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Abstract

Representation learning has enabled classical exploration strategies to be extended to deep
Reinforcement Learning (RL), but often makes algorithms more complex and theoretical
guarantees harder to establish. We introduce Random Feature Information Gain (RFIG),
grounded in Bayesian kernel methods theory, which uses random Fourier features to ap-
proximate information gain and compute exploration bonuses in non-countable spaces. We
provide error bounds on information gain approximation and avoid the black-box aspects of
neural network-based uncertainty estimation, for optimism-based exploration. We present
practical details that make RFIG scalable to deep RL scenarios, enabling smooth integra-
tion into standard deep RL algorithms. Experimental evaluation across diverse control
and navigation tasks demonstrates that RFIG achieves competitive performance with well-
established deep exploration methods while offering superior theoretical interpretation.
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1. Introduction

In Reinforcement Learning (RL), agents learn optimal decision-making strategies through
trial-and-error interactions with an environment, receiving rewards or penalties that guide
their learning process (Sutton et al., 1998). A fundamental challenge is the exploration-
exploitation tradeoff, where agents must balance between exploiting current knowledge to
maximize immediate rewards and exploring new actions to potentially discover better long-
term strategies. In this paper, we focus our attention on the exploration part in continuous
and high-dimensional problems. In small-scale environments like Multi-Armed Bandits
(MABs) and discrete Markov Decision Processes (MDPs), an effective strategy is the Op-
timism in Face of Uncertainty (OFU), which operates on the principle that when an agent
lacks sufficient information about certain states, it should assume they may yield high re-
wards, thereby encouraging exploration of these uncertain regions (Auer et al., 2002, 2008).
This principle, theoretically grounded in MABs, was adapted to more general problems,
through an exploration bonus, where the reward obtained by the learner is augmented, typ-
ically rt + βr+t , where at interaction step t, rt is the reward given by the MDP, r+t is the
exploration bonus and β ≥ 0 is an parameter that control exploration strength. The litera-
ture often considers bonus in the form of 1/

√
nt(s), where nt(s) is the number of times the

agent has visited state s at interaction t: the more we visit a state, the more certain we are
about the estimations (Strehl and Littman, 2008). However, in non-countable spaces, which
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we consider here, this bonus is not straightforward to implement: the probability of visiting
the same state twice can be zero, and direct count-based exploration becomes meaningless.

Research question. This fundamental challenge has led to the development of deep
learning-based exploration strategies, where neural networks (NNs) exploit representation
learning to learn a proxy of uncertainty or pseudo-counts. Traditional deep representa-
tion learning approaches, while empirically successful (Bellemare et al., 2016; Pathak et al.,
2017; Badia et al., 2020), suffer from limited interpretability that hinders theoretical un-
derstanding and creates hyperparameter sensitivity. This brittleness arises from complex
interactions between optimization dynamics and problem structure, where gradient-based
algorithms and backpropagation show fragile dependencies on learning rate schedules that
can destabilize training and require parameter adjustments spanning orders of magnitude
across domains (Glorot and Bengio, 2010). Additionally, architectural choices and regu-
larization strategies depend on environmental characteristics, creating optimization land-
scapes where effective hyperparameter settings often transfer poorly and fail dramatically
in new contexts. This sensitivity means that even algorithmically sound approaches can ex-
hibit dramatic performance degradation when operating under suboptimal hyperparameter
regimes (Henderson et al., 2018). These observations raise an interesting question:

How can we design alternative exploration mechanisms for deep RL that offer theoretical
interpretability and computational tractability while achieving competitive empirical

performance relative to standard deep methods?

Interesting directions. A promising direction lies in kernel methods, which provide the-
oretically grounded uncertainty quantification through closed-form solutions rather than
iterative gradient-based optimization. These methods avoid the extensive hyperparameter
tuning and training instabilities inherent to neural architectures (Srinivas et al., 2009), while
maintaining the ability to capture complex nonlinear patterns. From a Bayesian perspec-
tive, the concept of information gain, provides a grounded approach to create exploration
bonus that go beyond discrete spaces: poorly visited states are very uncertain and could
lead to high information gain, making them attractive targets for exploration while natu-
rally diminishing the bonus as states become well-explored and their uncertainty decreases
(Kolter and Ng, 2009). However, vanilla kernel methods suffer from cubic computational
complexity, limiting their scalability to the large sample sizes required in deep RL.

Contributions. In this paper, to tackle the problem of OFU exploration in uncountable
spaces, we introduce a novel exploration bonus for deep RL: Random Feature Information
Gain (RFIG). Our bonus is directly derived from information gain quantification in Bayesian
kernel methods, which we combine with recent advances that allow these methods to be-
come scalable. An important component of our approach is to exploit random features
(Rahimi and Recht, 2007), which enable capturing complex nonlinear spatial patterns in
high-dimensional data and approximate kernels, to handle the cubic scaling in the number
of samples. Unlike pure deep learning approaches, RFIG computes exploration bonuses via
closed-form solutions, eliminating backpropagation complexity and hyperparameter brittle-
ness while maintaining theoretical interpretability.

Outline. We first derive RFIG from Bayesian kernel methods and random features (Sec-
tion 4.1). We then provide approximation error bounds (Section 4.2) and apply them to
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random Fourier features (Section 4.3). Finally, we detail algorithmic integration with deep
RL (Section 5.1) and demonstrate effectiveness across diverse tasks (Section 5.2).

2. Related Work

Exploration remains a fundamental challenge in RL, particularly in environments with
sparse rewards or large state spaces. We review existing approaches, progressing from
general methods through kernelized MDPs to deep RL exploration strategies.

Exploration foundations. The exploration-exploitation tradeoff was first formalized in
MABs through OFU-based algorithms (Auer et al., 2002) and Thompson Sampling (Thomp-
son, 1933; Chapelle and Li, 2011). Recent approaches like Information Directed Sampling
(Russo and Van Roy, 2014) and Minimum Empirical Divergence (Honda and Takemura,
2010) directly formalize information gain in their objectives. These principles have been
extended to tabular MDPs (Auer et al., 2008; Osband et al., 2013; Pesquerel and Maillard,
2022) and subsequently to continuous spaces through kernelization and deep RL.

Kernelized MDPs. Kernel methods extend bandit exploration principles to MDPs with
theoretically grounded uncertainty quantification. In bandits, GP-UCB achieves provable
regret guarantees using Gaussian Process posteriors (Srinivas et al., 2009; Valko et al., 2013).
This framework extends to MDPs where kernels encode similarity structure over state-action
spaces (Morere and Ramos, 2018; Chowdhury and Gopalan, 2019; Domingues et al., 2021),
and demonstrates that kernel-based uncertainty quantification enables theorically-grounded
exploration in continuous MDPs but remains limited to relatively small-scale problems due
to computational constraints.

Deep RL exploration. Scaling to high-dimensional spaces typically requires represen-
tation learning. Curiosity-driven methods (Pathak et al., 2017) and episodic novelty ap-
proaches (Badia et al., 2020) learn embeddings for exploration. Information-theoretic meth-
ods maximize information gain through NN ensembles (Houthooft et al., 2016; Nikolov et al.,
2018; Sukhija et al., 2024) or prediction disagreement (Osband et al., 2016; Azizzadenesheli
et al., 2018). While effective, these approaches couple exploration with representation learn-
ing, creating hyperparameter sensitivity (Glorot and Bengio, 2010; Henderson et al., 2018).
A smaller line of work separates exploration from representation learning. RND (Burda
et al., 2018) uses random features by training a network to predict a fixed random net-
work’s outputs, where prediction error signals novelty. This demonstrates feature learning
is not required for effective exploration, though RND lacks theoretical grounding. Yang et al.
(2024) addresses this through connections to pseudo-counts.

Bridging kernels and deep RL. Recent attempts to apply kernel methods in deep
RL reveal different approaches. Ma et al. (2024) uses random Fourier features with kernel
density estimation but requires user-defined success criteria for specific environments. Blau
et al. (2019) develops a ”Bayesian curiosity module” using posterior variance from learned
kernels but suffers from cubic complexity, limiting scalability. They mention RFFs as future
work, which we implement in this paper.
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3. Background on Information Gain, RL and Scalable Kernels

This section establishes the theoretical foundations: information gain for exploration, Bayesian
kernel methods for uncertainty quantification, and random Fourier features for scalability.

Exploration in RL via information gain. An agent interacts with a discounted MDP
M = (S,A, r,p, γ) to learn a policy π : S → Pr(A) maximizing expected cumulative reward
J(π) = Eπ,p

[∑∞
t=0 γ

tr(st, at)
]
(Sutton et al., 1998). A standard approach augments rewards

with exploration bonuses (Strehl and Littman, 2008): rtotal(s, a) = r(s, a) + βr+(s, a),
where β > 0 controls exploration strength. The widely-used bonus 1/

√
n(s) (with n(s)

the visit count for state s) implicitly maximizes information gain (Bellemare et al., 2016).
To formalize this, consider learning an unknown function f : X → R from noisy data
Dn = {(xi, yi)}ni=1 where yi = f(xi) + ηi. The Bayesian posterior p(f | Dn) encodes
uncertainty about f . The expected information gain from querying x∗ is

IG(x∗ | Dn) = H(f | Dn)− EY∗ [H(f | Dn ∪ {(x∗, Y∗)})] (1)

where H(f | D) = −
∫
p(f | D) log p(f | D) df is the differential entropy (Cover, 1999). This

criterion, connect with active inference (Settles, 2009; Friston et al., 2015).

Bayesian kernel methods. As a alternative to neural exploration, we employ kernel
methods that provide principled uncertainty quantification through implicit mapping to
reproducing kernel Hilbert spaces Hk (Aronszajn, 1950; Schölkopf et al., 2001). A positive
semi-definite kernel k : X × X → R enables high-dimensional computations using only
pairwise similarities. In Bayesian kernel ridge regression (Saunders et al., 1998; Jaakkola
and Haussler, 1999) with regularization λ > 0, the posterior mean and variance are

µn(x) = kn(x)
T (Kn + λIn)

−1yn σ2
n(x) = k(x, x)− kn(x)

T (Kn + λIn)
−1kn(x) (2)

where Kn ∈ Rn×n with [Kn]ij = k(xi, xj) and kn(x) = [k(x1, x), . . . , k(xn, x)]
T . This is

equivalent to a Gaussian process f ∼ GP(0, k(x, x′)) with noise σ2 = λ (Williams and
Rasmussen, 1995). However, inverting (Kn + λIn) requires O(n3) operations, prohibitive
for large datasets. Random Fourier Features (RFFs) (Rahimi and Recht, 2007) resolve this
bottleneck by approximating kernels with explicit finite-dimensional mappings. For shift-
invariant kernels k(x, x′) = k(x − x′), Bochner’s theorem (Bochner et al., 1959) enables
k(x, x′) ≈ ϕ(x)Tϕ(x′) where

ϕ(x) =

√
2

D

 cos(ωT
1 x+ b1)
...

cos(ωT
Dx+ bD)

 (3)

with ωi ∼ p(ω) from the kernel’s spectral density (Fourier transform of k) and bi ∼
Uniform[0, 2π]. For the RBF kernel k(x, x′) = exp(−∥x − x′∥2/2ℓ2), the length-scale ℓ
determines p(ω) = N (0, ℓ−2I). Applying the Woodbury identity (Woodbury, 1950) with
feature matrix Φn ∈ Rn×D yields

µn(x) = ϕ(x)T (ΦT
nΦn + λID)

−1ΦT
nyn (4)

σ2
n(x) = ϕ(x)Tϕ(x)− ϕ(x)T (ΦT

nΦn + λID)
−1ϕ(x). (5)

This reduces computational complexity from O(n3) to O(D3), enabling efficient uncertainty
quantification that scales with feature dimension D rather than dataset size n.
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4. Random Feature Information Gain

Before looking at how information gain is implemented in a RL training loop to promote
exploration, we now derive our Random Feature Information Gain (RFIG). The derivation
proceeds in three steps: (1) express GP information gain in terms of posterior variance, (2)
approximate the kernel matrix using random features, (3) apply matrix identities to obtain
the final O(D3) form. All detailed proofs of this section can be found in Appendix A.

4.1. Derivation

We start by recalling the information gain in the Gaussian process framework using the
entropy reduction formulation, as described in (1). Consider a Gaussian process, that we
defined in Section 3, f ∼ GP(0, k(·, ·)) with observation noise η ∼ N (0, σ2). Given current
data Dn = {(xi, yi)}ni=1, the posterior entropy can be expressed using the kernel matrix Kn

with H(f | Dn) =
1
2 log det(2πe(Kn+σ2In)

−1). When we add a new observation (x∗, y∗) to
our dataset, obtaining Dn+1 = Dn ∪ {(x∗, y∗)}, the posterior distribution changes.

Definition 1 (Information gain in GP (Lawrence et al., 2002)) 1 The information
gain, as defined in (1), can be expressed for a query point x∗ in GP, as

IG(x∗ | Dn) = H(f | Dn)− EY∗ [H(f | Dn+1)]

=
1

2
log det(2πe(Kn + σ2In)

−1)− EY∗

[
1

2
log det(2πe(Kn+1 + σ2In+1)

−1)

]
=

1

2
log det(Kn+1 + σ2In+1)−

1

2
log det(Kn + σ2In) =

1

2
log

(
1 +

σ2
n(x∗)

σ2

)
.

Challenges. However, computing σ2
n(x∗) requires inverting the n×n matrix (Kn+σ2In),

which scales as O(n3) and becomes prohibitive for huge datasets. To address this computa-
tional bottleneck, we next develop a random feature approximation that reduces complexity
from O(n3) to O(D3), where D is the number of features (Proposition 2). Additionally,
practical implementation requires careful selection of the kernel length-scale ℓ, which con-
trols the smoothness assumptions and generalization behavior, and the number of random
features D, which determines the approximation quality versus computational cost trade-
off. Later in the paper, we will propose insights for choosing D based on theoretical error
bounds (Corollary 9) and adaptive length-scale selection recommandations (Section 5.1).

Proposition 2 (Information Gain via Random Features) Consider a random feature
transformation ϕ : X → RD that approximates a shift-invariant kernel k(x, x′) ≈ ϕ(x)Tϕ(x′)
(Rahimi and Recht, 2007). The information gain (Definition 1) can be approximated as

ˆIG(x∗ | Dn) =
1

2
log

(
1 + ϕ(x∗)

T (ΦT
nΦn + λID)

−1ϕ(x∗)
)

(6)

where Φn ∈ Rn×D is the feature matrix with rows ϕ(xi)
T for i = 1, . . . , n, and λ > 0 is the

regularization parameter.

1. This formulation is equivalent to what they term the “differential entropy score”.
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4.2. Error Bounds

To provide theoretical guarantees for our approach, we establish error bounds for RFIG
under uniform kernel convergence assumptions. Our analysis serves two key purposes: (1)
quantifying how errors in kernel approximation propagate to information gain estimates,
and (2) determining the number of random features D required to achieve a desired ap-
proximation accuracy ε with high probability. We proceed by first bounding the error in
posterior variance estimation, then using this result to establish guarantees for information
gain approximation, and finally applying our general framework to RFFs. Our analysis
relies on three standard assumptions commonly employed in the random features literature
(Rahimi and Recht, 2007; Sutherland and Schneider, 2015).

Assumption 3 (Uniform kernel approximation) The random feature map ϕ(x) : X →
RD provides a uniform approximation to the kernel k(x, x′) over the domain:

P
[

sup
x,x′∈X

|ϕ(x)⊤ϕ(x′)− k(x, x′)| ≥ ϵ
]
≤ δ(ϵ; d,D). (7)

Assumption 4 (Regularization scaling) The regularization parameter scales linearly
with sample size: λ = nλ0 for some λ0 > 0.

Assumption 5 (Bounded kernel) The kernel is bounded: |k(x, x′)| ≤ κ for all x, x′ ∈ X .

Assumption 3 is the core requirement for random feature methods and holds for RFFs under
mild conditions on the input domain (Rahimi and Recht, 2007). Assumption 4 ensures that
the regularization term remain properly balanced as sample size grows, preventing regu-
larization from either dominating or vanishing asymptotically, which is useful for deriving
clean convergence rates and consistency results. Assumption 5 is satisfied by most practical
kernels including RBF and Matérn kernels.

Posterior variance error. Since information gain is fundamentally determined by pos-
terior variance (1), we first establish how kernel errors propagate to variance estimates.

Proposition 6 (Posterior variance error bound) Under Assumptions 3, 4, and 5, the
error in posterior variance estimation when using random features is bounded by:

∀x ∈ X , |σ̂2
n(x)− σ2

n(x)| ≤ ϵ

(
1 +

κ2

λ2
0

+
2κ

λ0
+

ϵ

λ0

)
, (8)

where ϵ = supx,x′∈X |ϕ(x)⊤ϕ(x′)− k(x, x′)|.

This result shows that variance estimation error scales linearly with kernel approximation
quality ϵ and exhibits the expected dependence on regularization strength.

Information gain error. The connection between posterior variance and information
gain enables us to translate variance errors into information gain guarantees (Lemma 10).
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Proposition 7 (RFIG error bound) Under Assumptions 3, 4, and 5, the error in RFIG
approximation is bounded by:

| IG(x|Dn)− ˆIG(x|Dn)| ≤
ϵ(λ0 + κ)2 + ϵ2λ0

2nλ3
0

, (9)

where ϵ = supx,x′∈X |ϕ(x)⊤ϕ(x′)− k(x, x′)|.

Our bound exhibits some properties: the error decreases with sample size n (consistency),
scales with kernel approximation quality ϵ (approximation dependence), and reveals a reg-
ularization trade-off where stronger λ0 tightens the bound but may over-smooth posteriors.

4.3. Application to Random Fourier Features

We apply our general bound to RFFs by using existing uniform convergence results.

Proposition 8 (RFF uniform convergence Rahimi and Recht (2007)) Let X ⊂ Rd

be compact with diameter diam(X ) and k a shift-invariant kernel with unit maximum and
Fourier transform P (ω). Let σ2

p = EP [∥ω∥2]. For RFF mapping ϕ and any ϵ > 0:

Pr
[
∥ϕ⊤ϕ− k∥∞ ≥ ϵ

]
≤ c

(
σp diam(X )

ϵ

)2

exp

(
− Dϵ2

8(d+ 2)

)
, (10)

c = 256 in Rahimi and Recht (2007), tightened to 66 in Sutherland and Schneider (2015).

Corollary 9 (Feature dimension requirement) To achieve approximation error
supx | IG(x|Dn)− ˆIG(x|Dn)| ≤ ε with probability at least 1− δ, it suffices to choose

D = O
(

d

ϵ2k
log

σp diam(X )
ϵkδ

)
, (11)

where ϵk =
2nλ3

0ε

(λ0 + κ)2
when ε is sufficiently small.

Even if diam(X ) is generally not know in a RL context, this result provides practical guid-
ance for hyperparameter selection: the required feature dimension D scales linearly with
problem dimension d and logarithmically with desired accuracy. Importantly, D decreases
with sample size n through ϵk, reflecting that larger datasets permit coarser kernel approxi-
mations while maintaining the same information gain accuracy. This theoretical foundation
justifies our approach and enables confident deployment in practical exploration scenarios.

5. RFIG for Efficient Exploration in RL

This paper aims to apply RFIG for improving optimism-based exploration in deep RL. This
section outlines the key algorithmic components and implementation considerations that
enable efficient and scalable integration with existing deep RL agents.
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5.1. Details that Matter

While Algorithm 1 outlines the core RFIG integration with deep RL, successful implemen-
tation requires attention to several practical considerations. However, these hyperparam-
eter choices are minimal compared to neural network approaches, which typically demand
extensive tuning of learning rates, network architectures, regularization schemes, and opti-
mization schedules. This subsection presents the key considerations that determine RFIG’s
effectiveness in practice, demonstrating the relative simplicity of our kernel-based approach.

Algorithm 1: RFIG for exploration

Input: RFF Feature map ϕℓ : X → RD with length-scale ℓ ∝
√
d̄, regularization λ > 0,

subsample ratio ρ ∈ (0, 1], environment M, policy π, exploration scale β > 0.
Initialize RFIG matrices Σ0 ← λID and Λ0 ← λ−1ID
Initialize state normalization parameters (µs, σ

2
s)

for t← 1, 2, · · · do
Collect N transitions D = {(si, ai, ri, s′i)}Ni=1 with policy π in environment M
Update normalization parameters with {si}Ni=1, obtain normalized states {s̄i}Ni=1

Compute information gain bonuses R+ =
{
r+i = 1

2 log
(
1 + ϕℓ(s̄i)

⊤Λt−1ϕℓ(s̄i)
)}N

i=1

Subsample ⌊Nρ⌋ states uniformly from {s̄i}Ni=1 to form Φt with rows ϕℓ(s̄j)
⊤

Update Σt ← Σt−1 +Φ⊤
t Φt, then Λt ← Σ−1

t

Update policy π using any RL algorithm with D and bonuses R+

end

length-scale selection. The length-scale ℓ controls the smoothness of the uncertainty es-
timates and should account for the curse of dimensionality. In high-dimensional spaces, typ-
ical distances between points scale as

√
d̄ where d̄ is the effective input dimension (Hvarfner

et al., 2024; Xu et al., 2024). Therefore, we recommend initializing ℓ ∝
√
d̄. To estimate

the effective dimension from samples, we refer to Section 4 of Valko et al. (2013).

State normalization2. We maintain running statistics µs and σ2
s to normalize states as

s̄ = (s− µs)/σs. This prevents scale differences across dimensions from dominating kernel
computations and is critical for RFF effectiveness.

Subsampling Strategy2. The subsample ratio ρ serves multiple purposes. The primary
goal is to prevent information gain from shrinking too rapidly to zero as the number of
samples grows, which would lead to premature exploration termination. Additionally, sub-
sampling helps Newton-Schulz iterations converge faster since the covariance matrix Σt

changes more slowly between updates, making warm starts more effective. This approach
mirrors techniques in sparse Gaussian processes, where a subset of inducing points can
represent the uncertainty structure of the entire dataset.

Newton-Schulz matrix inversion. A key computational challenge in RFIG is efficiently
maintaining the matrix (ΦT

nΦn+λID)
−1 as new observations arrive. It’s possible to employ

the Newton-Schulz iteration (Schulz, 1933), which iteratively computes matrix inverses using

2. These details have shown beneficial for many deep exploration strategies in Yuan et al. (2024).
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Xk+1 = Xk(2I−AXk). This method converges quadratically to A−1 when ∥I−AX0∥2 < 1
and crucially allows using the previous iteration’s result as a warm start for X0. Compared
to Sherman-Morrison or Woodbury updates, more commonly considered, Newton-Schulz
offers superior numerical stability by avoiding explicit small-number divisions and provides
computational savings. Combined with its parallel structure that maps naturally to GPU
architectures, Newton-Schulz is ideally suited for the frequent matrix updates required in
online deep RL applications. Further details are in Appendix B.1.

5.2. Numerical Experiments

We evaluate RFIG by integrating it with Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017), following the non-episodic exploration framework described in
Burda et al. (2018) for Random Network Distillation (RND). This allows for direct comparison
with proven implementation practices for intrinsic motivation in deep RL. Following the
PPO+RND architecture, we augment the standard PPO objective with RFIG-based intrinsic
rewards. We maintain separate value networks for extrinsic and intrinsic rewards and
normalize both rewards, as this has benefited many bonuses (Yuan et al., 2024).

Baselines. In addition to RND, we consider two other deep RL baselines that also follow
the optimism under the face of uncertainty (OFU) principle. We include #Explo from Tang
et al. (2017), which learns a hash function through an autoencoder architecture, maintains
a hash table with visit counts, and employs standard count-based exploration bonuses. We
also consider VIME (Houthooft et al., 2016), which shares a similar spirit to our approach by
targeting information gain for exploration. VIME learns dynamics with a Bayesian NN, a NN
with probability distributions over weights rather than fixed parameters, and approximates
information gain as the Kullback-Leibler divergence between the prior and posterior weight
distributions of the network. Both methods require effective representation learning to
function properly and reflect well the popular neural network-based exploration paradigm
that works independently from the policy learning process, via reward bonuses.

Setup. We adopt global hyperparameter settings proven effective for PPO across all experi-
ments (detailed in Appendix B.2). The exploration coefficient β is set to 0.5 for all methods.
Since we normalize exploration bonuses before integration, this coefficient does not affect
the relative comparison between baselines. For fair comparison across exploration base-
lines, we avoid extensive hyperparameter search and instead use common, well-established
parameter values found in reference implementations. All baseline methods employ neural
networks with 256×256 hidden layers and perform one gradient step per batch update using
the Adam optimizer. We initialize observation normalization with random trajectories for
all methods and additionally estimate the effective dimension d̄ for RFIG. For RFIG-specific
parameters, we use D = 1024 random features, regularization λ = 1, subsample ratio
ρ = 6.25%, and length-scale ℓ =

√
d̄. We evaluate RFIG across four domains designed to

test exploration capabilities. Classic control tasks (Acrobot, MountainCar) provide baseline
comparisons in low-dimensional settings (Lange, 2022). For challenging continuous control,
we use sparse reward variants of Brax locomotion tasks (Freeman et al., 2021), where agents
receive milestone rewards only upon reaching specific distance thresholds (Appendix B.3).
We include PointMaze navigation environments (de Lazcano et al., 2024; Radji, 2025) and
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MinAtar tasks (Young and Tian, 2019; Lange, 2022), miniature Atari implementations that
demonstrate exploration needs extend beyond sparse reward settings. All experiments use
32 random seeds and 32 parallel environments with 128-step unrolls.
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Figure 1: Comparing exploration strategies. Solid lines represent the interquartile mean,
with shaded areas indicating the 25th-75th percentiles across 32 random seeds.

Discussion. The experimental results across tasks of varying dimensionality reveal dis-
tinct performance patterns that highlight fundamental tradeoffs in exploration strategy
design (Table 1). PPO+RFIG demonstrates remarkable consistency, outperforming vanilla
PPO, which demonstrates that our exploration bonus is effective. The key question is how
well it performs relative to established methods. RFIG is competitive with NN-based meth-
ods across all environments. From control tasks to complex navigation challenges, RFIG
maintains stable performance without catastrophic failures. The representation-dependent
methods exhibit environment-specific behavior. VIME excels in some high-dimensional con-
tinuous control tasks like sparse-ant and sparse-walker2d when its Bayesian NN representa-
tions seem to succeed, but struggles in some other tasks, which can be a failure in capturing a
good representation. #Explo shows similar inconsistency. We believe that both approaches
could likely improve with environment-specific hyperparameter tuning, which undermines
their general direct applicability. In contrast, RFIG avoids this representational brittleness.
The comparison with RND proves particularly revealing since both employ random features
through different mechanisms. Beyond empirical performance, RFIG offers practical ad-
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vantages through its closed-form solution approach. Our JAX implementation3 shows no
significant execution time differences compared to NN approaches, even with full matrix
inversion used in our final experiments. RFIG competitively matches or exceeds RND’s per-
formance while offering superior theoretical interpretability. Moreover, RFIG achieves peak
performance in challenging environments like sparse-halfcheetah and Breakout, demonstrat-
ing effectiveness across diverse reward structures.

Method Principle Representation Computation Sensitivity

RND Prediction error ✗ Distillation Medium
VIME Information gain ✓ Bayesian NN High
#Explo Count-based ✓ Auto-encoder High
RFIG Information gain ✗ Closed-form Low

(Kernel theory)

Table 1: Comparison of exploration methods across key characteristics.

6. Conclusion

We introduced the Random Feature Information Gain (RFIG) exploration bonus, demon-
strating that principled kernel methods can match the empirical performance of neural
network-based exploration while offering some theoretical insights and closed-form solu-
tions. By leveraging Bayesian kernel methods and random Fourier features, RFIG achieves
competitive results across diverse domains without requiring representation learning or hy-
perparameter tuning. Our work challenges the prevailing assumption that effective explo-
ration requires increasingly sophisticated neural architectures, which often have a black-box
aspect. RFIG’s success stems from its theoretical foundation in kernel methods, providing
mathematical rigor often absent in popular deep RL exploration strategies

Broader impact. The framework underlying RFIG and its theoretical guarantees ex-
tends naturally to other domains requiring uncertainty quantification. Active learning,
Bayesian optimization, out-of-distribution detection in offline RL, and other sequential
decision-making problems can all benefit from similar kernel-based approaches.

Future directions. Several promising research avenues emerge from this work. First,
studying how RFIG behaves in very high-dimensional spaces like big images will reveal the
scalability limits of our kernel-based approach and identify potential adaptations needed
for visual domains. Second, developing adaptive mechanisms for kernel parameter selec-
tion, particularly length-scale tuning, to potentially improve performance. Third, while
we focused on RBF kernels and their RFFs approximation, exploring alternative kernels
through different random projection schemes offers exciting possibilities. Specialized ker-
nels might close the performance gap with deep RL methods that currently outperform
RFIG in certain environments. Finally, the same information-theoretic principles could
enable conservative exploration strategies for offline RL, where avoiding out-of-distribution
states takes precedence over optimistic exploration.

3. The experiment code is available at https://github.com/riiswa/rfig.

https://github.com/riiswa/rfig
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Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot,
Steven Kapturowski, Olivier Tieleman, Mart́ın Arjovsky, Alexander Pritzel, Andew
Bolt, et al. Never give up: Learning directed exploration strategies. arXiv preprint
arXiv:2002.06038, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and hashing. In Advances in neural information
processing systems, pages 2611–2619, 2016.

Tom Blau, Lionel Ott, and Fabio Ramos. Bayesian curiosity for efficient exploration in
reinforcement learning. arXiv preprint arXiv:1911.08701, 2019.

Salomon Bochner et al. Lectures on Fourier integrals, volume 42. Princeton University
Press, 1959.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances
in neural information processing systems, 24, 2011.

Sayak Ray Chowdhury and Aditya Gopalan. Online learning in kernelized markov decision
processes. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 3197–3205. PMLR, 2019.

https://www.plafrim.fr


Information-Based Exploration via Random Features

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/

Gymnasium-Robotics.

Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal
Valko. A kernel-based approach to non-stationary reinforcement learning in metric spaces.
In International Conference on Artificial Intelligence and Statistics, pages 3538–3546.
PMLR, 2021.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax - a differentiable physics engine for large scale rigid body simulation, 2021.
URL http://github.com/google/brax.

Karl Friston, Francesco Rigoli, Dimitri Ognibene, Christoph Mathys, Thomas Fitzgerald,
and Giovanni Pezzulo. Active inference and epistemic value. Cognitive Neuroscience, 6
(4):187–214, 2015. doi: 10.1080/17588928.2015.1020053.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Junya Honda and Akimichi Takemura. An asymptotically optimal bandit algorithm for
bounded support models. In COLT, pages 67–79. Citeseer, 2010.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Vime: Variational information maximizing exploration. Advances in neural information
processing systems, 29, 2016.

Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs
great in high dimensions. arXiv preprint arXiv:2402.02229, 2024.

Tommi S Jaakkola and David Haussler. Probabilistic kernel regression models. In Seventh
International Workshop on Artificial Intelligence and Statistics. PMLR, 1999.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Pro-
ceedings of the 26th annual international conference on machine learning, pages 513–520,
2009.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library,
2022. URL http://github.com/RobertTLange/gymnax.

Neil Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse gaussian process methods:
The informative vector machine. Advances in neural information processing systems, 15,
2002.

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/google/brax
http://github.com/RobertTLange/gymnax


Radji Maillard

Haozhe Ma, Zhengding Luo, Thanh Vinh Vo, Kuankuan Sima, and Tze-Yun Leong.
Highly efficient self-adaptive reward shaping for reinforcement learning. arXiv preprint
arXiv:2408.03029, 2024.

Philippe Morere and Fabio Ramos. Bayesian RL for goal-only rewards. In Conference on
Robot Learning, 2018.

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. arXiv preprint arXiv:1812.07544,
2018.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning
via posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International conference on machine learning,
pages 2778–2787. PMLR, 2017.

Fabien Pesquerel and Odalric-Ambrym Maillard. Imed-rl: Regret optimal learning of er-
godic markov decision processes. Advances in Neural Information Processing Systems,
35:26363–26374, 2022.

Waris Radji. Pointax: Jax-native pointmaze environment, 2025. URL https://github.

com/riiswa/pointax.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sam-
pling. Advances in neural information processing systems, 27, 2014.

Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regression learning
algorithm in dual variables. 1998.

Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem.
In International conference on computational learning theory, pages 416–426. Springer,
2001.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Günther Schulz. Iterative berechung der reziproken matrix. ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 13
(1):57–59, 1933.

Burr Settles. Active learning literature survey. 2009.

https://github.com/riiswa/pointax
https://github.com/riiswa/pointax


Information-Based Exploration via Random Features

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation
for markov decision processes. Journal of Computer and System Sciences, 74(8):1309–
1331, 2008.

Bhavya Sukhija, Stelian Coros, Andreas Krause, Pieter Abbeel, and Carmelo Sferrazza.
Maxinforl: Boosting exploration in reinforcement learning through information gain max-
imization. arXiv preprint arXiv:2412.12098, 2024.

Danica J Sutherland and Jeff Schneider. On the error of random fourier features. arXiv
preprint arXiv:1506.02785, 2015.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, vol. 135,
1998.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan,
John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based
exploration for deep reinforcement learning. Advances in neural information processing
systems, 30, 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.
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