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Abstract

Prompt Engineering has garnered significant at-001
tention for enhancing the performance of large002
language models across a multitude of tasks.003
Techniques such as the Chain-of-Thought not004
only bolster task performance but also delin-005
eate a clear trajectory of reasoning steps, of-006
fering a tangible form of explanation for the007
audience. Prior works on interpretability as-008
sess the reasoning chains yielded by Chain-of-009
Thought solely along a singular axis, namely010
faithfulness. We present a comprehensive and011
multifaceted evaluation of interpretability, ex-012
amining not only faithfulness but also robust-013
ness and utility on 3 commonsense reasoning014
datasets. Likewise, our investigation is not015
confined to a single prompting technique; it016
expansively covers a multitude of prevalent017
prompting techniques employed in large lan-018
guage models, thereby ensuring a wide-ranging019
and exhaustive evaluation. In addition, we in-020
troduce a simple alignment technique, termed021
Self-Entailment-Alignment Chain-of-thought,022
that yields more than 70% improvement across023
all dimensions of interpretability. Our findings024
suggest that interpretability should be assessed025
from various dimensions instead of grounding026
our conclusions based on a singular metric.027

1 Introduction028

In recent trends, Large Language Models (LLM)029

have shown impressive performance across a di-030

verse array of tasks, primarily through extensive031

scaling of model size (Brown et al., 2020). Tech-032

niques such as instruct-tuning (Wei et al., 2021) ap-033

plied across diverse tasks have empowered LLMs034

to execute inference on previously unseen tasks.035

One of the leading factors can be attributed to036

customizing the prompt to align with the specific037

targeted task. Given the considerable potential this038

holds for enhancing task performance, substantial039

research efforts have been channeled toward inno-040

vating newer ways of prompting LLMs to utilize041

their pre-training knowledge in a more effective 042

manner. 043

Chain-of-Thought (CoT) (Wei et al., 2022) has 044

gathered much attention due to its simple setup 045

which allows the LLM to generate not only the task 046

output but also the steps undertaken. In addition to 047

its efficacy in enhancing the model’s performance, 048

this prompting method concurrently touches on one 049

of the important aspects of utilizing these models 050

for decision-making: interpretability. 051

The assumption is that the reasoning chain pre- 052

ceding the answer illustrates the model’s thought 053

process, enabling the audience to understand how 054

the answer is derived. However, such claims 055

though seemingly plausible should be taken lightly 056

as they may not be faithful to the model’s reasoning 057

process (Jacovi and Goldberg, 2020). In this con- 058

text, plausibility refers to the extent to which an ex- 059

planation resonates with and is deemed acceptable 060

by a human audience. Faithfulness, on the other 061

hand, is characterized by the extent to which the ex- 062

planation accurately reflects the model’s decision- 063

making process. 064

There has been a large number of works that 065

seek to introduce modifications to CoT, including 066

Self-Consistency (Wang et al., 2022b) and Least- 067

to-Most (Zhou et al., 2022). We introduce a simple 068

extension to the list of CoT variants, but purely with 069

a focus on enhancing interpretability in the reason- 070

ing chain. The approach coined Self-Entailment- 071

Alignment CoT (SEA-CoT) similarly utilizes a 072

form of consistency between the set of possible 073

outcomes, with an additional touch of alignment 074

towards desirable explainability qualities. 075

Moreover, we conduct an extensive investigation 076

into the reasoning explanations by evaluating under 077

three pivotal axes of interpretability: faithfulness, 078

robustness, and utility on 3 commonsense reason- 079

ing datasets. These assessments are implemented 080

across multiple prompting techniques including 081

CoT and various adaptations of it. 082
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2 Motivation083

Efforts aimed to enhance faithfulness in NLP take084

various forms. Extractive rationalizing model (Lei085

et al., 2016), designed to be faithful, generally com-086

prises two separate components: explainer and087

predictor. This design paradigm conditions the088

predictor exclusively on text spans extracted by089

the explainer, positing that the resultant output,090

ŷ is faithfully aligned with the extracted text, ê.091

However, prior studies (Wiegreffe et al., 2020) cau-092

tions against such beliefs, identifying limitations093

in adopting the explain-then-predict approach. The094

author mentions that such an approach restricts the095

focus of the predictor toward the target identified by096

the explainer, thereby raising questions about what097

is being explained. Conversely, Jacovi et al. (Jacovi098

and Goldberg, 2021) highlight concerns relating to099

the lack of meaningful insights from multiple text100

spans.101

In accordance, we note that besides the limita-102

tion of narrowing the predictors’ context, employ-103

ing separate models could compromise producing104

a faithful explanation. As a start, we conduct a105

preliminary study, wherein we compare the faith-106

fulness and utility of a single LLM that jointly107

predicts both ŷ and ê, against another modular108

approach that involves two distinct LLMs, each109

tasked with predicting one of the two variables. We110

adopt the PINTO framework (Wang et al., 2022a),111

which uses an LLM, rθ as the explainer while em-112

ploying a smaller predictor, fϕ to generate the task113

label, ŷ = fϕ(x⊕ê) over the produced explanation,114

ê = rθ(x) concatenated with the context. More im-115

portantly, PINTO addresses the label-specific issue116

by generating an explanation for each given option117

in a multiple-choice setup.118

We are interested to see if generating both ratio-119

nale and answer with a single model, yields better120

ê. In this setup, we train fϕ to generate both ê and121

ŷ jointly. We measure faithfulness by computing122

the drop in performance when swapping êi with an-123

other instance within the same batch, ˆej ̸=i before124

deriving ŷ|x; ê. We use Leakage-Adjusted Sim-125

ulatability (LAS) (Hase et al., 2020) to measure126

the utility of the rationale, a higher score would127

indicate that ê is more useful towards learning ŷ.128

We conduct experiments on two common-129

sense reasoning datasets: Commonsense QA130

(CSQA) (Talmor et al., 2018) and OpenBookQA131

(OBQA) (Mihaylov et al., 2018). Figure 1 shows132

that the joint approach scores higher on both ac-133

Figure 1: Faithfulness and Utility scores for joint and
modular approach on two reasoning datasets: CSQA
and OBQA.

counts of faithfulness and utility. We hypothesize 134

that a single model is in better control of aligning 135

its explanation to the resultant outcome. Contrarily, 136

a model relying on explanations synthesized by an 137

external model may instead exhibit a diminished 138

correlation between the interdependent variables, 139

explaining the marginal difference in performance 140

despite given an unrelated stimulus. 141

Notably, this observation resonates well with 142

the recognized capability of recent LLMs to au- 143

tonomously generate text serving diverse objec- 144

tives. In particular, LLMs pre-trained on a large 145

amount of text can elucidate their reasoning pro- 146

cesses, assisted with the appropriate prompting for- 147

mat. However, despite their apparent plausibility 148

to human users, the quality of these explanations 149

remains to be comprehensively validated. 150

3 Prompt Techniques 151

In this section, we systematically review various 152

ways a LLM can be prompted. These methods pri- 153

marily differ in how the language model is queried 154

to derive the final answer, while the proposed ap- 155

proach focuses on deriving the final explanation. A 156

high-level overview is shown in Figure 2. 157

• CoT: Chain-of-thought prompting has shown 158

promising results in encouraging an LLM to 159

better answer the task by reasoning aloud the 160

steps before arriving at the final answer. (Ko- 161

jima et al., 2022) has shown that it is possible 162

in the zero-shot setting simply by appending 163

"Let’s think step by step" at the end of the 164

instruction. 165

• Self-Consistent CoT (SC-CoT): Following 166

on, other works like Self-Consistency (Wang 167

et al., 2022b) address the suboptimality of 168
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Figure 2: Overview of different prompting techniques to derive the reasoning chain, to serve as the explanation
(boxed with dashed line). [Top to Bottom]: Cot, SC-CoT, SEA-CoT, QD, SR. SC-CoT and SEC-CoT differ in the
explanation selection stage, where the former selects based on maximum cumulative probability (blue) and the latter
(green) on two objectives: entailment, E, and overlap,O with an additional forward pass. Each robot figure denotes
a forward pass from the LLM, SR stops when encounters a stopping criteria or exceeds the max number of passes.

greedy decoding in CoT by generating multi-169

ple paths and choosing the final answer, ŷ∗ via170

majority voting. SC-CoT has shown improve-171

ments across multiple arithmetic and common-172

sense reasoning benchmarks. Since multiple173

explanations may lead to the majority answer,174

we pick the one with the highest cumulative175

probability.176

• Question decomposition (QD): (Zhou et al.,177

2022) demonstrates that decomposing a com-178

plex problem into more manageable sub-179

problems significantly facilitates the problem-180

solving capability of the model. The model181

answers each sub-problem and pieces together182

the answers to arrive at the final conclusion183

for the principal problem. We treat the sub-184

question and answers as the target explanation185

and assess their interpretability properties.186

• Self-Refine (SR): SR (Madaan et al., 2023)187

is a type of iterative process of prompting the188

LLM with a set of instructions. The main idea189

is to instruct the LLM to continuously pro-190

vide feedback for its’ own output and refine191

using the feedback, the process stops when192

the feedback deems the output as sufficient193

in solving the task at hand. The whole iter-194

ative process is achieved by self-prompting195

the same language model. There exist other 196

forms of acquiring feedback, such as querying 197

a trained feedback model or using external fac- 198

tual knowledge (Pan et al., 2023). We choose 199

the approach of querying the same LLM as we 200

are focused on the explainability of generated 201

outputs from a sole LLM. 202

• Self-Entailment-Alignment CoT (SEA- 203

CoT): SEA-CoT is an adaptation from SC- 204

CoT, supplemented with an additional ranking 205

step to prioritize the top desirable reasoning 206

explanation. Instead of selecting the most 207

probable explanation, the reasoning is cho- 208

sen based on the maximization of two objec- 209

tives: entailment and the overlapping between 210

Q&A, (x⊕ŷ) and reasoning ê. We posit that a 211

credible explanation should intrinsically align 212

with the given context it aims to elucidate; in 213

this scenario, it encompasses both the ques- 214

tion being addressed and the predicted label. 215

Maximizing the overlap between two sets of 216

tokens can be seen as a measure of generat- 217

ing factual explanations, which concurrently 218

aligns with the notion of faithfulness. Inspired 219

by works that employ the LLM itself to do 220

self-correction, we do the same by asking the 221

LLM to rate the entailment level between its 222

own generated reasoning and the joint context, 223
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x ⊕ ŷ. The LLM chooses between two op-224

tions, entailment and contradiction. We then225

combine the probability of entailment together226

with the Intersection over Union (IoU) score,227

IoU(x⊕ŷ, ê). This approach is applicable only228

in the event where |ŷ∗| = K > 1, else we fall229

back to SC-CoT, though we note that this can230

be avoided by trivially setting the number of231

sequences, to be higher than the number of232

possible options, N > |y|.233

4 Interpretability Qualities234

Interpretability is a multifaceted characteristic and235

has multiple desirable traits with respect to the goal236

of the explanation (Yeo et al., 2023). One such237

goal can be instilling trust in the decision given238

by a model or another relating to understanding239

more about how the decision is derived. These240

attributes are not mutually exclusive and exhibit241

intersecting prerequisites. For instance, compre-242

hending the decision-making process may foster243

trust in the system. This trust, in turn, can lead the244

user to perceive the decisions as being made on fair245

grounds, further reinforcing the user’s confidence246

in the system. In our work, we focus on three as-247

pects of interpretability: faithfulness, robustness,248

and utility.249

4.1 Faithfulness, Robustness and Utility250

The concept of faithfulness seeks to gauge the251

extent to which the explanation aligns with the252

underlying decision-making process. (Lanham253

et al., 2023) conducted a series of faithfulness tests,254

prompting the LLM with CoT. The objective of255

these tests is to introduce specific perturbations in256

the post-hoc explanations, and subsequently, scru-257

tinize any resultant change in task outputs. This258

evaluation encompasses operations such as trun-259

cation of the reasoning chain at diverse lengths,260

paraphrasing, and intentional error introduction. In261

a parallel effort, we too employed paraphrasing262

and error introduction methodologies to assess the263

faithfulness of our model. We additionally employ264

counterfactual reasoning in our faithfulness assess-265

ment. Robustness, on the other hand, seeks to266

measure how resilient or consistent a given expla-267

nation is under various circumstances. For instance,268

employing adversarial attacks on an explanation,269

as delineated by (Chen et al., 2022), could serve270

as a mechanism to ascertain whether the model’s271

decision is susceptible to diversion or distraction272

induced by these attacks. 273

Both faithfulness and robustness contribute to 274

fostering trust and confidence in decisions made by 275

an LLM. A faithful explanation facilitates a high 276

level of trust among affected stakeholders and pro- 277

vides a means of identifying undesirable biases in 278

the decision-making process. On the other hand, a 279

robust explanation bolsters user confidence by as- 280

suring that the model is acting in the intended man- 281

ner. Yet another under-studied axis of interpretabil- 282

ity is the usefulness of the explanation. A useful ex- 283

planation can facilitate knowledge transfer, result- 284

ing in benefits such as distillation in smaller mod- 285

els, debugging, or inspiration for self-improvement 286

when presented to a human audience. Utility can be 287

viewed as analogous to plausibility from a human’s 288

perspective since individuals naturally consider an 289

explanation as plausible if it is useful in aiding them 290

in understanding the decision made. We illustrate 291

an overview of the perturbations in Figure 3. 292

4.2 Paraphrase 293

This assessment allows us to explore the inter- 294

section of robustness and faithfulness within the 295

model’s behavior. A faithful explanation, in align- 296

ment with the answer, should consistently mirror a 297

similar decision-making process, leading to iden- 298

tical conclusions when presented with similar in- 299

stances. Simultaneously, an explanation can be 300

said to be robust if it enables slight re-wording of 301

key inputs and still holds the same message when 302

utilized by a model to make decisions. We utilize 303

OpenAI’s GPT3.5 to rephrase the target reasoning 304

explanation, ê. 305

4.3 Adding mistakes 306

In contrast to ensuring answer consistency among 307

similar reasoning, we conducted another test by 308

adding mistakes to the reasoning before requesting 309

the answer from the target LLM. One would expect 310

the model to change its decision given an erroneous 311

reasoning chain. We note that the focus in this con- 312

text lies with the alteration in prediction rather than 313

actual task performance. Since an incorrect reason- 314

ing may potentially transition to a correct one upon 315

the introduction of an error, albeit such occurrences 316

are exceedingly rare. Similarly, GPT3.5 is used to 317

add non-factual errors to the provided reasoning. 318

4.4 Simulatability 319

Since it is costly to employ humans to assess if 320

a reasoning chain is said to be useful, we employ 321
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Figure 3: Interpretability test for faithfulness, robustness and utility. Perturbations to reasoning explanation:
paraphrase and adding mistakes. Perturbations to context: counterfactual reasoning.

simulatability as a proxy for utility. We measure322

simulatability using LAS in Section 2 as it has323

been shown to be highly correlated with human324

judgment. A 220M T5-base (Raffel et al., 2020)325

is selected as the student model. The generated326

reasoning, ê is appended to the input context x,327

which is then used as the final context for predicting328

the task label, ŷ = fs(ê⊕x), where fs refers to the329

student model. The student model undergoes fine-330

tuning with the aid of these samples, followed by331

an evaluation of its performance. A key aspect of332

LAS lies with the notion of subtracting a baseline,333

fs(x) from fs(ê⊕ x). This is used to simulate the334

additional benefits gained by using ê in the training335

process to infer y.336

4.5 Counterfactual reasoning337

An alternative method to ascertain faithfulness fol-338

lows by evaluating whether an explanation would339

change when the original question is modified in340

a different direction, particularly when directed to-341

wards a counterfactual scenario. (Atanasova et al.,342

2023) shows that an instance of unfaithfulness can343

be detected if the counterfactual explanation, e′344

does not acknowledge the modifications, c in the345

counterfactual instance x′i : y
′, yet still successfully346

predicting the counterfactual label, y′ ̸= y. Such347

an occurrence would mean that the counterfactual348

explanation is not faithfully aligned with the an-349

swer it supports. The distinction from Section 4.3350

is that besides detecting signs of unfaithfulness, it351

also embodies a directed approach that assesses352

a model’s capacity to contemplate alternative sce-353

narios. Conversely, introducing mistakes serves354

as an undirected measure aimed at gauging the de-355

cline in confidence regarding the consistency of the356

model’s output, without specifically targeting the 357

assessment of the model’s knowledge base. Specif- 358

ically, we deemed an instance as unfaithful under 359

the following conditions: 360

1. x′i = {xi,1, xi,2...c, ...xi,L} : y′i 361

2. ŷ = y ∧ ŷ′ = y′ 362

3. e′ ∩ c = ∅ 363

The first two conditions are prerequisites for as- 364

sessment, while the third is the condition which 365

dictates signs of unfaithfulness. We use GPT-4 to 366

insert edits, c instead of GPT-3.5 since this task is 367

much tougher than the previous cases as x′ has to 368

correctly correspond to an alternative answer given 369

in the choices while keeping c to a minimal length. 370

5 Experiments 371

Datasets: We implement the perturbation experi- 372

ments across three commonsense reasoning bench- 373

marks. 374

1. OpenBookQA (Mihaylov et al., 2018), which 375

has 4 answer choices for each question and 376

evaluates open-book reasoning capabilities. 377

2. QASC (Khot et al., 2020), is an 8-choice 378

multi-hop reasoning dataset requiring assem- 379

bling multiple real-world facts to successfully 380

answer the question. 381

3. StrategyQA (Geva et al., 2021) is a binary 382

question dataset structured in a way that the 383

model is required to strategize a chain of rea- 384

soning steps to derive the correct answer. 385
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We use only the test set to run the experiments for386

all perturbations introduced in Section 4, with the387

exception of LAS, where we employ the LLM to388

generate explanations for the training set as well.389

390

Model implementation: We use the 70B391

Llama-v2 (Touvron et al., 2023) from Meta as392

the choice of LLM for this experiment. In order393

to fit the implementation within our limited394

resources, we use a 4-bit quantized version, via395

applying the GPTQ technique (Frantar et al.,396

2022), specifically tailored towards GPT-like397

language models (Brown et al., 2020). The full398

details of model implementation can be found in399

Appendix A.2.400

401

Metric details: We use label-flip percentages as402

the unit of measurement for both paraphrased403

and mistake insertion. For counterfactual inputs,404

we only consider an instance as unfaithful if the405

counterfactual reasoning, e′ has a zero overlap406

with modification c. This applies to most prompt-407

ing which produces straightforward reasoning408

explanations, with the exception of QD where409

we only assessed each sub-answer. We list the410

prompt templates for generating each perturbation411

in Appendix A.1. We also compute an overall412

score, so averaging across the four assessments.413

For paraphrase and counterfactual, we take the414

complement, 1− x, where x is the original unit.415

so =
1

n

n∑
i=1

si,norm (1)416

si,norm =
si − si,min

si,max − si,min
(2)417

5.1 Results418

We show the full experimental results in Table 1.419

The proposed approach surpasses all other baseline420

methods based on the average normalized score, no-421

tably displaying a significant difference in OBQA422

(> 75%). Although SC-CoT is competitive, it423

still underperforms substantially as compared to424

SEA-CoT. The other baselines show considerably425

weaker performance in comparison.426

The difference between SC-CoT and SEA-CoT427

lies with the additional step wherein the model428

self-critiques its own reasoning, specifically how429

well the explanation aligns with both the context430

and the answer it aims to clarify. This has shown431

significant improvement in both utility as well as432

Figure 4: StrategyQA example, the reasoning chain
produced by SEA-CoT reflects the important points
in the context, making it easier for a learner model to
simulate the answer from the given explanation.

minimizing unfaithfulness in counterfactual aug- 433

mented context. The big leap in the utility scores 434

can mostly be attributed to the fact that having a 435

stimulus aligned with the context, can provide more 436

efficient learning signals to a student model, eas- 437

ing the training process. This can be illustrated in 438

Figure 4, where the word "shunned" is mentioned 439

while other baselines used "would not wear", which 440

does not directly relate to the target question, caus- 441

ing the model to erroneously infer the wrong label. 442

While CoT successfully determines the correct an- 443

swer, it fails to acknowledge the mention of "Amish 444

cousins", thus exhibiting a tenuous connection to 445

the question. 446

A perhaps surprising finding is that Self-Refine 447

performs well below par as compared to the other 448

baselines. Our finding coincides with (Huang et al., 449

2023), where the authors discuss the flaws of self- 450

correction in reasoning tasks. The primary chal- 451

lenge stems from the intricacy of designing few- 452

shot examples that can effectively drive successive 453

enhancements over prior outputs. Crucially, since 454

the input prompt is already optimized to instruct 455

the LLM for optimal performance in the given task, 456

the potential for self-improvement remains limited. 457

While the SEA-CoT framework requires the LLM 458

to self-assess its responses, it also provides direct 459

guidance aimed specifically at improving a particu- 460

lar attribute: ensuring that the reasoning is consis- 461

tent with the relevant context. This simple exten- 462

sion greatly improves the quality of the explanation, 463

with no downside on performance. 464
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Robust Faithful Utility
Dataset/Prompt Acc (↑) Para (↓) CF-UF(↓) Mistakes (↑) Simu (↑) Avg (↑)

OBQA

CoT 82.15 3.04 15.54 30.11 17.51 38.94
QD 79.26 14.01 11.7 23.49 23.93 44.47
SR 64.55 17.33 8.6 40.82 10 50
SC-CoT 83.47 11.27 15.58 37.32 16.05 34.15
SEA-CoT (Ours) 83.47 2.45 9.54 28.78 30.48 67.87

QASC

CoT 80.26 3.92 20.59 25.5 29.62 41.06
QD 72.31 20.09 22.22 33.05 30.0 33.27
SR 65.4 18.36 15.6 35.74 18.14 41.94
SC-CoT 81.57 2.62 20.31 30.96 33.89 62.2
SEA-CoT (Ours) 81.57 2.72 10.78 29.43 38.13 84.45

StrategyQA

CoT 66.92 14.42 7.46 54.06 11.14 46.34
QD 73.18 14.09 21.26 42.48 2.94 0.62
SR 66.58 5.09 7.09 66.69 8.72 73.24
SC-CoT 78.51 1.8 6.6 61.8 12.59 82.01
SEA-CoT (Ours) 78.51 1.2 3.81 61.24 16.97 94.37

Table 1: Interpretability results for the 5 prompting techniques across 3 commonsense reasoning benchmark. Three
axes of interpretability assessed. 1) Robustness: label flip percentage given paraphrased explanation. 2) Faithfulness:
Counterfactual unfaithfulness: instances where modification, c is not reflected in counterfactual explanation, e′

and label flip when mistakes are added to explanation. 3) Utility: represented using simulatability of explanation,
measured in terms of task enhancement when training context supplemented with explanation. Avg is the combined
averaged score across the three axes.

5.2 Few-shot465

Figure 5: Few-shot performance on both faithfulness
(CF-UF) and Utility (LAS) across the five prompts. As-
sessed on StrategyQA dataset.

We subsequently carry out additional experi-466

ments on the number of few-shot examples to study467

the effects of providing a smaller set of prior exam-468

ples in the context, displayed in Figure 5. We focus469

on two qualities: faithfulness and utility. We repeat470

the same perturbations on StrategyQA across 1,3,6471

examples in the input prompt. We choose to as-472

sess counterfactual unfaithfulness since assessing473

mistakes insertion may benefit poorer-performing474

promptings, given the increased indecisiveness.475

A surprising phenomenon can be observed when476

the LLM produces less faithful reasoning chains477

when given 3 examples as compared to 6. This is478

also the case for utility where the performance is 479

not monotonically increasing with the number of 480

examples given, with the exception of SEA-CoT. 481

Notably, even when given a single example, our 482

approach can still outperform the other baselines 483

when the full set of examples is given. This indi- 484

cates that when the model receives directed feed- 485

back, it can more effectively pinpoint areas of focus 486

to produce clearer and more interpretable outputs. 487

5.3 Model size 488

Size Para(↓) CF-UF (↓) Mistakes (↑) Simu (↑)

70B 1.2 3.81 61.24 16.97
13B 4.1 4.38 69.62 6.16
7B 3.79 7.81 70.62 15.97

Table 2: Percentage of extracted over target ratio-
nales. BoolQ has the lowest percentage out of all three
datasets.

The scaling laws of model size primarily concern 489

the downstream performance of LLMs but little 490

is known regarding the influence on interpretabil- 491

ity properties. We replicate the experiments on 492

the StrategyQA dataset with a focus on SEA-CoT 493

prompting. 494

We present the results in Table 2. The largest 495

model, 70B generally outperforms the smaller sizes 496

across all metrics with the exception of having 497

fewer label flips when mistakes are added. This 498

phenomenon might be attributed to the diminished 499

(Acc: 78.51 vs 69.64) performance of smaller mod- 500

7



els, which are more susceptible to modifications of501

their initial decisions, albeit being less robust under502

similar contexts. Llama-13B surprisingly performs503

worse than its smaller variant, despite having a big-504

ger network. More importantly, we note that by505

using SEA-CoT, even a 7B-sized model can gener-506

ate more interpretable reasoning chains than a 70B507

model with other baseline prompts.508

6 Related Works509

Natural Language Explanation (NLE): NLE can510

primarily be categorized as either abstractive (AE)511

or extractive (EE). The former is unrestricted by512

the context and as such enables a higher degree of513

freedom in explaining the resultant decision. The514

latter is deemed as the more faithful of the pair515

as the decision is directly conditioned on the ex-516

tracted text, though as mentioned earlier should517

be approached with caution. However, faithful-518

ness is not the only important property, and other519

properties such as utility and plausibility should be520

present to ensure sufficient interpretability. EE typ-521

ically falls short in the realm of plausibility since522

humans do not understand spans of text without a523

full context in view (Gurrapu et al., 2023). In this524

work, the subject of interest is in AE.525

Given the advance in text generation models,526

researchers are leaning towards AE in hopes527

of producing explanations that can be easily528

understood by the layperson. (Majumder et al.,529

2021) utilizes a union of both forms of explanation,530

conditioning the generation of AE on the extracted531

spans of text while concurrently grounding the532

generation on relevant world knowledge. The533

resultant interpretation is then assumed to be534

faithful while plausible. Similar works include535

faithfulness through task decomposition (Sanyal536

et al., 2022), label-specific explanations (Kumar537

and Talukdar, 2020). (Narang et al., 2020)538

demonstrate the possibility of inducing plausible539

explanations simply by pretending the word540

explain to the input prompt, similar to how CoT541

works.542

543

Interpretable CoT: Since its introduction,544

CoT has seen widespread usage due to its simplic-545

ity and intuition it offers and has garnered interest546

in the research community to innovate adaptation547

of it (Chu et al., 2023). Despite CoT being548

primarily introduced to facilitate better reasoning549

skills out of LLMs, there is much interest to see if550

these reasoning steps could be used as a form of 551

explaining the model’s thought process. Most of 552

such works primarily investigate the faithfulness of 553

the reasoning (Lanham et al., 2023; Radhakrishnan 554

et al., 2023; Turpin et al., 2023) or improving the 555

faithfulness in CoT outputs, via refinement through 556

knowledge retrieval (He et al., 2022), symbolic 557

reasoning (Lyu et al., 2023), iterative information 558

selection (Creswell and Shanahan, 2022) and 559

factuality calibration (Ye and Durrett, 2022). 560

Concurrently, other works (Wang et al., 2023; 561

He et al., 2022) are focused on ascertaining the 562

faithfulness of an explanation to the presence of 563

factuality. While factuality is an important trait, 564

it is not a sufficient component to represent faith- 565

fulness. Non-factual explanations may still align 566

faithfully with an incorrect answer, as long as the 567

explanation is aligned with the incorrect label in- 568

ferred. Our work strives to conduct a holistic as- 569

sessment of interpretability across various forms of 570

prompting techniques used in LLMs, taking into 571

account multiple important properties which may 572

be of importance towards various audiences. 573

7 Conclusion 574

This work introduces multiple ways to assess the 575

interpretability of an explanation. The focus of this 576

work is centered around the different variants of 577

CoT and how we can better determine the usabil- 578

ity of the reasoning by-product as an explanation 579

for the underlying prediction. We also propose a 580

modification to the SC-CoT framework called SEA- 581

CoT, designed specifically to yield explanations 582

that better fulfill the objectives of interpretability. 583

Our proposed framework surpasses the Robustness, 584

Faithfulness, and Utility dimensions across multi- 585

ple reasoning benchmarks. In the future, we plan to 586

extend our work towards instilling interpretability 587

and safety in the training stages (Yang et al., 2023), 588

such as safety alignment in LLM. 589

8 Limitations 590

Our work only investigates a single LLM - Llama-2 591

This work could be extended toward transformers 592

of different structures such as encoder or encoder- 593

decoder, or larger models, such as GPT3.5/4.0, 594

which due to limiting resources are restricted to 595

generate assessments instead. This work left out 596

other techniques such as grounding the LLM’s re- 597

sponse via external knowledge, which we note is 598

an interesting avenue to consider next. 599
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A Appendix 788

A.1 Perturbation details 789

We use GPT3.5 to generate paraphrased versions 790

of the reasoning explanation produced by prompt- 791

ing the LLM, with the exception of QD. For QD, 792

we select one subquestion-answer pair to apply 793

the perturbations to, we paraphrase both chosen 794

question-answer pairs and only add mistakes to the 795

answer as the focus is on producing wrong answers 796

and not incomprehensible questions. To convert the 797

question x to a counterfactual instance x′, we use 798

GPT4 as GPT3.5 frequently produces nonsensical 799

questions that the available answer options can- 800

not answer. Furthermore, we subsequently deploy 801

GPT3.5 again to identify the edited and original 802

portions of x, namely the modification c. Thus, we 803

end up with two sets of templates for both para- 804

phrasing and addition of mistakes (one for QD, one 805

for others) and one set of counterfactual genera- 806

tion. We use 2-shot examples for adding mistakes, 807

3-shot for counterfactual generation, and 0-shot for 808

paraphrasing. All figures are from Figure 6 to 10 809

10



A.2 Inference details810

As we do not use API for the bulk of the experi-811

ments with the exception of perturbation genera-812

tion and ablation using GPT3-5. We mainly rely813

on local resources to conduct inference. We use814

4 x A6000 GPU for all experiments, each GPU815

has 46GB of VRAM and this gives us a total of816

184GB VRAM. A 70B model would require at817

least 140GB VRAM, leaving only 44 VRAM left818

for text generation. Given an average input size of819

1000 (usually longer for prompts such as QD) and a820

single batch size of 1, it would require an additional821

>60 GB VRAM (computed based on L = 80, H=822

64, dim = 8192 for 70B) which makes it infeasible823

to implement. Thus, we perform the experiments824

using a 4-bit quantized version instead, which is825

performed using GPTQ on the original Llama-2826

70B model. GPTQ has been shown to be suitable827

for quantizing models consisting of billions of pa-828

rameters. It has been validated on models up to829

176B parameters and shown comparable perfor-830

mance with 16-bit models. The GPTQ-ed models831

are readily available on huggingface.832

We utilized text-generation-inference,833

an optimized platform for conducting fast in-834

ference on LLMs by huggingface, to speed up835

the inference process. Overall, this allows us to836

process up to a batch size of 16 across the full837

hardware stack.838

A.3 Few-shot Prompts839

We show the few-shot examples used for OBQA840

dataset, highlighting the differences in the instruc-841

tion prompt between the various techniques re-842

viewed. The few-shot examples are similar to (Wei843

et al., 2022), and adjusted when neccessary, de-844

pending on the specific prompting methodology.845

For Self-Refine, there are three stages of846

instruction-prompting, where the second (feed-847

back) and third (refine) stages continue iteratively848

until the LLM detects a stopping criterion which849

ends the cycle, denoted as "Stop refining the an-850

swer.". In the initial generation, the optimal ex-851

amples are given, similar to CoT. In the feedback852

stage, we list scoring criteria which is focused on853

improving the interpretability of the reasoning ex-854

planation, instead of focusing on the performance.855

To simulate various qualities of output, we include856

both positive and negative examples. The examples857

in the refine stage are similar to the feedback but858

are instead designed in a continuous conversion dis-859

playing the full process of refining a bad example 860

into a good one. We limit the number of examples 861

in the refine stage to 3 as the context length is much 862

longer here. The few-shot example prompts are 863

displayed from Figure 11 to 14. 864

A.4 Entailment Generation 865

We designed a separate prompt to be used solely 866

by SEA-CoT, where the LLM is instructed to self- 867

critique the entailment between its own reasoning 868

chain and the combined context of both the ques- 869

tion and the produced answer. We use samples 870

from the e-SNLI dataset (Camburu et al., 2018), 871

we only picked instances corresponding to either 872

entailment or contradiction and left out the neutral 873

ones, as the LLM is only instructed to infer if the 874

explanation entails or contradicts the target context. 875

The probabilities for the entailment label "yes" is 876

directly used while we take the complement if gen- 877

erated "no", with the assumption that other tokens 878

in the vocabulary are negligible. The examples are 879

displayed in Figure 15. 880

11



Figure 6: 0-shot paraphrase template. Input [Underline] Generated: [highlighted]

Figure 7: 2-shot inserting mistake template for all prompt except QD. Input [Underline] Generated: [highlighted].
Only show 1 example.

Figure 8: 2-shot inserting mistake template for QD. Input [Underline] Generated: [highlighted]. Only show 1
example.
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Figure 9: 3-shot counterfactual generation Input [Underline] Generated: [highlighted]. Only show 1 example. First,
identify the next possible answer before editing the question towards it.

Figure 10: 0-shot edit highlighting. Input [Underline] Generated: [highlighted]. Identify edits corresponding to
original text.

13



Figure 11: 7-shot prompt used for CoT, SC-CoT and SEA-CoT. There are newlines between answer choices and
each given choice, opted out to save space.

Figure 12: 7-shot prompt used for QD. We show only 4 examples here, and there are newlines between each
sub-questions and answers, which we similarly leave out to save space.
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Figure 13: Prompt for Self-Refine, we show a single example for the initial generation, the rest is similar in CoT
examples. For the feedback, we include both good and bad examples, both displayed here. We use 7 examples for
both initial generation and feedback.

Figure 14: Refine stage in Self-Refine, we show a single example here, where each example demonstrates the entire
refining process from a bad to good example.
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Figure 15: NLI examples for entailment generation for SEA-CoT, used across all datasets.
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