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DQG: DatabaseQuestion Generation
for Exact Text-based Image Retrieval

Anonymous Author(s)∗

Query text:    A giraffe walking through a lush green field.

Generated question: What is in the background ?  Answer: Trees

Query text:    A red stop sign sitting on the side of a road.

Generated question: What is the weather ?       Answer: Cloudy

Sample 1 Sample 2

Initial retrieval results of BLIP Initial retrieval results of BLIP

Screening results of BLIP + Ours Screening results of BLIP + Ours

Figure 1: Retrieval result examples of our approach. The image surrounded by the orange frame indicates the ground truth
image paired with the query text. Our database question generation (DQG) approach generates questions that can screen similar
but non-target images by analyzing the target DB. In the left example, initial results show diverse backgrounds, while ours
consistently features tree-filled backgrounds, ranking the ground truth image 4th. In the right example, initial results show
varied weather conditions, whereas ours consistently shows cloudy weather, ranking the ground truth image 3rd.

ABSTRACT
Screening similar but non-target images in text-based image re-
trieval is crucial for pinpointing the user’s desired images accurately.
However, conventional methods mainly focus on enhancing text-
image matching performance, often failing to identify images that
exactly match the retrieval intention because of the query quality.
User-provided queries frequently lack adequate information for
screening similar but not target images, especially when the target
database (DB) contains numerous similar images. Therefore, a novel
approach is needed to extract valuable information from users for
effective screening. In this paper, we propose a DB question gener-
ation (DQG) model to enhance exact cross-modal image retrieval
performance. Our DQG model learns to generate effective ques-
tions that precisely screen similar but non-target images using DB
contents information. By answering the questions generated from
our model, users can reach their desired images by only answer-
ing the presented questions even within DBs with similar content.
Experimental results on publicly available datasets show that our
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proposed approach can significantly improve exact cross-modal
image retrieval performance. Code is available in the supplemental
materials and will be publicly available.
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1 INTRODUCTION
Image retrieval through text query, also known as text-based im-
age retrieval, is one of the most fundamental research topics that
should grasp the user’s retrieval purpose [30, 58]. The primal aim is
to retrieve images similar to the provided query, commonly known
as similar image retrieval, and it is a critical task for various Web
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services such as search engines, recommendation systems, and e-
commerce services [7, 13, 60]. Recent advancements in text-based
image retrieval have primarily focused on enhancing the perfor-
mance of similar image retrieval by leveraging shared latent spaces
to compute similarities between query texts and candidate im-
ages [43]. While these methods excel in similar image retrieval,
they often fall short in facilitating the retrieval of specific target
images that precisely match users’ retrieval intentions, referred to
as exact image retrieval. This challenge arises due to the difficulty
users face in providing sufficiently detailed query information.

Exact image retrieval works well when users provide an appropri-
ate query that contains ample information to uniquely identify the
desired image from the target database (DB). However, consistently
providing such precise queries poses challenges, given users’ lim-
ited knowledge about the entire target DB’s content. User-provided
queries can correspond to multiple candidate images, leading to
decrease retrieval performance, even in state-of-the-art text-image
foundation models like CLIP [33] and BLIP [24]. This problem es-
calates significantly when the target DB contains abundant similar
content, as it increases the number of candidate images related to
queries. For instance, retrieving a specific desired image using the
text query "A photo of travel with my friends" from a DB abundant
in travel images poses significant challenges. Given the diverse
applications of exact image retrieval such as lifelog search [46] and
landmark search [53], dealing with the appropriate query provision
difficulty is an essential topic.

One promising approach to alleviate query provision challenges
is integrating a question-generation (QG) scheme into conventional
text-based image retrieval methods. In the adjacent field of docu-
ment information retrieval, the QG-based retrieval scheme has been
widely discussed for enhancing exact information retrieval perfor-
mance in addition to the conventional retrieval scheme [1, 56]. By
introducing a QG module, retrieval systems can better understand
users’ retrieval intentions through text-based interactions, enabling
users to provide additional clues for finding specific target informa-
tion by answering provided questions. Referring to the performance
improvement in the document information retrieval field, the QG
module is likely to contribute to exact image retrieval performance
improvement by alleviating the query provision difficulty.

The QG module for exact image retrieval needs to adaptively
generate questions tailored to each target DB. When generated
questions align with multiple candidate images, similar but non-
target images cannot be screened even though the retrieval system
receives the answers from users. Therefore, the QGmodule for exact
image retrieval must generate questions capable of screening similar
candidate images within the target DB adaptively. While manually
preparing predefined question labels is a theoretical solution for
adaptive QG, it demands considerable effort due to the diverse
nature of image retrieval across different target DBs. Consequently,
an adaptive QG module that learns suitable questions solely from
target DB contents is highly desirable.

In this paper, we propose a DB question generation (DQG) ap-
proach for enhancing exact text-based image retrieval. Our ap-
proach focuses on learning the appropriate question on the tar-
get DB only from those candidate images. Here, the appropriate

questions must possess two key characteristics: effectively screen-
ing similar candidate images and being grammatically understand-
able to users. Our DQG module generates questions from DB in-
formation input, and the generated questions are optimized to
meet the two characteristics by minimizing retrieval-based loss and
grammatical-based loss. Specifically, our learning scheme transfers
the knowledge of the other vision and language models solely using
the candidate images on DBs, enabling automatic question genera-
tion without retrieval task-specific question labels. The generated
questions by our DQG module guide users to their desired images
by screening similar but non-target candidate images based on user
responses. In other words, users can reach their desired images
by only answering the presented questions with our approach. Ex-
perimental results show that our approach can improve the exact
image retrieval performance and generate grammatically correct
questions.

The contributions of this paper are summarized as follows.
DQG approach for exact text-based image retrieval

Our DQG approach effectively screen similar but non-target
candidate images, guiding users to their desired images
through provided questions.

DQG learning scheme without task-specific labels
Our DQG module is trained to generate the suitable ques-
tions from DB information input without using any ques-
tion labels for retrieval tasks.

Significant performance improvement
Experimental results demonstrate notable enhancement in
exact image retrieval performance compared to the cur-
rent state-of-the-art BLIP method, by +13.1%, +7.5%, and
+10.4% in the R@1 metric on the MSCOCO, VG, and biased-
MSCOCO datasets, respectively.

2 RELATEDWORKS
2.1 Text-based image retrieval
Our approach focuses on screening similar but non-target candidate
images in a text-based image retrieval (hereinafter referred to as
TBIR) paradigm. Most recent TBIR methods aim to map a query
text and candidate images into the latent space E [5, 11, 37, 42].
That is, they train the two mapping functions EncL (·): L → E and
EncV (·): V → E, where L and V are lingual and visual spaces,
respectively. By embedding a query text and candidate images via
the trained mapping functions EncL (·) and EncV (·), similarities
between the text query and candidate images are calculated on the
space E.

Conventionally, TBIR is realized based on statistical correlation
analysis, such as canonical correlation analysis [18]. However, the
advent of deep neural network technologies has revolutionized
representation learning, enabling the training of robust mapping
functions EncL (·) and EncV (·) [12, 20, 22, 24, 33, 59]. Based on
the hinge loss, Kiros et al. [22] trained EncL (·) and EncV (·) so
that the similarities between correct text-image pairs are higher
than those between other different pairs. Faghri et al. [12] improved
the method used by Kiros et al. [22] by considering the number of
images between a text query and the retrieval target image. The
existing TBIR performance has been improved by focusing on the
loss function and network architectures.

2
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While existing TBIR methods excel in similar image retrieval
tasks, our work targets the specific retrieval of images exactly
matching users’ intentions. By integrating DQG-based interaction
for re-ranking, our system leverages user feedback to screen similar
but non-target images more effectively.
2.2 Re-ranking
Re-ranking has been studied in various retrieval tasks such as per-
son re-identification and object retrieval, and methods for TBIR
tasks have also been proposed [3, 4, 30, 36, 54]. Our retrieval ap-
proach aligns with re-ranking methodologies as it incorporates
additional user information for screening similar candidate images.
Therefore, we review the difference between our approach and
similar works in this subsection. Based on the necessity of user
interaction, re-ranking methods can be roughly classified into two
categories: self re-ranking and feedback-based re-ranking.

Self re-ranking aims to improve retrieval performance by es-
timating the key information from the top-ranked images of the
initial retrieval results. Several self-re-ranking methods [44, 45, 55]
rank text labels in reverse order utilizing each initial ranked image
as a query and re-rank the initial retrieval results based on these
results. Although these self-re-ranking methods can improve the
initial retrieval performance without any feedback information,
they cannot obtain additional information from users. Therefore, it
is difficult for self-re-ranking methods to deal with query provision
difficulty.

Feedback-based re-ranking aims to improve retrieval perfor-
mance based on user feedback. Several learning-based methods [17,
39, 41, 50–52] allow users to provide feedback on retrieval results
via natural language. In the fashion domain, Guo et al. proposed a
reinforcement learning-based re-ranking method [17]. By learning
the texts that describe differences of images, they can estimate user
desired images from feedback comments on the top-ranked image.
Although its method enables users to provide natural language-
based feedback, there is no guarantee that the feedback provided
by the users effectively clarifies their query text. Besides, users
are required to consider additional natural language-based queries
for the re-ranking. Also, as the most relevant methods, Yanagi et
al. [50, 52] proposed re-ranking methods that receive information
only about objects in the target image. Although these methods
receive additional information for screening similar candidate im-
ages, their retrieval performance heavily depends on the objects in
the database, and then the feedback is not always effective.

Following the growth of the document information retrieval
field [1, 56], we introduce the DQG for exact TBIR settings. Our
approach estimates the most effective questions by learning the
target DB without using any labels for the retrieval task. With this
procedure, users can reach their desired single image effectively by
simply answering the presented questions.
3 DQG FOR EXACT TEXT-BASED IMAGE

RETREIVAL
Our approach consists of the following two steps: initial text-based
image retrieval and DQG-based screening. An overview of our ap-
proach is shown in Fig. 2. By transferring the knowledge of the
other vision and language tasks, our approach learns how to gener-
ate adequate questions for the screening in the target DB without
using any labels for retrieval. First, we calculate the initial retrieval

results by computing the similarities between the query text T and
candidate images I𝑛 (𝑛 = 1, . . . , 𝑁 ; 𝑁 being the number of candi-
date images). Based on the initial retrieval results, we calculate the
features of the target DB using the DQG encoder module Gen (·).
Then, the calculated DB features are passed into the DQG decoder
module Gdec (·), and the Gdec (·) generates free-form questions for
the screening. Next, we receive feedback answers toward the gen-
erated question. Here, in the training phase, it takes a lot of costs to
manually prepare feedback answers until the training convergence,
we obtain the feedback answer from the QA modules by assuming
them as users. Finally, the retrieval results are calculated based on
the feedback answer.

3.1 The pre-training on pretext tasks
To learn how to generate adequate questions without using question
labels for retrieval, we transfer the knowledge of various vision and
language modules pre-trained on pretext tasks. As a preparation,
we pre-train the image description module I2T(·), the DQG encoder
and decoder modules {Gen (·), Gdec (·)}, and the QA word encoder
and decoder modules {Aword (·), Adec (·)} with various vision and
language tasks. The image description module I2T(·) is pre-trained
on the image captioning pretext task [49] using the text-image
paired dataset [28]. Also, the DQG and QA modules are pre-trained
on the visual question generation and answering pretext tasks [2,
26] using the QA-image paired dataset [16]. Here, the QA-image
paired dataset contains 𝐶 dictionary words dic𝑐 (e.g., “car” and
“dog”), and the pre-trained Aword (·) can convert these words into
𝐷word-dimensional features 𝒇word𝑐 as follows:

𝑭word = [𝒇word1 , . . . ,𝒇word
𝐶

]⊤, (1)

𝒇word𝑐 = Aword (dic𝑐 ) . (2)

The calculated 𝑭word is utilized for connecting the question gener-
ation and answering modules in the following subsections.

We focus on training the DQG decoder module Gdec (·) to gen-
erate questions that can effectively screen similar but non-target
images. Besides, the generated questions should be grammatically
correct since we provide the generated questions to users. For guar-
anteeing the grammatical correctness of the generated questions,
we introduce the discriminative module D(·) that can classify the
real and generated questions. Specifically, we train the discrim-
inative module D(·) using the real questions 𝑞real contained in
the QA-image paired dataset. The trained D(·) is used for the loss
calculation. In the training, the real questions are converted to gram-
matically incorrect questions 𝑞gen via word swapping, erasing, or
inserting. D(·) is trained for minimizing the binary cross-entropy
loss 𝐿pre as follows:

𝐿pre = −(logD(𝑞real) + log(1 − D(𝑞gen))) . (3)

After the training, it is expected that D(·) can classify the real and
generated questions. In the following sections, we refer the trained
discriminative module as D̂(·). The loss calculation with D̂(·) is
described in Subsec. 3.3.

3.2 Retrieval procedure
Initial text-based image retrieval. We calculate the initial rank-
ing of the candidate images I𝑛 from a query text T. Theoretically,

3
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Figure 2: Overview of the proposed approach. At first, we calculate the initial retrieval results by computing the similarities
between the query text and candidate images. Based on the calculated initial results, we aggregate the visual features of the
candidate images using the QG encoder module Gen (·). The aggregated visual features are passed into the QG decoder module
Gdec (·), and the QG decoder module generates questions for the screening. Next, our approach obtains the feedback answer
from the QA modules by assuming them as users. Finally, the retrieval results are calculated based on the feedback answer.

since an arbitrary text-based image retrieval method can be used
for the first step, we explain our approach with reference to the
most basic text-based image retrieval architecture [22].

First, text and image features (𝒇 L ∈ R𝐷E and 𝒇V
𝑛 ∈ R𝐷E )

are calculated from T and I𝑛 , respectively, where 𝐷E represents
the dimension of the embedded features. Using the two trained
embedding functions EncL (·) and EncV (·), which are provided
by the arbitrary conventional text-based image retrieval method,
we embed T and I𝑛 into the shared latent space as follows: 𝒇 L =

EncL (T), 𝒇V
𝑛 = EncV (I𝑛). Then, the proposed approach calculates

the cosine similarities 𝑠𝑛 between embedded features 𝒇 L and 𝒇V
𝑛 .

We rank the candidate images I𝑛 as R𝑘 (𝑘 = 1, . . . , 𝑁 ) in descending
order of 𝑠𝑛 . Namely, R𝑘 represents the 𝑘th ranked candidate image
using T as a query. The initial retrieval results R𝑘 are provided to
the users. Besides, the users can conduct the screening if they are
not satisfied with the initial retrieval results R𝑘 .

DQG-based screening.We screen the initial retrieval results
R𝑘 via DQG model. The proposed approach firstly calculates DB
features 𝒇 G ∈ R𝐷G from R𝑘 using the DQG encoder module Gen (·)
as follows:

𝒇 G =
1∑

𝑘 𝛼
𝑘−1

∑︁
𝑘

𝛼𝑘−1𝒇 G
𝑘
, (4)

𝒇 G
𝑘

= Gen (R𝑘 ), (5)

where 𝛼 is a hyperparameter that balances the importance of rank-
ing. The calculated DB features𝒇 G are then passed into the DQG de-
coder moduleGdec (·). Afterward, the DQG decoder moduleGdec (·)
calculates the likelihoods of dic𝑐 for 𝑡-th word (𝑡 = 1, . . . ,𝑇 G ;
𝑇 G being the number of estimated words) 𝒍𝑡 ∈ R𝐶 as follows:
𝒍𝑡 = Gdec (𝒇 G). Next, we screen the initial retrieval results by com-
paring the automatically annotated answer labels in each candidate
image and feedback answers from the user for the estimated ques-
tion. The answer labels a𝑛 can be obtained via the QA modules
{Aword (·), Adec (·)}. First, we convert 𝒍𝑡 to one-hot vector 𝒉𝑡 ∈ R𝐶

for propagating the estimated question to the QA modules. In the
test phase, for determining the 𝑡-th word, we convert 𝒍𝑡 to one-hot
vector 𝒉𝑡 via the arg max(·) function. Here, since the arg max(·)

function is a nondifferentiable procedure, it cannot be used in the
training phase. Therefore, in the training phase, we convert 𝒍𝑡 to
one-hot vector 𝒉𝑡 via differentiable Gummbel-Softmax-based hard
sampling 1 [19]. We obtain the answer labels a𝑛 from 𝒉𝑡 and the
candidate images I𝑛 as follows:

a𝑛 = Adec (𝑭A , I𝑛), (6)

𝑭A = [𝒇A
1 , . . . ,𝒇A

𝑇
], (7)

𝒇A
𝑡 = 𝒉𝑡 𝑭

word, (8)

where 𝑭word converts input words into the 𝐷word-dimensional
features (described in Subsec. 3.1). Similarly, we obtain the feedback
answer auser targeted toward the inferred question. In the test phase,
by extracting the maximum index of the estimated likelihoods 𝒍𝑡
via the arg max

𝑡
(·) function, the proposed approach obtains the

generated question q𝑡 . The generated question q𝑡 is then presented
to the user, and the user gives the feedback answer auser targeted
toward the question. In contrast, in the training phase, it takes a lot
of time to manually prepare answers until the training convergence.
By considering the QA module as users, we denote the answer label
a𝑛 corresponding to the target image as auser.

Finally, we calculate the screening similarities 𝑠𝑛 based on the
initial similarities 𝑠𝑛 as follows:

𝑠𝑛 = 𝑠𝑛 + 𝛽simtext (auser, a𝑛) . (9)

where 𝛽 is a hyperparameter that balances the effect of the screen-
ing, and simtext (·) is a text similarity function. We rank the candi-
date images I𝑛 as R̂𝑘 in descending order of 𝑠𝑛 .

3.3 Optimization strategy
To generate questions that can screen similar images in DB, we
train the DQG decoder module Gdec (·) using pseudo image-query
texts pairs prepared for the target DB. Since query text labels are
generally not contained in each target DB, we prepare pseudo
query text labels based on the candidate images in the target DB.
Specifically, we generate texts Tpsu𝑛 that represent candidate images
1https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.
html
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I𝑛 via the pre-trained image description module I2T(·). Namely,
Tpsu𝑛 and I𝑛 are pseudo pairs that can be automatically prepared
from the target DB.

Based on the calculated similarities 𝑠𝑛 and the inferred one-hot
vector 𝒉𝑡 , we calculate a loss 𝐿, consisting of two types of loss:
retrieval loss 𝐿rank and gramatical loss 𝐿D , as follows:

𝐿 = 𝛾𝐿rank + (1 − 𝛾)𝐿D , (10)

where 𝛾 is a hyperparameter that balances the importance of loss.
Following the conventional text-based image retrieval methods,

for all pseudo query text labels Tpsu𝑛 , we calculate the retrieval loss
𝐿rank as follows:

𝐿rank =
∑︁
𝑚

{
max{0, 𝛿 − 𝑠𝑛 + 𝑠𝑚} (𝑛 ≠𝑚)
0 (𝑛 =𝑚)

, (11)

where 𝛿 is a margin hyperparameter and𝑚 = 1, 2, . . . , 𝑁 . By train-
ing the DQG decoder module Gdec (·) to minimize the re-ranking
loss 𝐿rank, Gdec (·) can generate questions that can screen similar
but non-target images.

Although the retrieval loss 𝐿rank helps with the improvement
of the retrieval performance, there is no guarantee that the gen-
erated questions are grammatically correct for users. Therefore,
DQG modules can generate questions that are incorrect for users
using only the 𝐿rank. To avoid such occurrence, we introduce gram-
matical loss 𝐿D that can guarantee the grammatical correctness of
the generated questions. Specifically, for all generated questions
corresponding to Tpsu𝑛 , we calculate the grammatical loss 𝐿D using
the trained discriminative module D̂(·) (described in Subsec. 3.1)
as follows:

𝐿D = − log D̂(q𝑡 ) . (12)

Here, the discriminative module D̂(·) is trained to output a higher
and lower value for the real and non-real questions, respectively.
Namely, if the generated questions are similar to the real questions,
𝐿D becomes lower. By introducing 𝐿D , it is expected that the
generated questions are grammatically correct for users.

4 EXPERIMENTS
To evaluate the effectiveness of our DQG-based exact image re-
trieval, we conducted experiments using two major open datasets
and one dataset with similar images. Specifically, we defined and
evaluated the following research questions.

(1) Whether our approach can enhance the performance of the
exact text-based image retrieval methods? (Subsec. 4.2)

(2) Whether the questions generated by our approach are gram-
matically correct or not? (Subsec. 4.3)

(3) Whether our approach is effective for DBs with a lot of
similar images? (Subsec. 4.4)

(4) Whether our approach can effectively screen similar images
than the conventional re-ranking approaches? (Subsec. 4.5)

4.1 Experimental settings
Dataset. Following the recent text-based image retrieval methods,
we used the following two large-scale datasets with text-image
pairs: MSCOCO and Visual Genome.

Table 1: Experimental results for R@𝑘 , mean rank, and me-
dian rank using MSCOCO dataset.

R@1 R@10 Mean Median
PVSE [38] 0.324 0.759 20.463 3
PVSE+Ours w/o opt 0.393 0.809 15.195 2
PVSE+Ours w/o 𝐿D 0.479 0.860 9.771 1
PVSE+Ours 0.481 0.864 9.515 1
SAN [20] 0.337 0.777 23.143 2
SAN+Ours w/o opt 0.397 0.814 14.293 2
SAN+Ours w/o 𝐿D 0.452 0.836 12.663 2
SAN+Ours 0.499 0.865 9.193 1
VSRN [25] 0.403 0.701 15.323 1
VSRN+Ours w/o opt 0.455 0.825 9.995 1
VSRN+Ours w/o 𝐿D 0.503 0.854 7.524 1
VSRN+Ours 0.521 0.868 6.777 1
PCME [9] 0.379 0.735 20.632 3
PCME+Ours w/o opt 0.389 0.800 14.158 2
PCME+Ours w/o 𝐿D 0.427 0.837 11.223 2
PCME+Ours 0.475 0.858 8.339 1
SGM [8] 0.352 0.765 25.322 3
SGM+Ours w/o opt 0.376 0.786 20.421 2
SGM+Ours w/o 𝐿D 0.413 0.823 13.422 2
SGM+Ours 0.441 0.851 9.551 1
DiVE [21] 0.412 0.720 17.431 2
DiVE+Ours w/o opt 0.424 0.838 9.312 1
DiVE+Ours w/o 𝐿D 0.476 0.852 8.395 1
DiVE+Ours 0.510 0.875 6.983 1
CLIP [33] 0.378 0.722 26.421 3
CLIP+Ours w/o opt 0.392 0.764 21.011 2
CLIP+Ours w/o 𝐿D 0.402 0.814 14.502 2
CLIP+Ours 0.436 0.846 9.744 1
BLIP [24] 0.402 0.753 18.773 2
BLIP+Ours w/o opt 0.423 0.792 16.532 2
BLIP+Ours w/o 𝐿D 0.498 0.841 12.331 1
BLIP+Ours 0.531 0.867 8.631 1

MSCOCO [28]
TheMSCOCO dataset consists of images and corresponding
texts that describe the contents of a paired image. This
dataset is adopted by the most recent text-based image
retrieval methods. Following the widely used data splits
provided by [22], 123,287 and 5,000 images are used for the
pre-training and target DB, respectively.

Visual Genome [23]
The Visual Genome dataset consists of images and corre-
sponding texts that describe the particular region of the
paired image. Following the conventional methods, 75,578
and 32,422 images are respectively used for the target DB [48,
57]. Note that since Visual Genome dataset does not have
question and answer labels, we utilized the MSCOCO pre-
training dataset for pre-training each module.

Implementation details. We compared our approach with
some recently proposed text-based image retrieval methods [8,
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Table 2: Experimental results for R@𝑘 , mean rank, and me-
dian rank using the Visual Genome dataset.

R@1 R@10 Mean Median
PVSE [38] 0.0280 0.129 2943.513 258
PVSE+Ours w/o opt 0.0431 0.179 2742.562 190
PVSE+Ours w/o 𝐿D 0.0985 0.221 2504.593 176
PVSE+Ours 0.104 0.234 2485.331 163
SAN [20] 0.0286 0.130 2861.242 248
SAN+Ours w/o opt 0.0442 0.180 27694.322 185
SAN+Ours w/o 𝐿D 0.114 0.225 2634.507 164
SAN+Ours 0.122 0.242 2433.492 153
VSRN [25] 0.0390 0.130 2861.242 248
VSRN+Ours w/o opt 0.0472 0.185 2800.293 176
VSRN+Ours w/o 𝐿D 0.120 0.233 2421.063 152
VSRN+Ours 0.124 0.248 2394.391 147
PCME [9] 0.0304 0.142 2755.495 249
PCME+Ours w/o opt 0.0451 0.182 2694.291 182
PCME+Ours w/o 𝐿D 0.0895 0.209 2554.322 167
PCME+Ours 0.115 0.236 2423.391 154
SGM [8] 0.0341 0.131 2822.341 253
SGM+Ours w/o opt 0.0432 0.162 2704.321 221
SGM+Ours w/o 𝐿D 0.0823 0.201 2563.432 181
SGM+Ours 0.102 0.229 2499.32 164
DiVE [21] 0.0398 0.132 2845.554 250
DiVE+Ours w/o opt 0.0758 0.183 2685.439 178
DiVE+Ours w/o 𝐿D 0.0832 0.210 2497.889 178
DiVE+Ours 0.144 0.238 2338.482 160
CLIP [33] 0.0405 0.151 2742.491 231
CLIP+Ours w/o opt 0.0574 0.176 2698.752 215
CLIP+Ours w/o 𝐿D 0.0968 0.205 2477.231 175
CLIP+Ours 0.112 0.247 2313.441 146
BLIP [24] 0.0454 0.173 2652.311 227
BLIP+Ours w/o opt 0.0603 0.181 2534.123 211
BLIP+Ours w/o 𝐿D 0.0994 0.212 2405.123 165
BLIP+Ours 0.121 0.264 2223.486 128

9, 20, 21, 24, 25, 33, 38]. Note that we implemented all compar-
ative methods based on the open-source codes provided by the
authors. Furthermore, to evaluate the effectiveness of our training,
we compared the retrieval performance calculated using the DQG
module without optimization in Subsecs. 3.2 and 3.3 (hereinafter
referred to as Ours w/o opt). Namely, it conducts the re-ranking
with the DQG module after the pre-training in Subsec. 3.1. Also,
to evaluate the effectiveness of 𝐿D , our approach without 𝐿D is
used for comparison (hereinafter referred to as Ours w/o 𝐿D ). In
our approach, the DQG, QA, and image description modules are
constructed following [26], [34], and [10], respectively. Also, we
applied the transformer network for our discriminative model. For
the parameters in the equations, we set 𝛾 = 0.3 following the con-
ventional researches and experimentally set 𝛼 = 0.9, 𝛽 = 0.6, and
𝛿 = 0.3. In place of the function simtext (·), we used a cosine sim-
ilarity function using GloVe [31] word features. Each module is
pre-trained following their papers, and our training is conducted
until the losses converged.

Answer preparation. To evaluate the effectiveness of our ap-
proach, answers to the generated questions should be required.

However, preparing answers to all generated questions comes at
a great cost. Even if we manually prepare the answers to all gen-
erated questions, the experimental objectivity and repeatability
will not be guaranteed since such manual preparation is always
required for considering novel approaches. To ensure the experi-
mental objectivity and repeatability, inspired from the dialog system
researches [14, 40], we prepared answers to the generated questions
by assuming the QAmodel as a user. To avoid overfitting toward the
QA module and to ensure experimental objectivity, we use the QA
model that has different QA module architectures in the training
phase ({Aword (·), Adec (·)}). However, using the different model
architectures in the training and evaluation, there is no guarantee
that the QA model will always answer the presented questions
accurately and that its model is closer to the user behavior. Even if
we assume the QA model as a user, our approach cannot unfairly
identify the target images and does not use any label information.

4.2 Comparison with conventional text-based
image retrieval methods

We first evaluate the research question “Whether our approach can
further enhance the text-based image retrieval performance ?” by
introducing our approach to the conventional text-based image
retrieval methods. Mean rank, median rank, and Recall@𝑘(R@𝑘)
are used for the evaluation metrics, following the conventional
text-based image retrieval methods. R@𝑘 is defined as follows:

R@𝑘 =
𝑔𝑘

𝐽
(𝑘 = 1, 2, . . . , 𝑁 ), (13)

where 𝐽 and 𝑔𝑘 represent the number of queries for evaluation and
the number of queries that can rank relevant images in the top-𝑘
retrieval results, respectively. Here, we define a relevant image as
an image associated with a query text in datasets. Namely, there is
only one paired image in 𝑁 candidate images for each text query.
Note that, since there is only one ground truth for each query, the
other evaluation metrics (e.g., MAP, NDCG) are not used in the
recent text-based image retrieval methods.

Experimental results with MSCOCO and Visual Genome datasets
are shown in Tables 1 and 2, respectively. In each table, “Kiros ’14
+Ours” reveals results using the method by Kiros ’14 and our ap-
proach, respectively. We can see that our approach can drastically
enhance the retrieval performance of all baseline text-based image
retrieval methods as shown in Tables 1 and 2. Specifically, the en-
hancement of mean and median ranks reveals that our approach
stably and effectively distinguishes similar contents in the target
DB. Furthermore, we observe that our approach contributes to the
improvement of the retrieval performance compared with “Ours
w/o opt.” These results mean that the optimization with our loss
is effective for screening. Surprisingly, our approach outperforms
“Ours w/o 𝐿D”. Thus, introducing 𝐿D is also effective for enhancing
retrieval performance. From the results obtained after introducing
𝐿D , we consider that 𝐿D has the regularization ability to prevent
overfitting toward the QA modules. Further analysis of the results
can lead to further improvement of the retrieval performance. Ad-
ditionally, examples of retrieval results are also shown in Fig. 1.
From these results, we confirmed that our approach can improve
the retrieval performance of the conventional text-based image
retrieval methods in various datasets.
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Table 3: Experimental results for DScore in MSCOCO and
Visual Genome dataset. Since “Ours w/o opt” can be consid-
ered as upper limits of the other methods, we also show the
margin between “Ours w/o opt” and the other methods.

DScore DScore
in MSCOCO in Visual Genome

PVSE+Ours w/o opt 0.901 0.948
PVSE+Ours w/o 𝐿D 0.293 (-0.708) 0.228 (-0.720)
PVSE+Ours 0.899 (-0.002) 0.930 (-0.018)
SAN+Ours w/o opt 0.999 0.985
SAN+Ours w/o 𝐿D 0.492 (-0.507) 0.300 (-0.685)
SAN+Ours 0.993 (-0.006) 0.984 (-0.001)
VSRN+Ours w/o opt 0.979 0.969
VSRN+Ours w/o 𝐿D 0.429 (-0.550) 0.325 (-0.644)
VSRN+Ours 0.968 (-0.011) 0.960 (-0.009)
PCME+Ours w/o opt 0.992 0.990
PCME+Ours w/o 𝐿D 0.293 (-0.699) 0.392 (-0.598)
PCME+Ours 0.989 (-0.003) 0.979 (-0.019)
SGM+Ours w/o opt 0.994 0.991
SGM+Ours w/o 𝐿D 0.231 (-0.763) 0.330 (-0.661)
SGM+Ours 0.990 (-0.004) 0.983 (-0.008)
DiVE+Ours w/o opt 0.997 0.993
DiVE+Ours w/o 𝐿D 0.294 (-0.703) 0.276 (-0.717)
DiVE+Ours 0.989 (-0.008) 0.987 (-0.006)
CLIP+Ours w/o opt 0.993 0.992
CLIP+Ours w/o 𝐿D 0.342 (-0.651) 0.363 (-0.629)
CLIP+Ours 0.991 (-0.002) 0.987 (-0.005)
BLIP+Ours w/o opt 0.996 0.992
BLIP+Ours w/o 𝐿D 0.203 (-0.793) 0.342 (-0.650)
BLIP+Ours 0.993 (-0.003) 0.981 (-0.011)

4.3 Evaluating the grammatically correctness of
the generated questions

Next, we confirm the research question “Whether the questions
generated by our approach are grammatically correct or not ?”. To
confirm them, following the automatic evaluation metrics in the
field of natural language processing [6], we calculated the evalua-
tion metrics: DScore, using a discriminative model D̂eva (·). This
model D̂eva (·) is trained following the same procedure of D̂(·) in
Subsec. 3.1. To avoid overfitting toward the discriminative module
in the training phase D̂(·) and ensuring experimental objectivity,
we trained D̂eva (·) with the dataset different from D̂(·) and applied
model architectures different from D̂(·). DScore is calculated as
follows:

DScore =
1
𝐽

∑︁
𝑗

D̂eva (qeva𝑗,𝑡 ) ( 𝑗 = 1, 2, . . . , 𝐽 ), (14)

where qeva
𝑗,𝑡

represents the question generated when the 𝑗-th query
is inputted for our approach. Namely, the range of DScore is 0 to
1. Note that when we test D̂eva (·) to determine whether D̂eva (·)
can distinguish between 10, 000 real questions 𝑞real and 10, 000
grammatically incorrect questions 𝑞gen (defined in Subsec. 3.1),
D̂eva (·) can accurately distinguish 99.9% of the samples. These
results confirm that D̂eva (·) has high distinguishing performance,
and DScore has high reliability.

Table 4: Experimental results for R@𝑘 , mean rank and me-
dian rank using the biased-MSCOCO DB.

R@1 R@10 Mean Median
PVSE [38] 0.343 0.761 15.810 2
PVSE+Ours w/o opt 0.359 0.779 14.104 2
PVSE+Ours w/o 𝐿D 0.438 0.844 12.204 1
PVSE+Ours 0.462 0.864 9.320 1
SAN [20] 0.347 0.768 15.110 2
SAN+Ours w/o opt 0.352 0.793 14.392 2
SAN+Ours w/o 𝐿D 0.455 0.831 9.994 1
SAN+Ours 0.471 0.842 9.603 1
VSRN [25] 0.379 0.793 14.332 2
VSRN+Ours w/o opt 0.381 0.803 12.331 2
VSRN+Ours w/o 𝐿D 0.499 0.877 7.506 1
VSRN+Ours 0.504 0.885 7.417 1
PCME [9] 0.349 0.751 17.422 3
PCME+Ours w/o opt 0.363 0.779 15.445 2
PCME+Ours w/o 𝐿D 0.431 0.796 11.445 2
PCME+Ours 0.469 0.861 10.338 1
SGM [8] 0.348 0.749 18.551 3
SGM+Ours w/o opt 0.358 0.761 16.532 2
SGM+Ours w/o 𝐿D 0.423 0.778 12.421 2
SGM+Ours 0.464 0.853 11.002 1
DiVE [21] 0.380 0.790 15.684 2
DiVE+Ours w/o opt 0.387 0.795 14.009 2
DiVE+Ours w/o 𝐿D 0.434 0.833 11.041 2
DiVE+Ours 0.458 0.849 9.381 1
CLIP [33] 0.354 0.752 17.531 3
CLIP+Ours w/o opt 0.361 0.772 16.521 2
CLIP+Ours w/o 𝐿D 0.411 0.813 11.313 1
CLIP+Ours 0.474 0.834 10.021 1
BLIP [24] 0.385 0.763 14.212 2
BLIP+Ours w/o opt 0.394 0.785 13.412 2
BLIP+Ours w/o 𝐿D 0.432 0.842 9.331 1
BLIP+Ours 0.489 0.874 8.411 1

Experimental results of the DScore using MSCOCO and Visual
Genome datasets are shown in Table 3. Note that since “Ours w/o
opt” uses amodel that is pre-trained for generating questions similar
to the actual questions, and the other methods are trained based on
“Ours w/o opt”, “Ours w/o opt” can be considered as upper limits of
the other methods. Therefore, we also shows the margin between
“Ours w/o opt” and the other methods in Table 3. As shown in
Table 3, “Ours w/o 𝐿D” significantly underperforms “Ours w/o
opt” in all text-based image retrieval methods. This means that
although the optimization only with 𝐿rank enhances the retrieval
performance of the baseline text-based image retrieval methods,
it results in ignoring the linguistic reasonability. Besides, “Ours”
outperforms “Ours w/o 𝐿D” and reaches similar performance of
“Ours w/o opt.” These results reveal that the introduction of 𝐿D
is effective for assuring grammatical correctness. Considering the
fact that 𝐿D can also improve the retrieval performance, we can
say that 𝐿D is a significant loss in our approach. From these results,
we confirmed that the generated questions by our approach are
grammatically correct.
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4.4 Evaluating the effectiveness towards DBs
with similar contents

Evaluations of our approach are conducted based on two large-scale
datasets in Subsec. 4.2. Although the effectiveness of our approach
can be verified for these large-scale datasets, whether our approach
is effective for DBs with a lot of similar contents (hereinafter re-
ferred to as biased-DBs) is not guaranteed. In this subsection, we
verify them by conducting experiments on the biased-DBs. To the
best of our knowledge, publicly available biased-DBs do not exist.
Therefore, we construct an artificially biased-DB by assuming DBs
with similar objects are biased-DBs.

For constructing the artificially biased-DB, an object label con-
tained in most images of the MSCOCO target DB is calculated,
and we reconstructed the MSCOCO target DB so that the images
of its DB absolutely contain the object label. The calculated label
is “person”, and the number of the extracted images is 2, 628. We
define these extracted images as a biased-MSCOCO DB. Namely,
the images in the biased-MSCOCO DB include similar contents
related to “person”. We compare the retrieval performance using
the biased-MSCOCO DB. Also, the other settings follow Subsec. 4.2.

The experimental results are shown in Table 4. As shown in
this table, the same trend as in the two large-scale datasets can be
observed in the biased-MSCOCO DB. From these results, we have
verified the effectiveness of the proposed approach for a biased-DB.

4.5 Comparison with feedback-based
re-ranking approaches

For evaluating the research question “Whether our approach can
effectively screen similar but non-target images than the conven-
tional re-ranking approaches ?”, we compare our approach with
the conventional feedback-based re-ranking approaches. Broadly,
comparing the re-ranking approaches that receive different feed-
back is extremely difficult [35]. Therefore, the experiments were
conducted so as to maximize the performance of each comparative
method [15, 27, 29, 32, 47, 50, 52] as far as possible. Most conven-
tional approaches re-rank the retrieval results by asking users to
select relevant images in the top-ranked images. For realizing the
above procedure, in our experiments, we considered images con-
taining the same object labels of the target image as relevant images
following the experiments in [50, 52]. In the experiments, at first,
the initial retrieval results are computed based on the text-based im-
age retrieval method of PVSE [38]. Next, the initial retrieval results
were re-ranked based on each re-ranking approach.

Tables 5, 6 and 7 show experimental results on MSCOCO, Visual
Genome, and biased-MSCOCO DB. As shown in each table, we can
see that our approach improves the retrieval performance of base-
line methods compared with the conventional approaches. These
results imply that our approach is more effective for enhancing
the retrieval performance of the conventional text-based image
retrieval methods than the conventional re-ranking approaches.

5 CONCLUSIONS
In this paper, we introduced a novel approach called Database
Question Generation (DQG) to enhance the performance of exact
text-based image retrieval systems. Our approach learn the appro-
priate question on the target DB only from those candidate images,

Table 5: Comparison with feedback-based re-ranking ap-
proaches using the MSCOCO dataset.

R@1 R@10 Mean Median
Initial result 0.317 0.759 20.463 2
NN + BQS [15] 0.316 0.655 20.052 2
SVM [27] 0.275 0.605 39.701 3
EMR [47] 0.317 0.765 20.534 2
PRF [29] 0.315 0.650 19.110 2
RFNet [32] 0.278 0.614 35.435 3
DBQA [50] 0.389 0.851 13.702 1
RQA [52] 0.412 0.858 12.221 1
Ours 0.481 0.864 9.515 1

Table 6: Comparison with feedback-based re-ranking ap-
proaches using the Visual Genome dataset.

R@1 R@10 Mean Median
Initial result 0.0280 0.129 2943.513 258
NN + BQS [15] 0.0283 0.129 2852.621 255
SVM [27] 0.0205 0.0952 4109.735 610
EMR [47] 0.0287 0.132 2899.920 245
PRF [29] 0.0282 0.130 2892.026 247
RFNet [32] 0.0208 0.0966 4001.001 548
DBQA [50] 0.0327 0.173 2846.555 234
RQA [52] 0.0654 0.201 2679.44 201
Ours 0.104 0.234 2485.331 163

Table 7: Comparison with feedback-based re-ranking ap-
proaches using the biased-MSCOCO DB.

R@1 R@10 Mean Median
Initial result 0.343 0.768 15.810 2
NN + BQS [15] 0.334 0.652 16.867 2
SVM [27] 0.0980 0.278 169.613 28
EMR [47] 0.341 0.653 15.464 2
PRF [29] 0.336 0.654 16.326 2
RFNet [32] 0.104 0.341 141.485 27
DBQA [50] 0.394 0.801 12.770 2
RQA [52] 0.437 0.833 11.422 2
Ours 0.462 0.864 9.320 1

facilitating the screening of similar but non-target images. By re-
sponding to these generated questions, users can effectively retrieve
their desired images, even from queries with limited information.
Our experimental results underscore the efficacy of our approach
in significantly improving exact text-based image retrieval perfor-
mance across diverse datasets, confirming its potential in advancing
the state-of-the-art in image retrieval methodologies. While our
study marks a crucial step forward, our current model and loss ar-
chitectures represent initial implementations and can benefit from
refinement and sophistication. Additionally, in-depth analyses and
discussions on the grammatical correctness and semantic coherence
of the generated questions would contribute significantly to the
robustness of our approach. For future works, we will tackle both
architecture improvement and further grammatical correctness
verification.
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