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Abstract. The automatic segmentation of abdominal CT multi -organs
can improve the efficiency of clinical work processes such as disease di-
agnosis, prognosis analysis, and treatment plan. However, for medical
images, the acquisition of data is usually expensive, because it requires
professional knowledge and time to generate accurate annotations. We
proposed a cross teaching semi-supervised medical image segmentation
model based on CNN and Transformer. At the same time, two deep
neural networks were trained, and their mutual teaching combined their
respective learning paradigms to improve model performance. The seg-
mentation of the experiment on the data shows that our model is effec-
tive. Our experiment show that the the average running time spend on
one data is 719.9262(s), maximum GPU memory required in our exper-
iment is 269, average area under GPU memory time curve is 191794.82,
and average area under GPU memory time curve is 36302.29.

Keywords: Semi-supervised learning · Medical Image Segmentation ·
cross teaching.

1 Introduction

The abdomen refers to the part of the chest diaphragm to the pelvis, which
contains many important organs in the human body, such as the liver, right kid-
ney, spleen, pancreas, aorta, inferior vena cava, right adrenal gland, left adrenal
gland, gallbladder, esophagus, stomach, duodenum and left kidney. CT scan is
a regular examination method for diagnosis of abdominal related diseases. The
division of abdominal organs in the abdominal CT image accurately helps the
study of the segmentation detection algorithm of organ lesions, which can help
doctors formulate more accurate surgical solutions, and it is also an important
step in the three-dimensional reconstruction of the abdominal organs. A large
number of deep learning algorithms have obtained a good multi-organ division
result, but these solutions usually have large model size and require a large
number of computing resources. It is impractical to deploy in clinical practice.
Therefore,it is necessary to develop a fast, low GPU memory and can use data
without labels abdominal multi-organ segmentation DL architecture that fits
real clinical practice and requirements in terms of both accuracy and efficiency.
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CNN-based medical image segmentation approaches have been studied for
many years, and most of them are based on UNet [21] or its variants, achieving
very promising results in various tasks [13]. Although the exceptional represen-
tation capacity, CNN-based methods are also limited by lacking the ability of
modeling the global and long-range semantic information interaction, due to the
intrinsic locality of convolution operations [3]. More recently, self-attention-based
architectures [7] (vision transformers) are introduced to the vision recognition
tasks to model the long-range dependencies. After that, many variants of vision
transformers achieved great success in natural image recognition tasks, like Swin-
Transformer [16], DieT [25], PVT [28], TiT [8], etc. Benefiting from the great
representation capacity of transformers, several works attempt to use transform-
ers to replace or combine CNNs for better medical image segmentation results,
such as TransUNet [3], Swin-UNet [2], CoTr [29], UNETR [9], nnFormer [32],
etc. All these works show that transformers can further lead to performance
gain than CNNs and also point out that it is worth to pay more attention to
the transformer in the future. Although transformers have very exceptional rep-
resentation capacity, it is still a data-hungry solution for recognition tasks, even
require more data than CNNs [10,23].

In order to alleviate the lack of medical image labeling data, make full use of
a large amount of unlabeled data, and reduce the cost of labeling, many meth-
ods have been proposed in recent years to develop a high-performance medical
image segmentation model. Semi-supervised learning frameworks directly learn
from limited labeled data and a large amount of unlabeled data to obtain high-
quality segmentation results, which have attracted great attention in the field
of medical image computing community. A lot of semi-supervised methods have
been proposed for medical image analysis, including pseudo-labelling [27,1,5],
deep co-training [20,33], deep adversarial learning [31], mean teacher and its
extensions [24,30,15], multi-task learning [17,14,4], confidence learning [26], con-
trastive learning [19], and etc. All these methods combine both labeled and
unlabeled data to train powerful and robust CNN models. How to train trans-
formers with a semi-supervised fashion is also an interesting and challenging
problem, especially for data limited medical image analysis tasks.We have con-
ducted semi-supervised segmentation exploration of 13 organs, but there is no
contribution work.

2 Method

2.1 Preprocessing

Our model does not use 3D patch to process data in 3D, but to handle 2D
axial slices independently. The image size for axial slicing is 512 × 512.each CT
volume is clipped to the [1, 99] percentiles of the intensity values. In addition,
a z-score normalization is applied based on the mean and standard deviation
of the intensity values among the whole training dataset. Neither cropping nor
resampling is employed.
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2.2 Proposed Method

In order to meet the clinical needs and meet the low GPU memory, but still
effectively monitor the DL model, we have built a cross-teaching semi-supervised
network architecture with two different system structures and different initialized
parameter branches. The two branches in our framework are cnn based on vgg
and transformer. Through cross-teaching strategies, you can use data without
labels for training.

Fig. 1. Network architecture

The framework uses the processed 2D images as input, and each input image
produces predictions through a CNN and a Transformer. For the general semi-
supervised learning, the training set always consists of two parts:labeled data
set with N annotated images and unlabeled data set Du

M with M raw images
(M >> N), the entire train set Dl

N For an image xi ∈ Du ,its ground truth yi is
available. In contrast, if xi ∈ Du its ground truth is not provided. In this work,
the proposed Cross Teaching between CNN and Transformer is depicted in Fig.
1.If xi ∈ Du a commonly-used supervised loss function is used to update models’
parameters. When belongs to Du, we use a cross teaching strategy to cross
supervise between a CNN
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of the parameters.
we introduce the perturbation in both learning paradigm-level and output-

level.For an input image xi, the proposed framework produces two predictions:
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where pci , p
t
i represent the prediction of a CNN
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)
, respectively. As previously mentioned, CNN and Transformer are dif-

ferent learning paradigms forvision recognition, where CNN relies on the lo-
cal convolution operation and the Transformer is based on the long-range self-
attention, so these predictions have different properties essentially in the output
level. Based on the predictions of
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cross teaching strategy are generated by this way:
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where plci , pl
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i are generated pseudo labels for the CNN
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and the Trans-

former
(
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)
training, respectively. It’s worthy to point that plci , plti are pseudo

segmentation results,and there is no gradient back-propagation between plci and
plti , and between plci and plti in each mini-batch. Then, the cross teaching loss
for the unlabeled data is defined as:

Lctl = Ldice (p
c
i , pl

c
i )︸ ︷︷ ︸

supervisionforCNNs

+ Ldice

(
pti, pl

t
i

)︸ ︷︷ ︸
supervisionforTransformers

(3)

where Ldice is the standard dice loss function. Differently from consistency regu-
larization loss, the cross teaching loss is a bidirectional loss function, one stream
is from the CNN to the Transformer and the other is the Transformer to the
CNN, there are no explicit constraints to enforce their predictions to become
similar. In our framework, the transformer is also just used for complementary
training, not used to produce final predictions. The overall training objective
function is a joint loss with two parts, a supervised loss on the labeled data and
an unsupervised loss for the unlabeled data.The supervised loss Lsup consists of
two widely-used loss functions:

Lsup = Lce (pi, yi) + Ldice (pi, yi) (4)

where Lce, Ldice are the cross-entropy loss and dice loss, respectively.pi, yi rep-
resent the prediction and label of image xi. The overall loss function is defined
as :

Ltotal = Lsup + λLctl (5)

In order to avoid a large amount of GPU memory consumption, we designed
a 2D multi-type division model. The network independently process axial slice
to generate 2D mask, and then add these masks to a 3D zero-value body of
the original size. In order to use the spatial relationship between the abdominal
structure, the model learns to depict multiple organs at the same time, not de-
pending on the specific model of multiple organs.We keep the largest connected
segmented areas for voxels respectively labeled as liver, right kidney, spleen,
pancreas, aorta, inferior vena cava, right adrenal gland, left adrenal gland, gall-
bladder, esophagus, stomach, duodenum, left kidney.No ensembling method is
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used.Finally, we further change the predicted data to np.uint8 type,and we don’t
use any post-processing strategy.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [22], KiTS [11,12], AbdomenCT-1K [18],
and TCIA [6]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 20.04.4 LTS
CPU Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz 3.60 GHz
RAM 48GB
GPU (number and type) NVIDIA GeForce RTX 3070 8G
CUDA version 11.0
Programming language Python 3.8
Deep learning framework Pytorch (Torch 1.7.1, torchvision 0.8.2)
Specific dependencies
(Optional) Link to code
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Training protocols At present, the 3D segmentation effect is still less than 2D.
Due to the memory limit, the whole picture cannot be trained. It can only be
used in the form of patch.Compared with the 2D segmentation network, the pa-
rameters of the 3D segmentation network have increased significantly, and more
parameters need more training data, so we choose the 2D training network.We
use PyTorch for all method’s implementations, and run all experiments on a
Ubuntu desktop with a GTX3070 GPU. All these networks are trained by the
SGD optimizer with a batch size of 2, where half of them are labeled in batch
for semi-supervised learning. The poly learning rate strategy is used to adjust
the learning rate, where the initial learning rate is set to 0.01.

Table 2. Training protocols.

Network initialization “kaiming" and "xavier"normal initialization
Batch size 2
Patch size 4×4
Total epochs 19
Optimizer SGD with nesterov momentum (µ = 0.9)
Initial learning rate (lr) 0.01
Lr decay schedule poly
Training time 18 hours
Number of model parameters 58.62M3

Number of flops 12.32GFlops 4

CO2eq 5.236665g 5

4 Results and discussion

4.1 Quantitative results on validation set

The dice values are shown in Table 3.

4.2 Segmentation efficiency results

Figure2 presents a ralatively successful predicted label map for an example from
the validation set. While figure3 presents a failed predicted label map for an
example from the validation set.

Table 3 presents the average DSC and NSD scores for the thirteen organs.
Overall, the performance of learning with full labeled images is higher than
learning with the both labeled images and unlabeled images. Liver segmentation
obtains the best DSC and NSD scores with compact distributions. The low
scores and dispersed distributions of NSD reveal relatively high boundary errors
because of the effects of various pathological changes.The overall segmentation
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Table 3. The DSC comparisons between between with and without using unlabelled
images.

Structure labelled labelled+unlabelled
liver 0.1958 0.047636
Right kidney 0.0002 0
Spleen 0 0.02
Pancreas 0.0325 0.00566
Aorta 0.0331 0.01391
IVC 0.0245 0.019132
RAG 0 0.02
LAG 0 0.04
Gallbladder 0 0.12
Esophagus 0.0122 0
Stomach 0.0347 0.000556
Duodenum 0.0429 0.020054
Left kidney 0 0.04

Table 4. Quantitative results on validation set

2*structure DSC NSD
Mean STD Mean STD

Liver 0.047636 0.08028838 0.054956 0.0418234
RK 0 0 0 0
Spleen 0.02 0.14142136 0.02 0.1414214
Pancreas 0.00566 0.02084338 0.018146 0.0513465
Aorta 0.01391 0.03123522 0.01794 0.0290052
IVC 0.019132 0.05116809 0.017942 0.0370661
RAG 0.02 0.14142136 0.02 0.1414214
LAG 0.04 0.19794866 0.04 0.1979487
Gallbladder 0.12 0.32826072 0.12 0.3282607
Esophagus 0 0 0 0
Stomach 0.000556 0.00299892 0.002764 0.0111379
Duodenum 0.020054 0.05779298 0.06178 0.1308669
LK 0.04 0.19794866 0.04 0.1979487
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Fig. 2. two relatively successful predicted label maps

Fig. 3. two failed predicted label maps
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evaluation index values are very low. Looking at the segmented image, it can be
seen that the organs are separated, but the position of the organs have changed,
so the evaluation index values are very low.

4.3 Limitation and future work

Three of the 13 organs have not been learned well by the network. In the future, it
will further improve the network and improve the learning ability of the network,
so that it can well divide all 13 organs.At present, although the result of the
segmentation does seem to be the organ that needs to be segmented, the positions
of the organs have shifted, which may be caused by the translation invariance of
the network, the limited learning ability of the network, or inappropriate data
augmentation.In the future, we will further explore suitable data enhancement
methods, further analyze the characteristics of the dataset, and construct a more
effective segmentation network.

5 Conclusion

The segmentation network of this article can effectively use without label data.
However, the current segmentation effect of the network is not good, and the
location of the segmentation organs has shifted, which needs to continue to
explore how to build a more reasonable segmentation network structure.The
separation network of this article can divide most organs, but the location of the
organs has shifted, and the cause of exploration of offset needs to continue to
improve. The method of semi-supervision can effectively use unlabeled data. If
the divided organs can not be offset, it will obtain a segmentation network that
can make full use of the unlabeled data.

Acknowledgements We has not used any pre-trained models nor additional
datasets other than those provided by the organizers in this competition,and our
proposed solution is fully automatic without any manual intervention.
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