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ABSTRACT

The ability to adapt to physical actions and constraints in an environment is crucial
for embodied agents (e.g., robots) to effectively collaborate with humans. Such
physically grounded human-AlI collaboration must account for the increased com-
plexity of the continuous state-action space and constrained dynamics caused by
physical constraints. In this paper, we introduce Moving Out, a new human-Al
collaboration benchmark that resembles a wide range of collaboration modes af-
fected by physical attributes and constraints, such as moving heavy items together
and maintaining consistent actions to move a big item around a corner. Using
Moving Out, we designed two tasks and collected human-human interaction data to
evaluate models’ abilities to adapt to diverse human behaviors and unseen physical
attributes. To address the challenges in physical environments, we propose a novel
method, BASS (Behavior Augmentation, Simulation, and Selection), to enhance
the diversity of agents and their understanding of the outcome of actions. Our
experiments show that BASS outperforms state-of-the-art models in AI-Al and
human-AlI collaboration.

1 INTRODUCTION

Humans can quickly adapt their actions to physical attributes (e.g., sizes, shapes, weights, etc.) or
constraints (e.g., moving with stronger forces, navigating narrow paths, etc) when collaborating with
other agents in the physical world. This ability is critical when embodied agents (e.g., robots) need to
collaborate with humans to complete real-world tasks, such as assembly, transporting items, cooking,
and cleaning. In these scenarios, successful interactions require understanding physical attributes and
constraints while aligning with human behavior.

Prior work (Carroll et al.,2019; Ng et al., |2022;
Papoudakis et al.l 2021} [Puig et al. 2023 (Chris{ S
tianos et al., |2020; Du et al.) has explored Consuans
human-Al collaboration at the discrete/symbolic roptysial VD = Ry
space or task level, which often has simplified g I oweseHuman
interaction dynamics compared to the real world. e
As shown in Fig.[T] physically grounded task set-

tings have increased diversity of physical con- Figure 1: Multiagent collaboration in a grid world
straints, physical variations, and human behavior (Overcooked-Al (Carroll et all 2019)) vs. in a
in continuous state-action space. While physical ~physically-grounded setting. Physically grounded
constraints, e.g., narrow passages, restrict move- settings introduce diverse physical constraints, at-
ment and require precise coordination, there are tributes, and continuous low-level actions, which
still a large number of rotations or ways of hold- increase the complexity when an Al agent needs
ing objects that can lead to successful collabo- to collaborate with humans.

rations. In this paper, we propose Moving Out, a novel benchmark inspired by the Moving Out
game (SMG Studio} 2020), to address physical interactions and diverse collaboration scenarios in a
physically grounded setting.
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& Diverse Physical
£ Constraints
Diverse Physical

Limited Behavior
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While AI-AI collaboration can achieve strong collaborative performance through methods like self-
play (Tesauro, [1994), the resulting Al agents often struggle to adapt to human-AI collaboration,
where human partners exhibit diverse behaviors (Carroll et al.,[2019). This is particularly pronounced
in physically grounded settings where minor variations in human actions, such as rotation angles
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or applied forces, can significantly affect outcomes. An agent needs to understand the physical
consequences of actions to generalize behavior across different scenarios.

We design two tasks to evaluate an agent’s ability to adapt to diverse human behavior and to understand
physical constraints. The first requires the agent to play against unseen human behavior. We collected
over 1,000 pairs of human demonstrations on maps with fixed physical properties from 36 human
participants. These demonstrations capture a wide range of behaviors for identical set of tasks. The
second requires the agent to generalize to unseen physical attributes and constraints. We collected
700 pairs of demonstrations from 4 experts on maps with random sampled object properties, such
as mass, size, and shape. Together, these tasks provide a framework for testing the adaptability and
generalization of embodied agents in diverse, physically grounded settings.

To further address the challenges of diverse behavior in the continuous state-action space and con-
strained transitions in physical environments, we propose BASS (Behavior Augmentation, Simulation,
and Selection), a novel human-AlI collaboration model which significantly outperforms prior works.
First, we design a behavior augmentation strategy to enhance the diversity of the agent’s collaborative
partners. When an agent’s start and end poses in one sub-trajectory match the sub-trajectory in
another interaction, we can swap the partner’s states to create new trajectories. This enables the
agent to generate consistent behavior when the partner’s behavior has variations. Second, we train a
dynamics model of agent interactions so we can simulate the outcome of an action for a given state
while considering the possible partner actions. We use the predicted states to score action candidates,
allowing the agent to select actions that are more effective given the physical constraints. We evaluate
BASS on the two proposed tasks in AI-AI and human-AlI collaboration settings. We show that BASS
outperforms baselines across key metrics such as task completion and waiting time. Our user study
evaluated the model’s performance against human participants, demonstrating the effectiveness of
BASS in coordinating and assisting real humans.

In summary, our work makes the following contributions: (1) We introduce Moving Out, a continuous
environment for physically grounded human-Al collaboration. (2) We propose two tasks and collect a
human dataset to examine how human behavior and physical constraints impact collaboration. It is the
first benchmark with human-collected dataset designed to study continuous, low-level motion control.
(3) We develop Behavior Augmentation, Simulation, and Selection (BASS), which significantly
improves human-Al collaborative performance in physically grounded settings.

2 RELATED WORK

Multi-Agent Environments for Human-AI Collaboration Several multi-agent environments (Leibo
et al.,[2021;|Terry & Black,|2020) have been proposed for multi-agent reinforcement learning (MARL),
but many are competitive rather than cooperative. For human-AlI collaboration, prior environments
largely adopt symbolic or discrete action spaces, such as OvercookedAl (Carroll et al.;,2019), LBF
and RWARE (Christianos et al., 2020), Hanabi (Bard et al., 2020), or social settings like Watch and
Help (Puig et al.,2020) and Smart Help (Cao et al.,2024). While these settings are useful for studying
coordination, they lack rich physical constraints and embodied teamwork. Other efforts, including
It Takes Two (Ng et al., [2022), HumanTHOR (Wang et al., 2024a)), and Habitat 3.0 (Puig et al.,
2023), incorporate more realistic simulation. However, It Takes Two provides only a single, highly
simplified task, while HumanTHOR and Habitat 3.0 focus primarily on navigation or high-level task
coordination. In contrast, Moving Out provides continuous control, diverse physical attributes, and
multiple collaboration modes, enabling the study of how Al can adapt to human behaviors under
physical constraints. For a summarized comparison, see Appx.[A]

Learning Human-AI Collaboration Policy Behavior Cloning (BC) is a common paradigm for learn-
ing policies from human demonstrations, typically using MLPs (Rumelhart et al.l |[1985), GRUs (Cho
et al., 2014)), or diffusion models (Chi et al.| [2023). Beyond BC, several works extend imitation
by predicting and scoring future states or trajectories, such as future-state prediction (Wang et al.,
2024b; Kang & Kuo, 2025), interactive agent forecasting (Yuan et al.2021), and trajectory-level
scoring (Zhao et al., 2021; |Kobayashis| 2020). Reinforcement learning (RL) approaches further
enhance collaboration via self-play (Tesauro, |1994) and population-based training (Jaderberg et al.,
2017), encouraging diverse behaviors for zero-shot coordination (Carroll et al.,[2019; Strouse et al.,
2021;|Yan et al., 2023} L1 et al., 2023; [Yu et al., 2023} [Zhao et al., 2023} [Sarkar et al., [2023)). Standard
multi-agent RL algorithms (Yu et al., 2022} Lowe et al., 2017), have also been applied. However, most
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RL methods rely solely on self-play without human data; more recent work integrates BC-trained
models into the RL loop to align agents with human behavior (Liang et al.} 2024; |Carroll et al., [2019).

Evaluating Human-AI Collaboration Research on human-Al collaboration has focused on evaluat-
ing and improving Al agents across different settings. (Attig et al.,[2024) define evaluation criteria
beyond task performance, incorporating aspects like trust and perceived cooperativity . In Al-assisted
decision-making, (Vollmuth et al., |2023) directly computes the accuracy of Al decisions. Some
works (Tylkin et al.| 2021} |Strouse et al.,|2021} Sarkar et al.,|2023)) focus on training RL agents to
adapt to diverse partners and evaluate the agents by the score when playing with humans. Several
works (Sarkar et al.| 2023 |Attig et al., [2024; S1u et al., 2021} [McKee et al., [2024; Hoffman) 2019))
design questionnaires to evaluate different aspects like human-like, trustworthiness, and fluency.

3  PROBLEM DEFINITION

We model human-AlI collaboration as a decentralized Markov decision process (Dec-MDP) (Beynier|
et al., 2013} Boutilier, [1996)), defined as M = (S, A, P,r,O,~,T), where S is the joint state
space, and A = A x A’ is the joint action space of the two agents. The transition function
P:S x Ax S —[0,1] is the probability of getting the next state given a current state and a joint
action. The reward function r : S X A — R specifies the reward received for each state-joint-action
pair. The observation function O : & — O x (07 generates an observation for each agent for a given
state. The observation of each agent makes the state jointly fully observable. The discount factor
v € [0, 1] determines the importance of future rewards, and 7T is the time horizon of the task.

At each timestep t, the environment is in a state s; € S. Agents 7 observes 0,3: € O, where O js
the observation space derived from s;, and selects an action a; € A* according to its policy 7* :
O — A'. The joint action a; = (al, a{ ) transitions the environment deterministically to a new state
St+1 ~ P(:|st, at). The trajectory of an episode is defined as 7 = (sg, ag, S1, ..., S7—1,a7—-1, ST),
and the discounted return for the trajectory is: R(7) = Z?:_Ol v'r(s¢, ar). The objective of each
agent is to maximize the expected return J(7*, 7/) = > R(7) where the return is evaluated over

the trajectories induced by the policies (7%, 7).

Challenges when Collaborating with Humans When one of the agents is a human, the human
agent may have diverse behaviors (Carroll et al.,2019). The AI agent must adapt its policy 7 to a
wide range of potential human policies 77. At inference time, we assume that the real human policy
79 is drawn from a unknown human policy distribution D. Thus, the AI agent’s optimal policy is:

i = argmax E s By oty [R(7)

where K, (i ) denotes the expectation over 7 where the actions are drawn from 7t and 77
respectively. Since the ground-truth distribution D is unknown, the Al must use limited data to
generalize across diverse human strategies.

The physical embodiment of agents and the physical environment introduce significant challenges
for this human-Al collaboration framework. First, the continuous variables, e.g., positions and
directions, increase the number of configurations in the state space. For example, there are multiple
configurations that an agent can take to rotate an object together. The Al agent must optimize its policy
under diverse human behaviors while ensuring robustness across a continuous and high-dimensional
state space. Second, the state space S also includes continuous physical variables such as object
positions, orientations, and attributes (e.g., shape, size, and mass), which can create several constraints
to limit the feasible state transitions P. For instance, when two agents jointly move an object, the
physical properties of an object (e.g., mass or shape) can influence the required actions for successful
transitions. Objects with irregular shapes require agents to coordinate their grips at specific parts.
Heavier objects demand synchronized forces of two agents. Considering the physical constraints
I'(s¢, a;) that apply to the current state-action pair, the transition function is constrained as follows:

1, if T'(s¢, a¢) satisfies (transition to ;1)
0, ifI'(s¢, a;) does not satisfy (remains in s;)

P(5t+1 | Staat) = {

These constraints create several narrow transitions, similar to prior studies about motion planning (Hsu
et al., 2003} [Saha et al.l 2005; |Szkandera et al.||2020)), and can further affect the agents’ collaboration
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Figure 2: Moving Out requires two agents to collaboratively move objects to the blue goal regions.
The environment includes movable objects with varying shapes and sizes. An agent can move a small
item quickly. As the object sizes increase, the agent needs the other’s help to move the object.

strategies. For example, in scenarios where the agents need to move a rectangular sofa through a
narrow doorway, the agents need to grasp the shorter sides of the sofa and coordinate their moves
to ensure they can fit through the entrance without collision. In this paper, we study human-Al
collaboration under the challenges of continuous state space and constrained transitions introduced
by physical embodiments and environments.

4 MOVING OUT ENVIRONMENT AND DATASET

4.1 ENVIRONMENT

To test how physical environments can affect human-Al collaboration, we need an environment that
follows physics. We build Moving Out on top of a single-agent environment Magical (Toyer et al.|
2020; |[Zakka et al., |2021) where agents and objects are physical bodies moving in a 2D physics
simulation. Similar 2D physics engines have also been adopted in recent works studying physical
reasoning and embodied Al (Morlans et al.; [Li et al.||2024a; |Liu et al.,[2024). As shown in Fig. E],
each agent can maneuver freely in Moving Out and move objects with varying degrees of difficulty
depending on the object size and shape. The goal is to transport all objects to the goal regions. This
design emphasizes flexibility, allowing agents to act independently while also creating scenarios
where collaboration is necessary for efficient task completion.

4.1.1 PHYSICAL VARIABLES

The environment includes these physical components: movable items, walls, and goal regions.

Movable Items are controlled by the following variables to introduce diverse physical interactions.

* Shapes include stars, polygons, and circles, each requiring unique grabbing and rotation strategies.
* Sizes range from small to large, each has increasing difficulty in moving, and can slow agent speed.
* Mass is varied for different items. This influences an agent’s moving speed during transportation.

Walls introduce friction. Agents that collide with walls experience reduced moving speed, adding
another layer of complexity.

Goal regions are designated areas larger than the total size of items. Agents must carefully arrange
items to ensure all items can fit in the region, requiring precise spatial planning and coordination.

I need help ’ . 8 L0 ad ”/ — \ —
(b) Avoid Collision

(a) Recognize intention
(e) Align action to rotate

. o v (f) Rearrangement
(c) Hand Over (d) Move Together

Figure 3: Diverse collaboration behaviors in Moving Out, including (a) recognizing when help is
needed, (b) avoiding collisions, (c) passing objects, (d) moving items together, (e) aligning actions,
and (f) organizing objects in the goal region.

4.1.2 LAYouT TYPES

The physical variables introduce diverse collaborative behavior as illustrated in Fig.|3] A successful
collaboration usually requires a mixture of different behaviors. To systematically understand the
collaborative performance of Al agents, we designed 12 maps focusing on three collaboration modes.
See example maps in Fig.[d and Appx. [U]for the full set of maps.
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Coordination The maps in this category only include small items, so each agent can complete the
task independently. However, narrow passages in the maps often block an agent’s path, requiring the
partner to step aside or help pass the item. For example, in Map 1 (Hand Off), the blue agent must
pick up the item and, because of the narrow passage, pass it to the pink agent. This setup enforces
cooperation, as the task cannot be completed without coordination between the two agents.

Awareness The maps in this category do not have a clear optimal sequence for moving
items, requiring agents to decide whether, when, and how to assist their partner for efficiency.
For instance, in Map 6 (Distance Priority), each

agent starts near multiple items and must decide —
whether to handle nearby items first, assist their

partner, or prioritize tasks independently. These

decisions become even more complex when col- B : ——
laborating with a human partner, as human be-
havior can Vary signiﬁcanﬂy. A human partner Map 1: Hand Off Map 6: Distance Priority ~ Map 12: Sequential Rotations

(Coordination) (Awareness) (Action Consistency)
Figure 4: Example maps in Moving Out focusing
on different collaboration modes: coordination,
awareness, and action consistency.

might wait for Al help with larger items, be pas-
sive, or focus on smaller tasks independently.
This variability demands that the Al agent dy-
namically adapts to the human’s behavior.

Action Consistency This scenario requires agents to maintain consistent and synchronized actions
over time, such as continuously aligning their efforts to move and rotate large items together. The
challenge is aligning force directions and dynamically adjusting them to ensure efficient movement
while navigating around tight spaces or obstacles. For instance, in Map 12 (Sequential Rotations), two
agents must collaboratively transport a large item through a series of narrow passages. Throughout
this process, the agents must continually synchronize their actions to rotate and adjust the item’s
angle, allowing it to fit through the openings. Misalignment in their efforts could result in the item
becoming stuck or unnecessary movements that waste time and energy.

4.2 TASKS

We design two tasks that evaluate a model’s ability to adapt to diverse human behaviors and to
generalize to unseen physical attributes.

Task 1: Adapting to Diverse Human Behaviors in Continuous Environments The first challenge
of physically grounded human-Al collaboration arises from the continuous state-action space, which
allows for a wide range of possible human behavior. To test whether an agent can adapt to diverse
human behavior, we fixed the configurations of the 12 maps and collected human-human collaboration
data that demonstrate different ways to collaborate in the same maps. These demonstrations represent
a finite set of human behaviors. In this task, we train a model on this dataset and test it with a
new human or Al collaborators. This setup assesses whether the model can generalize beyond the
observed behaviors to adapt to diverse human behavior. For an agent designed to assist humans
effectively, learning to adapt from limited human demonstrations is crucial.

Task 1 Evaluation Protocol Simply training on the full dataset requires us to recruit human participants
to play against the model during every test and can lead to highly variable results. To address the
reproducibility issue, we split the dataset by participants into two disjoint splits, train separate Al
agents on each split, and then evaluate them by letting the agents collaborate with each other. This
protocol provides a reproducible proxy for testing generalization to unseen human behaviors.

Task 2: Generalizing to Unseen Physical Constraints The second challenge arises from the
physical constraints, which limit the possible transitions of given states. To test whether the agent
understands physical constraints, we randomized the physical attributes of objects in the 12 maps to
collect human-human interaction data that demonstrates how humans adapt to changes in physical
variables. Again, we train a model with the collected dataset and evaluate it on maps with unseen
object attributes. To ensure the model learns the effects of physical constraints rather than memorizing
them, we avoid having identical objects in the training and testing datasets. In particular, the variation
is defined compositionally over the object’s physical properties, ensuring that evaluation maps always
include unseen combinations (e.g., a large star-shaped object is excluded from training whereas only
small stars and large squares are present). This forces the model to understand the impact of shape
and type, and generalize across varying physical configurations.
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Task 2 Evaluation Protocol Although evaluating directly with humans is possible, a more reproducible
and efficient approach is to train agents on the full dataset and then test them via AI-AI self-play.
Since evaluation maps contain object attributes not seen during training, this setup directly measures
an agent’s ability to generalize to unseen physical constraints.

4.3 DATASET

The data collection was approved by the Institutional Review Board (IRB). Two human players
control the agents with joysticks. The game ran at 10Hz, and on average, each map took around 30
seconds (or 300 time steps) to transport all items. See Appx. [Q]for details.

For Task 1, we recruited 36 college students as participants and collected over 1,000
human-human demonstrations (2,000 action sequences in total) across 12 maps. This en-
sures that the dataset captures a wide range of human behaviors, providing sufficient diver-
sity for training and testing the model’s ability to generalize to unseen human strategies.
As shown in Table [T} we compare
the diversity of our dataset against

DTW DTW  Avg. Entropy Coverage

Dataset Mean (1) Var(f) (KDE)(t)  Distance (RBF) (1)

datasets collected by RL agents or ex-  Moving Out Task 1 7013 6.065 0.888 0.899
: : - : Expert dataset 4.642 3.029 0.757 0.744
perts using Dynamic Time Warping /%0 "\l i 4355 2499 0.683 0.626

(DTW; mean and variance), entropy,
and coverage distance, showing ours
has best diversity. This demonstrates
the effectiveness of recruiting diverse
participants for data collection. See Appx. [Bffor further details, including trajectory visualizations.

Table 1: Dataset diversity across different data collection
methods. Our dataset achieves consistently higher diversity
compared to expert and RL agent datasets.

For Task 2, we emphasize the random-
ized properties of objects rather than the
variable behaviors. In this case, we used Distance
4 expert players to collect 720 human-  rriority
human demonstrations (1,440 action se-

quences in total), with 60 demonstrations

per map. Each map included random- | .
ized object physical attributes, where pose,  Priority
mass, and size were varied by up to 10%,
while object types and shapes were ran-
domized to be different from those used in
evaluation. This setup allows us to assess
the model’s ability to generalize to unseen object attributes. Fig. [5]shows examples of two maps.

Map Name Training (Showing 3 out of 60 Randomizations) Evaluation

Figure 5: Randomization examples in Task 2, illustrat-
ing generalization to unseen physical properties.

5 BASS: BEHAVIOR AUGMENTATION, SIMULATION, AND SELECTION

To address the proposed tasks, we develop BASS (Behavior Augmentation, Simulation, and Selection)
which considers the increased number of configurations in continuous space and the outcome of
actions in physical environments. First, at training time, we augment the behavior data. This helps
the model adapt to diverse behaviors better by exposing it to a broader range of possible interactions.
Second, we train a dynamics model to simulate the outcome of an action, allowing the agent to
understand the impact of actions on different physical properties. At inference time, the model select
actions by evaluating the predicted states.

5.1 COLLABORATION BEHAVIOR AUGMENTATION

Behavior Augmentation Trajectory augmentation is already used in single-agent settings (Kim
et al., 2024} Sussex et al.,2018), but extending this idea to multi-agent raises new challenges: naively
altering one agent’s behavior can easily break the consistency required for cooperation, since both
agents must pursue aligned goals for the trajectory to remain valid. We adopt two strategies.

First, we perturb partner poses with small Gaussian noise, Pparner = Ppartner + €, € ~ N(0, 02),
while keeping other state variables unchanged, where ppamer 1s the original partner’s pose, € is
Gaussian noise with mean 0 and variance o2, and Dparmer 18 the perturbed pose used to generate new
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Figure 6: Overview of our Simulation and Action Selection components. (Left) The latent dynamics
model that encodes the latent state from ¢ to ¢ + 1 to enable next state prediction. (Right) The action
selection pipeline: The policy first generates candidate actions. The dynamics model then estimates
the resulting future states, and finally, the best action is selected based on state evaluation.

state variations. This generates new states that mimic natural variations in human movement and
improve robustness to small deviations.

Second, we augment the data by recombining sub-trajectories: the key idea is to keep one agent’s
behavior fixed while swapping the partner’s subsequence, and to align the boundaries so that both
agents remain goal-consistent. Formally, given a trajectory 7 = { (s, at) }+=1.7, We extract agent-
specific sequences 7%, 77. For time steps t, to, we identify another trajectory 7 whose agent-i states
match at the boundaries, and replace agent j’s subsequence: 7/ U (77,,, _; U7,.,, U] ,1.0) UT®.
This preserves agent ¢’s intention while introducing diverse yet valid partner behaviors. Further
implementation details are provided in Appx.[O]

Together, these augmentations expand the dataset with physically plausible trajectories that preserve
collaboration-level coherence, a novelty compared to prior single-agent augmentation methods.

Validity of the Augmented States We can validate generated sub-trajectories based on the state
information. Specifically, one can check whether the generated states remain within the valid state
space and do not result in conflicts, such as collisions or other inconsistencies. However, as detailed
in Appx.|[H} our recombination strategy is explicitly designed to ensure coherence (e.g., by swapping
only sub-trajectories with identical start and end states). Even without additional validation, this
augmentation strategy can improve performance, as we show in the experiments.

5.2 SIMULATION AND ACTION SELECTION

To understand the outcome of an action, in simulation environments, we can utilize the physics engine
to simulate the action outcome. However, in real-world settings where a simulator is unavailable, a
world model or next state predictor is required. Fig.[6]shows the training and inference pipelines of
our Simulation and Action Selection components.

Next State Prediction Our next state predictor utilizes two autoencoders to estimate future states.
First, one autoencoder encodes the current state into the latent space. The dynamics model then
takes this latent representation along with the actions of both agents as input to predict the latent
representation of the next state. Finally, this predicted latent representation is decoded by another
autoencoder to reconstruct the next state. Since the next state depends on the agent’s own action and
the partner’s action, we use a partner action predictor to estimate the partner’s action based on the
current state. Practically, the partner’s predictor can share the same architecture as the agent’s policy
or directly use the agent’s own policy by swapping its state with the partner’s state to predict the

partner’s action. The dynamics model predicts the future state as: z¢11 = f(z¢, ay, agp )), where z;
and 2,4 represent the latent spaces of the current and future states, a; is the agent’s action, agp ) is
the inferred partner’s action, and f is the dynamics model.

Action Selection Our policy and partner action predictor both require strong multi-modal modeling
capacity to generate diverse action candidates, which forms the basis for action selection. Once
the next state is predicted, the reward for each action is computed based on the total distance of
all objects to the goal region. We use Normalized Final Distance (NFD) as defined in Sec.[6] but
other metrics that measure partial progress of map completion also suffice. We then select the action
with the highest reward as the optimal action: a* = arg max,, 7(a;),? = 1,2,...,n, where r(a;)
is the reward for action a;. This approach enables the model to choose the most effective action,
even in real-world scenarios without access to a simulator. A comparison of NFD against alternative
objectives is provided in Appx.|[N|
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6 EXPERIMENT

We aim to answer the following research questions: (RQ1) Does BASS adapt to unseen human
behaviors with limited performance degradation? (RQ2) Does BASS generalize to unseen phys-
ical constraints? (RQ3) Does BASS work more effectively with humans in physically grounded
collaboration? (RQ4) What failure patterns do existing methods and BASS exhibit?

To answer these questions, we train and test all methods on the two Moving Out tasks following the
designed evaluation protocols, and then conduct a human study for further validation. For AI-Al
collaboration, all results are averaged over 20 runs.

6.1 SETTINGS

Baselines We compare BASS against these behavior cloning and RL baselines to predict actions:

* MLP is a common behavior cloning baseline.

* GRU captures temporal dependencies of state and actions using recurrent connections.

* Diffusion Policy (DP) (Chi et al.,[2023)) captures multimodal distribution and has demonstrated
strong performance across various tasks.

* MAPPO (Yu et al., 2022) is a commonly used multi-agent RL algorithm. It has demonstrated
strong performance in cooperative games. See Appx. |E|for details about training.

BASS Implementation BASS builds on the same diffusion policy backbone used in our baselines,
serving as both the base policy and the partner action predictor because of its strong multi-modal
modeling capacity. The VAE and dynamics models are implemented as MLPs and co-trained. For
action selection, the policy and partner predictor independently sample 4 action candidates each.
While increasing the number of samples could further improve accuracy, collaboration requires
real-time inference; sampling four candidates ensures inference can be performed at 10Hz. Ablation
studies on the sampling strategy, analyses of individual modules are provided in Appx.[K]

Evaluation Metrics We measure the success of collaboration using the following metrics: (1) Task
Completion Rate (TCR) for successful item delivery; (2) Normalized Final Distance (NFD) for the
distances between objects and the target, measuring partial progress; (3) Waiting Time (WT) for the
amount of time an agent waits for assistance with large items; and 4) Action Consistency (AC) for
the degree of force alignment when moving items jointly, indicating coordination efficiency. Detailed
definitions are in Appx.[Il

Human Subject Study Our study was approved by the IRB. We conducted a human subject study
with 32 participants to evaluate BASS against the DP baseline in both tasks. Each participant played
32 maps in total, cooperating with each method in two rounds per map. After completing the first
round, the participant and model switched to control the other agent. Upon finishing all maps,
participants were given a questionnaire to capture subjective feedback. See Appx. [R]for details.

6.2 RESULTS

Collaboration with Unseen Behav-

Evaluation

iors (RQ1) Table[2]reports Task 1 re- _Poiocol Metod  TRD MO Mo em
MLP 02126 02987 0.4896 0.8013
sults under three protocols. In the seen ooy ORU 0.2369 03011 04975 08151
setting, agents are trained and evalu-  Behaviors MAPFO 0529 fpina oaTee v
ated on the same dataset. Here, both DPIBASS 0.3503 05724 03598 08337
MLP 0.1433 (32.61%) 02413 (19.22%) 0.5647 (+15.33%) 0.7729 (:3.54%)
DP and BASS outperform MLP, GRU, Unseen  GRU 01638 (30.87%) 02453 (18.53%) 0.5758 (+15.74%) 07830 (394%)
: : : N MAPPO 0.1635 (-15.19%)  0.2808 (-11.74%) 0.6379 (+10.64%) 0.7858 (-2.95%)
and MAPPO, with BASS aChleVlng Behaviors 02563 (-20.72%) 04589 (-14.50%) 04249 (+12.15%) 0.7854 (-3.78%)
the best task completion (TCR, NFD) DP/BASS 03010 (-14.07%) 0.5197 (:922%) 03899 (+837%)  0.8099 (-2.86%)
. . ’ .« . Play with  DP 0.3855 0.5547 0.4886 0.8054
In the unseen setting, we split partici-  Human  DPBASS 0:6512 0.7053 0.3364 09124

pants into disjoint sets as described in

the evaluation protocol, train separate Table 2: Task 1 results under seen and unseen human behav-
policies, and then evaluate them by iors, and with real human partners.

playing across groups. All methods

degrade when facing unseen behaviors, but BASS shows the least performance drop across TCR,
NFD, WT, and AC, indicating stronger robustness. See Appx[S]for the full table with standard error.

Collaboration under Unseen Physical Constraints (RQ2) Fig. [/| shows that, while wait-
ing time and action consistency are comparable across methods, BASS consistently out-
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performs baselines, particularly in TCR and NFD, which directly reflect task progress un-
der new object properties. This suggests that evaluating candidate actions based on pre-
dicted future states helps the model better adapt to variations in size, mass, and shape.

1.0

N MAPPO  mEm DP/BASS (Ours)
- ML @®. Human + DP

Collaboration with Humans (RQ3) Tab. [2] and Jmge oo i
Fig. |Z| show the results with humans. In both tasks, '

BASS significantly improved task completion rates o
(TCR and NFD) compared to the DP. This indicates ~ §
that BASS adapts better to human behavior. For wait ~ °¢
time, DP increased when playing with humans, sug- |
gesting it struggles with different humans, despite "
DP capturing multimodal distributions. BASS re- .,
duced wait time, demonstrating its ability to adapt
to diverse behaviors. For action consistency, DP per-
formed worse because it cannot handle differences
between the evaluation and training data. BASS augmented diverse collaborative behaviors during
training and selected the best actions for interacting with humans, resulting in better consistency.

Human Feedback (RQ3) Fig. summarizes Comparson ofgpvs,DPBASS (Our

post-experiment survey results from humans. | = s tous)
We compare BASS with DP. The results show
that BASS significantly outperformed DP 7
in the Helpfulness category, indicating that
BASS is better at consciously assisting others. r e e . (
Additionally, BASS demonstrated a better understand- &S & ¥
ing of physics, suggesting that our next state predic-
tor effectively comprehends and evaluates different
actions to choose the best ones. Independent t-tests
revealed that these differences are statistically significant (p = 0.017).

|

\
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Figure 7: Results on Task 2 under unseen
physical constraints.

Figure 8: User survey results in a 7-point
Likert scale

Failure case study (RQ4) Fig. [0]shows examples of

common failure cases from DP. In task 1, as illustrated

in failure case 1, many participants reported that the Al e
agent frequently holds an item without passing it, re-
sulting in frequent collisions. Additionally, participants
noted that the Al agent often failed to come to assist, as )
shown in failure case 2, where a human agent (blU€) Was raurecase (oot | raiwreCosez okt FatoeCases (oskz)
slowly pulling an item, but the Al agent (pink) instead
went to grasp other smaller objects. These issues show
the model’s limited ability to adapt to diverse behaviors,
making it difficult to respond appropriately to actions
that were not present in the training dataset. In task 2,
most participants pointed out failure case 3, where the
Al agent reached the target item but was unable to successfully grasp it. This indicates that the model
struggles when encountering objects that were not in the training data. In contrast, BASS shows
fewer reported failure cases than DP. Manual inspection revealed that BASS reduced the occurrence
rates of the three failure types from {0.797, 0.688, 0.906} in DP to {0.343, 0.563, 0.484}. However,
effectively addressing these failures remains a substantial challenge for future research.

Figure 9: Failure cases: 1) Failing to release
items during handover, 2) Not responding
when assistance is needed, and 3) Inability
to grasp large items upon approach.

7 CONCLUSION

We introduce Moving Out, a physically grounded human-AlI collaboration benchmark that features
a continuous state-action space and dynamic object interactions. We created two challenging tasks
and collected human-human collaboration data to enable future model development. Our evaluation
results show that much remains to be done with existing models to effectively collaborate with
humans in physical environments. Our proposed method, BASS, takes the first step to improve
models’ adaptability to diverse human behaviors and physical constraints. Future work includes
improving generative models’ ability and inference speed to achieve smooth human-AlI collaboration
in physical environments, and extending to more complex cooperation dynamics among multiple Al
agents and humans.
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ETHICS STATEMENT

Our human subject study and data collection were approved by the Institutional Review Board (IRB),
and all participants provided informed consent. We carefully removed personally identifiable or
sensitive information before releasing the datasets. The study and dataset release strictly follow
ethical guidelines for human subject research and data sharing.

REPRODUCIBILITY STATEMENT

We will release all source code, including the environment and model, to support reproducibility. The
appendix includes detailed descriptions of the human study procedures to facilitate replication. Since
human behaviors may vary and cannot be fully reproduced, we additionally provide reproducible
AI-AI collaboration evaluation protocols for both Task 1 and Task 2, ensuring that our results can be
independently verified.
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USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) (ChatGPT and Google Gemini) to support the writing of this
paper. The usage was limited to the following purposes:

* Polishing: improving grammar, clarity, and flow of sentences.

» Short Rewriting: shortening paragraphs and sentences to save space while keeping the
intended meaning clear.

* Meaning Emphasis: rewriting specific sentences to highlight or emphasize intended points.

Also, for coding support, the LLM provided assistance with minor coding tasks such as data pre-
processing (e.g., converting file formats), introducing keyboard and joystick inputs, preparing data
uploads to HuggingFace, and other small implementation details.

No part of the experimental design, analysis, or results was generated by the LLM.
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A  COMPARISON WITH OTHER ENVIRONMENTS

Environment State/Action I_)]l)lg SS:IS Constraints Collaboration Behaviors
Overcooked-Al Discrete No . Items placed oply Passing items, d1v1d}ng tasks,
in specific locations and collision avoidance
Watch and Help Discrete Yes .Partlal observablllty, Goal 1nference,
diverse objects and goals cooperative help
Capability limits Goal + cgvzgiel?tesisr:lference
Smart Help Discrete Yes (weight, height, open/close/toggle), P y ’
: . bottleneck help,
partial observability .
avoid unnecessary takeover
Table Carrying Continuous No No physical feedbqu, . J01pt carrying
task ends upon collision (i.e., action consistency)
Realistic physics, friction, Coordination, Awareness
Moving Out Continuous Yes c;lhswq feedbagk, of qeedlng help,
iverse items with joint carrying
physical properties. (i.e., action consistency).
Metrics Pros Cons Human Data
Number of cooked Small state/a.ctllon space, Limited behavior variety,
. . e . fast training, . Yes
onions in a limited time : simple tasks
human data available
Susccsz(sifate, 3D environment, No physical variations, Svnthesized
peedup, diverse household tasks high computational cost ynthesize
cumulative reward
Success Rate (Goal-?ondltloned), 3D physics, Predefined actions,
Helping Necessity/Rate, diverse tasks high computational cost No
Episode/Success-weighted Length & p
Success rate, Contin action No physics in interactions, No
Completion time niuous actions single task, no dataset
Task Completion Rate, Realistic physics,
Normalized Final Distance, multiple collaboration modes, | Require high-frequency actions v,
Waiting Time, physics feedback, for smooth collaboration. es
Action Consistency human dataset available

Table 3: Comparison between Moving Out, Overcooked-Al, and Table Carrying. Overall, Moving
Out offers more diverse collaboration modes and physical constraints due to its physics-based

environment.

B TASK 1 DATA DIVERSITY ANALYSIS

B.1

See Fig.[10]

B.2 EVALUATE THE DIVERSITY OF TASK 1

VISUALIZATION OF DATASET IN TASK 1

To further quantify behavioral diversity in our datasets, we evaluated three distinct sources: the
human-human dataset from Moving Out Task 1, a dataset collected from four human experts, and
trajectories generated by a trained MAPPO agent. We report diversity across both trajectory- and
state-level dimensions. At the trajectory level, we use Dynamic Time Warping (DTW) to compute
pairwise distances between all trajectories within a dataset; higher mean and variance indicate greater
dissimilarity in path shapes. At the state level, we measure spatial coverage using two complementary
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Representative 4 Groups All 18 groups

Visualization of Collected Trajectories in Task 1

Figure 10: Visualization of data collected in Task 1 from four groups (each with two players) and
from the complete dataset. Blue dots denote the positions of the blue agent and red dots denote
the positions of the red agent. The visualizations show clear differences across groups. At the
aggregated level, the dataset captures both human behavioral preferences (e.g., preferred paths and
object-grasping locations) and broad state coverage.

metrics: Kernel Density Estimation (KDE) entropy over agent positions and an additional coverage
distance metric inspired by (Fu et al., | 2023)), which computes the average pairwise distance between
trajectories using an RBF kernel. Higher values for both metrics indicate broader exploration of the
map. As shown in Table[T] the Task 1 dataset consistently achieves higher scores across all metrics,
confirming that data aggregated from 36 human players exhibits substantially greater behavioral
diversity compared to expert demonstrations and RL-generated trajectories. This diversity provides a
rich foundation for training adaptive collaboration policies and benchmarking generalization.

C COMPARISON WITH ORACLE SIMULATION

NFD?1 Prediction Accuracy
Task 1 Task2 Task 1 Task 2
DP + BASS 0.5733  0.5535 0.6250 0.4870

DP + BASS
w/Oracle Simulator 0.5875 0.6209  N/A N/A

Table 4: Performance of different simulation strategies. The oracle simulator serves as the upper
bound for our method.

We compare the task completion (NFD) and prediction accuracy of actions against the oracle simulator
(i.e., the 2D physics engine) in Table ] We compute the prediction accuracy by comparing the
actions selected using our next state predictor versus the actions selected using the oracle simulator.
The oracle simulator serves as the upper bound for our action selection method since it provides the
ground-truth next states. We observe that our model achieves higher accuracy in Task 1, with results
that are closer to those of the oracle simulator. This is because Task 1 uses a fixed map, while Task 2
trains on randomized states.

C.1 ABLATION STUDY

Ablations Table [5] shows the ablation of each component. Adding augmentation and simulation
components improves task completion TCR and NFD compared to their base models. When using all
components (full BASS), they achieve the highest overall performance in most cases.
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Task 1 Task 2
Methods TCRT NFDT TCRT NFD?T
GRU 0.3070 0.3674 0.2582 0.3935

+ BASS w/o Simulation 0.4117 0.4396 0.3333 0.4141
+ BASS w/o Augmentation  0.3531 0.4047 0.3670 0.4246
+ Full BASS 0.4120 0.4454 0.3414 0.4410
Diftusion Policy (DP) 0.3829 0.4818 0.3125 0.4526
+ BASS w/o Simulation 0.4028 0.5114 0.3569 0.4908
+ BASS w/o Augmentation  0.4741 0.5561 0.4200 0.5187
+ Full BASS 0.5027 0.5707 0.4348 0.5535

Table 5: Ablations showing the impact of each component, we show BASS with GRU and DP
backbones.

D RoLLOUT EXAMPLE

Figure |l 1|shows an example rollout on Task 2. We only present one example here; additional maps
and tasks can be found in the supplementary video.

1 100 132 192 195 240 258 261 282 341 360 500 Frames

Figure 11: Comparison of rollouts on Task 2 between our method (BASS), MLP, and DP. The
horizontal axis denotes frames as a proxy for time. Our method successfully completes the task at
frame 261, whereas both MLP and DP get stuck at an intersection. This highlights the challenge of
Task 2, where handling the large fixed-mass circular object is particularly difficult.

E MAPPO TRAINING SETTING

To train MAPPO, we integrate the Moving Out environment into the BenchMARL (Bettini et al.,
2024) multi-agent RL library. Our approach to MAPPO training was designed to align with the
objectives of Task 1 and Task 2, which were initially conceptualized with dataset-driven methods in
mind. We adapted the conditions for MAPPO as follows:

For Task 1, which originally involved training on data collected from some human players and
testing on data from unseen human players, we interpret this as a zero-shot coordination challenge
for MAPPO. This setup evaluates their ability to develop coordination strategies from scratch in the
absence of direct human examples.

For Task 2, the initial idea was to train on maps with diverse physical characteristics and then
evaluate generalization to environments with unseen physical features. To mirror this for MAPPO,
the agents are trained on maps where various physical properties (object masses, shapes, and sizes)
are randomized, similar to the randomization process used during data collection for behavior cloning.
Following this training phase, MAPPO’s performance is then evaluated on maps with fixed physical
characteristics that were not encountered during training.

E.1 HYPERPARAMETERS
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Table 6: Summary of Parameters for MAPPO

Parameter Name Value
Share Policy Parameters True
Share Policy Critic True
Gamma () 0.99
Learning Rate 0.00005
Adam Epsilon 0.000001
Clip Gradient Norm True
Clip Gradient Value 5
Soft Target Update True
Polyak Tau (7) 0.005
Hard Target Update Frequency 5
Initial Exploration Epsilon 0.8
Final Exploration Epsilon 0.01
Clip Epsilon 0.2
Critic Coefficient 1.0
Critic Loss Type 12
Entropy Coefficient 0
Lambda (\) for GAE 0.9
Max Cycles Per Episode 1000
Max Frames 30,000,000
On-Policy Collected Frames Per Batch 6000
On-Policy Environments Per Worker 10
On-Policy Minibatch Iterations 45
On-Policy Minibatch Size 400
Model Type MLP
Linear Layer Sizes [256, 256]
Activation Function torch.nn.Tanh

For coordination maps, due to the greater distance from the initial explorer positions to the target
items and the presence of more walls, we increased max_cycles_per_episode from 1000 to
3000. Concurrently, we adjusted ent ropy-_coef to 0.00065 and gamma to 0.92 for these maps.

F REWARD SETTING

F.1 DENSE REWARD SETTING

The dense reward is based on the change in distance Ad = dprey — deurr, Scaled by a factor v = 20,
where dprey and der denote the agent’s distance to the current target at the previous and current
timestep, respectively. When the agent is not holding an object, the target is either the nearest unheld
item or a middle/large item currently being moved by another agent that requires assistance. When
the agent is holding an object, the target becomes the goal region. At each timestep, the agent receives
a reward of Ad X ~. See Tab.[7]for more details.

Additionally, there are special rewards tailored for specific maps. In Map 11 (Four Corners), for
instance, two agents need to hold the two short sides of a rectangular item to more easily pass through
a path successfully. Therefore, to encourage this, the reward calculation for the agents’ distance to
this item has been modified: instead of being based on the distance to the item’s center point, it is
now calculated based on the distance to its two short sides. This change is designed to encourage the
agents to grasp the rectangle by its short ends.

F.2 DoOEsS MAPPO WORK IN MOVING OUT WITH SPARSE REWARD SETTING?

The primary challenge in Moving Out lies in its significantly larger and more complex state space.
Within such an expansive environment, agents who take random exploration struggle to successfully
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Table 7: Dense Reward Settings

Primary State / Event Specific Condition Reward Value

A. Distance-based Rewards

Agent not holding an item Agent moves closer to the nearest Ad X 7y
available item
Agent moves closer to a middle or large Ad x ~y
item currently held by another agent

Agent holding an item Agent moves closer to the nearest goal Ad x 7y
region

B. Event-based Rewards: Agent Holds an Item

Agent successfully holds an Default reward for picking up +0.5

item
Exception: If another agent is already —0.5 (total for this
holding other middle or large item at hold event)
this time
Exception: If the item picked up was —0.5 (total for this
already located within a goal region hold event)

C. Event-based Rewards: Agent Unholds an Item

Agent successfully unholds Item is released inside a goal region +0.5
an item
Item is released not inside a goal region —-0.5

Exception: If another agent needs help, 0.5 (additive)
holding a large or middle item outside
the goal region, at the moment of

unholding.
D. Time-based Reward (Step Cost)
Each timestep Agent exists in the environment —0.01

complete the multi-step tasks required to reach goal states and thus rarely receive the sparse or
event-based rewards crucial for learning. Consequently, sparse reward formulations currently appear
insufficient for effective policy learning in Moving Out.

MAPPO algorithms employing sparse or event-based rewards have achieved notable success in
environments such as Overcooked-Al. This success can be largely attributed to the characteristics
of Overcooked-Al, specifically its discrete action-state space and relatively compact overall state
space. These features allow agents to encounter rewarding events with sufficient frequency through
exploration, even when rewards are not dense, facilitating effective policy learning.

In Overcooked, the state-action space is small and discrete, with only tens of possible states and
six possible actions, effectively rendering it a tabular setting. In contrast, our environment features
continuous state and action spaces, states include precise map coordinates, and actions involve
continuous control over speed and direction. Although RL is relatively easy for small discrete space,
extending methods to handle continuous space is non-trivial.

Moreover, the tasks in Overcooked are relatively simple: agents fetch onions from a fixed area and
deliver them using plates. Onions and plates are homogeneous, unlimited, and confined to designated
regions. Once picked up, items can only be placed in predefined locations for handoff, simplifying
coordination between agents.

By comparison, our tasks are significantly more complex with additional physical constraints. First,
the items in our environment are heterogeneous, which are randomized in shape, size, and initial
position. Thus, agents must learn to generalize over combinations of all possible scenarios. Second,
unlike Overcooked, where items can only be placed in fixed zones, our agents can place items

19



Under review as a conference paper at ICLR 2026

anywhere on the map. This greatly increases the difficulty of learning how to transfer items to
target locations or hand them off between agents, especially in a continuous space. Additionally, our
framework requires agents to engage in a wider range of collaborative behaviors beyond simple item
passing—for instance, jointly moving large objects or coordinating to rotate items in tight spaces like
wall corners. This diversity of collaboration types introduces further complexity.

G COMPARATIVE ANALYSIS OF THE BEHAVIORS OF BC AND RL AGENTS

The fundamental difference between Behavior Cloning (BC) and MAPPO lies in their learning
mechanisms and resulting agent behaviors. BC methods are inherently data-driven, leading to policies
whose actions and overall effectiveness closely mirror the human behaviors captured in the training
dataset. In contrast, MAPPO, as a reinforcement learning (RL) approach, develops behaviors that are
strongly guided by the specific design of its dense reward function.

This distinction is evident in specific scenarios. For instance, on Map 6 (Distance Priority), both
agents have their closest middle-sized items. However, human demonstration data frequently shows a
strategy of first securing two smaller items before returning to move a middle-sized item together. A
MAPPO agent, guided by a dense reward that incentivizes moving the nearest object, will typically
prioritize the closer middle-sized item. If two such items are equidistant to respective agents (e.g.,
a pink agent targeting a yellow star and a blue agent targeting a blue circle), the initial actions will
be independent. The coordination emerges when one agent successfully grasps a middle-sized item;
the reward structure then incentivizes the other agent to assist with that specific item. Thus, the RL
behavior can appear as a race to secure a primary middle-sized object, with the "’loser” then being
redirected by rewards to help the “winner.” BC models on Map 6 (Distance Priority), however, reflect
the diversity of the human dataset. This dataset contains instances of both ”small-items-first” and
“middle-item-first” strategies. Consequently, a BC agent might exhibit behaviors where one agent
targets a middle-sized item while the other simultaneously attempts to move a small item, reflecting a
momentary misalignment as different agents emulate distinct strategies observed in the human data.

Map 11 (Four Corners) further illustrates these differences. Here, two agents might each have two
items at an equal distance, making multiple initial moves potentially optimal. In our MAPPO training,
agents often exhibit initial movements that appear somewhat exploratory or randomized until one
agent commits to and grasps a large item. At this point, the dense reward system effectively directs the
other agent to provide assistance. Conversely, BC models on Map 11 (Four Corners) tend to display
more decisive and rapidly aligned behavior from the start. Observations of the human dataset for this
map revealed a common leader-follower dynamic, where one player (e.g., the blue agent) consistently
follows the lead of the other (e.g., the pink agent). If the pink agent, for example, decisively moves
towards an upper pink square, the blue agent often follows suit immediately to assist. As a result, BC
models rarely exhibit prolonged periods of uncoordinated or hesitant movement before aligning on a
common goal.

In summary, BC methods excel at reproducing observed human behaviors, including their specific
strategies and inherent diversity. RL approaches like MAPPO, while capable of discovering effective
strategies, are highly sensitive to the nuances of reward function design. Even slight modifications to
the reward signals can lead to significant and sometimes qualitatively different emergent behaviors in
the trained agents.

H ADDITIONAL VALIDATION OF BEHAVIOR AUGMENTATION

Behavior mismatch in sub-trajectory recombination. Our recombination strategy is explicitly
designed to avoid the type of inconsistency that was described. Specifically, we only perform sub-
trajectory swapping when the fixed agent (e.g., agent A) has the same start and end poses across two
trajectories. This ensures that agent A is pursuing the same local goal in both cases, regardless of the
specific behavior of the partner.

For example, suppose in trajectory 7;, agent A performs action sequence a; while agent B performs
b1, and in 79, A performs ay while B performs b,. If a; and ay share the same start and end states,
we can create two new combinations: (a1, b2) and (a2, b1). These are valid because both by and by
were originally compatible with different variants of A’s strategy toward the same goal. As such,
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swapping B’s behavior does not interfere with A’s intent. This preserves behavioral diversity while
ensuring trajectory-level coherence.

Additional validation. To ensure consistency, we identify sub-trajectories with matching start
and end poses, so that the recombined agent behaviors maintain the same intention and goal. We
have validated this approach with over 99% success rate in producing physically valid trajectories.
In addition, we also confirm that the diversity of behavior increases after augmentation (Entropy
improves from 0.88 to 0.95).

I DETAILS OF EVALUATION METRICS

To assess human-Al collaboration in Moving Out, we design metrics that go beyond final task success
to capture the quality of physical collaboration. While prior works such as Overcooked-Al mainly
rely on task completion, this is insufficient in physically grounded settings, where interactions involve
continuous control, object dynamics, and force alignment. We therefore complement Task Com-
pletion Rate (TCR) with three additional metrics—Normalized Final Distance (NFD), Waiting
Time (WT), and Action Consistency (AC)—each targeting a different aspect of collaboration under
physical constraints.

Task Completion Rate (TCR). TCR measures the proportion of objects successfully delivered to
goal regions, weighted by size:
> w;I(o; delivered)
> w; ’
where w; = 1 (small) or 2 (middle/large). Range: [0,1]. TCR captures the final outcome of

collaboration, but by itself cannot distinguish between failed attempts with meaningful progress and
those with no progress.

TCR =

Normalized Final Distance (NFD). NFD quantifies partial progress by measuring the reduction in

object-goal distance:
N final
>im1 &i
N Jinitial’
i=1 4

NFD =1-

where @M@ and d" are the object’s initial and final distances to the target. This is critical in
physical environments where objects may get stuck due to collisions or narrow passages. A case
with high NFD but low TCR indicates that agents made progress but failed to overcome physical
constraints.

Waiting Time (WT). WT captures how agents coordinate when joint effort is required:

WT = Z (tf:nd - t:tart%
tew

where W is the set of intervals when an agent holds a middle/large object but must wait for help. High
WT may reflect either poor recognition of the need for help or inefficiency in navigating physical
obstacles. Thus, it measures awareness and responsiveness in physically grounded collaboration.

Action Consistency (AC). As illustrated in Fig.[T2] AC measures how well two agents align their
applied forces during joint manipulation:
T-1 ., 7 | B\ 7
-1 3 I(f1 + f2) - di
T A+ 113

where ﬁ, f;t are the forces applied at time ¢, J; is the unit vector connecting agent positions, and
T is the number of timesteps. This metric captures coordination quality: agents are most effective
when their forces are aligned, and receive low scores when their efforts cancel out (e.g., one pushing
forward, the other pulling back).

)
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Action Score : 1 Action Score:1  Action Score: 0 Action Score: 0.5

Figure 12: Example of action consistency (AC) calculation. Effective collaborative work receives
high scores, while opposing forces canceling each other lead to low scores.

Together, these four metrics provide a comprehensive evaluation of human-AlI collaboration in physi-
cally grounded tasks: TCR reflects task success, NFD measures partial progress under constraints,
WT captures coordination in joint effort, and AC quantifies the efficiency of physical interaction.
This combination moves beyond symbolic settings and offers a richer view of how collaboration
unfolds in continuous, low-level environments.

J  IMPLEMENTATION DETAILS

J.1 ENVIRONMENT DETAILS
J.1.1 OBSERVATION ENCODING

State Observation Our observation encoding is ego-centric and represents all information as a
one-dimensional vector. The encoded information includes:

* Self: Position and angle, with angles 6§ represented using [cos 0, sin 6]. A boolean value
indicates whether the agent is holding an item (True/False).

* Partner: Position, angle, and whether it is holding.

* Items: Each item is encoded with position, angle, size, category, and shape. Category and
shape use a one-hot encoding.

When training on a single map, the walls and goal region remain unchanged, so we do not encode
them. However, when training across different maps, we include their encoding:

» Walls: Represented by the (z,y) coordinates of the top-left and bottom-right corners.
* Goal Region: Represented the save as walls. The top-left and bottom-right corners.

J.1.2 ACTION ENCODING

The agent’s action space has four values:

¢ The movement distance (forward or backward).
* The target angle (encoded using cos and sin).

» The grasping action: 1 means grasp or release, 0 means no change.

J.2 BASELINE DETAILS

* Diffusion Policy: We follow the original implementation by (Chi et al.} 2023) for the model
architecture, which employs a 1D U-Net to generate action sequences. The observation,
prediction, and executable horizons are set to 2, 8, and 4, respectively. Training is performed
using the Adam optimizer with 1k epochs, 1024 batch size, and 0.001 learning rate. The
diffusion steps are 36. The grasp action is encoded by one-hot encoding.

* MLP The MLP model consists of 3 fully connected layers with Tanh activation and hid-
den_dim 2048. It concatenates one past state and one current state as input and predicts
actions for the next 8 steps. Training is performed using the Adam optimizer with 1k epochs,
1024 batch size, and 0.001 learning rate. It optimizes a combination of mean squared error
(MSE) loss for movement outputs and cross-entropy loss for grasp action predictions.
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* GRU uses a GRU layer followed by 3 fully connected layers with Tanh activation and
hidden_dim 2048. It takes one past state and the current state as input and predicts actions
for the next 4 steps. The model processes sequential data and learns action patterns based
on previous movements. Training is performed using the Adam optimizer with 1k epochs,
1024 batch size, and 0.001 learning rate. It optimizes a combination of mean squared error
(MSE) loss for movement outputs and cross-entropy loss for grasp action predictions.

J.3 BASS DETAILS

* Dynamics Model The Autoencoder consists of an encoder and a decoder, both made of
two linear layers. They use ReLU as the activation function, and each layer has 128 units.
The latent space has 32 dimensions. The dynamics Model is a two-layer MLP (Multi-Layer
Perceptron). Each hidden layer has 128 units. During training, the two autoencoders and the
dynamic model are trained together. Additionally, we also explored fine-tuning the second
AE from the first. Our ablation on selected Maps 2, 6, & 9 shows the following average
NFDs: 1) Joint training: 0.55, 2) Fine-tuning the second AE from the first AE: 0.50, 3)
Training two AEs separately: 0.48.

* Partner Action Predictor The Partner Action Predictor can be designed based on the
application. In some cases, it can be the same as the action policy, but with a small change: it
swaps the agent’s state with the partner’s state. This allows the model to predict the partner’s
action from their perspective.

Behavior Augmentation and Recombination Sub-Trajectories In behavior augmentation, we
add noise with a mean of 0 and a standard deviation of 0.002. In recombination sub-trajectories, since
two points in a continuous space are almost never the same, we set a tolerance value. We discretize
the environment into a 48 x 48 grid. If the robot’s start and end points are in the same grid cell, we
treat them as the same point.

Normalized Final Distance Calculation Many maps have walls, so we cannot use Euclidean
distance. To improve efficiency, we discretize the environment into a 48 x 48 grid. We use the BFS
algorithm to compute the distance from the item to the Goal Region.

Can BASS be used as a standalone Method beyond Moving Out? BASS is a standalone method
composed of two components. Together, they make BASS applicable across various behavior
cloning methods outside of Moving Out, as discussed. We tested BASS on a widely used human-Al
collaboration environment, Overcooked Al, specifically, the "Cramped Room” map. The results
showed that DP+BASS improved the score by 15% compared to DP alone. This demonstrates that
BASS is not limited to Moving Out.

K STUDY ON ACTION SAMPLING TIMES

We conducted an ablation on the number and strategy of action samples used in BASS. In our
implementation, each candidate action is generated by independently sampling from the policy and
partner predictor up to four times, producing four simulation rollouts. This setting provides a good
balance between performance and efficiency, supporting real-time human evaluation at 10Hz.

To compare alternatives, we tested three strategies: 1) Independent 4x sampling (current setting); 2)
2x2 combination (two samples from each agent, combined into four rollouts); 3) 4x4 combination
(four samples from each, combined into sixteen rollouts).

Results are summarized in Table[8] The 2x2 strategy, despite using the same number of simulations
as the independent setting, consistently underperforms. Independent sampling has higher chance to
capture critical joint transitions, e.g., resolving a stuck state. The 4x4 combination achieves the best
accuracy, but requires 16 rollouts and increases inference time from 69 ms to 210 ms, which disrupts
real-time human evaluation at 10Hz.

We therefore adopt the independent 4x sampling scheme in BASS, as it balances accuracy with the
real-time feasibility required for human-in-the-loop collaboration.
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Task 1 Task 2
TCRT NFDT WTJ ACT TCRT NFDT  WTJ ACT

Sample 4x independently  0.5027 0.5707 0.3448 0.8615 0.4348 0.5535 0.3096 0.8474
2x?2 combination 0.4522 0.5261 0.3485 0.8462 0.4158 0.5137 0.3101 0.8460
4x4 combination 0.5161 0.5847 0.3390 0.8727 0.4396 0.5638 0.3087 0.8559

Table 8: Results of sampling and combination strategies.

L BASS MODULE ANALYSIS

L.1 NEXT-STATE PREDICTION ACCURACY

We evaluate the accuracy of the next-state prediction module by computing the L2 distance between
the predicted state and the ground-truth state from the oracle simulator. Two baselines are included: a
GRU-based predictor and a random state generator.

L2 Norm (]) Task 1  Task 2

BASS 0.0010 0.0028
GRU 0.0196 0.0331
Random States 2.7576 3.2594

Table 9: Next-state prediction accuracy across tasks. Lower is better.

These results show that BASS more accurately captures physical dynamics compared to both the
GRU baseline and random guessing, supporting the effectiveness of the learned dynamics model in
simulation and action selection.

L.2 MODELING DIVERSE HUMAN BEHAVIORS

To handle diverse human behaviors, our approach models partner actions as a conditional distribution
learned from demonstrations. The latent dynamics model captures this diversity by representing
multiple likely behaviors under the same state, instead of committing to a single mode.

We use a Diffusion Policy, which effectively models multimodal action distributions by sampling from
different noise inputs (Li et al.,[2024b; [Chi et al.| [2023)). This enables the model to generate different
possible partner responses, providing probabilistic reasoning that aligns with human intuition.

L.3 PARTNER ACTION PREDICTION ACCURACY

Since the action space is continuous, prediction accuracy is evaluated using the relative error between
predicted and ground-truth actions. With a 10% error tolerance, the predictor achieves an accuracy
of 71.45%; relaxing the tolerance to 20% increases accuracy to 90.24%. These results indicate that
the partner action predictor provides sufficiently accurate estimates to support effective next-state
prediction and action selection within our framework.

L.4 EFFECT OF RANDOM PARTNER ACTIONS
To assess the importance of accurate partner action prediction, we conduct an ablation where the
partner’s actions are randomly sampled during the simulation step. Since our action selection process

considers four candidates, random guessing introduces uncertainty and degrades the ability to make
correct selections between predicted future states.

L.5 COMPARISON WITH ALTERNATIVE NEXT-STATE PREDICTION MODELS

To evaluate the effectiveness of our proposed dynamics model, we compare it with two alternatives:
a GRU-based predictor and a qVAE model for next-state prediction. As shown in Table our
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TCR (1) Action Selection Accuracy (1)
Task 1 Task2 Task 1 Task 2
BASS (Ours) 0.5027 0.4348 0.6250 0.4870
BASS (Random partner action) 0.3966 0.3650 0.2542 0.2484
BASS w/ Oracle Simulator 0.5421 0.5334 1.0000 1.0000

Table 10: Impact of replacing the learned partner model with random actions. Both task performance
(TCR) and action selection accuracy drop significantly.

model significantly outperforms both in prediction accuracy and final task performance (NFD).
The GRU baseline performs close to random guessing, indicating difficulty in learning accurate
transition dynamics. The qVAE model performs slightly better, but still struggles, likely due to
the large continuous state space, where discretized latent codes are insufficient to represent fine-
grained physical interactions. These results highlight the importance of our autoencoder-based latent
dynamics model in capturing physical transitions effectively.

NFD (1) Prediction Accuracy (1)
Task 1 Task2 Task1 Task 2
BASS (Ours) 0.5733 0.5535 0.6250 0.4870
BASS (GRU) 0.5048 0.4965 0.2487 0.2598
BASS (qVAE) 0.5113 0.5032 0.3102 0.2722
BASS w/ Oracle Simulator 0.5875 0.6209 N/A N/A

Table 11: Comparison of next-state prediction models. Our dynamics model outperforms GRU and
qVAE in both prediction accuracy and task performance.

M EVALUATION PROTOCOL FOR TASK 1

Human-based evaluation. Since Task 1 is designed to evaluate adaptation to unseen human
behaviors, our primary setup requires agents to play with new human participants. While this is the
most direct evaluation of human-Al collaboration, it raises concerns about reproducibility because
new participants are required for each run.

Cross-group reproducible protocol. To address this, we design a reproducible protocol inspired
by cross-model evaluation. We randomly split the human demonstrations into two groups, each
containing data from different participants. Two models are trained separately on each group and
then evaluated by playing with each other. This setup emulates collaboration with unseen partner
behavior while remaining fully reproducible.

Results. Table|12|compares the performance of Diffusion Policy (DP) and our method (BASS) when
paired with models trained on the same group vs. a different group. We also report the percentage
drop (or increase) in performance when moving from same-group to cross-group evaluation. Results
show that models perform better when paired with a model trained on the same group (more aligned
behavior), but BASS consistently outperforms DP when paired with unseen human behaviors,
demonstrating stronger generalization.

N WHY CHOOSE NORMALIZED FINAL DISTANCE IN BASS?

We chose Normalized Final Distance (NFD) because it directly reflects task progress in physically
grounded collaboration. When two agents move an object together, actions that successfully reduce
the distance between objects and the goal region indicate effective cooperation, even when navi-
gating around obstacles like walls. Thus, maximizing NFD considers both physical feasibility and
cooperation efficiency.
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Setting | Method | TCR() | NFD(D) | WT (1) | AC()

Same-Group | DP 03233 0.5367 0.3789 0.8163
DP/BASS 0.3503 0.5724 0.3598 0.8337

Cross-Group | DP 0.2563 (-20.72%) | 0.4589 (-14.50%) | 0.4249 (+12.15%) | 0.7854 (-3.78%)
DP/BASS | 0.3010 (-14.07%) | 0.5197 (-9.22%) | 0.3899 (+8.37%) | 0.8099 (-2.86%)

Table 12: Cross-group evaluation protocol for Task 1. Performance drops (%) are measured relative
to same-group evaluation.

We also experimented with a multi-objective scoring using both NFD and Action Consistency (AC),
to encourage not only progress but also force alignment. The trade-off is shown below:

Task 1 NFD (1) AC(1)

BASS with NFD 0.5733  0.8615
BASS with NFD+AC  0.5683  0.9127

Table 13: Comparison of using NFD vs. NFD+AC as objectives.

Although this combined objective improved AC, we found that NFD dropped slightly. We chose to
prioritize NFD in the paper for its ability to capture physical task progress.

O BEHAVIOR AUGMENTATION DETAILS

Our augmentation strategy involves two techniques:

Generating New States by Perturbing the Partner’s Pose For a given trajectory, we generate new
states by introducing noise to the partner’s pose while keeping all other state variables unchanged. This
perturbation creates additional observation variations in training data, allowing the agent to experience
a broader range of possible partner behaviors. Since human actions naturally vary, this approach helps
improve the agent’s robustness to small deviations in the partner’s movements while maintaining
its own task objectives. This perturbation is expressed as Ppartner = Ppartner + €, € ~ N(0, 02) where
Dpartmer 18 the original partner’s pose, ¢ is Gaussian noise with mean 0 and variance o2, and Dpartner 18
the perturbed pose used to generate new state variations.

Recombination of Sub-Trajectories Each global state s; can be decomposed into s; =

(si, s sf), where si and s] are the individual states of agent i and j, and s{ captures the re-

maining environment-specific information. Given a trajectory 7 = {(s¢,a¢)},_;.p» We extract
three sequences: 7% = {(si, a;‘;)} 1.7 18 the state-action sequence of agent ¢; similarly 79 is the
state-action sequence of agent 7 and 7. is the sequence of environment information. We have
7 = 7' U7 UT® Moreover, let 7} = (si,a}) be the ¢-th state-action pair of agent i, and define
Tg1:t2 = (si1 , ail s siQ , a§2) as the continuous sub-trajectory of 7¢ from ¢ to t5. We can define
i’s trajectory composed of sub-trajectories 7° = 7{,, U7/ ., U/ .1 and similarly for j.

Given 7 and two time step #1,t2, we can search for another trajectory 7 in the dataset such that
74, = 74, and 7{, = 7;,. We can then construct two new trajectories by swapping agent j’s
subsequences between t; and ¢5:

4 J ~J J e ~d ~7 J ~J ~e
T U (let1—1 UTi g, U Tt2+1:T) Ur® and 7°U (7'1:t1—1 UTi g, U Tt2+1:T) ur

By aligning the start and end of agent ¢’s sub-trajectory, the generated trajectories maintain temporal
consistency for agent ¢ while introducing a different sequence. This approach enriches the training
set with new, valid trajectories where agent i’s behavior is fixed and the partner’s varies.
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P COMPUTING RESOURCES

P.1 TRAINING
P.1.1 BEHAVIOR CLONING

Models MLP and GRU are trained for 1000 epochs within approximately 0.5 to 1 hour on a single
A6000 GPU. Training a diffusion policy, while also for 1000 epochs, generally requires a longer
period of 1 to 3 hours. Overall, the computational time for behavior cloning methods is comparatively
short.

P.1.2 MAPPO

As MAPPO learns through direct interaction with the environment, it inherently requires a significantly
greater number of training iterations. Currently, training MAPPO with 15 CPU threads typically
spans 5 to 15 hours. Although MAPPO utilizes a lightweight MLP model with a small number of
parameters, its training duration is extended due to two main factors:

* Firstly, the simulation environment, which is based on Pymunk, does not support GPU
acceleration, thereby limiting the speed of physics calculations and environment stepping.

 Secondly, the computation of distance-based rewards becomes a bottleneck, particularly in
environments featuring complex wall structures that necessitate more intensive calculations.

P.2 INFERENCE SPEED OF DP/BASS

Inference speed is critical for real-time human-AlI collaboration, especially when interacting with
human partners. In our setup, the environment runs at 10 Hz, i.e., each step occurs every 100 ms.
While diffusion models are generally slower, our implementation generates the next 8 actions in
69 ms on an NVIDIA RTX A6000 GPU. This allows us to interact in real-time by predicting one
step in advance — at time step t, the agent executes the action predicted at t—1. This ensures smooth
interaction without perceivable lags.

Q DATA COLLECTION: TRAINING DATA

We conducted data collection for two tasks, each designed to evaluate different aspects of human-
Al collaboration. For the two tasks, each participant controlled an agent using a joystick. The
environment running at 10Hz for data collection.

For Task 1, which focuses on human behavior diversity, we recruited 36 participants, forming
18 groups of two. Before data collection, each group underwent a 10-minute practice session to
familiarize itself with the environment. The remaining 50 minutes were dedicated to data collection.
Each pair played each map three times, then switched agents and played three more times, resulting
in six demonstrations per map. If a group completed all maps, they contributed a total of 12 x 6 = 72
human demonstrations. However, not all groups completed the full set, with some collecting only 3 to
5 demonstrations per map. Additionally, we removed low-quality demonstrations where performance
was significantly poor. In total, we collected 1,000 valid human demonstrations for this task.

For Task 2, which evaluates adaptation to physical constraints, we worked with four expert players
who were highly familiar with the environment. Each map had randomized object properties, ensuring
variation in shape, size, and mass. Each map was played 60 times, resulting in 60 x 12 = 720 human
demonstrations.

Our data collection and human study process was approved by an Institutional Review Board (IRB).
Participants were compensated based on the amount of data they contributed, receiving between $15
to $20 per hour.

27



Under review as a conference paper at ICLR 2026

R HUMAN STUDY: PLAYING WITH MODELS

R.1 HUMAN STUDY PROCEDURE

To collect data for our project, we designed an interactive experiment where human volunteers
collaboratively played with trained Al agents. The data collection process is detailed as follows:

* Model Selection: Each volunteer was asked to select a model ID from four provided models
(A,B,C,D).

 Task Description and Limits: After selecting a model, the volunteer played collaboratively
with the Al agent across all twelve maps sequentially. The objective was to move all items
on the map into the designated goal region. Each map had a time limit of 50 seconds. The
volunteer could proceed to the next map either by successfully moving all items into the
goal region or upon reaching the 50-second time limit.

» Agent Roles: For the first two models (A and B), the volunteer controlled the “’red” agent
while the Al controlled the blue” agent. For the remaining two models (C and D), the roles
were switched, with the volunteer controlling the ’blue” agent and the Al taking the role of
the “red” agent.

* Questionnaire: After completing all 12 maps for a given model, the volunteer filled out
a questionnaire consisting of eight Likert-scale questions and one free-response question.
Responses on the Likert scale ranged from “’strongly agree” to “’strongly disagree.”

In total, we conducted this experiment with 12 volunteers. Each volunteer will be paid $20 for one
hour of playing.

R.2 QUESTIONNAIRE
We use the 7-Point Likert Scale for the questions below:

. Teamwork: The other agent and I worked together towards a goal.
. Humanlike: The other agent’s actions were human-like.
. Reasonable: The other agent always made reasonable actions throughout the game.

. Follow: The other agent followed my lead when making decisions.

wm A W N =

. Physics: The other agent understands how to work with me when objects have varying
physical characteristics.

6. Helpfulness: The other agent understands my intention and proactively helps me when I
need assistance.

7. Collision: When our movement paths conflict, the other agent and I can effectively coordi-
nate to avoid collisions.

8. Alignment: When moving large items together, our target directions remain well-aligned.

9. Future: I would like to collaborate with the other agent in future Moving Out tasks.

S FULL RESULTS FOR TASK 1 AI-AI COLLABORATION

This section reports the complete experimental results for Task 1 under AI-AI collaboration.
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ng;‘t‘;égn Method  TCR(f) TCRStdErr NED (1) NFDStdErr WT(]) WTStdErr AC (1) AC StdErr
MLP 0.2126 0.0072 0.2987 0.0048 0.4896  0.0021  0.8013  0.0093
Seen GRU 0.2369 0.0183 0.3011 0.0142 04975  0.0202 08151  0.0173
Behaviors MAPPO  0.1929 0.0038 0.3182 0.0045 05766 0.0068  0.8097  0.0071
Chaviors — pp 0.3233 0.0279 0.5367 0.0151 03789 00167 08163  0.0162
DP/BASS  0.3503 0.0293 0.5724 0.0232 03598  0.0182  0.8337  0.0146
MLP 0.1433 0.0061 0.2413 0.0033 05647  0.0031 07729  0.0090
Unseen  GRU 0.1638 0.0092 0.2453 0.0026 05758  0.0065  0.7830  0.0037
Behaviors MAPPO  0.1635 0.0067 0.2808 0.0037 0.6379  0.0013  0.7858  0.0050
> DP 0.2563 0.0152 0.4589 0.0177 04249  0.0136 07854  0.0041
DP/BASS  0.3010 0.0223 0.5197 0.0361 03899  0.0245  0.8099  0.0179
Play with DP 0.3855 0.0512 0.5547 0.0432 04886  0.0457  0.8054  0.0129
Human  DP/BASS  0.6512 0.0717 0.7053 0.0459 03364  0.0481 09124  0.0113
Table 14: Task 1 results under seen and unseen human behaviors, and with real human partners.

T RESULTS OF DIFFERENT METHODS WITH BASS

Task 1 TCR?T NFD1 WT | ACT
Methods Mean Std Error Mean  Std Error  Mean  Std Error  Mean  Std Error
MLP 0.3568 0.0508 04118 0.0338  0.4380 0.0419  0.7890  0.0250
+ BASS w/o Simulation 0.2952  0.0436  0.4207 0.0359 0.3639  0.0358 0.8060  0.0126
GRU 0.3070  0.0479  0.3674  0.0365 0.3143 0.0532  0.7618  0.0201
+ BASS w/o Simulation 0.4117 0.0465 0.4396  0.0350 0.3891 0.0418 0.8225 0.0173
+ BASS w/o Augmentation  0.3531 0.0411 0.4047  0.0373 0.3835 0.0419  0.8195 0.0210
+ Full BASS 0.4120  0.0513 0.4454  0.0392  0.4218 0.0426  0.8345 0.0173
Diffusion Policy (DP) 0.3829  0.0681 0.4818 0.0514 0.3075 0.0374  0.8395 0.0216
+ BAAS w/o Simulation 0.4028 0.0666  0.5114  0.0493 0.3392  0.0428 0.8242  0.0254
+ BASS w/o Augmentation  0.4741 0.0667  0.5561 0.0506 03176  0.0435 0.8495 0.0174
+ Full BASS 0.5027 0.0619  0.5707  0.0468  0.3448 0.0402  0.8615 0.0167
Table 15: The table presents all experimental results for Task 1 in seen behaviors.
Task 2 TCRT NFD1 WT | ACT
Methods Mean Std Error Mean  Std Error  Mean  Std Error  Mean  Std Error

MLP 0.2557 0.0413 0.3602 0.0315 0.4867 0.0418 0.8175 0.0261
+ BASS w/o Simulation 0.2014  0.0336  0.3656  0.0244  0.3657 0.0332  0.7890  0.0250
GRU 0.2582  0.0509  0.3935 0.0428 0.4680 0.0594  0.8487 0.0183
+ BASS w/o Simulation 0.3333 0.0539  0.4141 0.0439  0.5611 0.0587 0.8513 0.0286
+ BASS w/o Augmentation 0.3670  0.0522  0.4246  0.0420  0.4365 0.0593 0.8572  0.0222
+ Full BASS 0.3414  0.0522  0.4410 0.0442 04379 0.0596 0.8754  0.0165
Diffuson Policy (DP) 0.3125 0.0564  0.4526  0.0427  0.3100  0.0385 0.8442  0.0184
+ BAAS w/o Simulation 0.3569  0.0547 0.4908  0.0385 0.3256  0.0431 0.8373 0.0147
+ BASS w/o Augmentation 0.4200  0.0544  0.5187  0.0417 0.3232  0.0417 0.8305 0.0169
+ Full BASS 0.4348 0.0599  0.5535 0.0423 0.3096  0.0451 0.8474  0.0128

Table 16: The table presents all experimental results for Task 2

U MAP ANALYSIS

Our 12 maps are carefully designed to target specific collaboration modes, coordination, awareness,
and action consistency, while ensuring that existing Al agents (e.g., MAPPO, Diffusion Policy)
can perform some tasks but still exhibit clear limitations. This balance is essential: overly difficult
maps with long paths or dense obstacles may yield near-zero performance for all agents, making it
impossible to evaluate various aspects of human-Al collaboration. Our map definition is already based
on a structural format, e.g., JSON, allowing easy modification, reuse of modules, and procedural
generation for scalability.

U.1 COORDINATION
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Analysis

Analysis

Map

Map 1: Hand Off is de-
signed with a single nar-
row pathway that forces
the agent, the one that is
closer to the items, to ef-
ficiently pass them to the
other agent.

Map 2: Pass Or Split
features  four  non-
intersecting  pathways,
designed to evaluate the
agents’ ability to select
the most suitable path
while considering the
need for collaboration.

Map 3: Efficient Routes
features several pathways
leading to the goal re-
gion, allowing the agents
to independently deter-
mine the most efficient
path while considering
the movement of the
other agent.

Map 4: Priority Pick
creates an environment
that requires each agent
to independently decide
whether to prioritize mov-
ing the item closer to
the goal region first or
bringing the farther item
closer.

U.2 AWARENESS

Table 17: Maps categorized under Coordination.

Map

Analysis

Analysis

Map 5: Corner Decision
requires the agents to de-
cide whether to follow
the other agent to the up-
per right or the lower left
corner and to determine
which size of item to pri-
oritize moving first.

Map 6: Distance Prior-
ity contains two medium-
sized items, requiring the
agents to decide whether
to prioritize the item that
is farther away or the one
that is closer.

Map 7: Top Bottom
Priority contains two
items, either large or
medium-sized, requiring
the agents to decide
whether to prioritize the
item at the top or the one
at the bottom.

Map 8: Adaptive Assist
contains a mix of large or
medium-sized items and
small items, requiring the
agents to decide whether
to prioritize collaborating
on the larger item or in-
dividually handling the
smaller item.

Table 18: Maps categorized under Awareness.
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U.3 ACTION CONSISTENCY

Map

Analysis

Analysis

Map 9: Left Right con-
tains large-sized items,
requiring the agents to
continuously collaborate
and make strategic deci-
sions about whether to
move items to the left or
right goal region.

Map 10: Single Rotation
contains one large-sized
item, which is designed
to evaluate how well the
two agents can collabo-
rate to perform a single
rotation.

Map 11: Four Cor-
ners contains large-sized
items positioned at the
four corners, requiring
the agents to continu-
ously collaborate by mov-
ing the items in either
a clockwise or counter-
clockwise order.

Map 12: Sequential Rota-
tions contains one large-
sized item, which is de-
signed to evaluate how
well the two agents can
collaborate to maintain a
sequence of rotations.
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Table 19: Maps categorized under Action Consistency.
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