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ABSTRACT

Continual learning (CL) for large language models (LLMs) is challenged by both
catastrophic forgetting and efficiency constraints when facing long sequential
tasks. While low-rank adaptation in LoRA-based approaches reduces per-task
trainable parameters, the cumulative parameter budget grows with stream length
and can be substantial. This limits their applicability in lifelong learning scenarios,
especially under strict resource constraints. In this work, we explore the potential
of the parameter-efficient Sparse Fourier Transform (SFT) in the context of contin-
ual learning. Our preliminary experiments reveal that directly applying SFT in CL
settings leads to temporal instability and forgetting. Motivated by this finding, we
propose Discrete Fourier Continual Learning (DF-CL), which leverages a spectral
decomposition strategy to disentangle shared and task-specific knowledge compo-
nents, facilitating more stable continual learning. By leveraging the orthogonality
properties inherent to the SFT bases, DF-CL ensures that task-specific knowledge
is encoded within its own dedicated parameter space, minimizing interference be-
tween tasks. Furthermore, we introduce a max-magnitude task-weight merging
strategy, which enables efficient knowledge consolidation and transfer across se-
quential tasks. Extensive experiments on both T5-Large and LLaMA2-7B demon-
strate the scalability, efficiency, and effectiveness of DF-CL.

1 INTRODUCTION

Continual learning (CL) aims to enable models to learn a sequence of tasks without revisiting pre-
vious data, while maintaining performance across all tasks. A key challenge in CL is catastrophic
forgetting, where newly acquired knowledge interferes with previously learned information. To
address this, recent CL studies have leveraged large-scale foundation models to enhance transfer-
ability and improve performance on streaming tasks. Given the substantial number of parameters in
foundation models, these approaches typically incorporate Parameter-Efficient Fine-Tuning (PEFT)
strategies such as LoRA (Hu et al., 2022; Liu et al., 2024), adapters (Houlsby et al., 2019; Gao et al.,
2024a), and prompt-tuning (Qin & Eisner, 2021; Zhou et al., 2022). By combining CL algorithm
design with PEFT techniques, they reduce the computational and memory overhead by fine-tuning
only a small subset of parameters, while mitigating forgetting through task-specific adaptation.

Despite these advances, the cost of parameter tuning remains a bottleneck when scaling to long task
sequences. In practice, even PEFT-based approaches often require maintaining separate modules for
each task, such as task-specific prompts or low-rank adapters. As the number of tasks or the scale
of the backbone model increases, these additional components accumulate and lead to substantial
memory overhead. For example, the trainable parameters grow significantly when moving from T5
to LLaMA backbones, or when the task number obviously increases, as shown in Figure 1(a). This
accumulation not only reduces overall parameter efficiency but also restricts the applicability of such
methods in resource-constrained environments, where memory capacity is essential.

To overcome these limitations, we revisit spectral representations and explore the Sparse Fourier
Transform (SFT) (Hassanieh et al., 2012) as a compact and expressive alternative. This spectral per-
spective offers a principled approach to continual learning: low-frequency components can represent
stable, general knowledge shared across tasks, while high-frequency components can capture fine-
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Figure 1: (a) Comparison of trainable parameters: DF-CL updates only 1–3% of total parameters
compared to O-LoRA. (b) Performance comparison: DF-CL achieves up to a 4.0% improvement
over O-LoRA. (c) Average accuracy and standard deviation on the initial two tasks across sequential
training on Long Benchmark (Order 1), showing that DF-CL not only achieves higher accuracy, but
also maintains lower variance and thus more stable performance when facing new tasks.

grained, task-specific information. However, our preliminary results show that directly applying SFT
to continual learning introduces instability, with noticeable forgetting during task transitions. This is
likely due to the lack of explicit constraints across tasks, which makes models prone to overwriting
previous knowledge while learning new information, thus exacerbating forgetting (Figure 3(a)).

To address this instability, we introduce Discrete Fourier Continual Learning (DF-CL), a method that
explicitly decouples general and task-specific knowledge in the spectral domain. We maintain a
global set of spectral parameters to represent shared knowledge and learn a small, task-specific set
for new information. To further preserve task-specific representations and prevent interference of
these subspaces, considering the intrinsic orthogonal nature of fourier bases, we enforce orthogonal-
ity among task-specific spectral parameters through coefficient index selection conflict. Moreover,
we discover that SFT updates, though compact, can disproportionately affect the model parame-
ters, leading to instability across tasks (Figure 3(b)). Consequently, we propose a max-magnitude
task-weight merging strategy that selectively integrates the most significant task-specific parame-
ters into the global knowledge base. This merging mechanism effectively balances plasticity and
stability, enabling the model to retain prior knowledge while adapting to new tasks. As a result, our
DF-CL combines the parameter efficiency of SFT with strong knowledge retention and task
adaptability, making it well-suited for continual learning. Illustrated in Figure 1, comprehensive
evaluations on both T5 and LLaMA models demonstrate that DF-CL effectively preserves task sta-
bility and thus consistently outperforms several strong baselines, while requiring only about 1–3%
of trainable parameters.

In summary, our key contributions are as follows:

• We are the first to introduce the SFT into the continual learning setting, aiming to further push
the limits of parameter reduction while maintaining task performance.

• We design DF-CL, a spectral continual learning method that explicitly decouples general and
task-specific knowledge and employs a max-magnitude merging strategy to maintain a balance
between knowledge retention and task adaptability.

• Extensive experiments across multiple CL benchmarks demonstrate that DF-CL achieves supe-
rior performance while using substantially fewer trainable parameters than O-LoRA.

2 RELATED WORK

Classic Continual Learning. Traditional continual learning aims to sequentially acquire knowl-
edge from a series of tasks, achieving strong performance on new tasks while retaining previously
learned knowledge. These CL methods are generally grouped into three categories: rehearsal-based,
regularization-based, and architecture-based approaches. Rehearsal-based methods (Riemer et al.,
2018; Chaudhry et al., 2019; Wang et al., 2023a; 2024b) maintain a memory buffer to replay data
from previous tasks, alleviating forgetting by directly revisiting old samples. Regularization-based
approaches (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Lee et al., 2019; Wu et al., 2024) intro-
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Figure 2: Overview of the proposed DF-CL framework. For each pre-trained weight matrix W,
we sequentially train a discrete spectral matrix for each task Tt. A shared random spectral entry
matrix is initialized and reused across all transformer layers and tasks. DF-CL maintains a global
trainable coefficient vector in Rd shared across all tasks, and a task-specific local coefficient vector
in Rk that is only updated during the current task. The weight updates ∆W are obtained by applying
the inverse discrete Fourier transform (IDFT) to the updated spectral matrix. After completing all
tasks, a task-weight merging strategy ϕ(·) is applied to produce the final adapted weights. For all L
adapted layers, DF-CL stores only (d+ k×Tt)×L parameters, ensuring high parameter efficiency.

duce penalty terms to constrain sensitive parameter updates, thus preserving important knowledge.
Architecture-based methods (Mallya et al., 2018; Ebrahimi et al., 2020; Ramesh & Chaudhari, 2021)
expand or dynamically modify the model architecture to accommodate new tasks without interfering
with existing representations. While prior CL methods effectively reduce forgetting, they are sel-
dom combined with large foundation models, limiting their scalability. We propose DF-CL, which
leverages large foundation models and employs the Discrete Fourier Transform (Xu et al., 2020;
Gao et al., 2024b) to reduce trainable parameters, improving both efficiency and practicality for CL.

CL with Foundation Models. Recent CL works hope to leverage large foundation models to im-
prove performance on sequential tasks. These methods typically adopt Parameter-Efficient Fine-
Tuning (PEFT) techniques to adapt models effectively while mitigating forgetting. A key challenge
is improving efficiency without string a large number of task-specific parameters, which is partic-
ularly important for maintaining stability in long sequential tasks Wu et al. (2025). For example,
LoRA-based methods, such as O-LoRA (Wang et al., 2023b) and MO-CL (Wang et al., 2024a),
enhance training efficiency by applying low-rank adaptation for task-specific tuning and incorpo-
rate various mechanisms to alleviate forgetting. While Prompt-based methods, like L2P (Wang
et al., 2022c), DualPrompt (Wang et al., 2022a), and CODA-Prompt (Smith et al., 2023), intro-
duce lightweight learnable prompts as task-specific knowledge to mitigate forgetting and improve
training efficiency. In contrast to these approaches based on widely used PEFT techniques, we
propose a novel method that leverages the Inverse Discrete Fourier Transform to further reduce
trainable parameters more significantly. By explicitly isolating task-specific and general knowledge
and adopting a merging strategy, our method further ensures stable CL performance.

Sparse Fourier Transform. Sparse Fourier Transform (SFT) has been introduced into deep learn-
ing to leverage sparse spectral coefficients for representation learning (Rawat et al., 2019; Ehrlich
& Davis, 2019; Xu et al., 2020). Previous studies (Yang & Xie, 2016; Chen & Chi, 2013) have
shown that SFT can effectively reconstruct data with extremely few parameters, even when the un-
derlying signals are not strictly frequency-sparse. Building on these works, FourierFT (Gao et al.,
2024b) applies SFT to parameter-efficient fine-tuning by modeling the weight update as a spatial-
domain matrix and learning its sparse spectral coefficients. In this work, we extend FourierFT to
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Figure 3: (a). Direct application of FourierFT leads to temporal forgetting. Adding local branches
mitigates this issue, while task-weight merging further stabilizes previous task performance. (b).
Perturbing only 0.5% of spectral coefficients yields an IDFT weight ∆W comparable in scale to
W0, highlighting small spectral perturbations can induce large shifts in the weight domain.

the continual learning setting and propose DF-CL, a novel framework that incorporates orthogonal
task-specific Fourier branches and a task-aware weight merging strategy. DF-CL effectively miti-
gates the transient forgetting issues observed in the original FourierFT and consistently improves
overall performance across sequential tasks.

3 METHOD

3.1 PRELIMINARIES

Problem Formulation. Continual learning trains predictive model fθ(·) on a sequence of N tasks
{T1, T2, . . . , TN}, where each task Tt is associated with a dataset Dt = {(x(t)

i , y
(t)
i )}|Dt|

i=1 containing
|Dt| labeled samples. Under the common CL setting, past task data are unavailable during training,
and the objective for the current task Tt is:

Lf = −
∑

(x,y)∈Dt

log fθ(y | x). (1)

3.2 DISCRETE FOURIER CL

Sparse Fourier Transformation. To further explore how much we reduce training parameters
without sacrificing performance, we draw inspiration from FourierFT (Gao et al., 2024b), which
introduces a sparse spectral entry matrix to significantly reduce parameter overhead. Leveraging its
compactness and expressiveness, we extend FourierFT to CL tasks. Specifically, to update a weight
matrix W ∈ Rm×n, we randomly initialize a spectral entry matrix M∈R2×d, where each column
defines a discrete 2D frequency coordinate. A corresponding coefficient vector x ∈ Rd is initialized
from a standard Gaussian distribution. The sparse spectral matrix N ∈ Rm×n is constructed as:

Nu,v =

{
xl if u = M0,l ∧ v = M1,l,

0 otherwise.
(2)

Then, the spatial matrix S ∈ Cm×n is recovered using the inverse 2D Discrete Fourier Transform
(IDFT):

Sp,q = F−1(N)p,q =

m−1∑
u=0

n−1∑
v=0

Nu,v · ei2π(
pu
m + qv

n ), (3)

where F−1(·) denotes the inverse fourier transform. The final ∆W is obtained by taking the real
part of the spatial matrix, scaled by a stable scalar β:

W = W0 + β ·∆W = W0 + β · ℜ(S). (4)

By sharing the same spectral indices M, it achieves substantial parameter savings compared to
LoRA or prompt-based methods. For a LLM with L layers, this reduces the total number of trainable
parameters to d× L, where d is the number of selected frequency entries.
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DF-CL. While the Sparse Fourier Transform offers the advantage of significantly reducing the
number of trainable parameters, its applicability to CL has not yet been explored. To bridge this
gap, we extend the SFT framework to the CL setting. However, a straightforward application fails
to address the problem of forgetting and suffers from the stability gap problem, as shown in Figure 3
(a). The stability gap refers to the phenomenon where a model experiences severe temporary forget-
ting during the CL process (De Lange et al., 2022). For example, in a preliminary experiment, the
performance on the CB dataset dropped drastically from 71.43 to 8.93 immediately after training on
task five (QPP). Although the final accuracy on CB recovered to 51.79 after completing the full task
sequence, such temporary degradation is unacceptable in real-world applications.

(Task-specific Branch.) To overcome this limitation, we first hypothesize that the observed stability
gap stems from the use of a shared coefficient vector x across all tasks. While parameter-efficient,
this design neglects task-specific knowledge and is prone to forgetting when the data distribution
shifts significantly between tasks. To address this limitation, we introduce a task-specific coefficient
vector xt ∈ Rk for each new task Tt. This enables the construction of a task-specific spectral
matrix Nt. Meanwhile, the global spectral matrix Nglobal serves as a shared base across tasks,
while during task Tt, we jointly optimize the shared coefficients xglobal and the task-specific vector
xt. Formally, the overall weight update at task Tt is given by:

W = W0 + β ·∆W(t) = W0 + β · ℜ(F−1(N(t)))

= W0 + β · ℜ(F−1(Nglobal +

t∑
i=1

Ni)). (5)

The coefficients from previous tasks, x1, . . . ,xt−1, are kept frozen to mitigate knowledge forgetting,
and only xglobal and xt will be updated. Notably, we constrain the newly introduced coefficients to
be associated with non-overlapping indices in the spectral matrix Nglobal and {Ni}t−1

i=1 . This design
induces orthogonal subspaces for each task-specific branch—thanks to the inherent orthogonality of
Fourier bases—thereby avoiding interference. This formulation allows the model to incrementally
expand its representational capacity while maintaining knowledge from earlier tasks, making the
model particularly well-suited to continual-learning scenarios where tasks may differ significantly.
In practice, we will choose a small task-specific dimensionality k<d, ensuring that the additional
parameter cost per task remains minimal. As shown in Figure 3(a), adding a lightweight task-specific
branch alleviates the stability gap, but forgetting remains, motivating our task-weight merging.

(Task-weight Merging). To investigate the source of the instability, we further hypothesize that the
remained forgetting observed in Figure 3(a) stems from the sensitivity of model weights to up-
dates in the spectral domain. To verify this, we randomly initialize a sparse spectral entry matrix
M and transform it back into the spatial domain. As presented in Figure 3(b), the reconstructed
∆W exhibits a distribution and scale comparable to that of the original weight matrix W0. This
observation suggests that even small perturbations in the spectral domain can propagate into dispro-
portionately large and unstable changes in the model weights. To address this, we draw inspiration
from multi-task learning and incorporate model merging techniques (Marczak et al., 2024) during
the post-training phase. Model merging facilitates effective knowledge consolidation by combin-
ing independently trained memory components from different tasks using tailored strategies. In our
case, we focus on merging the real-valued spatial matrices ∆W(i) obtained from sequential task
training (i = 1, 2, . . . , t). We empirically evaluate several merging strategies, such as element-wise
mean and max, and observe that minimizing large parameter shifts consistently yields better per-
formance. Specifically, for each element with the coordinate of (p, q) in weight matrix, we perform
magnitude-based merging across tasks to obtain:

Φp,q = arg max
i∈{1,...,T}

∣∣∆W(i)
p,q

∣∣, (6)

∆Wp,q = ∆W(Φp,q)
p,q . (7)

Finally, the merged model is computed as:

Wfinal = W0 + β ·∆W. (8)

During inference, the merged spectral weights can be directly incorporated into the base model
without introducing any additional overhead.
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Algorithm 1 DF-CL Algorithm
Input: Pretrained weight matrix from foundation model W0 ∈ Rm×n, training datasets for tasks
{D1, . . . ,DN}, hyper-parameters d, k.
Output: Updated weight matrix Wfinal

1: Initialize coefficient vector xglobal ∈ Rd

2: Sample d coordinate pairs Mglobal = {(M1,i,M2,i)}di=1 from set [m]× [n] without replacement
3: Obtain spectral matrix Nglobal based on Eqn. (2)
4: for t = 1 to N do
5: Initialize new task-specific coefficient vector xt ∈ Rk

6: Freeze previous task-specific coefficients {xi}t−1
i=1 ; unfreeze xt and xglobal

7: Sample k coordinate pairs Mt from set ([m]× [n]) \
(
Mglobal ∪

⋃t−1
i=1 Mi

)
without replacement

8: Obtain spectral matrix Nt with Mt based on Eqn. (2)
9: Compute cross-entropy loss on Dt using W based on Eqn. (5), and update unfrozen coefficients with

mini-batches and AdamW optimizer
10: Save all coefficients x and M in this round to compute N(t) = Nglobal +

∑t
i=1 Ni

11: end for
12: Compute Wfinal based on Eqns. (6)–(8), where ∆W(i) = ℜ(F−1(N(i))) for each task Ti

13: return Wfinal

Parameter Analysis. We provide a theoretical comparison of the trainable parameter count be-
tween O-LoRA (Wang et al., 2023b) and our DF-CL, as summarized in Table 1. O-LoRA introduces
a pair of trainable matrices, A and B, for each tunable module. Assuming a total of Tt tasks and L
trainable modules, the number of parameters is:

NO-LoRA = 2× dim × L× r × Tt, (9)

where r is the LoRA rank and dim = m = n is the dimensionality of each module. In contrast,
DF-CL utilizes d global coefficients and k task-specific coefficients per task. The total number of
trainable parameters is:

NDF-CL = (d+ k × Tt)× L. (10)
For example, when fine-tuning the query and value matrices of T5-Large (24 layers × 2 modules,
so L = 48), and assuming Tt = 15, we have:

• O-LoRA: NO-LoRA = 11.8M parameters with r = 8 and dim = 1024,
• DF-CL: NDF-CL = 120k parameters with d = 1000 and k = 100.

This reduces the trainable parameter count to approximately 1.1% compared to O-LoRA. Moreover,
the parameter efficiency advantage of DF-CL becomes increasingly significant as either the number
of tasks or the model size grows, illustrated in Table 1.

Table 1: Trainable parameter comparison between O-LoRA and DF-CL. We suppose the trainable
modules are query and value weight matrices across each Transformer layer.

LLMs O-LoRA DF-CL
# Tasks r #Params # Tasks d k # Params

T5-Large

4 8 3.1M 4 1000 100 67.2k (↓ 97.8%)
15 8 11.8M 15 1000 100 120k (↓ 98.9%)
4 16 6.3M 4 1000 200 86.4k (↓ 98.6%)

15 16 23.6M 15 1000 200 192k (↓ 99.2%)

LLaMA2-7B

4 8 16.8M 4 1000 250 128k (↓ 99.2%)
15 8 62.9M 15 1000 250 304k (↓ 99.5%)
4 16 33.6M 4 1000 500 192k (↓ 99.4%)

15 16 125.8M 15 1000 500 544k (↓ 99.6%)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following O-LoRA (Wang et al., 2023b), we evaluate our DF-CL on two widely used
benchmarks, the Standard benchmark and Long benchmark. Standard benchmark (Zhang et al.,
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Table 2: Experimental results on two CL benchmarks with T5-Large(Raffel et al., 2020). Params.
represents the parameter usage for training.

Method Standard (N = 4) Long (N = 15)
Params. Order1 Order2 Order3 avg Params. Long1 Long2 Long3 avg

PerTaskFT - 70.0 70.0 70.0 70.0 - 78.1 78.1 78.1 78.1
MTL - 80.0 80.0 80.0 80.0 - 76.5 76.5 76.5 76.5

Zero-Shot - 0.0 0.0 0.0 0.0 - 13.4 13.4 13.4 13.4
SeqLoRA 0.8M 25.7 24.0 35.2 28.3 3.0M 12.3 10.1 10.1 10.8
Replay Memory 770M 55.2 56.9 61.3 57.8 770M 55.0 54.6 53.1 54.2
EWC 770M 48.7 47.7 54.5 50.3 770M 45.3 44.5 45.6 45.1
LwF 4.1M 54.4 53.1 49.6 52.3 15.7M 50.1 43.1 47.4 46.9
L2P 96.0k 60.3 61.7 61.1 60.7 0.4M 57.5 53.8 56.9 56.1
LFPT5 1.2M 67.6 72.6 77.9 72.7 4.6M 70.4 68.2 69.1 69.2
IncLoRA 3.1M 68.6 59.7 75.0 67.8 11.8M 60.3 60.5 53.2 58.0
MIGU 3.1M 77.2 76.7 75.4 76.4 11.8M 71.3 67.7 67.3 68.7
O-LoRA 3.1M 74.9 73.4 75.6 74.6 11.8M 71.5 66.7 71.3 69.8
LB-CL 3.2M 76.9 76.5 76.8 76.7 11.8M 68.4 67.3 71.8 69.2
MoCL 3.3M 75.6 75.4 76.7 75.9 - - - - -

DF-CL 67.2k 78.7 78.7 78.4 78.6 120.0k 72.3 70.9 73.2 72.1

2016) consists of four text classification datasets, including Amazon reviews, Yelp reviews, DBpe-
dia, and Yahoo Answers. Long benchmark further involve AG News classification task, four datasets
from GLUE (Wang et al., 2018), five tasks from SuperGLUE (Wang et al., 2019), and IMDB movie
reviews dataset (Maas et al., 2011). More details are listed in Appendix B.

Implementation Details. We implement our DF-CL framework on both an encoder-decoder ar-
chitecture (T5-Large (Raffel et al., 2020)) and a decoder-only model (LLaMA2-7B (Touvron et al.,
2023)). Specifically, DF-CL is applied only to the query and value matrices across all transformer
layers, ensuring training efficiency. For global parameters, we allow d = 1000 trainable spectral co-
efficients out of the full spectral space, i.e., 10242 for T5-Large and 40962 for LLaMA2-7B. These
global coefficients are shared and updated throughout all tasks in the continual learning sequence.
For task-specific adaptation, we allocate k = 100 coefficients per task on T5-Large and k = 500
on LLaMA2-7B. These coefficients are independently updated for each task and remain frozen af-
terward, enabling task-specialized learning while preserving knowledge from previous tasks. Addi-
tional implementation details and hyperparameter settings can be found in Appendix B.

Metrics. The ai,j denotes the test accuracy on the i-th task Ti after training on Tj . We adopt the
Average Accuracy as the main evaluation metric, which is calculated as the mean accuracy across
all seen tasks,

Acc =

∑N
i=1 |Di| · ai,N∑N

i=1 |Di|
,

where |Di| represents the number of test samples in task Ti.

Baselines. We compare DF-CL with state-of-the-art baselines: including PerTaskFT, MTL, Zero-
shot, SeqLoRA, Replay Memory, EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem, 2017),
L2P (Wang et al., 2022b), LFPT5 (Huang et al., 2021), IncLoRA, MIGU (Du et al., 2024), O-
LoRA (Wang et al., 2023b) and LB-CL (Qiao & Mahdavi, 2024). Details for each method are listed
in Appendix C.

4.2 MAIN RESULTS

DF-CL Performs Well on Different LLM Backbones. We present the experimental results on
both T5-Large and LLaMA2-7B in Table 2 and Table 3, respectively. Our proposed DF-CL con-
sistently achieves superior performance with significantly fewer trainable parameters compared to
LoRA-based methods. For instance, on the T5-Large model, DF-CL surpasses O-LoRA by 4.0%
and LB-CL by 1.9% on the Standard benchmark, while utilizing only approximately 2% of their pa-
rameters. Although prompt-based approaches like L2P are highly parameter-efficient, they exhibit
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Table 3: Experimental results on Standard CL benchmarks with LLaMA2-7b (Touvron et al., 2023).

Method Standard (N = 4)
Params. Order1 Order2 Order3 avg

PerTaskFT - 79.9 79.9 79.9 79.9
MTL - 80.3 80.3 80.3 80.3

Zero-shot - 0.0 0.0 0.0 0.0
SeqLoRA 4.2M 73.4 75.6 75.5 74.8
IncLoRA 16.8M 75.9 72.6 76.8 75.1
O-LoRA 16.8M 76.8 75.7 75.7 76.0
MoCL 19.7M 78.4 77.7 78.4 78.2

DF-CL 0.5M 78.4 77.9 78.9 78.4

Table 4: Ablation of coefficient
number (d, k) on LLaMA2-7B.

d k Order1
500 0 66.4

1000 0 74.7
2000 0 76.9

1000 100 76.5
1000 250 77.4
1000 500 77.8

Figure 4: Test Acc. throughout continual training on T5.

substantially lower performance. For example, L2P underperforms by more than 17.9% compared to
DF-CL. Moreover, DF-CL also demonstrates competitive performance on the LLaMA2-7B model,
showcasing strong generalization across different large language model backbones. Notably, DF-CL
tunes only 1% of the parameters compared to LoRA-based baselines on LLaMA2-7B—for instance,
using just 0.2M parameters, DF-CL achieves comparable results to MoCL with 19.7M parameters.
These results further underscore the effectiveness and scalability of DF-CL with different LLMs.

DF-CL Keeps Stability across Varied Task Length. To assess the scalability of DF-CL on longer
task sequences, we evaluate it against several state-of-the-art baselines on the Long Benchmark,
which includes 15 diverse NLP tasks. As shown in Table 2, DF-CL consistently outperforms or
matches the performance of leading methods across different task orders, demonstrating its strong
generalization ability in continual learning. Notably, as the number of tasks increases, the parameter
count for LoRA-based methods grows significantly. In contrast, DF-CL maintains high parameter
efficiency, achieving competitive results with only 1% of the parameter usage (0.12M vs. 11.8M).
These findings highlight the effectiveness of DF-CL for resource-constrained continual learning
scenarios.

Stability across Tasks. To demonstrate the stability of DF-CL throughout the continual learning
process, we plot the test accuracy after completing each task across benchmarks with varying task
sequence lengths (see Figure 4). Compared with other baselines, DF-CL exhibits notably smaller
performance fluctuations and consistently maintains high accuracy throughout training. This stabil-
ity underscores DF-CL’s strong resistance to catastrophic forgetting and its ability to adapt to new
tasks without compromising previously acquired knowledge. These results validate the effectiveness
of the proposed task-specific branches in mitigating stability issues, as discussed in Section 3.2. Such
robustness is particularly valuable in more demanding scenarios like the Long benchmark, where the
number of sequential tasks is significantly larger.

4.3 ABLATION STUDIES

Impact of DF-CL Components. To better understand the contribution of each component in our
proposed DF-CL, we perform ablation studies on T5-Large model from two key perspectives: (1)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Ablation study of different components of DF-CL on T5-Large model.

Local Branch Merging Standard (N = 4) Long (N = 15)
Order1 Order2 Order3 avg Long1 Long2 Long3 avg

✗ ✓ 77.9 77.3 77.2 77.5 70.0 70.2 67.4 69.2
✓ ✗ 77.7 78.2 77.3 77.7 70.9 69.4 70.0 69.7
✓ ✓ 78.7 78.7 78.4 78.6 72.3 70.9 73.2 72.1

Task-specific Branches, which introduce orthogonal and task-related coefficient vectors to alleviate
interference; and (2) Task-weight Merging, which facilitates knowledge reuse by integrating param-
eters from previously learned tasks. As shown in Table 5, removing either component leads to a
significant drop in performance, confirming their effectiveness in mitigating forgetting and enhanc-
ing learning stability. In particular, removing the task-specific branches causes a notable decline
in accuracy, indicating that the orthogonal coefficient vectors are critical for maintaining task in-
dependence and reducing conflict between old and new knowledge. Furthermore, replacing our
task-weight merging strategy with a naive addition operation yields inferior results, suggesting that
effective consolidation requires careful selection of parameter updates to avoid forgetting.

Table 6: Ablation of max and mean merging strategies.

T5-Large Order 1 Order 2 Order3
w/o Merge 77.7 78.2 77.3
Mean Merge 76.8 64.1 77.8
Max Merge 78.7 78.7 78.4

Impact of Merging Strategies. We
present the ablation results of the mean
merging and max-magnitude merging
strategies in Table 6. It is evident
that max-magnitude merging consis-
tently outperforms mean merging, and is
therefore adopted as the final strategy in
DF-CL. Surprisingly, the mean averag-
ing strategy leads to performance degradation on both Order1 and Order2 evaluations, highlighting
the importance of selecting an appropriate merging direction. We attribute this to the assumption
that parameters with larger magnitudes tend to carry greater importance, as similarly discussed in
MAGMAX (Marczak et al., 2024). Consequently, DF-CL achieves further performance gains by
preserving high-magnitude parameters. These findings highlight the necessity of our task-weight
merging strategy, which not only stabilizes training but also leads to consistent performance im-
provements across tasks.

Ablation of coefficient number. The number of coefficients in the global branch (d) and the local
branch (k) plays a critical role in balancing downstream performance and training cost. In our
DF-CL framework, the total number of trainable parameters is given by (d + k × Tt) × L. To
study the effect of d and k, we conduct ablation experiments on LLaMA2-7B using the Standard
Benchmarks, without applying the model merging strategy to isolate their influence. As shown
in Table 4, increasing d from 500 to 2000 consistently improves performance, demonstrating the
scalability of DF-CL. Similarly, increasing k also yields performance gains. We adopt d = 1000
and k = 500 as the default setting for LLaMA2-7B, balancing performance and efficiency. We
anticipate that using larger values (e.g., d = 2000) would lead to even stronger results than those
reported in Table 3.

5 CONCLUSION

In this paper, we propose DF-CL, a Discrete Fourier Transform-based framework for efficient and
robust continual learning. Our approach introduces shared global spectral coefficients across tasks
and task-specific branches for individual optimization, ensuring orthogonal parameter spaces while
mitigating knowledge forgetting through globally shared parameters. To further enhance perfor-
mance, we develop a task-weight merging strategy that consolidates knowledge from past tasks
effectively. Extensive experiments demonstrate that DF-CL consistently outperforms LoRA-based
methods across multiple large language model backbones and benchmarks, while requiring signifi-
cantly fewer trainable parameters.
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This research follows the ICLR Code of Ethics. Our work introduces the parameter-efficient Sparse
Fourier Transform into the continual learning setting and designs a spectral continual learning
method to maintain knowledge retention. All experiments are conducted on publicly available
benchmark datasets that do not involve personal or sensitive information. The research does not
pose direct ethical or societal risks.

REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a complete description of our proposed DF-CL algorithm in
Algorithm 1. The training and evaluation setups are detailed in Section 4.1 and Appendix B. Dataset
details are described in Appendix B.
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APPENDIX

A USE OF LLMS

We used ChatGPT5 solely to improve the fluency and clarity of writing. All content was written
by the authors, and the model served only as a language assistant. It should not be considered a
contributor to the work.

B EXPERIMENTAL SETTINGS

Dataset name Category Task Domain
1. Yelp CL Benchmark sentiment analysis Yelp reviews
2. Amazon CL Benchmark sentiment analysis Amazon reviews
3. DBpedia CL Benchmark topic classification Wikipedia
4. Yahoo CL Benchmark topic classification Yahoo Q&A
5. AG News CL Benchmark topic classification news
6. MNLI GLUE NLI various
7. QQP GLUE paragraph detection Quora
8. RTE GLUE NLI news, Wikipedia
9. SST-2 GLUE sentiment analysis movie reviews
10. WiC SuperGLUE word sense disambiguation lexical databases
11. CB SuperGLUE NLI various
12. COPA SuperGLUE QA blogs, encyclopedia
13. BoolQA SuperGLUE boolean QA Wikipedia
14. MultiRC SuperGLUE QA various
15. IMDB SuperGLUE sentiment analysis movie reviews

Table B1: The details of 15 datasets in our continual learning experiments. Among them, NLI
refers to natural language inference tasks, while QA denotes question answering. The first five tasks
correspond to the standard continual learning benchmark, whereas the remaining ones are used in
our long-sequence evaluation.

Datasets. Table B1 summarizes the detailed statistics of the 15 datasets used in our continual learn-
ing (CL) experiments, along with their evaluation metrics. The selection includes datasets from well-
established benchmarks, including the standard CL benchmark (Zhang et al., 2016), GLUE (Wang
et al., 2018), and SuperGLUE (Wang et al., 2019), along with the addition of the IMDB movie
reviews dataset (Maas et al., 2011).

Task Sequence Orders. Table B2 summarizes the task sequences used in our continual learning
experiments for both T5 and LLaMA models. Orders 1–3 follow the standard benchmarks com-
monly adopted in previous studies, while Long 1–3 are extended sequences consisting of 15 tasks,
following the setup of O-LoRA Wang et al. (2023b).

Instruction Prompts. The prompt templates corresponding to each task type are listed in Ta-
ble B3. Among them, MNLI, RTE, and CB fall under natural language inference (NLI); Amazon,
Yelp, SST-2, and IMDB are grouped as sentiment classification (SC) tasks; while AG News, DBpe-
dia, and Yahoo Answers belong to topic classification (TC).

Implementation Details. All experiments are conducted on NVIDIA RTX 4090 and A100 GPUs,
using the DeepSpeed framework for efficient training. DF-CL is implemented based on the O-LoRA
training framework, which is released under the MIT license. To ensure reproducibility, we provide
the complete source code and training scripts in the supplementary material.

Training Hyper-parameters. For all experiments, we train the models for one epoch per task.
We search the weight decay rate in {0, 1e−4, 3e−4, 8e−4} and tune the learning rate within the
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Order Task Sequence
order1 dbpedia → amazon → yahoo → ag
order2 dbpedia → amazon → ag → yahoo
order3 yahoo → amazon → ag → dbpedia

long1 mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

long2 multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo

long3 yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

Table B2: Six different orders of task sequences adopted in our continual learning experiments.

Task Prompts
NLI What is the logical relationship between the ”sentence 1” and the ”sen-

tence 2”? Choose one from the option.

QQP Whether the ”first sentence” and the ”second sentence” have the same
meaning? Choose one from the option.

SC What is the sentiment of the following paragraph? Choose one from the
option.

TC What is the topic of the following paragraph? Choose one from the
option.

BoolQA According to the following passage, is the question true or false?
Choose one from the option.

MultiRC According to the following passage and question, is the candidate an-
swer true or false? Choose one from the option.

WiC Given a word and two sentences, whether the word is used with the
same sense in both sentence? Choose one from the option.

Table B3: Instructions for different tasks.

range of [2e−2, 5e−1]. We set the number of global spectral coefficients to d = 1000 for all
models. The number of task-specific coefficients is set to k = 100 for T5 models and k = 500 for
LLaMA2-7B models. We use a global batch size of 8 with a gradient accumulation step of 4. For
sequence processing, we set the maximum source length to 512, the maximum target length to 50,
and the maximum generation length to 50 during both training and evaluation. For more details on
hyperparameters and training configurations, please refer to the provided bash scripts in the source
code. All experiments are conducted with a fixed seed and reported based on a single run.

C BASELINES

We illustrate the baseline methods in our experiments as follow:

• PerTaskFT: Trains one independent LoRA module per task from scratch without sharing, serv-
ing as a task-isolated upper bound for forgetting avoidance.

• MTL: Jointly trains on all task datasets in a multi-task learning setup, representing the ideal
performance upper bound with full access to all tasks.

• Zero-shot: Evaluates the pretrained model directly on downstream benchmarks without any
fine-tuning.

• SeqLoRA: Applies a single shared LoRA module across all tasks, updated sequentially as new
tasks arrive.
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• Replay Memory: Maintains a fixed-size memory buffer containing examples from prior tasks,
and interleaves them with current task data during training to alleviate forgetting.

• EWC (Kirkpatrick et al., 2017): Employs a Fisher Information Matrix-based regularization to
preserve important weights by penalizing deviations from previously learned parameters.

• LwF (Li & Hoiem, 2017): Prevents forgetting by aligning the current model’s predictions with
those from prior tasks using a distillation loss, eliminating the need to store old samples.

• L2P (Wang et al., 2022b): Leverages a pool of learnable prompts, dynamically retrieving the
most relevant ones per input to adapt to new tasks without altering the backbone model.

• LFPT5 (Huang et al., 2021): A continual learning variant of T5 that optimizes task-specific
prompts and generates pseudo-data for rehearsal, combining prompting with generative memory.

• IncLoRA: Allocates one dedicated LoRA module per task and freezes previous adapters, en-
abling incremental adaptation while isolating task-specific knowledge.

• MIGU (Du et al., 2024): Introduces a magnitude-based gradient mask that updates only param-
eters with significant changes, assuming task-specific parameter importance distributions. We
apply MIGU on top of IncLoRA in our baseline.

• O-LoRA (Wang et al., 2023b): Enhances IncLoRA by enforcing orthogonality between task-
specific parameter updates, thereby reducing subspace interference across tasks.

• LB-CL (Qiao & Mahdavi, 2024): Builds upon IncLoRA by initializing new LoRA modules
via SVD decomposition of previous ones and projecting gradients to orthogonal subspaces to
separate task knowledge.

• MoCL (Wang et al., 2024a): Dynamically fuses previously trained LoRA modules based on
computed task similarity scores, promoting knowledge reuse while minimizing interference.

D MORE RESULTS

Detailed Comparison of DF-CL with Direct Adaptation of DSF. As previously discussed in
Section 3.2, directly applying the Discrete Fourier Transform leads to temporal forgetting, illus-
trated in Figure 3. To address this issue, we introduced task-specific branches, which help reduce
performance instability during continual training. However, residual forgetting remains, motivating
the design of the task-weight merging strategy. To further validate its effectiveness, we conduct an
ablation study and visualize the performance of MNLI and CB across the full training sequence in
Figure 3. The results clearly show that our merging strategy effectively mitigates forgetting. The
combination of task-specific branches and task-weight merging—constituting our proposed DF-CL
framework—provides a robust solution for continual learning with improved stability and retention.

Average Accuracy across Long Tasks. The design of DF-CL aims to ensure task stability across
varying task orderings. To validate this, we further evaluate the average performance under different
task sequences, as shown in Figure D1. Despite the variations in task order, DF-CL consistently
maintains stable performance. This indicates that our method is not only effective in mitigating
interference from dissimilar tasks but also demonstrates a notable degree of robustness to task order,
which is critical in NLP continual learning settings.

All Task Performance. We present the detailed performance comparison between O-LoRA and
DF-CL on the Long Order 1 task sequence in Table D4. Notably, O-LoRA suffers from severe catas-
trophic forgetting on earlier tasks when trained on long task sequences. For example, as shown in
Table X, the performance on the first task (MNLI) drops dramatically from 84.9 to 37.5 after training
through task 15. In contrast, DF-CL maintains competitive performance, especially on early-stage
tasks, demonstrating stronger resistance to forgetting. In addition, a comparison with other baselines
across all 15 tasks is illustrated in Figure D2. DF-CL consistently performs competitively and nearly
surpasses both O-LoRA and IncLoRA across all three task orderings. These results further highlight
the generalization ability and stability of DF-CL, validating the effectiveness of our task-specific
branches and task-weight merging strategy in mitigating forgetting across long task sequences.
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Figure D1: Average performance over three task orders on the Long Benchmark, reflecting the order
sensitivity of different methods.

Figure D2: Detailed performance for each task on Long Benchmark with T5-Large model.

O-Lora MNLI CB WiC COPA QQP BoolQA RTE IMDB yelp amazon SST-2 dbpedia agnews MultiRC yahoo avg

round1 84.9 - - - - - - - - - - - - - - 84.9
round2 83.6 89.3 - - - - - - - - - - - - - 83.6
round3 37.4 32.1 57.8 - - - - - - - - - - - - 39.0
round4 45.5 35.7 54.2 48.0 - - - - - - - - - - - 46.1
round5 26.3 17.9 52.0 40.0 82.0 - - - - - - - - - - 53.9
round6 29.8 21.4 58.0 53.0 75.9 80.2 - - - - - - - - - 57.6
round7 61.9 76.8 58.9 50.0 75.9 80.8 83.4 - - - - - - - - 70.7
round8 62.4 76.8 50.5 48.0 72.1 75.9 80.5 93.2 - - - - - - - 75.3
round9 56.2 67.9 50.2 58.0 55.1 70.3 78.3 91.9 59.7 - - - - - - 66.0
round10 54.2 67.9 50.2 56.0 53.5 71.4 76.9 91.2 62.6 58.5 - - - - - 64.4
round11 50.9 60.7 52.0 49.0 57.5 74.6 70.4 93.6 63.6 59.2 93.8 - - - - 66.1
round12 39.4 50.0 51.6 55.0 46.3 69.1 52.7 94.4 59.2 56.3 93.7 98.6 - - - 66.1
round13 37.7 50.0 50.6 62.0 41.2 69.0 57.8 94.3 58.4 55.4 93.1 98.2 87.5 - - 67.7
round14 37.4 50.0 53.9 64.0 76.0 78.2 53.8 94.4 56.8 54.3 93.0 98.2 87.4 71.8 - 72.4
round15 37.5 50.0 50.8 56.0 75.4 74.8 54.2 94.4 56.1 54.0 91.7 98.1 85.2 69.9 71.1 71.5

DF-CL MNLI CB WiC COPA QQP BoolQA RTE IMDB yelp amazon SST-2 dbpedia agnews MultiRC yahoo avg

round1 82.8 - - - - - - - - - - - - - - 82.8
round2 82.4 85.7 - - - - - - - - - - - - - 82.4
round3 81.9 85.7 32.6 - - - - - - - - - - - - 78.2
round4 81.5 83.9 54.1 0.0 - - - - - - - - - - - 78.4
round5 81.6 83.9 55.5 7.0 34.1 - - - - - - - - - - 57.6
round6 81.5 83.9 55.3 17.0 51.8 75.8 - - - - - - - - - 67.6
round7 78.8 83.9 55.3 24.0 62.3 77.4 76.2 - - - - - - - - 71.1
round8 73.6 82.1 51.6 48.0 77.1 78.9 81.2 87.3 - - - - - - - 78.6
round9 72.6 82.1 52.7 52.0 74.5 78.2 81.9 92.3 42.1 - - - - - - 70.9
round10 72.3 82.1 53.8 54.0 72.8 77.7 82.3 93.1 54.5 49.4 - - - - - 69.0
round11 72.1 82.1 54.2 59.0 70.3 77.4 81.6 93.2 59.6 54.2 93.1 - - - - 70.8
round12 71.1 85.7 54.5 44.0 67.5 76.1 81.6 93.2 58.9 54.6 94.7 95.8 - - - 73.8
round13 68.8 85.7 53.3 44.0 65.8 74.8 80.9 93.3 55.8 52.6 94.4 97.4 80.3 - - 73.6
round14 67.2 85.7 54.5 43.0 71.0 76.4 82.3 93.3 53.8 51.3 94.2 97.4 83.2 60.1 - 73.0
round15 62.4 78.6 51.7 65.0 72.8 74.0 76.9 93.7 52.1 49.7 93.8 97.5 85.3 65.9 67.2 72.3

Table D4: Detailed comparison of Long1 results between O-LoRA and DF-CL. For each training
round, the accuracy on all previously seen tasks is reported.
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E DISCUSSION

Limitations. While DF-CL demonstrates strong performance on a range of classification-focused
NLP tasks, its applicability to more complex scenarios—such as reasoning-intensive tasks or open-
ended generation—has not yet been explored. These tasks often involve richer contextual depen-
dencies and are more sensitive to temporal forgetting, which may challenge the current spectral
representation design.

Future Work. Future research can extend DF-CL to more challenging task types, including rea-
soning, structured prediction, and open-ended generation, to further assess its generalization capa-
bilities. Another promising direction is to explore adaptive allocation of spectral coefficients—both
globally and per task—based on task complexity or similarity. This could improve parameter effi-
ciency and flexibility in highly heterogeneous task sequences. Additionally, enhancing the merging
mechanism beyond magnitude-based selection—for example, via learned fusion, may lead to better
handling of task-specific variation across tasks.
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