sum_{i=1}^t \mathbf{N}_i)). \end{aligned} \quad (5)$$

233 The coefficients from previous tasks,  $\mathbf{x}_1, \dots, \mathbf{x}_{t-1}$ , are kept frozen to mitigate knowledge forgetting,  
 234 and only  $\mathbf{x}_{\text{global}}$  and  $\mathbf{x}_t$  will be updated. Notably, we constrain the newly introduced coefficients to  
 235 be associated with *non-overlapping indices* in the spectral matrix  $\mathbf{N}_{\text{global}}$  and  $\{\mathbf{N}_i\}_{i=1}^{t-1}$ . This design  
 236 induces *orthogonal subspaces* for each task-specific branch—thanks to the inherent orthogonality of  
 237 Fourier bases—thereby avoiding interference. This formulation allows the model to incrementally  
 238 expand its representational capacity while maintaining knowledge from earlier tasks, making the  
 239 model particularly well-suited to continual-learning scenarios where tasks may differ significantly.  
 240 In practice, we will choose a small task-specific dimensionality  $k < d$ , ensuring that the additional  
 241 parameter cost per task remains minimal. As shown in Figure 3(a), adding a lightweight task-specific  
 242 branch alleviates the stability gap, but forgetting remains, motivating our task-weight merging.

243 (*Task-weight Merging*). To investigate the source of the instability, we further hypothesize that the  
 244 remained forgetting observed in Figure 3(a) stems from the sensitivity of model weights to up-  
 245 dates in the spectral domain. To verify this, we randomly initialize a sparse spectral entry matrix  
 246  $\mathbf{M}$  and transform it back into the spatial domain. As presented in Figure 3(b), the reconstructed  
 247  $\Delta \mathbf{W}$  exhibits a distribution and scale comparable to that of the original weight matrix  $\mathbf{W}_0$ . This  
 248 observation suggests that even small perturbations in the spectral domain can propagate into dispro-  
 249 portionately large and unstable changes in the model weights. To address this, we draw inspiration  
 250 from multi-task learning and incorporate *model merging* techniques (Marczak et al., 2024) during  
 251 the post-training phase. Model merging facilitates effective knowledge consolidation by combin-  
 252 ing independently trained memory components from different tasks using tailored strategies. In our  
 253 case, we focus on merging the real-valued spatial matrices  $\Delta \mathbf{W}^{(i)}$  obtained from sequential task  
 254 training ( $i = 1, 2, \dots, t$ ). We empirically evaluate several merging strategies, such as element-wise  
 255 **mean** and **max**, and observe that minimizing large parameter shifts consistently yields better per-  
 256 formance. Specifically, for each element with the coordinate of  $(p, q)$  in weight matrix, we perform  
 257 magnitude-based merging across tasks to obtain:

$$\Phi_{p,q} = \arg \max_{i \in \{1, \dots, T\}} |\Delta \mathbf{W}_{p,q}^{(i)}|, \quad (6)$$

$$\Delta \mathbf{W}_{p,q} = \Delta \mathbf{W}_{p,q}^{(\Phi_{p,q})}. \quad (7)$$

260 Finally, the merged model is computed as:

$$\mathbf{W}_{\text{final}} = \mathbf{W}_0 + \beta \cdot \Delta \mathbf{W}. \quad (8)$$

261 During inference, the merged spectral weights can be directly incorporated into the base model  
 262 without introducing any additional overhead.

270 **Algorithm 1** DF-CL Algorithm

---

271 **Input:** Pretrained weight matrix from foundation model  $\mathbf{W}_0 \in \mathbb{R}^{m \times n}$ , training datasets for tasks  
 272  $\{\mathcal{D}_1, \dots, \mathcal{D}_N\}$ , hyper-parameters  $d, k$ .  
 273 **Output:** Updated weight matrix  $\mathbf{W}_{\text{final}}$

274 1: Initialize coefficient vector  $\mathbf{x}_{\text{global}} \in \mathbb{R}^d$   
 275 2: Sample  $d$  coordinate pairs  $\mathcal{M}_{\text{global}} = \{(\mathbf{M}_{1,i}, \mathbf{M}_{2,i})\}_{i=1}^d$  from set  $[m] \times [n]$  without replacement  
 276 3: Obtain spectral matrix  $\mathbf{N}_{\text{global}}$  based on Eqn. (2)  
 277 4: **for**  $t = 1$  to  $N$  **do**  
 278 5: Initialize new task-specific coefficient vector  $\mathbf{x}_t \in \mathbb{R}^k$   
 279 6: Freeze previous task-specific coefficients  $\{\mathbf{x}_i\}_{i=1}^{t-1}$ ; unfreeze  $\mathbf{x}_t$  and  $\mathbf{x}_{\text{global}}$   
 280 7: Sample  $k$  coordinate pairs  $\mathcal{M}_t$  from set  $([m] \times [n]) \setminus (\mathcal{M}_{\text{global}} \cup \bigcup_{i=1}^{t-1} \mathcal{M}_i)$  without replacement  
 281 8: Obtain spectral matrix  $\mathbf{N}_t$  with  $\mathcal{M}_t$  based on Eqn. (2)  
 282 9: Compute cross-entropy loss on  $\mathcal{D}_t$  using  $\mathbf{W}$  based on Eqn. (5), and update unfrozen coefficients with  
 283 mini-batches and AdamW optimizer  
 284 10: Save all coefficients  $\mathbf{x}$  and  $\mathcal{M}$  in this round to compute  $\mathbf{N}^{(t)} = \mathbf{N}_{\text{global}} + \sum_{i=1}^t \mathbf{N}_i$   
 285 11: **end for**  
 12: Compute  $\mathbf{W}_{\text{final}}$  based on Eqns. (6)–(8), where  $\Delta \mathbf{W}^{(i)} = \mathcal{R}(\mathcal{F}^{-1}(\mathbf{N}^{(i)}))$  for each task  $\mathcal{T}_i$   
 13: **return**  $\mathbf{W}_{\text{final}}$

---

288 **Parameter Analysis.** We provide a theoretical comparison of the trainable parameter count be-  
 289 tween O-LoRA (Wang et al., 2023b) and our DF-CL, as summarized in Table 1. O-LoRA introduces  
 290 a pair of trainable matrices,  $\mathbf{A}$  and  $\mathbf{B}$ , for each tunable module. Assuming a total of  $\mathcal{T}_t$  tasks and  $L$   
 291 trainable modules, the number of parameters is:

292 
$$\mathcal{N}_{\text{O-LoRA}} = 2 \times \text{dim} \times L \times r \times \mathcal{T}_t, \quad (9)$$

293

294 where  $r$  is the LoRA rank and  $\text{dim} = m = n$  is the dimensionality of each module. In contrast,  
 295 DF-CL utilizes  $d$  global coefficients and  $k$  task-specific coefficients per task. The total number of  
 296 trainable parameters is:

297 
$$\mathcal{N}_{\text{DF-CL}} = (d + k \times \mathcal{T}_t) \times L. \quad (10)$$

298 For example, when fine-tuning the query and value matrices of T5-Large (24 layers  $\times$  2 modules,  
 299 so  $L = 48$ ), and assuming  $\mathcal{T}_t = 15$ , we have:

300 • O-LoRA:  $\mathcal{N}_{\text{O-LoRA}} = 11.8\text{M}$  parameters with  $r = 8$  and  $\text{dim} = 1024$ ,  
 301 • DF-CL:  $\mathcal{N}_{\text{DF-CL}} = 120\text{k}$  parameters with  $d = 1000$  and  $k = 100$ .

303 This reduces the trainable parameter count to approximately **1.1%** compared to O-LoRA. Moreover,  
 304 the parameter efficiency advantage of DF-CL becomes increasingly significant as either the number  
 305 of tasks or the model size grows, illustrated in Table 1.

307 Table 1: Trainable parameter comparison between O-LoRA and DF-CL. We suppose the trainable  
 308 modules are query and value weight matrices across each Transformer layer.

| 310 <b>LLMs</b> | 311 <b>O-LoRA</b> |         |             | 312 <b>DF-CL</b> |         |         |                                                  |
|-----------------|-------------------|---------|-------------|------------------|---------|---------|--------------------------------------------------|
|                 | 313 # Tasks       | 314 $r$ | 315 #Params | 316 # Tasks      | 317 $d$ | 318 $k$ | 319 # Params                                     |
| 312 T5-Large    | 4                 | 8       | 3.1M        | 4                | 1000    | 100     | 67.2k ( <span style="color:red">↓ 97.8%</span> ) |
|                 | 15                | 8       | 11.8M       | 15               | 1000    | 100     | 120k ( <span style="color:red">↓ 98.9%</span> )  |
|                 | 4                 | 16      | 6.3M        | 4                | 1000    | 200     | 86.4k ( <span style="color:red">↓ 98.6%</span> ) |
|                 | 15                | 16      | 23.6M       | 15               | 1000    | 200     | 192k ( <span style="color:red">↓ 99.2%</span> )  |
| 315 LLaMA2-7B   | 4                 | 8       | 16.8M       | 4                | 1000    | 250     | 128k ( <span style="color:red">↓ 99.2%</span> )  |
|                 | 15                | 8       | 62.9M       | 15               | 1000    | 250     | 304k ( <span style="color:red">↓ 99.5%</span> )  |
|                 | 4                 | 16      | 33.6M       | 4                | 1000    | 500     | 192k ( <span style="color:red">↓ 99.4%</span> )  |
|                 | 15                | 16      | 125.8M      | 15               | 1000    | 500     | 544k ( <span style="color:red">↓ 99.6%</span> )  |

318 **4 EXPERIMENTS**320 **4.1 EXPERIMENTAL SETUP**

321 **Datasets.** Following O-LoRA (Wang et al., 2023b), we evaluate our DF-CL on two widely used  
 322 benchmarks, the Standard benchmark and Long benchmark. Standard benchmark (Zhang et al.,

324 Table 2: Experimental results on two CL benchmarks with T5-Large(Raffel et al., 2020). **Params.**  
 325 represents the parameter usage for training.  
 326

| 327<br>328<br><b>Method</b> | 329<br><b>Standard (N = 4)</b> |               |               |               |             | 330<br><b>Long (N = 15)</b> |              |              |              |             |
|-----------------------------|--------------------------------|---------------|---------------|---------------|-------------|-----------------------------|--------------|--------------|--------------|-------------|
|                             | 331<br>Params.                 | 332<br>Order1 | 333<br>Order2 | 334<br>Order3 | 335<br>avg  | 336<br>Params.              | 337<br>Long1 | 338<br>Long2 | 339<br>Long3 | 340<br>avg  |
| PerTaskFT                   | -                              | 70.0          | 70.0          | 70.0          | 70.0        | -                           | 78.1         | 78.1         | 78.1         | 78.1        |
| MTL                         | -                              | 80.0          | 80.0          | 80.0          | 80.0        | -                           | 76.5         | 76.5         | 76.5         | 76.5        |
| Zero-Shot                   | -                              | 0.0           | 0.0           | 0.0           | 0.0         | -                           | 13.4         | 13.4         | 13.4         | 13.4        |
| SeqLoRA                     | 0.8M                           | 25.7          | 24.0          | 35.2          | 28.3        | 3.0M                        | 12.3         | 10.1         | 10.1         | 10.8        |
| Replay Memory               | 770M                           | 55.2          | 56.9          | 61.3          | 57.8        | 770M                        | 55.0         | 54.6         | 53.1         | 54.2        |
| EWC                         | 770M                           | 48.7          | 47.7          | 54.5          | 50.3        | 770M                        | 45.3         | 44.5         | 45.6         | 45.1        |
| LwF                         | 4.1M                           | 54.4          | 53.1          | 49.6          | 52.3        | 15.7M                       | 50.1         | 43.1         | 47.4         | 46.9        |
| L2P                         | 96.0k                          | 60.3          | 61.7          | 61.1          | 60.7        | 0.4M                        | 57.5         | 53.8         | 56.9         | 56.1        |
| LFPT5                       | 1.2M                           | 67.6          | 72.6          | 77.9          | 72.7        | 4.6M                        | 70.4         | 68.2         | 69.1         | 69.2        |
| IncLoRA                     | 3.1M                           | 68.6          | 59.7          | 75.0          | 67.8        | 11.8M                       | 60.3         | 60.5         | 53.2         | 58.0        |
| MIGU                        | 3.1M                           | 77.2          | 76.7          | 75.4          | 76.4        | 11.8M                       | 71.3         | 67.7         | 67.3         | 68.7        |
| O-LoRA                      | 3.1M                           | 74.9          | 73.4          | 75.6          | 74.6        | 11.8M                       | 71.5         | 66.7         | 71.3         | 69.8        |
| LB-CL                       | 3.2M                           | 76.9          | 76.5          | 76.8          | 76.7        | 11.8M                       | 68.4         | 67.3         | 71.8         | 69.2        |
| MoCL                        | 3.3M                           | 75.6          | 75.4          | 76.7          | 75.9        | -                           | -            | -            | -            | -           |
| <b>DF-CL</b>                | <b>67.2k</b>                   | <b>78.7</b>   | <b>78.7</b>   | <b>78.4</b>   | <b>78.6</b> | <b>120.0k</b>               | <b>72.3</b>  | <b>70.9</b>  | <b>73.2</b>  | <b>72.1</b> |

341  
 342  
 343 2016) consists of four text classification datasets, including Amazon reviews, Yelp reviews, DBpedia,  
 344 and Yahoo Answers. Long benchmark further involve AG News classification task, four datasets  
 345 from GLUE (Wang et al., 2018), five tasks from SuperGLUE (Wang et al., 2019), and IMDB movie  
 346 reviews dataset (Maas et al., 2011). More details are listed in Appendix B.  
 347

348 **Implementation Details.** We implement our DF-CL framework on both an encoder-decoder ar-  
 349 chitecture (T5-Large (Raffel et al., 2020)) and a decoder-only model (LLaMA2-7B (Touvron et al.,  
 350 2023)). Specifically, DF-CL is applied only to the query and value matrices across all transformer  
 351 layers, ensuring training efficiency. For global parameters, we allow  $d = 1000$  trainable spectral co-  
 352 efficients out of the full spectral space, i.e.,  $1024^2$  for T5-Large and  $4096^2$  for LLaMA2-7B. These  
 353 global coefficients are shared and updated throughout all tasks in the continual learning sequence.  
 354 For task-specific adaptation, we allocate  $k = 100$  coefficients per task on T5-Large and  $k = 500$   
 355 on LLaMA2-7B. These coefficients are independently updated for each task and remain frozen af-  
 356 terward, enabling task-specialized learning while preserving knowledge from previous tasks. Addi-  
 357 tional implementation details and hyperparameter settings can be found in Appendix B.  
 358

359 **Metrics.** The  $a_{i,j}$  denotes the test accuracy on the  $i$ -th task  $\mathcal{T}_i$  after training on  $\mathcal{T}_j$ . We adopt the  
 360 Average Accuracy as the main evaluation metric, which is calculated as the mean accuracy across  
 361 all seen tasks,

$$362 \text{Acc} = \frac{\sum_{i=1}^N |\mathcal{D}_i| \cdot a_{i,N}}{\sum_{i=1}^N |\mathcal{D}_i|},$$

363 where  $|\mathcal{D}_i|$  represents the number of test samples in task  $\mathcal{T}_i$ .  
 364

365 **Baselines.** We compare DF-CL with state-of-the-art baselines: including PerTaskFT, MTL, Zero-  
 366 shot, SeqLoRA, Replay Memory, EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem, 2017),  
 367 L2P (Wang et al., 2022b), LFPT5 (Huang et al., 2021), IncLoRA, MIGU (Du et al., 2024), O-  
 368 LoRA (Wang et al., 2023b) and LB-CL (Qiao & Mahdavi, 2024). Details for each method are listed  
 369 in Appendix C.  
 370

## 371 4.2 MAIN RESULTS

372 **DF-CL Performs Well on Different LLM Backbones.** We present the experimental results on  
 373 both T5-Large and LLaMA2-7B in Table 2 and Table 3, respectively. Our proposed DF-CL  
 374 consistently achieves superior performance with significantly fewer trainable parameters compared to  
 375 LoRA-based methods. For instance, on the T5-Large model, DF-CL surpasses O-LoRA by 4.0%  
 376 and LB-CL by 1.9% on the Standard benchmark, while utilizing only approximately 2% of their pa-  
 377 rameters. Although prompt-based approaches like L2P are highly parameter-efficient, they exhibit

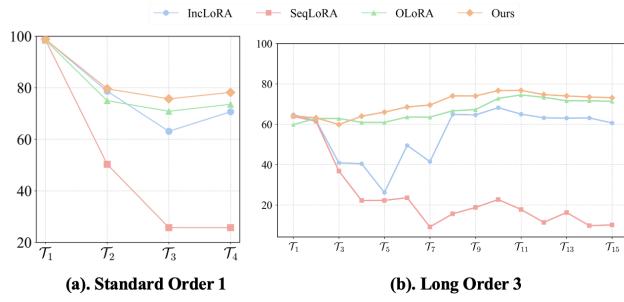
378 Table 3: Experimental results on Standard CL benchmarks with LLaMA2-7b (Touvron et al., 2023).  
379

| 380<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>409<br>410<br>411<br>412<br>413<br>414<br>415<br>416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431 | Method      | Standard ( $N = 4$ ) |             |             |             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-------------|-------------|-------------|------|
|                                                                                                                                                                                                                                                                                                                                                                          |             | Params.              | Order1      | Order2      | Order3      | avg  |
| PerTaskFT                                                                                                                                                                                                                                                                                                                                                                | -           | 79.9                 | 79.9        | 79.9        | 79.9        | 79.9 |
| MTL                                                                                                                                                                                                                                                                                                                                                                      | -           | 80.3                 | 80.3        | 80.3        | 80.3        | 80.3 |
| Zero-shot                                                                                                                                                                                                                                                                                                                                                                | -           | 0.0                  | 0.0         | 0.0         | 0.0         | 0.0  |
| SeqLoRA                                                                                                                                                                                                                                                                                                                                                                  | 4.2M        | 73.4                 | 75.6        | 75.5        | 74.8        |      |
| IncLoRA                                                                                                                                                                                                                                                                                                                                                                  | 16.8M       | 75.9                 | 72.6        | 76.8        | 75.1        |      |
| O-LoRA                                                                                                                                                                                                                                                                                                                                                                   | 16.8M       | 76.8                 | 75.7        | 75.7        | 76.0        |      |
| MoCL                                                                                                                                                                                                                                                                                                                                                                     | 19.7M       | <b>78.4</b>          | <u>77.7</u> | <u>78.4</u> | <u>78.2</u> |      |
| <b>DF-CL</b>                                                                                                                                                                                                                                                                                                                                                             | <b>0.5M</b> | <b>78.4</b>          | <b>77.9</b> | <b>78.9</b> | <b>78.4</b> |      |

391 Table 4: Ablation of coefficient  
392 number ( $d, k$ ) on LLaMA2-7B.  
393

| d    | k   | Order1 |
|------|-----|--------|
| 500  | 0   | 66.4   |
| 1000 | 0   | 74.7   |
| 2000 | 0   | 76.9   |
| 1000 | 100 | 76.5   |
| 1000 | 250 | 77.4   |
| 1000 | 500 | 77.8   |

Figure 4: Test Acc. throughout continual training on T5.



403 substantially lower performance. For example, L2P underperforms by more than 17.9% compared to  
404 DF-CL. Moreover, DF-CL also demonstrates competitive performance on the LLaMA2-7B model,  
405 showcasing strong generalization across different large language model backbones. Notably, DF-CL  
406 tunes only 1% of the parameters compared to LoRA-based baselines on LLaMA2-7B—for instance,  
407 using just 0.2M parameters, DF-CL achieves comparable results to MoCL with 19.7M parameters.  
408 These results further underscore the effectiveness and scalability of DF-CL with different LLMs.  
409

410 **DF-CL Keeps Stability across Varied Task Length.** To assess the scalability of DF-CL on longer  
411 task sequences, we evaluate it against several state-of-the-art baselines on the Long Benchmark,  
412 which includes 15 diverse NLP tasks. As shown in Table 2, DF-CL consistently outperforms or  
413 matches the performance of leading methods across different task orders, demonstrating its strong  
414 generalization ability in continual learning. Notably, as the number of tasks increases, the parameter  
415 count for LoRA-based methods grows significantly. In contrast, DF-CL maintains high parameter  
416 efficiency, achieving competitive results with only 1% of the parameter usage (0.12M vs. 11.8M).  
417 These findings highlight the effectiveness of DF-CL for resource-constrained continual learning  
418 scenarios.

419 **Stability across Tasks.** To demonstrate the stability of DF-CL throughout the continual learning  
420 process, we plot the test accuracy after completing each task across benchmarks with varying task  
421 sequence lengths (see Figure 4). Compared with other baselines, DF-CL exhibits notably smaller  
422 performance fluctuations and consistently maintains high accuracy throughout training. This stabili-  
423 ty underscores DF-CL’s strong resistance to catastrophic forgetting and its ability to adapt to new  
424 tasks without compromising previously acquired knowledge. These results validate the effectiveness  
425 of the proposed task-specific branches in mitigating stability issues, as discussed in Section 3.2. Such  
426 robustness is particularly valuable in more demanding scenarios like the Long benchmark, where the  
427 number of sequential tasks is significantly larger.

#### 428 4.3 ABLATION STUDIES

429 **Impact of DF-CL Components.** To better understand the contribution of each component in our  
430 proposed DF-CL, we perform ablation studies on T5-Large model from two key perspectives: (1)

432  
433  
Table 5: Ablation study of different components of DF-CL on T5-Large model.  
434  
435  
436  
437  
438

| Local Branch | Merging | Standard ( $N = 4$ ) |             |             |             | Long ( $N = 15$ ) |             |             |             |
|--------------|---------|----------------------|-------------|-------------|-------------|-------------------|-------------|-------------|-------------|
|              |         | Order1               | Order2      | Order3      | avg         | Long1             | Long2       | Long3       | avg         |
| ✗            | ✓       | 77.9                 | 77.3        | 77.2        | 77.5        | 70.0              | 70.2        | 67.4        | 69.2        |
| ✓            | ✗       | 77.7                 | 78.2        | 77.3        | 77.7        | 70.9              | 69.4        | 70.0        | 69.7        |
| ✓            | ✓       | <b>78.7</b>          | <b>78.7</b> | <b>78.4</b> | <b>78.6</b> | <b>72.3</b>       | <b>70.9</b> | <b>73.2</b> | <b>72.1</b> |

439  
440  
441 *Task-specific Branches*, which introduce orthogonal and task-related coefficient vectors to alleviate  
442 interference; and (2) *Task-weight Merging*, which facilitates knowledge reuse by integrating param-  
443 eters from previously learned tasks. As shown in Table 5, removing either component leads to a  
444 significant drop in performance, confirming their effectiveness in mitigating forgetting and enhanc-  
445 ing learning stability. In particular, removing the task-specific branches causes a notable decline  
446 in accuracy, indicating that the orthogonal coefficient vectors are critical for maintaining task in-  
447 dependence and reducing conflict between old and new knowledge. Furthermore, replacing our  
448 task-weight merging strategy with a naive addition operation yields inferior results, suggesting that  
449 effective consolidation requires careful selection of parameter updates to avoid forgetting.

450  
451 **Impact of Merging Strategies.** We  
452 present the ablation results of the mean  
453 merging and max-magnitude merging  
454 strategies in Table 6. It is evident  
455 that max-magnitude merging con-  
456 sistently outperforms mean merging, and is  
457 therefore adopted as the final strategy in  
458 DF-CL. Surprisingly, the mean averag-  
459 ing strategy leads to performance degradations on both Order1 and Order2 evaluations, highlighting  
460 the importance of selecting an appropriate merging direction. We attribute this to the assumption  
461 that parameters with larger magnitudes tend to carry greater importance, as similarly discussed in  
462 MAGMAX (Marczak et al., 2024). Consequently, DF-CL achieves further performance gains by  
463 preserving high-magnitude parameters. These findings highlight the necessity of our task-weight  
464 merging strategy, which not only stabilizes training but also leads to consistent performance im-  
465 provements across tasks.

466  
467 **Ablation of coefficient number.** The number of coefficients in the global branch ( $d$ ) and the local  
468 branch ( $k$ ) plays a critical role in balancing downstream performance and training cost. In our  
469 DF-CL framework, the total number of trainable parameters is given by  $(d + k \times \mathcal{T}_t) \times L$ . To  
470 study the effect of  $d$  and  $k$ , we conduct ablation experiments on LLaMA2-7B using the Standard  
471 Benchmarks, without applying the model merging strategy to isolate their influence. As shown  
472 in Table 4, increasing  $d$  from 500 to 2000 consistently improves performance, demonstrating the  
473 scalability of DF-CL. Similarly, increasing  $k$  also yields performance gains. We adopt  $d = 1000$   
474 and  $k = 500$  as the default setting for LLaMA2-7B, balancing performance and efficiency. We  
475 anticipate that using larger values (e.g.,  $d = 2000$ ) would lead to even stronger results than those  
476 reported in Table 3.

## 477 5 CONCLUSION

478 In this paper, we propose DF-CL, a Discrete Fourier Transform-based framework for efficient and  
479 robust continual learning. Our approach introduces shared global spectral coefficients across tasks  
480 and task-specific branches for individual optimization, ensuring orthogonal parameter spaces while  
481 mitigating knowledge forgetting through globally shared parameters. To further enhance perfor-  
482 mance, we develop a task-weight merging strategy that consolidates knowledge from past tasks  
483 effectively. Extensive experiments demonstrate that DF-CL consistently outperforms LoRA-based  
484 methods across multiple large language model backbones and benchmarks, while requiring signifi-  
485 cantly fewer trainable parameters.

486 ETHICS STATEMENT  
487488 This research follows the ICLR Code of Ethics. Our work introduces the parameter-efficient Sparse  
489 Fourier Transform into the continual learning setting and designs a spectral continual learning  
490 method to maintain knowledge retention. All experiments are conducted on publicly available  
491 benchmark datasets that do not involve personal or sensitive information. The research does not  
492 pose direct ethical or societal risks.  
493494 REPRODUCIBILITY STATEMENT  
495496 To support reproducibility, we provide a complete description of our proposed DF-CL algorithm in  
497 Algorithm 1. The training and evaluation setups are detailed in Section 4.1 and Appendix B. Dataset  
498 details are described in Appendix B.  
499500 REFERENCES  
501502 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K  
503 Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual  
504 learning. *arXiv preprint arXiv:1902.10486*, 2019.  
505506 Yuxin Chen and Yuejie Chi. Spectral compressed sensing via structured matrix completion. In  
507 *International conference on machine learning*, pp. 414–422. PMLR, 2013.  
508509 Matthias De Lange, Gido van de Ven, and Tinne Tuytelaars. Continual evaluation for lifelong  
510 learning: Identifying the stability gap. *arXiv preprint arXiv:2205.13452*, 2022.  
511512 Wenyu Du, Shuang Cheng, Tongxu Luo, Zihan Qiu, Zeyu Huang, Ka Chun Cheung, Reynold  
513 Cheng, and Jie Fu. Unlocking continual learning abilities in language models. *arXiv preprint  
arXiv:2406.17245*, 2024.  
514515 Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-  
516 sarial continual learning. In *European Conference on Computer Vision*, pp. 386–402, 2020.  
517518 Max Ehrlich and Larry S Davis. Deep residual learning in the jpeg transform domain. In *Proceedings  
of the IEEE/CVF international conference on computer vision*, pp. 3484–3493, 2019.  
519520 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,  
521 and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International  
Journal of Computer Vision*, 132(2):581–595, 2024a.  
522523 Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.  
524 Parameter-efficient fine-tuning with discrete fourier transform. *arXiv preprint arXiv:2405.03003*,  
525 2024b.  
526527 Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse fourier trans-  
528 form. In *Proceedings of the forty-fourth annual ACM symposium on Theory of computing*, pp.  
529 563–578, 2012.  
530531 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-  
532 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for  
533 NLP. In *International Conference on Machine Learning*, pp. 2790–2799, 2019.  
534535 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu  
536 Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on  
Learning Representations*, 2022.  
537538 Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning  
539 for text classification with information disentanglement based regularization. *arXiv preprint  
arXiv:2104.05489*, 2021.  
540

540 James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-  
 541 drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis  
 542 Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-  
 543 getting in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):3521–  
 544 3526, 2017.

545 Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming catastrophic forgetting with  
 546 unlabeled data in the wild. In *IEEE/CVF International Conference on Computer Vision*, pp. 312–  
 547 321, 2019.

548 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis  
 549 and machine intelligence*, 40(12):2935–2947, 2017.

550 Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang F Wang, Kwang-Ting  
 551 Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In *International  
 552 Conference on Machine Learning*, pp. 32100–32121, 2024.

553 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.  
 554 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the  
 555 association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

556 Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-  
 557 tiple tasks by learning to mask weights. In *European Conference on Computer Vision*, pp. 67–82,  
 558 2018.

559 Daniel Marczak, Bartłomiej Twardowski, Tomasz Trzciński, and Sebastian Cygert. Magmax: Lever-  
 560 aging model merging for seamless continual learning. In *European Conference on Computer  
 561 Vision*, pp. 379–395. Springer, 2024.

562 Fuli Qiao and Mehrdad Mahdavi. Learn more, but bother less: parameter efficient continual learning.  
 563 *Advances in Neural Information Processing Systems*, 37:97476–97498, 2024.

564 Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft prompts.  
 565 *arXiv preprint arXiv:2104.06599*, 2021.

566 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi  
 567 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text  
 568 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

569 Rahul Ramesh and Pratik Chaudhari. Model Zoo: A growing “brain” that learns continually. *arXiv  
 570 preprint arXiv:2106.03027*, 2021.

571 Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X Yu, Ananda Theertha Suresh, and Sanjiv Ku-  
 572 mar. Sampled softmax with random fourier features. *Advances in Neural Information Processing  
 573 Systems*, 32, 2019.

574 Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald  
 575 Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-  
 576 ence. *arXiv preprint arXiv:1810.11910*, 2018.

577 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, As-  
 578 saf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. CODA-Prompt: Continual decom-  
 579 posed attention-based prompting for rehearsal-free continual learning. In *IEEE/CVF Conference  
 580 on Computer Vision and Pattern Recognition*, pp. 11909–11919, 2023.

581 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 582 lay Bashlykov, Soumya Batra, Prajwala Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-  
 583 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

584 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.  
 585 Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv  
 586 preprint arXiv:1804.07461*, 2018.

594 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer  
 595 Levy, and Samuel Bowman. SuperGlue: A stickier benchmark for general-purpose language  
 596 understanding systems. *Advances in neural information processing systems*, 32, 2019.

597

598 Mingyang Wang, Heike Adel, Lukas Lange, Jannik Strötgen, and Hinrich Schütze. Rehearsal-  
 599 free modular and compositional continual learning for language models. *arXiv preprint*  
 600 *arXiv:2404.00790*, 2024a.

601 Quanzhang Wang, Renzhen Wang, Yichen Wu, Xixi Jia, and Deyu Meng. CBA: Improving online  
 602 continual learning via continual bias adaptor. In *IEEE/CVF International Conference on Com-  
 603 puter Vision*, pp. 19082–19092, 2023a.

604 Quanzhang Wang, Renzhen Wang, Yichen Wu, Xixi Jia, Minghao Zhou, and Deyu Meng. Dual-  
 605 CBA: Improving online continual learning via dual continual bias adaptors from a bi-level opti-  
 606 mization perspective. *arXiv preprint arXiv:2408.13991*, 2024b.

607

608 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and  
 609 Xuanjing Huang. Orthogonal subspace learning for language model continual learning. *arXiv*  
 610 *preprint arXiv:2310.14152*, 2023b.

611 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,  
 612 Guolong Su, Vincent Perot, and Jennifer Dy. DualPrompt: Complementary prompting for  
 613 rehearsals-free continual learning. In *European Conference on Computer Vision*, pp. 631–648,  
 614 2022a.

615

616 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-  
 617 cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Pro-  
 618 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149,  
 619 2022b.

620 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,  
 621 Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In  
 622 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 139–149, 2022c.

623 Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta Continual Learn-  
 624 ing Revisited: Implicitly Enhancing Online Hessian Approximation via Variance Reduction. In  
 625 *International Conference on Learning Representations*, 2024.

626

627 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu  
 628 Meng, Kede Ma, and Ying Wei. SD-loRA: Scalable decoupled low-rank adaptation for class  
 629 incremental learning. In *The Thirteenth International Conference on Learning Representations*,  
 630 2025. URL <https://openreview.net/forum?id=5U1rlpX68A>.

631 Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the  
 632 frequency domain. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
 633 *recognition*, pp. 1740–1749, 2020.

634

635 Zai Yang and Lihua Xie. Exact joint sparse frequency recovery via optimization methods. *IEEE*  
 636 *Transactions on Signal Processing*, 64(19):5145–5157, 2016.

637 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-  
 638 sification, 2016. URL <https://arxiv.org/abs/1509.01626>.

639

640 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-  
 641 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.

642

643

644

645

646

647

648 APPENDIX  
649650 A USE OF LLMs  
651652 We used ChatGPT5 solely to improve the fluency and clarity of writing. All content was written  
653 by the authors, and the model served only as a language assistant. It should not be considered a  
654 contributor to the work.  
655656 B EXPERIMENTAL SETTINGS  
657

| 659 Dataset name | 660 Category     | 661 Task                      | 662 Domain              |
|------------------|------------------|-------------------------------|-------------------------|
| 661 1. Yelp      | 662 CL Benchmark | 663 sentiment analysis        | 664 Yelp reviews        |
| 662 2. Amazon    | 663 CL Benchmark | 664 sentiment analysis        | 665 Amazon reviews      |
| 663 3. DBpedia   | 664 CL Benchmark | 665 topic classification      | 666 Wikipedia           |
| 664 4. Yahoo     | 665 CL Benchmark | 666 topic classification      | 667 Yahoo Q&A           |
| 665 5. AG News   | 666 CL Benchmark | 667 topic classification      | 668 news                |
| 666 6. MNLI      | 667 GLUE         | 668 NLI                       | 669 various             |
| 667 7. QQP       | 668 GLUE         | 669 paragraph detection       | 670 Quora               |
| 668 8. RTE       | 670 GLUE         | 671 NLI                       | 672 news, Wikipedia     |
| 669 9. SST-2     | 671 GLUE         | 673 sentiment analysis        | 674 movie reviews       |
| 670 10. WiC      | 672 SuperGLUE    | 675 word sense disambiguation | 676 lexical databases   |
| 671 11. CB       | 676 SuperGLUE    | 677 NLI                       | 678 various             |
| 672 12. COPA     | 677 SuperGLUE    | 679 QA                        | 680 blogs, encyclopedia |
| 673 13. BoolQA   | 680 SuperGLUE    | 682 boolean QA                | 684 Wikipedia           |
| 674 14. MultiRC  | 684 SuperGLUE    | 686 QA                        | 688 various             |
| 675 15. IMDB     | 688 SuperGLUE    | 690 sentiment analysis        | 692 movie reviews       |

675 Table B1: The details of 15 datasets in our continual learning experiments. Among them, NLI  
676 refers to natural language inference tasks, while QA denotes question answering. The first five tasks  
677 correspond to the standard continual learning benchmark, whereas the remaining ones are used in  
678 our long-sequence evaluation.  
679680 **Datasets.** Table B1 summarizes the detailed statistics of the 15 datasets used in our continual learning-  
681 ing (CL) experiments, along with their evaluation metrics. The selection includes datasets from well-  
682 established benchmarks, including the standard CL benchmark (Zhang et al., 2016), GLUE (Wang  
683 et al., 2018), and SuperGLUE (Wang et al., 2019), along with the addition of the IMDB movie  
684 reviews dataset (Maas et al., 2011).  
685686 **Task Sequence Orders.** Table B2 summarizes the task sequences used in our continual learning  
687 experiments for both T5 and LLaMA models. Orders 1–3 follow the standard benchmarks com-  
688 monly adopted in previous studies, while Long 1–3 are extended sequences consisting of 15 tasks,  
689 following the setup of O-LoRA Wang et al. (2023b).  
690691 **Instruction Prompts.** The prompt templates corresponding to each task type are listed in Ta-  
692 ble B3. Among them, MNLI, RTE, and CB fall under natural language inference (NLI); Amazon,  
693 Yelp, SST-2, and IMDB are grouped as sentiment classification (SC) tasks; while AG News, DBpe-  
694 dia, and Yahoo Answers belong to topic classification (TC).  
695696 **Implementation Details.** All experiments are conducted on NVIDIA RTX 4090 and A100 GPUs,  
697 using the DeepSpeed framework for efficient training. DF-CL is implemented based on the O-LoRA  
698 training framework, which is released under the MIT license. To ensure reproducibility, we provide  
699 the complete source code and training scripts in the supplementary material.  
700701 **Training Hyper-parameters.** For all experiments, we train the models for one epoch per task.  
We search the weight decay rate in  $\{0, 1e-4, 3e-4, 8e-4\}$  and tune the learning rate within the

| Order  | Task Sequence                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------|
| order1 | dbpedia → amazon → yahoo → ag                                                                               |
| order2 | dbpedia → amazon → ag → yahoo                                                                               |
| order3 | yahoo → amazon → ag → dbpedia                                                                               |
| long1  | mnli → cb → wic → copa → qqp → boolqa → rte → imdb → yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo |
| long2  | multirc → boolqa → wic → mnli → cb → copa → qqp → rte → imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo |
| long3  | yelp → amazon → mnli → cb → copa → qqp → rte → imdb → sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic |

Table B2: Six different orders of task sequences adopted in our continual learning experiments.

| Task    | Prompts                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------|
| NLI     | What is the logical relationship between the "sentence 1" and the "sentence 2"? Choose one from the option.                |
| QQP     | Whether the "first sentence" and the "second sentence" have the same meaning? Choose one from the option.                  |
| SC      | What is the sentiment of the following paragraph? Choose one from the option.                                              |
| TC      | What is the topic of the following paragraph? Choose one from the option.                                                  |
| BoolQA  | According to the following passage, is the question true or false? Choose one from the option.                             |
| MultiRC | According to the following passage and question, is the candidate answer true or false? Choose one from the option.        |
| WiC     | Given a word and two sentences, whether the word is used with the same sense in both sentence? Choose one from the option. |

Table B3: Instructions for different tasks.

range of  $[2e-2, 5e-1]$ . We set the number of global spectral coefficients to  $d = 1000$  for all models. The number of task-specific coefficients is set to  $k = 100$  for T5 models and  $k = 500$  for LLaMA2-7B models. We use a global batch size of 8 with a gradient accumulation step of 4. For sequence processing, we set the maximum source length to 512, the maximum target length to 50, and the maximum generation length to 50 during both training and evaluation. For more details on hyperparameters and training configurations, please refer to the provided bash scripts in the source code. All experiments are conducted with a fixed seed and reported based on a single run.

## C BASELINES

We illustrate the baseline methods in our experiments as follow:

- **PerTaskFT**: Trains one independent LoRA module per task from scratch without sharing, serving as a task-isolated upper bound for forgetting avoidance.
- **MTL**: Jointly trains on all task datasets in a multi-task learning setup, representing the ideal performance upper bound with full access to all tasks.
- **Zero-shot**: Evaluates the pretrained model directly on downstream benchmarks without any fine-tuning.
- **SeqLoRA**: Applies a single shared LoRA module across all tasks, updated sequentially as new tasks arrive.

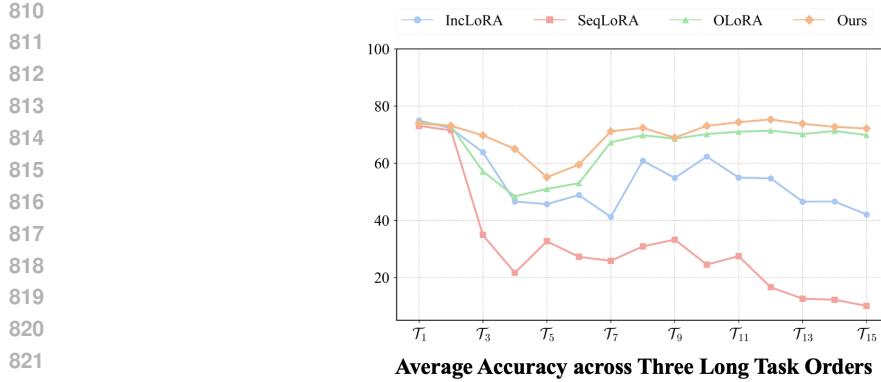
- **Replay Memory**: Maintains a fixed-size memory buffer containing examples from prior tasks, and interleaves them with current task data during training to alleviate forgetting.
- **EWC** (Kirkpatrick et al., 2017): Employs a Fisher Information Matrix-based regularization to preserve important weights by penalizing deviations from previously learned parameters.
- **LwF** (Li & Hoiem, 2017): Prevents forgetting by aligning the current model’s predictions with those from prior tasks using a distillation loss, eliminating the need to store old samples.
- **L2P** (Wang et al., 2022b): Leverages a pool of learnable prompts, dynamically retrieving the most relevant ones per input to adapt to new tasks without altering the backbone model.
- **LFPT5** (Huang et al., 2021): A continual learning variant of T5 that optimizes task-specific prompts and generates pseudo-data for rehearsal, combining prompting with generative memory.
- **IncLoRA**: Allocates one dedicated LoRA module per task and freezes previous adapters, enabling incremental adaptation while isolating task-specific knowledge.
- **MIGU** (Du et al., 2024): Introduces a magnitude-based gradient mask that updates only parameters with significant changes, assuming task-specific parameter importance distributions. We apply MIGU on top of IncLoRA in our baseline.
- **O-LoRA** (Wang et al., 2023b): Enhances IncLoRA by enforcing orthogonality between task-specific parameter updates, thereby reducing subspace interference across tasks.
- **LB-CL** (Qiao & Mahdavi, 2024): Builds upon IncLoRA by initializing new LoRA modules via SVD decomposition of previous ones and projecting gradients to orthogonal subspaces to separate task knowledge.
- **MoCL** (Wang et al., 2024a): Dynamically fuses previously trained LoRA modules based on computed task similarity scores, promoting knowledge reuse while minimizing interference.

## D MORE RESULTS

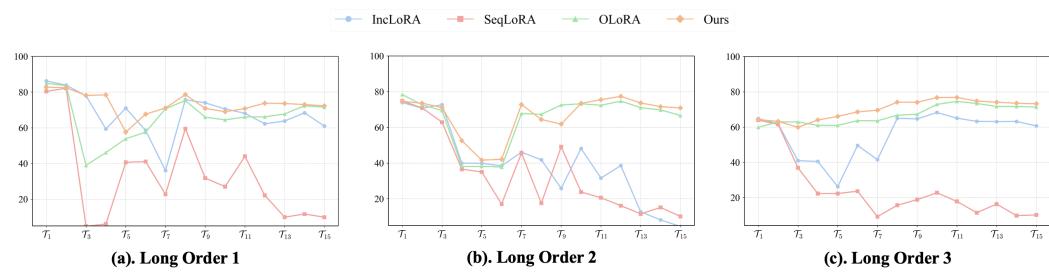
**Detailed Comparison of DF-CL with Direct Adaptation of DSF.** As previously discussed in Section 3.2, directly applying the Discrete Fourier Transform leads to temporal forgetting, illustrated in Figure 3. To address this issue, we introduced task-specific branches, which help reduce performance instability during continual training. However, residual forgetting remains, motivating the design of the task-weight merging strategy. To further validate its effectiveness, we conduct an ablation study and visualize the performance of MNLI and CB across the full training sequence in Figure 3. The results clearly show that our merging strategy effectively mitigates forgetting. The combination of task-specific branches and task-weight merging—constituting our proposed DF-CL framework—provides a robust solution for continual learning with improved stability and retention.

**Average Accuracy across Long Tasks.** The design of DF-CL aims to ensure task stability across varying task orderings. To validate this, we further evaluate the average performance under different task sequences, as shown in Figure D1. Despite the variations in task order, DF-CL consistently maintains stable performance. This indicates that our method is not only effective in mitigating interference from dissimilar tasks but also demonstrates a notable degree of robustness to task order, which is critical in NLP continual learning settings.

**All Task Performance.** We present the detailed performance comparison between O-LoRA and DF-CL on the Long Order 1 task sequence in Table D4. Notably, O-LoRA suffers from severe catastrophic forgetting on earlier tasks when trained on long task sequences. For example, as shown in Table X, the performance on the first task (MNLI) drops dramatically from 84.9 to 37.5 after training through task 15. In contrast, DF-CL maintains competitive performance, especially on early-stage tasks, demonstrating stronger resistance to forgetting. In addition, a comparison with other baselines across all 15 tasks is illustrated in Figure D2. DF-CL consistently performs competitively and nearly surpasses both O-LoRA and IncLoRA across all three task orderings. These results further highlight the generalization ability and stability of DF-CL, validating the effectiveness of our task-specific branches and task-weight merging strategy in mitigating forgetting across long task sequences.



823 Figure D1: Average performance over three task orders on the Long Benchmark, reflecting the order  
824 sensitivity of different methods.



837 Figure D2: Detailed performance for each task on Long Benchmark with T5-Large model.  
838

839

| O-Lora  | MNLI | CB   | WiC  | COPA | QQP  | BoolQ | RTE  | IMDB | yelp | amazon | SST-2 | dbpedia | agnews | MultiRC | yahoo | avg  |
|---------|------|------|------|------|------|-------|------|------|------|--------|-------|---------|--------|---------|-------|------|
| round1  | 84.9 | -    | -    | -    | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 84.9 |
| round2  | 83.6 | 89.3 | -    | -    | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 83.6 |
| round3  | 37.4 | 32.1 | 57.8 | -    | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 39.0 |
| round4  | 45.5 | 35.7 | 54.2 | 48.0 | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 46.1 |
| round5  | 26.3 | 17.9 | 52.0 | 40.0 | 82.0 | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 53.9 |
| round6  | 29.8 | 21.4 | 58.0 | 53.0 | 75.9 | 80.2  | -    | -    | -    | -      | -     | -       | -      | -       | -     | 57.6 |
| round7  | 61.9 | 76.8 | 58.9 | 50.0 | 75.9 | 80.8  | 83.4 | -    | -    | -      | -     | -       | -      | -       | -     | 70.7 |
| round8  | 62.4 | 76.8 | 50.5 | 48.0 | 72.1 | 75.9  | 80.5 | 93.2 | -    | -      | -     | -       | -      | -       | -     | 75.3 |
| round9  | 56.2 | 67.9 | 50.2 | 58.0 | 55.1 | 70.3  | 78.3 | 91.9 | 59.7 | -      | -     | -       | -      | -       | -     | 66.0 |
| round10 | 54.2 | 67.9 | 50.2 | 56.0 | 53.5 | 71.4  | 76.9 | 91.2 | 62.6 | 58.5   | -     | -       | -      | -       | -     | 64.4 |
| round11 | 50.9 | 60.7 | 52.0 | 49.0 | 57.5 | 74.6  | 70.4 | 93.6 | 63.6 | 59.2   | 93.8  | -       | -      | -       | -     | 66.1 |
| round12 | 39.4 | 50.0 | 51.6 | 55.0 | 46.3 | 69.1  | 52.7 | 94.4 | 59.2 | 56.3   | 93.7  | 98.6    | -      | -       | -     | 66.1 |
| round13 | 37.7 | 50.0 | 50.6 | 62.0 | 41.2 | 69.0  | 57.8 | 94.3 | 58.4 | 55.4   | 93.1  | 98.2    | 87.5   | -       | -     | 67.7 |
| round14 | 37.4 | 50.0 | 53.9 | 64.0 | 76.0 | 78.2  | 53.8 | 94.4 | 56.8 | 54.3   | 93.0  | 98.2    | 87.4   | 71.8    | -     | 72.4 |
| round15 | 37.5 | 50.0 | 50.8 | 56.0 | 75.4 | 74.8  | 54.2 | 94.4 | 56.1 | 54.0   | 91.7  | 98.1    | 85.2   | 69.9    | 71.1  | 71.5 |
| DF-CL   | MNLI | CB   | WiC  | COPA | QQP  | BoolQ | RTE  | IMDB | yelp | amazon | SST-2 | dbpedia | agnews | MultiRC | yahoo | avg  |
| round1  | 82.8 | -    | -    | -    | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 82.8 |
| round2  | 82.4 | 85.7 | -    | -    | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 82.4 |
| round3  | 81.9 | 85.7 | 32.6 | -    | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 78.2 |
| round4  | 81.5 | 83.9 | 54.1 | 0.0  | -    | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 78.4 |
| round5  | 81.6 | 83.9 | 55.5 | 7.0  | 34.1 | -     | -    | -    | -    | -      | -     | -       | -      | -       | -     | 57.6 |
| round6  | 81.5 | 83.9 | 55.3 | 17.0 | 51.8 | 75.8  | -    | -    | -    | -      | -     | -       | -      | -       | -     | 67.6 |
| round7  | 78.8 | 83.9 | 55.3 | 24.0 | 62.3 | 77.4  | 76.2 | -    | -    | -      | -     | -       | -      | -       | -     | 71.1 |
| round8  | 73.6 | 82.1 | 51.6 | 48.0 | 77.1 | 78.9  | 81.2 | 87.3 | -    | -      | -     | -       | -      | -       | -     | 78.6 |
| round9  | 72.6 | 82.1 | 52.7 | 52.0 | 74.5 | 78.2  | 81.9 | 92.3 | 42.1 | -      | -     | -       | -      | -       | -     | 70.9 |
| round10 | 72.3 | 82.1 | 53.8 | 54.0 | 72.8 | 77.7  | 82.3 | 93.1 | 54.5 | 49.4   | -     | -       | -      | -       | -     | 69.0 |
| round11 | 72.1 | 82.1 | 54.2 | 59.0 | 70.3 | 77.4  | 81.6 | 93.2 | 59.6 | 54.2   | 93.1  | -       | -      | -       | -     | 70.8 |
| round12 | 71.1 | 85.7 | 54.5 | 44.0 | 67.5 | 76.1  | 81.6 | 93.2 | 58.9 | 54.6   | 94.7  | 95.8    | -      | -       | -     | 73.8 |
| round13 | 68.8 | 85.7 | 53.3 | 44.0 | 65.8 | 74.8  | 80.9 | 93.3 | 55.8 | 52.6   | 94.4  | 97.4    | 80.3   | -       | -     | 73.6 |
| round14 | 67.2 | 85.7 | 54.5 | 43.0 | 71.0 | 76.4  | 82.3 | 93.3 | 53.8 | 51.3   | 94.2  | 97.4    | 83.2   | 60.1    | -     | 73.0 |
| round15 | 62.4 | 78.6 | 51.7 | 65.0 | 72.8 | 74.0  | 76.9 | 93.7 | 52.1 | 49.7   | 93.8  | 97.5    | 85.3   | 65.9    | 67.2  | 72.3 |

859  
860 Table D4: Detailed comparison of Long1 results between O-LoRA and DF-CL. For each training  
861 round, the accuracy on all previously seen tasks is reported.

864 E DISCUSSION  
865866 **Limitations.** While DF-CL demonstrates strong performance on a range of classification-focused  
867 NLP tasks, its applicability to more complex scenarios—such as reasoning-intensive tasks or open-  
868 ended generation—has not yet been explored. These tasks often involve richer contextual depen-  
869 dencies and are more sensitive to temporal forgetting, which may challenge the current spectral  
870 representation design.871 **Future Work.** Future research can extend DF-CL to more challenging task types, including rea-  
872 soning, structured prediction, and open-ended generation, to further assess its generalization capa-  
873 bilities. Another promising direction is to explore adaptive allocation of spectral coefficients—both  
874 globally and per task—based on task complexity or similarity. This could improve parameter effi-  
875 ciency and flexibility in highly heterogeneous task sequences. Additionally, enhancing the merging  
876 mechanism beyond magnitude-based selection—for example, via learned fusion, may lead to better  
877 handling of task-specific variation across tasks.878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917