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Abstract

We present a novel generative approach based on
Denoising Diffusion Models (DDMs), which pro-
duces high-quality image samples along with their
losslessly compressed bit-stream representations.
This is obtained by replacing the standard Gaus-
sian noise sampling in the reverse diffusion with a
selection of noise samples from pre-defined code-
books of fixed iid Gaussian vectors. Surprisingly,
we find that our method, termed Denoising Diffu-
sion Codebook Model (DDCM), retains sample
quality and diversity of standard DDMs, even for
extremely small codebooks. We leverage DDCM
and pick the noises from the codebooks that best
match a given image, converting our generative
model into a highly effective lossy image codec
achieving state-of-the-art perceptual image com-
pression results. More generally, by setting other
noise selections rules, we extend our compres-
sion method to any conditional image generation
task (e.g., image restoration), where the gener-
ated images are produced jointly with their con-
densed bit-stream representations. Our work is
accompanied by a mathematical interpretation of
the proposed compressed conditional generation
schemes, establishing a connection with score-
based approximations of posterior samplers for
the tasks considered. Code and demo are available
on our project’s website.

1. Introduction
Denoising Diffusion Models (DDMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020) have emerged as an effective tool
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for generating samples from complex signal distributions
(e.g., natural images). Hence, DDMs are commonly lever-
aged to facilitate a variety of downstream tasks, such as
text-to-image synthesis (Ramesh et al., 2021; Rombach
et al., 2022; Saharia et al., 2022), editing (Meng et al., 2022;
Huberman-Spiegelglas et al., 2024), compression (Theis
et al., 2022; Elata et al., 2024; Körber et al., 2024), and
restoration (Kawar et al., 2022; Chung et al., 2023). Com-
mon to many of these applications is the reliance on iterative
sampling from a continuous Gaussian distribution, yielding
an unbounded representation space.

This work embarks on the hypothesis that such an infi-
nite representation space is highly redundant. For example,
consider any stochastic diffusion generative process with
T = 1000 sampling steps (e.g., DDPM (Ho et al., 2020)).
Suppose that at each timestep, the generative process is
restricted to choosing between only two fixed noise realiza-
tions. Sampling could then lead to 21000 different outputs,
an incredibly large number exceeding the estimated amount
of atoms in the universe. Thus, in principle, such a process
could cover the distribution of natural images densely.

We harness this intuition and propose Denoising Diffu-
sion Codebook Models (DDCM), a novel DDM genera-
tion scheme for continuous signals, leveraging a discrete
and finite representation space. In particular, we first con-
struct a chain of codebooks, where each is a sequence of
pre-sampled Gaussian noise vectors. These codebooks are
constructed once and remain fixed for the entire lifetime of
the model. Then, during the generative process, we simply
randomly pick the noises from the codebooks instead of
drawing them from a Gaussian distribution, as shown in
Fig. 2. Since we alter only the sampling process, DDCM
can be applied using any pre-trained DDM. Interestingly,
we find that our proposed discrete and finite representation
space is indeed expressive enough to retain the generative
capabilities of standard DDMs, even when using incredibly
small codebooks. Since our generative process is entirely
governed by the noise indices picked during the generation,
an important consequence is that every generated image can
be perfectly reconstructed by repeating the process with its
corresponding indices.

We leverage this property to solve a variety of tasks, using
gradient-free noise selection rules to guide the DDCM gener-
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Figure 1. Our proposed scheme (DDCM) produces visually appealing image samples with high compression ratios (bottom-right corners).

ation process. In particular, by choosing the discrete noises
to best match a given image, we achieve state-of-the-art per-
ceptual compression results. Moreover, using DDCM with
different noise selection rules yields a versatile framework
for other compressed conditional generation tasks, such
as compressed image restoration (see examples in Fig. 1).
Finally, we provide a mathematical interpretation of the
proposed schemes based on score-based generative model-
ing with SDEs (Song et al., 2020), showing a connection
between our generalized selection rules and approximate
posterior sampling for compressed conditional generation.

2. Related Work
Compression. Image compression has seen significant
progress in recent years, with the penetration of neural net-
works to this domain. Neural methods range from construct-
ing specialized architectures (Ballé et al., 2017; Zhu et al.,
2022; Jiang et al., 2023; Jiang & Wang, 2023) to relying
on different generative models such as Generative Adver-
sarial Networks (GANs) (Mentzer et al., 2020; Muckley
et al., 2023; Iwai et al., 2024) and Variational Autoencoders
(VAEs) (Theis et al., 2017). Recent compression methods
leverage DDMs and offer high perceptual quality results,
by training models from scratch (Yang & Mandt, 2023;
Ghouse et al., 2023), fine-tuning existing models (Careil
et al., 2023; Körber et al., 2024), or using pre-trained DDMs
in a zero-shot manner (without further training) (Theis et al.,
2022; Elata et al., 2024). Current solutions in the latter
category are highly computationally demanding, either due
to their communication schemes (e.g., reverse channel cod-
ing (Theis & Ahmed, 2022; Theis et al., 2022)) or their
need to perform thousands of denoising operations (Elata
et al., 2024). Our work falls into this last category, offering
a novel and highly effective compression scheme with a
fast bit-stream communication method and computational
demands that match standard use of DDMs.

Discrete Generative Modeling for Continuous Data.
Recent works have explored discrete generative modeling
of continuous data distributions. These employ various
discrete representations, such as vector quantized latent to-
kens (Wu et al., 2024) or hierarchical modeling schemes
that gradually refine each generated sample (Yang, 2025).
DDCM offers a new such discrete generative framework,
building on the exceptional achievements of DDMs.

Conditional Image Generation with Pre-Trained DDMs.
Pre-trained DDMs are commonly utilized for solving con-
ditional image generation tasks, such as image restora-
tion (Kawar et al., 2022; Lugmayr et al., 2022; Wang et al.,
2023b; Chung et al., 2023; Lin et al., 2024; Song et al.,
2023; Cohen et al., 2024b; Yue & Loy, 2024; Raphaeli et al.,
2025; Man et al., 2025) and editing (Meng et al., 2022;
Huberman-Spiegelglas et al., 2024; Cohen et al., 2024a;
Manor & Michaeli, 2024). In this work we address these
tasks from the lens of DDCM, where the conditional sam-
ples are generated along with their compressed bit-streams.

Compressed Image Generation. The task of compressed
image generation (generating images directly in their com-
pressed form) has been previously explored. Kang et al.
(2019) trained an unconditional GAN (Goodfellow et al.,
2014) to synthesize JPEG representations. Rajesh et al.
(2023) trained a text-conditional GAN in the JPEG domain.
In this work, we use DDMs instead of GANs and introduce
a novel compressed image representation space different
than that of JPEG. Our approach is compatible with any
pre-trained DDM without requiring additional training.

Compressed Conditional Image Generation. Our work
also addresses the problem of compressed conditional gen-
eration (see Sec. 6), in which the compressed output is
generated in accordance with a given input condition, such
as a text prompt, a noisy image, or other forms of guid-
ance. In this context, Liu et al. (2021) proposed a method
based on optimal transport, subject to an informational bot-
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Figure 2. Method overview. DDCM replaces the standard Gaussian noises in DDPM sampling with a selection of noise samples from
pre-defined codebooks of fixed iid Gaussian vectors. This retains the high-quality generative properties of standard DDMs, while
producing the results along with their compressed representations. By choosing the discrete noises according to different selection rules,
DDCM can perform a variety of conditional image generation tasks. Our highly condensed bit-stream representation is especially effective
for image compression, leading to state-of-the-art results.

tleneck constraint. Specifically, their approach involves
computing an optimal transport map from the distribution of
input conditions to the distribution of target signals, while
constraining the entropy of an intermediate latent random
variable (i.e., the code). This method requires both the in-
puts and outputs to reside within the same metric space. In
contrast, our approach naturally accommodates more com-
plex types of input-output pairs, such as those involving
different modalities (e.g., text and image).

3. Background
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) generate samples from a data dis-
tribution p0 by reversing a diffusion process that gradually
adds random noise to samples from the data. Specifically,
the diffusion process starts with x0 ∼ p0 and produces the
chain x0,x1, . . . ,xT via

xi =
√
αixi−1 +

√
1− αizi, zi ∼ N (0, I), (1)

where α1, . . . , αT > 0 are some time-dependent constants.
The above is a time-discretization of a Variance Preserv-
ing (VP) SDE (Song et al., 2020). Then, samples from
the data distribution p0 are generated by solving the cor-
responding reverse-time VP SDE (Anderson, 1982; Song
et al., 2020), i.e., by gradually denoising samples, starting
from xT ∼ N (0, I). In this paper we adopt Denoising
Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020),
which propose the generative process (i = T, . . . , 1)

xi−1 = µi(xi) + σizi, where (2)

µi(xi) =
1√
αi

(xi + (1− αi)si(xi)), (3)

zi ∼ N (0, I), σi =
√
1− αi, and si(xi) denotes the score

∇xi log pi(xi) of the probability density function pi(xi).

Such a score function si(xi) is typically learned via denois-
ing score matching (Vincent, 2011; Song & Ermon, 2019;
Song et al., 2020; Ho et al., 2020), where a model x̂0|i is
trained to predict x0 from xi (i.e., a denoiser), and using
the well-known equation (Robbins, 1956; Miyasawa et al.,
1961; Stein, 1981)

si(xi) =

√
ᾱix̂0|i − xi

1− ᾱi
, (4)

where ᾱi :=
∏i

s=1 αs. This generative process is appli-
cable to both pixel space (Dhariwal & Nichol, 2021) and
latent space (Rombach et al., 2022) diffusion models, by
employing a VAE-based encoder-decoder.

4. Denoising Diffusion Codebook Models
Method. Equation (2) depicts the standard DDPM sam-
pling approach, where the added noise is sampled from
a continuous Gaussian distribution. DDCM instead uses
a discrete noise space, by limiting each sampling step to
choose from K constant noise realizations, fixed separately
for each step. Formally, for each i = 2, . . . , T +1 we define
a codebook of K entries

Ci =
[
z
(1)
i , z

(2)
i , . . . ,z

(K)
i

]
, (5)

where each Ci(k) := z
(k)
i is sampled independently from

N (0, I) and remains fixed throughout the model’s lifetime.
Then, we modify the DDPM sampling process (2), replacing
the noise zi by a randomly selected codebook entry,

xi−1 = µi(xi) + σiCi(ki), (6)

where the process is initialized with xT = CT+1(kT+1),
ki ∼ Unif({1, . . . ,K}), and sampling step i = 1 does not
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Figure 3. Comparing DDPM with DDCM for different code-
book sizes K. Interestingly, DDCM with K = 64 achieves similar
FID to DDPM, suggesting that the continuous representation space
of DDPM (DDCM with K = ∞) is highly redundant. We use
a class-conditional ImageNet model (256× 256) for pixel space,
and the text-conditional SD 2.1 model (768×768) for latent space,
with prompts from MS-COCO. The K axis is in log-scale.

involve noise addition. This random selection procedure
is depicted in the generation branch in Fig. 2. Importantly,
running the generative process (6) with a given sequence
of noise vectors {Ci(ki)}T+1

i=2 always produces the same
output image. Thus, as depicted in the bottom part of Fig. 2,
the sequence of indices kT+1, . . . , k2 can be considered
a losslessly compressed bit-stream representation of each
generated image.

Experiments. While DDPM is equivalent to DDCM with
K = ∞, the first question we address is whether DDCM
maintains the synthesis capabilities of DDPM for relatively
small K values. We compare the performance of DDPM
with that of DDCM using K ∈ {2, 4, 8, 16, 64} for sam-
pling from pre-trained pixel and latent space models. We
compute the Fréchet Inception Distance (FID) (Heusel et al.,
2017) to evaluate the generation performance. In App. A
we report additional metrics and provide qualitative compar-
isons. For pixel space generation, we use a class-conditional
DDM trained on ImageNet 256 × 256 (Deng et al., 2009;
Dhariwal & Nichol, 2021), and apply classifier guidance
(CG) (Dhariwal & Nichol, 2021) with unit scale. We use the
50k validation set of ImageNet as the reference dataset, and
sample 10k class labels randomly to generate the images.
For latent space, we use Stable Diffusion (SD) 2.1 (Rom-
bach et al., 2022) trained on 768 × 768 images and apply
classifier-free guidance (CFG) with scale 3 (equivalent to
w = 2 in (Ho & Salimans, 2021)). As the reference dataset,
we randomly select 10k images from MS-COCO (Lin et al.,
2014; Chen et al., 2015) along with one caption per image,
and use those captions as prompts for sampling.

As shown in Fig. 3, DDCM achieves similar FID scores to
DDPM at K = 64, suggesting that the Gaussian representa-
tion space of DDPM is redundant. In the next sections we
leverage our new representation space to solve a variety of

tasks, including image compression and compressed image
restoration.

5. Image Compression with DDCM
Method. Since sampling with DDCM yields compact bit-
stream representations, a natural endeavor is to harness
DDCM for compressing real images. In particular, to com-
press an image x0, we leverage the predicted x̂0|i (Eq. (4)) at
each timestep i and compute the residual error from the tar-
get image, x0 − x̂0|i. Then, we guide the sampling process
towards x0 by selecting the codebook entry that maximizes
the inner product with this residual,

ki = argmax
k∈{1,...,K}

⟨Ci(k),x0 − x̂0|i⟩, (7)

where the size of the first codebook CT+1 is K = 1. This
process is depicted as the compression branch in Fig. 2,
where the resulting set of chosen indices {ki}T+1

i=2 is the
compressed bit-stream representation of the given image.
Section 6 sheds more light on this choice of the noise se-
lection from the perspective of score-based generative mod-
els (Song et al., 2020). As in Sec. 4, decompression follows
standard DDCM sampling (6), re-selecting the stored in-
dices instead of picking them randomly. When using latent
space DDMs (e.g., SD), we first encode x0 into the latent
domain, perform all subsequent operations in this domain,
and decode the result with the decoder.

The bit rate of this approach is determined by the
size of the codebooks K, and the number of sampling
timesteps T . Specifically, the bit-stream length is given
by (T − 1) log2(K). Therefore, the bit rate can be reduced
by simply decreasing the number of codebooks, or by using
a smaller number of timesteps at generation, e.g., by skip-
ping every other step, or by using specific timestep intervals
(see App. B.4). In the approach described so far, the length
of the bitstream increases logarithmically with K, making
it computationally demanding to increase the bit rate. For
instance, even for K = 8192, T = 1000 and 768 × 768
images our BPP is approximately 0.022. Thus, to produce
higher bit rates, we propose to refine the noise selected at
timestep i by employing matching pursuit (MP) (Mallat &
Zhang, 1993). Specifically, at each step i, we construct the
chosen noise as a convex combination of M elements from
Ci, gathered in a greedy fashion to best correlate with the
guiding residual x0 − x̂0|i (as in Eq. (7)). The resulting
convex combination involves M − 1 quantized scalar coeffi-
cients, chosen from a finite set of C values taken from [0, 1].
Therefore, the resulting length of the bit-stream is given
by (T − 1)(log2(K)M + C(M − 1)), such that M = 1 is
similar to our standard compression scheme, and the length
of the bit-stream increases linearly with M and C. We ap-
ply this algorithm when the absolute bits number crosses
(T −1) · log2(213). Further details are available in App. B.5.
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Figure 4. Qualitative image compression results. The presented images are taken from the Kodak24 (512× 512) dataset. Our codec
produces highly realistic outputs, while maintaining better fidelity to the original images compared to previous methods.

Experiments. We evaluate our compression method on
Kodak24 (Franzen, 1999), DIV2K (Agustsson & Timofte,
2017), ImageNet 1K 256 × 256 (Deng et al., 2009; Pan
et al., 2020), and CLIC2020 (Toderici et al., 2020). For all
datasets but ImageNet, we center crop and resize all images
to 512×512. We compare to numerous competing methods,
both non-neural and neural, and both zero-shot, fine-tuning
based, and training based approaches. For the ImageNet
dataset, we use the unconditional pixel space ImageNet
256 × 256 model of Dhariwal & Nichol (2021), and com-
pare our results to BPG (Bellard, 2018), HiFiC (Mentzer
et al., 2020), IPIC (Xu et al., 2024), and two PSC (Elata
et al., 2024) configurations, distortion-oriented (PSC-D)
and perception-oriented (PSC-P). For all other datasets, we
use SD 2.1 512 × 512 (Rombach et al., 2022) and com-
pare to BPG, PSC-D, PSC-P, ILLM (Muckley et al., 2023),
PerCo (SD) (Körber et al., 2024; Careil et al., 2023), and
twoCRDR (Iwai et al., 2024) configurations, distortion-
oriented (CRDR-R) and perception-oriented (CRDR-R).
PSC shares the same pre-trained model as ours, while PerCo
(SD) requires additional fine-tuning. For our method, we
apply SD 2.1 unconditionally, as we saw no improvement by
adding prompts (see further details in App. B.6). We assess
our method for several options of T , K, M , and C to con-
trol the bit rate. See further details in App. B. We evaluate
distortion with PSNR and LPIPS (Zhang et al., 2018) and
perceptual quality with FID (Bińkowski et al., 2018). For
ImageNet, FID is computed against the entire 50k 256×256
validation set. For the smaller datasets we follow Mentzer
et al. (2020) and compute the FID over extracted image
patches. Specifically, for DIV2K and CLIC2020 we extract

128× 128 sized patches, and for Kodak we use 64× 64.

As shown on the rate-distortion and rate-perception planes
in Fig. 5, our compression scheme dominates previous
methods on the rate-perception-distortion tradeoff (Blau
& Michaeli, 2019) for lower bit rates, surpassing both the
perceptual quality (FID) and distortion (PSNR and LPIPS)
of previous methods. For instance, our FID scores are lower
than those of all other methods at around 0.1 BPP, while,
for the same BPP, our distortion performance is better than
the perceptually-oriented methods (e.g., PerCo, PSC-P, and
IPIC). However, our method under-performs at the highest
bit rates, especially when using SD. When using a latent
DDM such as SD, we aim to compress the latent encoding
of a given image, rather than the image itself. Since encod-
ing and decoding an image typically leads to a distorted
reconstruction, the distortion of the compression method
is bounded by that of the encoder-decoder. This leads to
a performance ceiling for any latent-space-based compres-
sion method (Körber et al., 2024; Elata et al., 2024). We
therefore include in Fig. 5 the “SD 2.1 Encoder-Decoder
bound”, which corresponds to the distortion resulting from
encoding and decoding the original images using the VAE
of SD 2.1, without any additional compression. The qualita-
tive comparisons in Fig. 4 further demonstrate our superior
perceptual quality, where, even for extreme bit rates, our
method maintains similarity to the original images in fine
details. See App. B for more details and results.
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Figure 5. Compression quantitative evaluation. We compare the perceptual quality (FID) and distortion (PSNR, LPIPS) achieved at
different BPPs. The image sizes of each dataset is denoted next to its name. Our method produces the best perceptual quality at most
BPPs. Importantly, this is while we also attain lower distortion compared to perceptually-oriented methods (e.g., PSC-P and PerCo
(SD)). For the three rightmost datasets, note that our approach, PSC-P, and PerCo (SD) use the latent space Stable Diffusion 2.1 model,
so its encoder-decoder imposes a distortion bound. Thus, we report the distortion attained by simply passing the images through this
encoder-decoder (dashed line).

6. Compressed Conditional Generation
We showed that DDCM can be used as an image codec by
following a simple index selection rule, guiding the gener-
ated image towards a target one. Here, we generalize this
scheme to any conditional generation task, considering the
more broad framework of compressing conditionally gener-
ated samples. This is a particularly valuable framework in
scenarios where the input condition y is bit rate intensive,
e.g., where y is a degraded image and the goal is to produce
a compressed high-quality reconstruction of it. To the best
of our knowledge, this task, which we name compressed
conditional generation, has only been thoroughly explored
for text input conditions (Rajesh et al., 2023).

A naive solution to this task could be to simply compress
the outputs of any existing conditional generation scheme.
Here we propose a novel end-to-end solution that generates
the outputs directly in their compressed form. Importantly,
note that our approach in Sec. 4 requires the condition y
for decompressing the bit-stream. While this is not a strin-
gent requirement when the condition is lightweight (e.g., a
text prompt), this approach is less suitable when storage of
the condition signal itself requires a long bit-stream. The
solutions we propose in this section enable decoding the
bit-stream without access to y.

Compressed Conditional Generation with DDCM. We
propose generating a conditional sample by choosing the
indices ki in Eq. (6) via

ki = argmin
k∈{1,...,K}

L(y,xi, Ci, k), (8)

instead of picking them randomly. Here, L(y,xi, Ci, k) can
be any loss function that attains a lower value when Ci(k)
directs the generative process towards an image that matches
y. For example, for the loss

LP(y,xi, Ci, k) = ∥Ci(k)− σi∇xi
log pi(y|xi)∥2 (9)

we obtain the following result (see proof in App. C):

Proposition 6.1. Suppose that image samples are generated
via process (6), and the indices ki are chosen according
to Eq. (8) with L = LP. Then, when K → ∞, such a
generative process becomes a discretization of a probability
flow ODE over the posterior distribution p0(x0|y).

In other words, Proposition 6.1 implies that for the loss
LP, increasing K leads to more accurate sampling from the
posterior p0(x0|y), though this results in longer bit-streams.
Thus, as long as we have access to ∇xi

log pi(y|xi) (or
an approximation of it) LP may serve as a sensible option
for solving a compressed conditional generation task with
DDCM. Interestingly, we show in App. C.2 that our com-
pression scheme from Sec. 5 is a special case of the proposed

6



Compressed Image Generation with Denoising Diffusion Codebook Models

compressed conditional generation method, with y = x0

and L = LP.

6.1. Compressed Posterior Sampling for Image
Restoration

Our compressed conditional sampling approach can be uti-
lized for solving inverse problems via posterior sampling.
Specifically, we consider inverse problems of the form
y = Ax0, where A is some linear operator. We restrict
our attention to unconditional diffusion models and solve
the problems in a “zero-shot” manner (similarly to Kawar
et al. (2022); Chung et al. (2023); Wang et al. (2023b)). To
generate conditional samples, we propose using the loss

L(y,xi, Ci, k) = ∥y −A(µi(xi) + σiCi(k))∥2. (10)

Note that Eq. (10) attains a lower value when σiACi(k)
points in the direction that perturbs Aµi(xi) towards y.
Thus, our conditional generative process aims to produce
a reconstruction x̂ that satisfies Ax̂ ≈ y, implying that we
approximate posterior sampling (Ohayon et al., 2023). No-
tably, when assuming that pi(y|xi) is a multivariate normal
distribution centered around Axi (as in (Jalal et al., 2021)),
the chosen codebook noise Ci(ki) approximates the gradient
∇xi

log pi(y|xi) and Eq. (10) becomes a proxy of Eq. (9).

Following (Chung et al., 2023; Wang et al., 2023b), we
implement our method using the unconditional ImageNet
256× 256 DDM trained by Dhariwal & Nichol (2021). We
fix K = 4096 for all codebooks, resulting in a compressed
bit-stream of approximately 0.183 BPP for each generated
image. We compare our method with DPS (Chung et al.,
2023) and DDNM (Wang et al., 2023b) on two noiseless
tasks: colorization and 4× super-resolution (using the bicu-
bic kernel). We evaluate these methods using their official
implementations and the same DDM. We additionally com-
press the outputs of DPS and DDNM to assess whether such
a naive approach would yield better results. To do so, we
adopt our proposed compression scheme (from Sec. 5), em-
ploying the same unconditional ImageNet DDM and using
K = 4096 noises per codebook.

Qualitative and quantitative results are reported in Fig. 6.
As expected, due to the rate-perception-distortion trade-
off (Blau & Michaeli, 2019), we observe that compressing
the outputs of DPS and DDNM harms either their percep-
tual quality (FID), or their distortion (PSNR), or both. This
is while our method achieves superior perceptual quality
compared to both DPS and DDNM, including their com-
pressed versions. While our method achieves slightly worse
PSNR, this is expected due to the perception-distortion trade-
off (Blau & Michaeli, 2018). See App. C.3 for more details.

6.2. Compressed Real-World Face Image Restoration

Real-world face image restoration is the practical task of
restoring any degraded face image, without any knowledge
of the corruption process it has gone through (Wang et al.,
2021; Gu et al., 2022; Wang et al., 2022; Zhou et al., 2022;
Wang et al., 2023c; Lin et al., 2024; Yue & Loy, 2024;
Chen et al., 2024b; Ohayon et al., 2025). We propose a
novel method capable of optimizing any no-reference image
quality assessment (NR-IQA) measure at test time (e.g.,
NIQE (Mittal et al., 2013)), without relying on gradients.

Specifically, at each timestep i, we start by picking two in-
dices – one that promotes high perceptual quality, ki,P , and
another that promotes low distortion, ki,D. Then, we choose
between ki,P and ki,D the index that better optimizes a de-
sired balance of the perception-distortion tradeoff (Blau &
Michaeli, 2018). Formally, letting r(y) ≈ E[x0|y] denote
the approximate Minimum Mean-Squared-Error (MMSE)
estimator of this task, we pick ki,D via

ki,D = argmax
k∈{1,...,K}

⟨Ci(k), r(y)− x̂0|i⟩. (11)

Note that this index selection rule is similar to that of
our standard compression, replacing x0 in Eq. (7) with
r(y). This choice of indices in DDCM would lead to a
reconstructed estimate of the MMSE solution y(y), yield-
ing blurry results with low distortion (Blau & Michaeli,
2018). In contrast, randomly picking a sequence of in-
dices in DDCM would produce a high quality sample from
the data distribution p0. Therefore, we randomly choose
ki,P ∼ Unif({1, . . . ,K}). Then, we use the DDM and com-
pute x̂0|i−1 for each index k ∈ {ki,D, ki,P } separately, de-
noting each result accordingly by x̂

(k)
0|i−1. The final index is

picked to optimize the perception-distortion tradeoff via

ki= argmin
k∈{ki,D,ki,P }

MSE
(
r(y), x̂

(k)
0|i−1

)
+λQ

(̂
x
(k)
0|i−1

)
, (12)

where Q(·) can be any NR-IQA measure, even a non-
differentiable one. In App. C.4 we explain our choice to set
r(y) as an MMSE estimator.

We assess our approach choosing r(y) as the FFHQ (Karras
et al., 2019) 512× 512 approximate MMSE model trained
by Yue & Loy (2024). We set λ = 1 and optimize three
different Q(·) measures: NIQE, CLIP-IQA+ (Wang et al.,
2023a), and TOPIQ (Chen et al., 2024a) adapted for face im-
ages by PyIQA (Chen & Mo, 2022). We utilize the FFHQ
512 × 512 DDM of Yue & Loy (2024) with T = 1000
sampling steps and K = 4096 for all codebooks. We
compare our approach against the state-of-the-art methods
PMRF (Ohayon et al., 2025), DifFace (Yue & Loy, 2024),
and BFRffusion (Chen et al., 2024b), using the standard
evaluation datasets CelebA-Test (Karras et al., 2018; Wang
et al., 2021), LFW-Test (Huang et al., 2008), WebPhoto-
Test (Wang et al., 2021), and WIDER-Test (Zhou et al.,

7
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Figure 6. Comparison of zero-shot posterior sampling image restoration methods. Our approach achieves better perceptual quality
compared to previous methods, while maintaining competitive PSNR and automatically producing compressed bit-stream representations
for each restored image.

2022). We use PSNR to measure the distortion of the out-
puts produced for the CelebA-Test dataset, and measure the
ProxPSNR (Ohayon et al., 2025; Man et al., 2025) for the
other datasets, which lack the clean original images. Per-
ceptual quality is measured by NIQE, CLIP-IQA+, TOPIQ-
FACE, and additionally FDDINOv2 (Stein et al., 2023) to
assess our generalization performance to a common quality
measure which we do not directly optimize. Finally, as in
Sec. 6.1, we compress each evaluated method using our
standard compression scheme, adopting the same FFHQ
DDM with K = 4096 and T = 1000.

The results for the WIDER-Test dataset are reported in
Fig. 7 (see App. C.4 for the other datasets). Our approach
clearly optimizes each quality measure effectively and gen-
eralizes well according to the FDDINOv2 scores. This is
also confirmed visually, where all of our solutions produce
high-quality images with less artifacts compared to previ-
ous methods. While our approach shows slightly worse
distortion, this is once again expected due to the perception-
distortion tradeoff (Blau & Michaeli, 2018).

7. Discussion
We introduced DDCM, a novel generative approach for
DDMs that produces high-quality image samples jointly
with their lossless compressed bit-stream representations.
We found that DDCM achieves comparable generative per-
formance to DDPM, even when the codebooks are extremely
small. We leveraged DDCM to solve several compressed
image generation tasks, including image compression and
compressed restoration, where we achieved state-of-the-art

results. Besides image restoration, our compressed condi-
tional generation framework can be used for any type of
diffusion guidance, e.g., for text-conditional generation. We
demonstrate this option in Apps. C.5 and C.6, introducing
new classifier-based and classier-free guidance methods that
do not use y for decompression. Moreover, we present in
App. C.7 preliminary results for compressed image editing
using DDCM, by decompressing an image using a desired
edit text prompt.

While our empirical results are encouraging, our work does
not explain theoretically why DDCM sampling and our
simple index selection strategies work so effectively. We
encourage future works to investigate the principles behind
the success of our methods. Moreover, when operating in
latent space, our codec’s performance is bounded by the
underlying VAE, particularly at higher bit rates. Our results
at higher bit rates could also be improved through better ap-
proaches than our current matching pursuit inspired solution.
Additionally, our compression efficiency could be improved
through entropy coding of the selected indices, potentially
reducing bit rates without sacrificing quality. Lastly, all
DDCM-based solutions can be improved further by optimiz-
ing the codebooks, e.g., through dictionary learning.

While DDCM produces compressed image representations
in the form of indices, it is worth noting that the codebook
entries can be interpreted as discrete image tokens, which
are chosen autoregressively. This implies that DDCM can
be interpreted as an image tokenization method, forming
a “language” for images. Such a perspective opens the
door to intriguing possibilities, such as using the tokenized

8
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Figure 7. Comparing real-world face image restoration methods on the WIDER-Test dataset. We successfully optimize the NR-IQA
measures and produce appealing output perceptual quality with less artifacts compared to previous methods.

image representation as a natural text-conditioning mech-
anism for unconditional diffusion models. For instance,
one could train a transformer to predict the sequence of
codebook indices corresponding to an image given its text
description. Such a transformer can then be used to generate
text-conditional images, by predicting the corresponding
sequence of DDCM codebook indices.

To conclude, our work demonstrates promising results
across numerous tasks while providing opportunities for
both theoretical analysis and practical improvements.
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Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A.
Demystifying MMD GANs. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=r1lUOzWCW. 5, 15

9

https://www.sciencedirect.com/science/article/pii/0304414982900515
https://www.sciencedirect.com/science/article/pii/0304414982900515
https://openreview.net/forum?id=rJxdQ3jeg
https://openreview.net/forum?id=rJxdQ3jeg
https://bellard.org/bpg/
https://bellard.org/bpg/
https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=r1lUOzWCW


Compressed Image Generation with Denoising Diffusion Codebook Models

Blau, Y. and Michaeli, T. The perception-distortion tradeoff.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018. 7, 8

Blau, Y. and Michaeli, T. Rethinking lossy compres-
sion: The rate-distortion-perception tradeoff. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 675–685. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
blau19a.html. 5, 7, 44

Careil, M., Muckley, M. J., Verbeek, J., and Lathuilière, S.
Towards image compression with perfect realism at ultra-
low bitrates. In The Twelfth International Conference on
Learning Representations, 2023. 2, 5

Chen, C. and Mo, J. IQA-PyTorch: Pytorch toolbox for im-
age quality assessment. [Online]. Available: https://
github.com/chaofengc/IQA-PyTorch, 2022.
7

Chen, C., Mo, J., Hou, J., Wu, H., Liao, L., Sun, W., Yan, Q.,
and Lin, W. Topiq: A top-down approach from semantics
to distortions for image quality assessment. IEEE Trans-
actions on Image Processing, 33:2404–2418, 2024a. doi:
10.1109/TIP.2024.3378466. 7

Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S.,
Dollar, P., and Zitnick, C. L. Microsoft COCO captions:
Data collection and evaluation server. arXiv, 2015. URL
https://arxiv.org/abs/1504.00325. 4

Chen, X., Tan, J., Wang, T., Zhang, K., Luo, W., and Cao,
X. Towards real-world blind face restoration with gen-
erative diffusion prior. IEEE Transactions on Circuits
and Systems for Video Technology, pp. 1–1, 2024b. doi:
10.1109/TCSVT.2024.3383659. 7

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye,
J. C. Diffusion posterior sampling for general noisy in-
verse problems. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=OnD9zGAGT0k. 1,
2, 7, 35

Cohen, N., Kulikov, V., Kleiner, M., Huberman-Spiegelglas,
I., and Michaeli, T. Slicedit: Zero-shot video edit-
ing with text-to-image diffusion models using spatio-
temporal slices. In Salakhutdinov, R., Kolter, Z., Heller,
K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 9109–9137. PMLR, 21–
27 Jul 2024a. URL https://proceedings.mlr.
press/v235/cohen24a.html. 2

Cohen, N., Manor, H., Bahat, Y., and Michaeli, T. From pos-
terior sampling to meaningful diversity in image restora-
tion. In The Twelfth International Conference on Learn-
ing Representations, 2024b. 2

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009. 4, 5, 40

Dhariwal, P. and Nichol, A. Diffusion models beat GANs
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021. 3, 4, 5, 7, 40,
42

Elata, N., Michaeli, T., and Elad, M. Zero-shot image com-
pression with diffusion-based posterior sampling. arXiv
preprint arXiv:2407.09896, 2024. 1, 2, 5, 18

Franzen, R. Kodak lossless true color image suite. source:
http://r0k. us/graphics/kodak, 1999. 5

Freirich, D., Michaeli, T., and Meir, R. A theory of the
distortion-perception tradeoff in wasserstein space. In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/
forum?id=qeaT2O5fNKC. 37

Ganz, R., Kawar, B., and Elad, M. Do perceptually aligned
gradients imply robustness? In Proceedings of the 40th In-
ternational Conference on Machine Learning, ICML’23.
JMLR.org, 2023. 40

Ghouse, N. F., Petersen, J., Wiggers, A., Xu, T., and
Sautiere, G. A residual diffusion model for high per-
ceptual quality codec augmentation. arXiv preprint
arXiv:2301.05489, 2023. 2

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Wein-
berger, K. (eds.), Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.
cc/paper_files/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.
pdf. 2

Gu, Y., Wang, X., Xie, L., Dong, C., Li, G., Shan, Y.,
and Cheng, M.-M. Vqfr: Blind face restoration with
vector-quantized dictionary and parallel decoder. In
Computer Vision – ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XVIII, pp. 126–143, Berlin, Heidelberg,
2022. Springer-Verlag. ISBN 978-3-031-19796-3. doi:

10

https://proceedings.mlr.press/v97/blau19a.html
https://proceedings.mlr.press/v97/blau19a.html
https://github.com/chaofengc/IQA-PyTorch
https://github.com/chaofengc/IQA-PyTorch
https://arxiv.org/abs/1504.00325
https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=OnD9zGAGT0k
https://proceedings.mlr.press/v235/cohen24a.html
https://proceedings.mlr.press/v235/cohen24a.html
https://openreview.net/forum?id=qeaT2O5fNKC
https://openreview.net/forum?id=qeaT2O5fNKC
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Compressed Image Generation with Denoising Diffusion Codebook Models

10.1007/978-3-031-19797-0 8. URL https://doi.
org/10.1007/978-3-031-19797-0_8. 7

Hertz, A., Aberman, K., and Cohen-Or, D. Delta denoising
score. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2328–2337, 2023a.
45

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch,
Y., and Cohen-or, D. Prompt-to-prompt image edit-
ing with cross-attention control. In The Eleventh In-
ternational Conference on Learning Representations,
2023b. URL https://openreview.net/forum?
id=_CDixzkzeyb. 45

Hessel, J., Holtzman, A., Forbes, M., Bras, R. L., and Choi,
Y. CLIPScore: a reference-free evaluation metric for
image captioning. In EMNLP, 2021. 43

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017. 4

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021. 4, 40, 42

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 6840–
6851. Curran Associates, Inc., 2020. 1, 3, 32, 33

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller,
E. Labeled Faces in the Wild: A Database forStudy-
ing Face Recognition in Unconstrained Environments.
In Workshop on Faces in ’Real-Life’ Images: Detec-
tion, Alignment, and Recognition, Marseille, France,
October 2008. Erik Learned-Miller and Andras Fer-
encz and Frédéric Jurie. URL https://inria.hal.
science/inria-00321923. 7

Huberman-Spiegelglas, I., Kulikov, V., and Michaeli, T. An
edit friendly DDPM noise space: Inversion and manip-
ulations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12469–
12478, 2024. 1, 2, 45

Iwai, S., Miyazaki, T., and Omachi, S. Controlling rate,
distortion, and realism: Towards a single comprehensive
neural image compression model. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pp. 2900–2909, 2024. 2, 5

Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A. G.,
and Tamir, J. Robust compressed sensing MRI with
deep generative priors. In Ranzato, M., Beygelzimer,

A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 14938–14954. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
7d6044e95a16761171b130dcb476a43e-Paper.
pdf. 7

Jiang, W. and Wang, R. MLIC++: Linear complex-
ity multi-reference entropy modeling for learned image
compression. In ICML 2023 Workshop Neural Com-
pression: From Information Theory to Applications,
2023. URL https://openreview.net/forum?
id=hxIpcSoz2t. 2

Jiang, W., Yang, J., Zhai, Y., Ning, P., Gao, F., and Wang,
R. MLIC: Multi-reference entropy model for learned
image compression. In Proceedings of the 31st ACM
International Conference on Multimedia, pp. 7618–7627,
2023. doi: 10.1145/3581783.3611694. 2

Kang, B., Tripathi, S., and Nguyen, T. Q. Toward joint im-
age generation and compression using generative adver-
sarial networks. arXiv, 2019. URL https://arxiv.
org/abs/1901.07838. 2

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of GANs for improved quality, stability,
and variation. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=Hk99zCeAb. 7

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. In 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4396–4405, 2019. doi: 10.1109/
CVPR.2019.00453. 7

Kawar, B., Elad, M., Ermon, S., and Song, J. Denoising
diffusion restoration models. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 23593–23606. Curran Associates, Inc., 2022.
1, 2, 7

Körber, N., Kromer, E., Siebert, A., Hauke, S., Mueller-
Gritschneder, D., and Schuller, B. PerCo (SD): Open
perceptual compression. In Workshop on Machine Learn-
ing and Compression, NeurIPS 2024, 2024. 1, 2, 5

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders
and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023. 19

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft

11

https://doi.org/10.1007/978-3-031-19797-0_8
https://doi.org/10.1007/978-3-031-19797-0_8
https://openreview.net/forum?id=_CDixzkzeyb
https://openreview.net/forum?id=_CDixzkzeyb
https://inria.hal.science/inria-00321923
https://inria.hal.science/inria-00321923
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6044e95a16761171b130dcb476a43e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6044e95a16761171b130dcb476a43e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6044e95a16761171b130dcb476a43e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6044e95a16761171b130dcb476a43e-Paper.pdf
https://openreview.net/forum?id=hxIpcSoz2t
https://openreview.net/forum?id=hxIpcSoz2t
https://arxiv.org/abs/1901.07838
https://arxiv.org/abs/1901.07838
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb


Compressed Image Generation with Denoising Diffusion Codebook Models

COCO: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part V 13, pp.
740–755. Springer, 2014. 4

Lin, X., He, J., Chen, Z., Lyu, Z., Dai, B., Yu, F., Qiao, Y.,
Ouyang, W., and Dong, C. Diffbir: Toward blind image
restoration with generative diffusion prior. In European
Conference on Computer Vision, pp. 430–448. Springer,
2024. 2, 7

Liu, H., Zhang, G., Chen, J., and Khisti, A. J. Lossy com-
pression with distribution shift as entropy constrained
optimal transport. In International Conference on Learn-
ing Representations, 2021. 2

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. Repaint: Inpainting using denoising
diffusion probabilistic models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 11461–11471, 2022. 2

Mallat, S. G. and Zhang, Z. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on signal
processing, 41(12):3397–3415, 1993. 4

Man, S., Ohayon, G., Raphaeli, R., and Elad, M. Proxies
for distortion and consistency with applications for real-
world image restoration. arXiv, 2025. URL https:
//arxiv.org/abs/2501.12102. 2, 8

Manor, H. and Michaeli, T. Zero-shot unsupervised and
text-based audio editing using DDPM inversion. In
Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 34603–34629. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/manor24a.html. 2, 45

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-
Y., and Ermon, S. SDEdit: Guided image synthesis
and editing with stochastic differential equations. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=aBsCjcPu_tE. 1, 2, 45

Mentzer, F., Toderici, G. D., Tschannen, M., and Agustsson,
E. High-fidelity generative image compression. Advances
in Neural Information Processing Systems, 33:11913–
11924, 2020. 2, 5

Mittal, A., Soundararajan, R., and Bovik, A. C. Making a
“completely blind” image quality analyzer. IEEE Signal
Processing Letters, 20(3):209–212, 2013. doi: 10.1109/
LSP.2012.2227726. 7

Miyasawa, K. et al. An empirical bayes estimator of the
mean of a normal population. Bull. Inst. Internat. Statist,
38(181-188):1–2, 1961. 3

Muckley, M. J., El-Nouby, A., Ullrich, K., Jégou, H., and
Verbeek, J. Improving statistical fidelity for neural im-
age compression with implicit local likelihood models.
In International Conference on Machine Learning, pp.
25426–25443. PMLR, 2023. 2, 5

Obukhov, A., Seitzer, M., Wu, P.-W., Zhydenko, S., Kyl,
J., and Lin, E. Y.-J. High-fidelity performance metrics
for generative models in pytorch, 2020. URL https:
//github.com/toshas/torch-fidelity. Ver-
sion: 0.3.0, DOI: 10.5281/zenodo.4957738. 15, 18

Ohayon, G., Adrai, T. J., Elad, M., and Michaeli, T. Rea-
sons for the superiority of stochastic estimators over
deterministic ones: Robustness, consistency and per-
ceptual quality. In Krause, A., Brunskill, E., Cho, K.,
Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 26474–26494. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/ohayon23a.html. 7

Ohayon, G., Michaeli, T., and Elad, M. Posterior-mean recti-
fied flow: Towards minimum MSE photo-realistic image
restoration. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://
openreview.net/forum?id=hPOt3yUXii. 7, 8

Oquab, M., Darcet, T., Moutakanni, T., Vo, H. V.,
Szafraniec, M., Khalidov, V., Fernandez, P., HAZIZA,
D., Massa, F., El-Nouby, A., Assran, M., Ballas, N.,
Galuba, W., Howes, R., Huang, P.-Y., Li, S.-W., Misra,
I., Rabbat, M., Sharma, V., Synnaeve, G., Xu, H., Je-
gou, H., Mairal, J., Labatut, P., Joulin, A., and Bo-
janowski, P. DINOv2: Learning robust visual features
without supervision. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=a68SUt6zFt. Fea-
tured Certification. 15

Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C. C., and Luo,
P. Exploiting deep generative prior for versatile image
restoration and manipulation. In European Conference
on Computer Vision (ECCV), 2020. 5

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., and Sutskever, I. Learning
transferable visual models from natural language su-
pervision. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine

12

https://arxiv.org/abs/2501.12102
https://arxiv.org/abs/2501.12102
https://proceedings.mlr.press/v235/manor24a.html
https://proceedings.mlr.press/v235/manor24a.html
https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=aBsCjcPu_tE
https://github.com/toshas/torch-fidelity
https://github.com/toshas/torch-fidelity
https://proceedings.mlr.press/v202/ohayon23a.html
https://proceedings.mlr.press/v202/ohayon23a.html
https://openreview.net/forum?id=hPOt3yUXii
https://openreview.net/forum?id=hPOt3yUXii
https://openreview.net/forum?id=a68SUt6zFt
https://openreview.net/forum?id=a68SUt6zFt


Compressed Image Generation with Denoising Diffusion Codebook Models

Learning Research, pp. 8748–8763. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/radford21a.html. 43

Rajesh, B., Dusa, N., Javed, M., Dubey, S. R., and Nagab-
hushan, P. T2ci-gan: Text to compressed image genera-
tion using generative adversarial network. In Gupta, D.,
Bhurchandi, K., Murala, S., Raman, B., and Kumar, S.
(eds.), Computer Vision and Image Processing, pp. 292–
307, Cham, 2023. Springer Nature Switzerland. ISBN
978-3-031-31417-9. 2, 6

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. In International conference on ma-
chine learning, pp. 8821–8831. Pmlr, 2021. 1

Raphaeli, R., Man, S., and Elad, M. SILO: Solving in-
verse problems with latent operators. arXiv, 2025. URL
https://arxiv.org/abs/2501.11746. 2

Robbins, H. An empirical bayes approach to statistics. In
Proceedings of the Third Berkeley Symposium on Mathe-
matical Statistics and Probability, 1954-1955, volume 1,
pp. 157–163. Berkeley and Los Angeles: University of
California Press, 1956. 3

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022. 1, 3, 4, 5

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in neural information processing systems, 35:
36479–36494, 2022. 1

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015. 1, 3

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=St1giarCHLP. 45

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse prob-
lems. In International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=9_gsMA8MRKQ. 2

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
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A. Additional DDCM Evaluation
Figure 8 provides additional quantitative comparisons between DDPM and DDCM, using different K values. Specifically,
we compute the Kernel Inception Distance (KID) (Bińkowski et al., 2018), as well as the Fréchet Distance and Kernel
Distance evaluated in the feature space of DINOv2 (Stein et al., 2023; Oquab et al., 2024). These quantitative results remain
consistent with the ones presented in Sec. 4, showing that DDCM with small K values is comparable with DDPM. Figures 9
and 10 show numerous outputs from both DDPM and DDCM with small values of K, demonstrating the sample quality and
diversity produced by the latter for such K values. We use Torch Fidelity (Obukhov et al., 2020) to compute the perceptual
quality measures.
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Figure 8. Comparing DDPM with DDCM for different codebook sizes K. As in Sec. 4, DDPM and DDCM with K = 64 (sometimes
even K = 16) achieve similar generative performance, suggesting that the continuous representation space of DDPM (DDCM with
K = ∞) is highly redundant. We use a class-conditional ImageNet model (256× 256) for pixel space, and the text-conditional SD 2.1
model (768× 768) for latent space. The K axis is in log-scale.
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Figure 9. Qualitative comparison of sample quality and diversity between DDCM and DDPM. We generate multiple samples for
each prompt, using the 768× 768 SD 2.1 model.
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Figure 10. Qualitative comparison of sample quality and diversity between DDCM and DDPM. We generate multiple samples for
each class, using the conditional 256× 256 ImageNet model.
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B. Image Compression Supplementary
We compute all distortion and perceptual quality measures using Torch Metrics (which relies on Torch Fidelity (Obukhov
et al., 2020)).

B.1. Experiment Configurations

We specify here the different configurations used for the compression experiments in Sec. 5.

• In our 256 × 256 experiments we use the 256x256 diffusion uncond.pt checkpoint from the official
GitHub repository. In our 768 × 768 and 512 × 512 experiments we use Stable Diffusion 2.1 with the
stabilityai/stable-diffusion-2-1 and stabilityai/stable-diffusion-2-1-base official
checkpoints from Hugging Face, respectively. The different K, M , C and T values for each of the 512× 512 and the
768× 768 experiments plotted in Figs. 5 and 15 are summarized in Tab. 1.

Table 1. Image compression experiments configurations.
Model Image Resolution T K M C

Pixel Space DDM 256×256

1000 64, 128, 256, 4096 1 -
1000 2048 2, 3, 4, 5 3
500 128, 512 1 -
300 16, 32, 128, 512 1 -

Latent Space DDM

512×512 1000 256, 1024, 8192 1 -
1000 2048 2, 3, 6 3

768×768

1000 16, 32, 64, 256, 1024, 8192 1 -
1000 2048 2, 3, 6 3
500 16, 32, 64, 256, 1024, 8192 1 -

Adapted 500 (App. B.4) 16, 32, 64, 256, 1024, 8192 1 -

• For PSC-D and PSC-R we use the same pre-trained ImageNet 256× 256 model as ours in the 256× 256 experiments,
and the same Stable Diffusion 2.1 model in the 512× 512 experiments. We adopt the default hyper-parameters of the
method as described by the authors (Elata et al., 2024), setting the number of measurements to 12 · 2i for i = 0, . . . , 8.

• For IPIC we adopt the official implementation using the ELIC codec with five bit rates, combined with DPS sampling
for decoding with T = 1000 steps and ζ ∈ {0.3, 0.6, 0.6, 1.2, 1.6}, as recommended by the authors.

• For BPG we considered quality factors q ∈ {51, 50, 48, 46, 42, 40, 38, 36, 34, 32, 30}.
• For HiFiC we test the low, medium and high quality regimes, using the checkpoints available in the official GitHub

repository.

• PerCo (SD) is tested using the three publicly available Stable Diffusion 2.1 fine-tuned checkpoints from their Official
GitHub repository, using the default hyper-parameters.

• For ILLM we use the MS-ILLM pre-trained models available in the official GitHub implementation. For the 512× 512
image size experiments we use msillm quality X, X = 2, 3, 4. For the 768× 768 image size experiments we use
msillm quality X, X = 2, 3 and msillm quality vloY, Y = 1, 2.

• CRDR-D and CRDR-R are evaluated using quality factors of {0, 1, 2, 3, 4}, where CRDR-D uses β = 0 and CRDR-R
uses β = 3.84, as recommended in the paper.

B.2. Additional Evaluations

In Figs. 11, 12, 13 and 14 we provide additional qualitative comparisons on the Kodak24 (512 × 512) and ImageNet
(256× 256) datasets. We additionally compare our method on images of size 768× 768, and present the results in Fig. 15.
Our method is implemented as before, while using a Stable Diffusion 2.1 model trained on the appropriate image size (see
App. B.1).
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B.3. Numerical Results

Tabs. 2, 3, 4 and 5 include the numerical results that appear in Fig. 5. Additionally, Tabs. 6 and 7 include the numerical
results for Fig. 15.

B.4. Decreasing the Bit Rate via Timestep Sub-Sampling

As mentioned in Sec. 5, decreasing the bit rate of our compression scheme can be accomplished in two ways. The first
option is to reduce K, which sets the number of bits required to represent each communicated codebook index. The second
option relates to the number of generation timesteps, which sets the total number of communicated indices. Specifically,
DDMs trained for T = 1000 steps can still be used to generate samples with fewer steps, by skipping alternating timesteps
and modifying the variance in Eq. (2). Thus, we leverage such timestep sub-sampling in DDCM to shorten the compressed
bit-stream. We find that pixel space DDMs yields good results with this approach, while the latent space models struggle to
produce satisfying perceptual quality.

Thus, for latent space models we propose a slightly different timestep sub-sampling scheme. Specifically, we keep T = 1000
sampling steps at inference and set different K values for different subsets of timesteps. We choose K = 1 for a subset of
L sampling steps, and K > 1 for the rest T − L steps. Thus, our compression scheme only optimizes T − L steps and
necessitates transmitting only T − L indices. The rest L indices correspond to codebooks that contain only one vector, and
thus do not affect the bit rate.

We use T = 1000, set the same codebook size K > 1 for every timestep i ∈ {899 . . . , 400}, and use K = 1 for all other
steps. We compare our proposed method against the aforementioned naive timestep skipping approach with T = 500
sampling steps and the same K > 1, which attains the same bit rate as our proposed alternative.

Quantitative results are shown in Fig. 15, where our timestep adapted method is denoted by Ours Adapted. Our adapted
approach achieves better perceptual quality compared to the naive one, at the expense of a slightly hindered PSNR.

B.5. Increasing the Bit Rate via Matching Pursuit

In Sec. 5 we briefly explain how to achieve higher bit rates with our method, by refining each selected noise via a matching
pursuit inspired solution. Formally, at each timestep i we iteratively refine the selected noise by linearly combining it with
M − 1 other noises from the codebook. We start by picking the first noise index ki according to Eq. (7). Then, we set
k
(1)
i = ki, γ

(1)
i = 1, and z̃

(1)
i = Ci(ki), and pick the next indices and coefficients (m = 1, . . . ,M − 1) via

k
(m+1)
i , γ

(m+1)
i = argmax

k∈{1,...,K}, γ∈Γ

〈
γz̃

(m)
i + (1− γ) Ci(k), x0 − x̂0|i

〉
. (13)

The noise vector z̃(m+1)
i is then updated via

z̃
(m+1)
i ← γ

(m+1)
i z̃

(m)
i +

(
1− γ

(m+1)
i

)
Ci

(
k
(m+1)
i

)
, (14)

z̃
(m+1)
i ← z̃

(m+1)
i

std
(
z̃
(m+1)
i

) , (15)

where std(z) is the empirical standard deviation of the vector z. We use the resulting vector z̃(M)
i as the noise in Eq. (6)

to produce the next xi−1, and repeat the above process iteratively. Note that setting M = 1 is equivalent to our standard
compression scheme.

In our experiments, the set of coefficients Γ is a subset of (0, 1], containing C = |Γ| values that are evenly spaced in this
range. We pick C = 3 and assess M ∈ {2, 3, 6} for the latent space model experiments, and M ∈ {2, 3, 4, 5} for the pixel
space model experiments.

B.6. Assessing the Effectiveness of Text Prompts in Compression using Text-to-Image Latent Space DDMs

Stable Diffusion 2.1 is a text-to-image generative model, which both PerCo (SD) and PSC leverage for their compression
approach. Specifically, both of these methods start by generating a textual caption for every target image using BLIP-2 (Li
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et al., 2023), and feed the captions as prompts to the SD model. In our case, we find that using such prompts hinders the
compression quality. Specifically, we follow the same automatic captioning procedure as in PerCo (SD) and PSC, using
the Salesforce/blip2-opt-2.7b-coco checkpoint of BLIP-2 from Hugging Face. We then continue with our
standard compression approach, where the denoiser is used with standard classifier-free guidance (CFG). Note that using
text prompts requires transmitting additional bits that serve as a compressed version of the text. Specifically, we use BLIP-2
with a maximum of L = 32 word tokens, each picked from a dictionary containing a total of 30,524 words. Thus, at most
32 · log2(30524) ≈ 480 bits are added to the bit-stream in our method.

We assess this text-conditional approach on the 512 × 512 SD 2.1 DDM, using CFG scales of 3, 6. We compare the
performance of this conditional approach with that of the unconditional one we used in Sec. 5. The results in Fig. 16 show a
disadvantage for using text-prompts for compression with our method.
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Figure 11. Qualitative extreme image compression results. The presented images are taken from the Kodak24 dataset, cropped to
512 × 512 pixels. Our compression scheme produces highly realistic decompressed outputs, while maintaining better fidelity to the
original images compared to previous methods.
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Figure 12. Qualitative image compression results. The presented images are taken from the Kodak24 dataset, cropped to 512× 512
pixels. Our compression scheme produces highly realistic decompressed outputs, while maintaining better fidelity to the original images
compared to previous methods.
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Figure 13. Qualitative image compression results. the presented images are taken from the ImageNet 256× 256 dataset. Compared to
previous methods, our compression scheme produces higher perceptual quality and better fidelity to the original images.
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Figure 14. Qualitative image compression results. the presented images are taken from the ImageNet 256× 256 dataset. Compared to
previous methods, our compression scheme produces higher perceptual quality and better fidelity to the original images.
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(best) FID scores in both datasets while maintaining better distortion metrics compared to PerCo (SD). At extremely low bit rates, while
PerCo (SD) shows marginally better FID scores, our method attains superior PSNR performance.
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Figure 16. Evaluating the effectiveness of using text prompts in image compression. We evaluate our unconditional compression
method with the text-conditional one, while using the text captions generated by BLIP-2. We find that using such text prompts hinders our
compression results, both in terms of perceptual quality and distortion.
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Table 2. Compression quantitative evaluations, for the ImageNet 256× 256 dataset.

Method BPP FID LPIPS PSNR

BPG

0.056 144.322 0.460 23.771
0.118 111.821 0.330 26.085
0.248 81.555 0.218 28.329
0.503 60.512 0.127 30.864
0.941 42.714 0.064 33.602

HiFiC
0.220 42.610 0.055 27.713
0.395 31.567 0.033 29.849
0.584 25.125 0.021 31.622

IPIC

0.095 45.367 0.211 24.470
0.148 38.413 0.152 26.011
0.228 36.301 0.132 27.664
0.550 27.075 0.074 31.178
0.945 20.689 0.044 33.800

PSC-D

0.019 147.317 0.591 21.648
0.039 127.275 0.496 23.572
0.077 105.225 0.404 25.605
0.155 86.787 0.316 27.711

PSC-P

0.019 67.457 0.431 18.575
0.039 59.119 0.353 20.178
0.077 51.464 0.268 22.649
0.155 44.589 0.194 25.107

Ours

0.018 68.339 0.419 19.624
0.023 63.731 0.365 20.566
0.032 57.027 0.296 21.877
0.041 52.157 0.251 22.795
0.053 47.834 0.220 23.401
0.069 43.972 0.185 24.199
0.091 40.787 0.165 24.643
0.122 36.890 0.134 25.587
0.183 31.977 0.102 26.765
0.381 28.247 0.076 27.949
0.594 25.705 0.063 28.694
0.808 24.165 0.055 29.211
1.021 22.938 0.050 29.596
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Table 3. Compression quantitative evaluations, for the Kodak24 512× 512 dataset.

Method BPP FID LPIPS PSNR

BPG

0.037 148.306 0.540 24.211
0.044 141.575 0.513 24.638
0.062 128.095 0.461 25.539
0.088 114.256 0.407 26.492
0.121 104.289 0.357 27.375
0.167 92.423 0.307 28.346
0.227 82.184 0.260 29.359

CRDR-D 0.114 94.475 0.257 27.988
0.210 76.015 0.167 30.069

CRDR-R 0.114 35.676 0.094 27.315
0.210 28.391 0.057 29.373

HiFiC 0.191 31.713 0.068 27.376
0.363 25.734 0.042 29.466

ILLM
0.085 36.080 0.110 25.683
0.159 28.556 0.072 27.296
0.304 24.448 0.044 29.395

PSC-P
0.025 47.334 0.473 18.516
0.049 40.691 0.371 20.080
0.095 35.314 0.266 21.683

PerCo (SD) 0.033 37.019 0.307 19.017
0.127 26.418 0.145 22.325

Ours

0.030 32.031 0.222 22.066
0.038 29.117 0.190 22.551
0.050 25.647 0.161 23.013
0.095 24.215 0.138 23.606
0.149 23.199 0.124 24.069
0.309 22.260 0.108 24.665

SD 2.1
Encoder-Decoder
Bound

– – 0.071 26.428
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Table 4. Compression quantitative evaluations, for the CLIC2020 512× 512 dataset.

Method BPP FID LPIPS PSNR

BPG

0.040 112.453 0.451 24.777
0.046 106.936 0.428 25.213
0.064 96.809 0.380 26.149
0.088 86.578 0.331 27.138
0.119 77.203 0.285 28.072
0.160 68.827 0.242 29.049
0.214 60.534 0.204 30.063

CRDR-D
0.106 52.459 0.193 28.934
0.188 40.228 0.124 31.062
0.355 27.793 0.070 33.705

CRDR-R
0.106 14.292 0.074 28.352
0.188 10.022 0.045 30.452
0.355 6.225 0.025 33.028

HiFiC 0.173 14.000 0.053 28.878
0.322 10.157 0.032 31.040

ILLM

0.081 12.666 0.087 26.898
0.146 9.923 0.056 28.662
0.271 8.246 0.034 30.840
0.391 7.222 0.024 32.233

PSC-P
0.025 15.007 0.435 18.153
0.049 13.527 0.335 20.110
0.095 11.879 0.229 22.276

PerCo (SD) 0.033 13.896 0.287 18.111
0.127 7.888 0.128 22.453

Ours

0.030 9.459 0.186 22.630
0.038 8.386 0.160 23.171
0.050 7.755 0.137 23.748
0.095 7.340 0.116 24.472
0.149 7.164 0.103 25.008
0.309 6.825 0.088 25.782

SD 2.1
Encoder-Decoder
Bound

– – 0.056 27.901
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Table 5. Compression quantitative evaluations, for the DIV2K 512× 512 dataset.

Method BPP FID LPIPS PSNR

BPG

0.058 152.623 0.490 22.793
0.068 146.219 0.463 23.217
0.096 134.029 0.407 24.124
0.134 122.895 0.348 25.095
0.327 87.879 0.192 28.049

CRDR-D 0.152 89.766 0.203 26.618
0.274 69.466 0.118 28.762

CRDR-R 0.152 39.291 0.081 26.110
0.274 31.422 0.048 28.275

HiFiC 0.226 39.832 0.066 26.138

ILLM
0.104 42.591 0.107 24.579
0.187 34.103 0.069 26.206
0.332 29.267 0.043 28.229

PSC-P
0.025 48.350 0.474 15.869
0.049 44.267 0.386 17.470
0.095 38.406 0.281 19.220

PerCo (SD) 0.033 40.944 0.325 16.518
0.127 29.516 0.155 20.483

Ours

0.030 36.283 0.238 19.769
0.038 32.917 0.206 20.319
0.050 30.724 0.177 20.881
0.095 29.322 0.150 21.566
0.149 28.011 0.132 22.107
0.309 26.756 0.114 22.867

SD 2.1
Encoder-Decoder
Bound

– – 0.076 24.878
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Table 6. Compression quantitative evaluations, for the CLIC2020 768× 768 dataset.

Method BPP FID LPIPS PSNR

BPG 0.032 115.009 0.451 25.547
0.038 109.587 0.429 25.984
0.054 99.482 0.385 26.925
0.075 89.013 0.338 27.915
0.102 79.456 0.296 28.840
0.138 71.107 0.255 29.811
0.185 62.617 0.219 30.812

HiFiC 0.154 9.359 0.052 29.745
ILLM 0.006 62.327 0.447 21.304

0.009 41.479 0.340 22.703
0.072 7.852 0.084 27.808
0.134 5.966 0.055 29.567

PerCo (SD) 0.003 30.409 0.517 15.339
0.032 12.869 0.269 19.018
0.126 5.419 0.122 23.387

Ours 0.007 23.862 0.404 19.672
0.008 19.521 0.354 20.532
0.010 15.559 0.314 21.207
0.014 11.362 0.262 22.116
0.017 8.722 0.227 22.722
0.022 6.753 0.192 23.366
0.042 5.051 0.156 24.136
0.066 4.549 0.133 24.739
0.137 4.132 0.108 25.650

SD 2.1
Encoder-Decoder
Bound

– – 0.055 28.850
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Table 7. Compression quantitative evaluations, for the DIV2K 768× 768 dataset.

Method BPP FID LPIPS PSNR

BPG 0.049 139.204 0.485 23.504
0.058 132.393 0.460 23.928
0.081 120.682 0.406 24.841
0.114 107.472 0.350 25.826

HiFiC 0.205 23.077 0.063 27.096
ILLM 0.007 92.242 0.485 19.234

0.011 71.777 0.369 20.522
0.093 24.253 0.102 25.446
0.169 18.386 0.067 27.085

PerCo (SD) 0.003 51.915 0.519 14.436
0.032 31.378 0.311 17.364
0.126 16.487 0.148 21.317

Ours 0.007 48.315 0.469 17.194
0.008 42.932 0.422 17.858
0.010 37.680 0.383 18.413
0.014 31.038 0.328 19.246
0.017 26.599 0.286 19.832
0.022 22.073 0.247 20.432
0.042 18.330 0.201 21.167
0.066 16.396 0.172 21.780
0.137 14.662 0.138 22.707

SD 2.1
Encoder-Decoder
Bound

– – 0.071 25.919
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C. Compressed Conditional Generation Supplementary
C.1. Background and Proof of Proposition 6.1

We will prove that Proposition 6.1 holds for any score-based diffusion model (Song et al., 2020). For completeness, we first
provide the necessary mathematical background and then proceed to the proof of the proposition.

C.1.1. BACKGROUND

Score-Based Generative Models. Score-based generative models (Song et al., 2020) define a diffusion process
{x(t) : t ∈ [0, T ]}, where p0 and pT denote the data distribution and the prior distribution, respectively, and pt denotes the
distribution of x(t). Such a diffusion process can generally be modeled as the stochastic differential equation (SDE)

dx = f(x, t)dt+ g(t)dw, (16)

where f(·, t) is called the drift coefficient, g(t) is called the diffusion coefficient, w(t) is a standard Wiener process, and
dt denotes an infinitesimal timestep. Samples from the data distribution p0 can be generated by solving the reverse-time
SDE (Anderson, 1982),

dx =
[
f(x, t)− g2(t)st(x)

]
dt+ g(t)dw̄, (17)

starting from samples of x(T ). Here, st(x(t)) := ∇x(t) log pt(x(t)) is the score of pt, w̄(t) denotes a standard Wiener
process where time flows backwards, and dt is an infinitesimal negative timestep. Samples from the data distribution can
also be generated by solving the probability flow ODE,

dx =

[
f(x, t)− 1

2
g2(t)st(x)

]
dt. (18)

Solving The Reverse-Time SDE. The reverse-time SDE in Eq. (17) can be solved with any numerical SDE solver (e.g.,
Euler-Maruyama), which corresponds to some time discretization of the forward and reverse stochastic dynamics. For the
sake of our proof, we adopt the simple solver proposed by Song et al. (2020),

xi−1 = xi − fi(xi) + g2i si(xi) + gizi, zi ∼ N (0, I), (19)

where i = T, . . . , 1 and fi and gi are the time-discretized versions of f and g, respectively. Note that DDPMs (Ho et al., 2020)
are score-based diffusion models that solve a reverse-time Variance Preserving (VP) SDE, where f(x(t), t) = − 1

2β(t)x(t)

and g(t) =
√
β(t) for some function β.

C.1.2. PROOF OF PROPOSITION 6.1

Given any general score-based diffusion model, we can write the DDCM compressed conditional generation process as

xi−1 = xi − fi(xi) + g2i si(xi) + giCi(ki), (20)

where ki are picked according to Eq. (8). Choosing L = LP, we have

ki = argmin
k∈{1,...,K}

∥Ci(k)− gi∇xi log pi(y|xi)∥2. (21)

Since each Ci contains K independent samples drawn from a normal distribution N (0, I), we have

{Ci(1), . . . , Ci(K)} −→
K→∞

Rn, (22)

where n denotes the dimensionality of each vector in Ci, and {Ci(1), . . . , Ci(K)} is the set comprised of all the elements in
the Ci (without repetition). Since gi∇xi log pi(y|xi) ∈ Rn, we have

min
k∈{1,...,K}

∥Ci(k)− gi∇xi
log pi(y|xi)∥2 −→

K→∞
0. (23)
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Thus,

Ci(ki) −→
K→∞

gi∇xi
log pi(y|xi). (24)

Plugging Eq. (24) into Eq. (20), we get

xi−1 −→
K→∞

xi − fi(xi) + g2i si(xi) + g2i∇xi log pi(y|xi) (25)

=xi − fi(xi) + g2i∇xi log pi(xi) + g2i∇xi log pi(y|xi) (26)

=xi − fi(xi) + g2i [∇xi
log pi(xi) +∇xi

log pi(y|xi)] (27)

=xi − fi(xi) + g2i∇xi
log pi(xi|y), (28)

where in Eq. (28) we used Bayes rule and the fact that∇xi log p(y) = 0. Note that Eq. (28) resembles a time discretization
of a probability flow ODE (Eq. (18)) over the posterior distribution p0(x0|y), with f(·, t) and

√
2g(t) being the drift and

diffusion coefficients in continuous time, respectively. Thus, when K →∞, our compressed conditional generation process
becomes a sampler from p0(x0|y).

C.2. Image Compression as a Private Case of Compressed Conditional Generation

We show that our standard image compression scheme from Sec. 5 is a private case of our compressed conditional generation
scheme from Sec. 6, where y = x0 and L = LP. When y = x0 we have

∇xi
log pi(y|xi) = ∇xi

log pi(x0|xi)

= ∇xi
log pi(xi|x0)−∇xi

log pi(xi) (29)
= ∇xi

log pi(xi|x0)− si(xi) (30)

where∇xi log pi(xi|x0) can be computed in closed-form via the forward diffusion process in Eq. (1). In particular, we have
pi(xi|x0) = N (xi;

√
ᾱix0, (1− ᾱi)I) (Ho et al., 2020), and thus

∇xi log pi(xi|x0) = −∇xi

∥xi −
√
ᾱix0∥2

2(1− ᾱi)
(31)

= −xi −
√
ᾱix0

1− ᾱi
(32)

=

√
ᾱix0 − xi

1− ᾱi
. (33)

Moreover, it is well known that (Ho et al., 2020; Song et al., 2020)

si(xi) =

√
ᾱix̂0|i − xi

1− ᾱi
, (34)

where x̂0|i is the (time-aware) Minimum Mean-Squared-Error (MMSE) estimator of x0 given xi. Plugging Eqs. (33)
and (34) into (30), we get

∇xi
log pi(x0|xi) =

√
ᾱi

1− ᾱi
(x0 − x̂0|i). (35)

Thus, we have

ki = argmin
k∈{1,...,K}

LP(y,xi, Ci, k) (36)

= argmin
k∈{1,...,K}

∥∥∥∥Ci(k)− σi

√
ᾱi

1− ᾱi
(x0 − x̂0|i)

∥∥∥∥2 (37)

= argmin
k∈{1,...,K}

∥Ci(k)∥2 − 2⟨Ci(k), σi

√
ᾱi

1− ᾱi
(x0 − x̂0|i)⟩+

∥∥∥∥σi

√
ᾱi

1− ᾱi
(x0 − x̂0|i)

∥∥∥∥2 (38)

= argmin
k∈{1,...,K}

∥Ci(k)∥2 − 2⟨Ci(k), σi

√
ᾱi

1− ᾱi
(x0 − x̂0|i)⟩. (39)
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Below, we show that ∥Ci(k)∥2 is roughly equal for every k. Thus, it holds that

ki = argmin
k∈{1,...,K}

∥Ci(k)∥2 − 2⟨Ci(k), σi

√
ᾱi

1− ᾱi
(x0 − x̂0|i)⟩ (40)

≈ argmin
k∈{1,...,K}

const− 2⟨Ci(k), σi

√
ᾱi

1− ᾱi
(x0 − x̂0|i)⟩ (41)

= argmax
k∈{1,...,K}

⟨Ci(k), σi

√
ᾱi

1− ᾱi
(x0 − x̂0|i)⟩ (42)

= argmax
k∈{1,...,K}

σi

√
ᾱi

1− ᾱi
⟨Ci(k),x0 − x̂0|i⟩ (43)

= argmax
k∈{1,...,K}

⟨Ci(k),x0 − x̂0|i⟩. (44)

Note that the noise selection strategy in Eq. (44) is similar to that of our standard compression scheme, namely Eq. (7). Thus,
our compression method is a private case of our compressed conditional generation approach. In practice, we used Eq. (7)
instead of Eq. (36) since the former worked slightly better.

To show that ∥Ci(k)∥2 is roughly constant for every k, note that Ci(k) is a sample from a n-dimensional multivariate normal
distribution N (0, I). Thus, ∥Ci(k)∥2 is a sample from a chi-squared distribution with n degrees of freedom. It is well
known that samples from this distribution strongly concentrate around its mean n for large values of n. Namely, ∥Ci(k)∥2 is
highly likely to be close to n, especially for relatively small values of K.
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Figure 17. Qualitative comparison of zero-shot image super-resolution methods (posterior sampling). Our approach clearly produces
better output perceptual quality compared to previous methods.

C.3. Compressed Posterior Sampling for Image Restoration

DPS and DDNM are implemented with the official settings recommended by the authors (Chung et al., 2023; Wang et al.,
2023b). Specifically, DPS uses DDPM with T = 1000 sampling steps, and DDNM uses DDIM with η = 0.85 and T = 100
sampling steps. We also tried T = 1000 for DDNM and found that T = 100 works slightly better for the tasks considered.
The additional qualitative comparisons in Figs. 17 and 18 further demonstrate that our method produces better output
perceptual quality compared to DPS and DDNM.
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Figure 18. Qualitative comparison of zero-shot image colorization methods (posterior sampling). Our approach clearly produces
better output perceptual quality compared to previous methods.
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C.4. Compressed Real-World Face Image Restoration

C.4.1. EXPLAINING THE CHOICE OF r(y)

To explain our choice of r(y) ≈ E[x0|y], first note that the MSE of any estimator x̂0 of x0 given y can be written
as (Freirich et al., 2021)

MSE(x0, x̂0) = MSE(x0, r(y)) + MSE(r(y), x̂0)

= MSE(r(y), x̂0) + c. (45)

where c, the MMSE, does not depend on x̂0. In theory, our goal is to optimize the tradeoff between the MSE of x̂0 and its
output perceptual quality according to some quality measure Q. This can be accomplished by solving

min
x̂0

MSE(x0, x̂0) + λQ(x̂0), (46)

where λ is some hyper-parameter that controls the perception-distortion tradeoff. At test time, however, we do not have
access to the original image x0. By plugging Eq. (45) into Eq. (46) we obtain

min
x̂0

MSE(x0, x̂0) + λQ(x̂0) = min
x̂0

MSE(r(y), x̂0) + c+ λQ(x̂0)

= min
x̂0

MSE(r(y), x̂0) + λQ(x̂0). (47)

Namely, as long as r(y) is a good approximation of the true MMSE estimator, we can rely on it for optimizing tradeoff (46)
without having access to x0. This resembles our approach in Sec. 6.2, where we greedily optimize Eq. (47) throughout the
trajectory of the DDCM sampling process.

C.4.2. ADDITIONAL DETAILS AND EXPERIMENTS

We use the PyIQA package to compute all perceptual quality measures, with niqe for NIQE, topiq nr-face for TOPIQ,
clipiqa+ for CLIP-IQA+, and fid dinov2 for FDDINOv2, adopting the default settings for each measure. Additional
qualitative and quantitative comparisons are shown in Figs. 19, 20, 21 and 22.
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Figure 19. Qualitative comparison of real-world face image restoration methods. Our method produces high perceptual quality results
with less artifacts compared to previous methods, especially for challenging datasets such as WIDER-Test.
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Figure 20. Quantitative comparison of real-world face image restoration methods, evaluated on the CelebA-Test dataset. We
successfully optimize each NR-IQA measure, surpassing the scores of previous methods. Here, only our NIQE-based solution generalizes
well to FDDINOv2 in terms of perceptual quality.
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Figure 21. Quantitative comparison of real-world face image restoration methods, evaluated on the LFW-Test dataset. We
successfully optimize each NR-IQA measure, surpassing the scores of previous methods. All our solutions achieve impressive FDDINOv2

scores, while our NIQE-based solution surpasses all methods according to this measure.
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Figure 22. Quantitative comparison of real-world face image restoration methods, evaluated on the WebPhoto-Test dataset. We
successfully optimize each NR-IQA measure, surpassing the scores of previous methods. Our TOPIQ-based solution achieves the best
FDDINOv2 scores compared to all methods..
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C.5. Compressed Classifier Guidance

Consider the case where y represents the class of an image x0. An unconditional score-based generative model can be
guided to generate samples the posterior p0(x0|y), by perturbing the generated samples according to the gradient of a
time-dependent trained classifier cθ(y;xi, i) ≈ pi(y|xi) (Dhariwal & Nichol, 2021). This approach is known as classifier
guidance (CG). Such a guidance method can be interpreted as an attempt to confuse the classifier by perturbing its input
adversarially (Ho & Salimans, 2021). However, trained classifiers are typically not robust to adversarial perturbations,
making their gradients largely unreliable and unaligned with human perception (Szegedy et al., 2014; Tsipras et al., 2019;
Ganz et al., 2023). Thus, the standard CG approach has not seen major success (Ho & Salimans, 2021).

We propose an alternative to this method, circumventing the reliance on the classifier’s gradient. Specifically, we set L in
Eq. (8) as

L(y,xi, Ci, k) = − log cθ(y;µi(xi) + σiCi(k), i). (48)

Thus, L(y,xi, Ci, k) attains a lower value when σiCi(k) points in some direction that maximizes the probability of the class
y. Note that since the codebooks remain fixed, choosing ki (out of 1, . . . ,K) to minimize Eq. (8) would always lead to the
same generated sample for every y. Thus, we promote sample diversity by first randomly selecting a subset of K̃ < K
indices ki,1, . . . , ki,K̃ ∼ Unif({1, . . . ,K}), and then choosing

ki = argmin
k∈{ki,1,...,ki,K̃}

L(y,xi, Ci, k). (49)

We coin our method Compressed CG (CCG).

We compare our proposed CCG with the standard CG using the same unconditional diffusion model and time-dependent
classifier trained on ImageNet 256× 256 (Deng et al., 2009; Dhariwal & Nichol, 2021). We compare the methods “on the
same grounds” by using the same standard DDPM noise schedule and T = 1000 diffusion steps. Our method is assessed
with K = 256 and K̃ = 2, while the standard CG is assessed with CG scales s ∈ {1, 10, 20}. The quantitative comparison
in Tab. 8 shows that CCG achieves better (lower) FID and FDDINOv2 scores. A visual comparison is provided in Fig. 23. Note
that while using DDCM with standard CG does still produces compressed output images, decoding the produced bit-streams
requires access to y. Using DDCM with CCG instead sidesteps this limitation, as y is not needed for decompression.

Table 8. Quantitative comparison of compressed classifier guidance (CCG) and standard classifier guidance (CG) for ImageNet 256× 256
conditional image generation, using an unconditional DDM and a classifier for guidance. Our proposed CCG not only outperforms CG in
terms of generation performance, but also automatically produces compressed image representations.

Compressed CG (Ours)
K = 256, K̃ = 2

Standard CG
s = 1 | 10 | 20

FID 13.669 31.548 | 14.481 | 14.921
FDDINOv2 204.693 459.42 | 255.41 | 248.34

40



Compressed Image Generation with Denoising Diffusion Codebook Models

Figure 23. Qualitative comparison of CCG (left) with CG (right). CCG achieves superior image quality compared to CG while avoiding
the use of classifier gradients. Additionally, CCG enables decompression without requiring access to the original class labels.
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Figure 24. Qualitative comparison of CCFG with CFG. CCFG achieves comparable image quality and diversity to CFG, while enabling
decompression without requiring the original inputs.

C.6. Compressed Classifier-Free Guidance

The task of text-conditional image generation can be solved using a conditional diffusion model, which, theoretically
speaking, learns to sample from the posterior distribution p0(x0|y). In practice, however, using a conditional model directly
typically yields low fidelity to the inputs. To address this limitation, CG can be used to improve this fidelity at the expense
of sample quality and diversity (Dhariwal & Nichol, 2021). Classifier-Free Guidance (CFG) is used more often in practice,
as it achieves the same tradeoff by mixing the conditional and unconditional scores during sampling (Ho & Salimans,
2021), thus eliminating the need for a classifier. Particularly, assuming we have access to both the conditional score
si(xi,y) := ∇xi

log pi(xi|y) and the unconditional one si(xi), CFG proposes to modify the conditional score by

s̃i(xi,y) = (1 + w)si(xi,y)− wsi(xi), (50)

where w, the CFG scale, is a hyper-parameter controlling the tradeoff between sample quality and diversity.

Here, we introduce a new CFG method that allows generating compressed conditional samples using any pair of conditional
and unconditional diffusion models, while controlling the tradeoff between generation quality and the fidelity to the inputs.
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Figure 25. Qualitative comparison of CCFG with CFG. CCFG achieves comparable image quality and diversity to CFG, while enabling
decompression without requiring the original inputs.

Specifically, since ∇xi
log pi(y|xi) = si(xi|y)− si(xi), we simply use

L(y,xi, Ci, k) = −⟨Ci(k), si(xi|y)− si(xi)⟩. (51)

Note that optimizing Eq. (51) is roughly equivalent to optimizing LP when xi is high dimensional (see App. C.2). As
in App. C.5, we promote sample diversity by choosing ki from a randomly sampled subset of K̃ < K indices at each step
during the generation. We coin our method Compressed CFG (CCFG).

We implement our method using SD 2.1 trained on 768× 768 images, adopting a DDPM noise schedule with T = 1000
diffusion steps, K = 64 fixed vectors in each codebook and K̃ ∈ {2, 3, 4, 6, 9}. We compare against the same diffusion
model with standard DDPM sampling, using T = 1000 steps and CFG scales w ∈ {2, 5, 8, 11}. The generative performance
of both methods is assessed by computing the FID between 10k generated samples and MS-COCO, similarly to Sec. 4.
Additionally, we evaluate the alignment between the outputs and the input text prompts using the CLIP score (Hessel et al.,
2021) with the OpenAI CLIP ViT-L/14 model (Radford et al., 2021).

Figure 26 shows that our CCFG method is on par with CFG in terms of FID, while CFG produces higher CLIP scores.
This suggests that the outputs of CFG better align with the input text prompts compared to CCFG. Yet, the qualitative
comparisons in Figs. 24 and 25 show that there is no significant difference between the methods. Importantly, decoding the
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Figure 26. Quantitative evaluation of CCFG and CFG. CCFG achieves comparable FID scores to CFG while achieving slightly lower
fidelity to the input prompts. However, unlike CFG, CCFG enables decompression without access to the original conditioning inputs.

bit-streams produced by CCFG does involve accessing the original input y, and so our loss in CLIP scores are expected due
to the rate-perception-distortion tradeoff (Blau & Michaeli, 2019) (here, we achieve 1000·log2(64)

7682 ≈ 0.01 BPP). Note that
using CCFG in DDCM is fundamentally different than using CFG (Sec. 4), since the latter requires access to y.
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C.7. Compressed Text-Based Image Editing

Image editing has seen significant progress in recent years, particularly in solutions that rely on pre-trained DDMs. Generally
speaking, most methods rely on inversion (Huberman-Spiegelglas et al., 2024; Manor & Michaeli, 2024; Wu & De la Torre,
2023; Wallace et al., 2023; Hertz et al., 2023a), noising and denoising the original input (Meng et al., 2022), or manipulating
the DDM’s attention layers (Hertz et al., 2023b; Tumanyan et al., 2023). We demonstrate a simple approach for editing
images using DDCM with a text-conditional DDM.

Specifically, we compress an image while feeding the DDM with a source prompt csrc describing the image. To edit the
image, we start by decoding it up to timestep Tedit while feeding the DDM with the original prompt csrc. We then continue
with the decoding from timestep Tedit, while feeding the DDM with the target prompt cdst. Intuitively, this approach should
preserve the low frequency contents in the original image (e.g., objects), while guiding the image towards the described edit.

We compare our approach to DDPM inversion (Huberman-Spiegelglas et al., 2024) and DDIM inversion (Song et al., 2021).
For DDPM inversion we set T = 100, Tskip = 36, as recommended by the authors. For DDIM inversion we set T = 100,
and follow Huberman-Spiegelglas et al. (2024) to additionally apply DDIM inversion mid-way, using Tskip = 40. For our
approach, we set T = 1000 and Tedit = 600. Note that this value of Tedit is equivalent to Tskip = 40 if T = 100 sampling
steps were used. For all methods we use the pre-trained Stable Diffusion 1.4 checkpoint from Hugging Face. Images are
taken from the modified-ImageNetR-TI2I dataset (Huberman-Spiegelglas et al., 2024; Tumanyan et al., 2023).

Preliminary qualitative results are shown Fig. 27. Our approach is less structure preserving than DDPM inversion, while
offering more semantic object preservation than DDIM inversion. We encourage future works to investigate DDCM-based
image editing methods.
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a painting of a husky a sculpture of a husky

a sketch of a cat an origami of a bear

a sculpture of a cat an graffiti of a cat

a photo of foxes a photo of cats

Figure 27. Qualitative comparison of image editing methods. Our approach preserves less image structure compared to DDPM
inversion, while offering more semantic object preservation than DDIM inversion. This can be quite useful in scenarios where the editing
prompt requires major structural changes, such as transforming a sketch of a cat into an origami of a bear.
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