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Abstract
Large language models (LLMs) with billions
of parameters excel at predicting the next to-
ken in a sequence. Recent work computes
non-vacuous compression-based generalization
bounds for LLMs, but these bounds are vacuous
for large models at the billion-parameter scale.
Moreover, these bounds are obtained through re-
strictive compression techniques, bounding com-
pressed models that generate low-quality text. Ad-
ditionally, the tightness of these existing bounds
depends on the number of IID documents in a
training set rather than the much larger number
of non-IID constituent tokens, leaving untapped
potential for tighter bounds. In this work, we
instead use properties of martingales to derive
generalization bounds that benefit from the vast
number of tokens in LLM training sets. Since a
dataset contains far more tokens than documents,
our generalization bounds not only tolerate but
actually benefit from far less restrictive compres-
sion schemes. With Monarch matrices, Kronecker
factorizations, and post-training quantization, we
achieve non-vacuous generalization bounds for
LLMs as large as LLaMA2-70B. Unlike previ-
ous approaches, our work achieves the first non-
vacuous bounds for models that are deployed in
practice and generate high-quality text.

1. Introduction
We do not have a good theoretical understanding for why
large language models (LLMs) have such impressive empir-
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Figure 1. Non-vacuous bounds for LLMs that scale up to 70B
parameters. Left: Bits per dimension (BPD) bounds on the Am-
ber dataset [26] which contains 1.2 trillion tokens for different
LLMs from the LLaMA family ranging in scale from 7 billion to
70 billion parameters [42]. All of these models are quantized to
2-bits, 3-bits and 4-bits per-weight using QuIP# and are publicly
available [43]. The different quantization precisions are accounted
for in the compressed model size. The trade-off between the empir-
ical performance and the model complexity in our bounds favors
models with a smaller compressed size in general, though we ob-
serve that across different architectures we can find larger models
yielding better bounds. Right: Validation negative log-likelihood
loss as a function of the total number of trainable parameters for
different nonlinear parameterization; namely LoRA, the Kronecker
factorization of dense matrices and Monarch matrices. For a fixed
budget of trainable parameters, we see that the optimal compres-
sion techniques can change, hence our benchmark.

ical performance. PAC-Bayes and the related finite hypoth-
esis generalization bounds [4; 12; 16] offer a compelling
framework for understanding this good performance through
the lens of compression. These bounds tell us that a model
will provide good generalization if it is capable of fitting its
training data while simultaneously being compressible rela-
tive to the size of its training set. The generalization bound
literature includes many techniques for achieving tighter
bounds on image classification problems, ranging from im-
proved bounds themselves to new compression methods
[47; 13; 17; 34; 28].

Recent work presented the first non-vacuous generaliza-
tion bounds for LLMs, considering training points to be
independent and identically distributed (IID) documents
[29]. The authors compute generalization bounds for the
expected bits-per-dimension (BPD) loss, defined for a doc-
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ument X composed of k tokens and a language model
h as the average negative log probability BPD(h,X) =

− 1
k

∑k
i log2 ph(xi|x<i). These bounds are only non-

vacuous for compressed GPT2 variants [35] that output
un-grammatical text. The term vacuous refers to the ran-
dom guess performance on next token prediction, which is
log2 V for BPD where V is the vocabulary size.

Compression-based generalization bounds at the document
level suffer from three primary limitations: (1) the number
of documents in a training set is limited, and this small
sample size leads to loose bounds; (2) due to the small
sample size, non-vacuous generalization bounds can only be
achieved using compression techniques which significantly
modify the LLM pretraining routine; (3) as a result, the
models which produce non-vacuous bounds generate low-
quality text, so it is unclear what these bounds can tell us
about more performant language models.

In this work, we address the above limitations and make the
following contributions: (1) We derive a new generalization
bound that considers each sample to be an individual token.
Even though tokens within a document are not independent,
we use properties of martingales to obtain a valid bound that
benefits from the number of tokens in a language model’s
pretraining dataset; (2) We explore several expressive model
compression techniques such as Monarch matrices, Kro-
necker factorizations, and post-training quantization and
show that bounding the performance at the token-level fa-
vors less restrictive compression strategies; (3) Our work is
the first to compute non-vacuous bounds for models com-
pressed only through post-training quantization and without
altering the pretraining procedure at all. Consequently, we
obtain generalization bounds for massive pretrained LLMs
like LLaMA2-70B which generate high-quality text; (4)
Our experiments indicate that the chat versions of LLaMA
have looser generalization guarantees, demonstrating that
fine-tuning these models for dialogue negatively affects their
performance on next token prediction; (5) We demonstrate
that GPT2 models that are restricted to only seeing k tokens
in their context obtain significantly better bounds than k-th
order Markov chains for high values of k, reflecting the
remarkable ability of transformer-based models in capturing
longer range correlations; and (6) We show that a model’s
ability to recall memorized facts from its pretraining data
deteriorates faster than its ability to recognize structured
patterns as we decrease the size of the model through com-
pression.

2. Background
Finite hypothesis compression bounds. Let R(h, x) ∈
[a, a + ∆] be a bounded risk and h ∈ H be a hypothesis
drawn from a finite hypothesis space with prior P (h). A
classic finite hypothesis generalization bound [39] states

that for any δ > 0 with probability 1− δ,

R(h) ≤ R̂(h) + ∆

√
log 1/P (h) + log 1/δ

2m
(1)

where the empirical risk is defined as R̂(h) :=
1
m

∑m
i=1 R(h, xi) with {xi}mi=1 being IID and R(h) =

E[R̂(h)]. The complexity term depends on the prior log
probability log 1/P (h). We use the Solomonoff prior
P (h) ≤ 2−K(h) [40], where K(h) is the prefix Kolmogorov
complexity of h defined as the length of the shortest pro-
gram that produces h for a fixed programming language
[21]. Consequently, our prior favors models h that have
a small minimum compressed length. While the Kol-
mogorov complexity is incomputable, it can be bounded
as log 1/P (h) ≤ K(h) log 2 ≤ C(h) log 2 + 2 logC(h),
where C(h) is the compressed size of the model according
to a pre-specified compressor.

Compression bounds for LLMs. When constructing
document-level bounds for language, the empirical risk
is defined over an entire document X as R(h,X) =
− log2 ph(X)/L, where ph(X) is defined auto-regressively
on the sequence of tokens X = [x1, x2, . . . xL] as pθ(X) =∏L

i=1 ph(xi|x<i), where x<i denotes x1, x2, . . . , xi−1.

Prediction smoothing. Since the bound in Equation (1)
only applies to a bounded risk, it is not valid for the bits-
per-dimension loss that is unbounded. In this case, one can
introduce a prediction smoothing probability α to the predic-
tive model such that the generative probability distribution
becomes a mixture between the next token probability ac-
cording to the auto-regressive model f(θ) with parameters
θ and a uniform distribution over the vocabulary of size
V as follows: ph(xi|x<i) = (1 − α)pθ(xi|x<i) + α/V .
Therefore, R(h,X) can be bounded in an interval of size
∆ = log2(1+(1−α)V/α). The optimal α is determined via
a grid search in previous work. One of the contributions of
our work is that we optimize the prediction smoothing prob-
ability at the token level αθ(x<i), which further improves
the bounds. We describe this contribution in Appendix C.

Compressing LLMs with SubLoRA. To achieve the ex-
treme compression level necessary to obtain non-vacuous
document-level bounds, Lotfi et al. [29] propose SubLoRA,
a non-linear subspace parameterization of an LLM’s weights
θ. Using SubLoRA, these weights can be written as
θ = θ0 + LoRA(Pw). Here θ0 ∈ RD are the model
weights at random initialization and LoRA(Pw) combines
low rank adaptation (LoRA) [18] with subspace training
[28] via the projector P ∈ RD×d. The LoRA decom-
position parameterizes a dense matrix W ∈ Ra×b as the
product of two low-rank matrices A ∈ Ra×r, B ∈ Rr×b

with a small rank r. As for the linear subspace parameter-
ization Pw, the projection matrix P is defined as a Kro-
necker product P = Q1 ⊗Q2 produced by orthogonalizing
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Figure 2. Our bounds analyze a quantity that is meaningful
and predictive of generalization. Left: Using LLaMA2-7B, we
compute the entropy of p(xi|x<i), where the context x<i is fixed
and sampled from the Amber training dataset. The distribution
over next tokens given a fixed context from the training data is in-
deed diffuse and characterized by high entropy values. Right: On
the left y-axis, we plot the average zero-shot accuracy (ACC) and
perplexity (PPL) achieved by GPT2 models ranging in scale from
117M to 1.5B averaged over downstream datasets, as reported in
Radford et al. [35]. On the right y-axis, we plot an approximation
of the conditional BPD expectation that we bound in Equation (2)
where we resample xi from a LLaMA2-7B given fixed training
contexts x<i from the Amber dataset. The approximation of the
BPD objective that we bound achieves 97.9% and 99.1% correla-
tion with the accuracy and perplexity, respectively.

Q1, Q2 ∼ N (0, 1/
√
D)

√
D×

√
d via a QR decomposition.

3. Token-Level Generalization Bounds
We construct a novel bound that naturally accommodates the
non-IID structure of the tokens as they occur in documents:

Theorem 3.1. With probability at least 1− δ over the ran-
domness in a sampled sequence {x1, x2, . . . , xm}, if the
negative log likelihood of a model h ∈ H can be bounded
− log2 ph(·|x<i) ∈ [a, a+∆i], then the negative log likeli-
hood of the data for model h satisfies

1

m

m∑
i=1

E[− log2 ph(Xi|x<i)|x<i] ≤ −
1

m
log2 ph(x≤m)

+ ∆̂

√
log 1/P (h) + log 1/δ

2m
,

(2)

where ∆̂ =
√

1
m

∑m
i=1 ∆

2
i , the expectation is taken over

Xi ∼ p(Xi|x<i) from the data generating process, and
P (h) is any normalized prior over a discrete hypothesis
spaceH that does not depend on {xi}mi=1.

On the right-hand side of the bound is the conventional em-
pirical risk: − 1

m log2 ph(x≤m) = − 1
m

∑
i log2 ph(xi|x<i)

on the measured sequence and a complexity term
log 1/P (h). We describe how we sample sequence x≤m

and compute the empirical risk in Sections B.2 and B.3. We
provide the full proof of Theorem 3.1 in Appendix B.1.

The meaningfulness and interpretation of our bounds.
It is important to note the difference between the quantity
that we bound 1

m

∑m
i=1 E[− log2 ph(Xi|x<i)|x<i], which

is conditioned on contexts seen at training, and the expected
risk E[− log2 ph(Xi|x<i)] under resampling from the data
generating process where new contexts can be sampled from
this process. However, the resampled next tokens xi|x<i

are not necessarily from the training set, and to the extent
that the distribution over next tokens is entropic, we are
measuring a different quantity than the empirical training
performance of the hypothesis h. Moreover, we know that
the distribution over next tokens is often indeed diffuse;
for instance, many words have common synonyms. The
distribution over next tokens is especially diffuse when we
start a new sentence, for example. We demonstrate how
diffuse the distribution p(xi|x<i) is for fixed contexts x<i

from the publicly available Amber training dataset [26] (see
Appendix F.6) by sampling xi|x<i using LLaMA2-7B to
approximate the generative process. Figure 2(Left) shows
that, indeed, the distribution p(xi|x<i) is characterized by
a high entropy for a large number of tokens. Given how
diffuse the distribution is and the large number of possi-
ble sentences, it is broadly infeasible to make predictions
on new resampled tokens from the empirical distribution
alone. Moreover, Figure 2(Right) shows that our bounds are
predictive of downstream performance for GPT2 models.

In short, our bounds go significantly beyond the observation
that the empirical distribution converges to the true distri-
bution, and are predictive of generalization on downstream
tasks. See Appendix B.4 for an extended discussion.

4. Compressing LLMs Effectively
In shifting from document-level to token-level bounds, the
number of data points m increases considerably, and thus we
can afford to pay significantly more bits in the complexity
of the compressed model. In this new regime, SubLoRA
becomes very restrictive. Therefore, we benchmark several
expressive compression strategies that can be applied in the
pretraining of LLMs or post-training. We provide a more
detailed description of these techniques in Appendix D.

Enhanced LoRA. We revisit LoRA [18] and instead of
applying it only to self-attention layer weights, we extend it
to all linear layers in the model. We also include the biases
and layer normalization weights in the projection.

Kronecker Product. For this compression technique, all
dense layers in the model are parameterized using a Kro-
necker product of two low-rank matrices.

Monarch Matrices. We can also parameterize dense matri-
ces W using Monarch matrices [8], where W can be written
as the product of two block diagonal matrices and a reshape
or permutation operation.

3
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Compression Approach Bits Per Dimension Top-1 Error Top-10 Error Top-100 Error

SubLoRA [29] 10.49 90.44 71.33 49.77
Enhanced SubLoRA (Ours) 10.44 89.38 69.54 49.84
Enhanced LoRA (Ours) 7.85 78.15 52.48 31.64
Monarch Only (Ours) 7.65 75.87 47.47 28.34
Kronecker Only (Ours) 8.03 80.80 52.77 30.14
Kronecker + Subspace (Ours) 10.02 88.75 67.91 47.14
Random Guess 15.62 99.99 99.98 99.80

Table 1. Non-vacuous generalization bounds using different compression techniques to pretrain variants of GPT2 small. We find
that with the larger complexity budget afforded by the token-level bounds, subspace compression is no longer necessary or even beneficial
for the bounds. Of the structures we consider, the Monarch parametrization performs best.

QuIP 2-Bit quantization. In addition to the above compres-
sion techniques used to pretrain LLMs in efficient nonlinear
subspaces, we consider QuIP post-training quantization [5].
This approach effectively compresses the weights of the
LLM into fewer bits while maintaining a good performance.

5. Non-vacuous Bounds For LLMs With
Billions of Parameters

We compute generalization bounds for: (i) models that are
trained through non-linear subspace compression in the form
of LoRA, Kronecker product or Monarch matrices on the
OpenWebText dataset, then quantized using the same setup
as Lotfi et al. [29], or (ii) pretrained models to which we
either apply aggressive quantization, which is the case for
GPT2, or use QuIP 2-bit, 3-bit and 4-bit quantized models,
which is the case for LLaMA. In the pretrained LLMs set-
ting, we evaluate our bounds for both the OpenWebText (9B
tokens) and Amber (1.2T tokens) datasets. Additional de-
tails on the experimental setting can be found in Appendix F.

Token-level Bounds via Nonlinear Parametrizations. We
report the generalization bounds we obtain when we pretrain
variants of GPT2 small with different nonlinear parametriza-
tions in Table 1. We note several important results: (1) We
significantly improve upon the LoRA compression with and
without subspace as LoRA only led to vacuous bounds in
previous works; (2) Among all subspace compression strate-
gies that we explore, Monarch without subspace leads to the
tightest bounds. It is also important to note that the Monarch
approximation outperforms the 2 other approximations as
we increase the number of trainable parameters as shown in
Figure 1(Right); (3) applying linear subspace compression
on top of the non-linear representations does not help, as
further reducing the number of trainable parameters through
linear subspace projection leads to a worse trade-off be-
tween the empirical performance of the compressed model
and its compressed size. We provide an extended discussion
of these results in Appendix E.1.

Non-vacuous bounds for pretrained LLMs. We also ex-
plore intensive post-training quantization as an effective

compression technique for pretrained, publicly available
LLaMA1, LLaMA2 and LLaMA2-Chat models. We re-
port the bounds obtained for 2-bit LLaMA2 on the Amber
dataset (1.2 trillion tokens) in Table 2. The full set of results
is reported in Table 5 and a full discussion of bounds for
pretrained LLMs can be found in Appendix E.2 and includes
pretrained GPT2 models as well. We obtain non-vacuous
bounds for all these models, despite their large scale rang-
ing from 7B to 70B parameters. We also observe that the
LLaMA-Chat variants obtain worse bounds, demonstrating
the negative effect of fine-tuning these models for dialogue
use cases on next token prediction performance.

Model BPD Top-1 Error Top-100 Error

LLaMA2-7B 4.28 47.5 12.56
LLaMA2-13B 4.51 47.85 14.44
LLaMA2-70B 6.39 58.26 25.04
Random Guess 14.97 99.99 99.68

Table 2. Pretrained LLaMA2 models achieve non-vacuous token-
level bounds on the Amber dataset via post-training quantization.

In Appendix E, we additionally show that models for which
we obtain non-vacuous bounds generate high-quality text.
We also contextualize our bounds against Markov chains
and show that our compressed GPT2 models go beyond
storing simple n-gram statistics. Finally, we demonstrate
that highly compact models are capable of reasoning and
encoding patterns since they are compressible.

6. Conclusion
We introduce novel token-level generalization bounds for
LLMs which are able to accommodate the non-IID nature
of the tokens within the training corpus. Combined with
different compression techniques, we achieve non-vacuous
bounds for LLMs with up to 70 billion parameters. These
models are capable of producing high quality text, unlike
those in prior work. While we still have a gap to close
between the typical validation BPD and the constraint of
our bounds, our bounds are meaningful and make statements
that go beyond what is achieved by simple n-gram statistics.
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A. Related Work
Generalization bounds for neural networks. Deep neural networks are challenging to be understood using generalization
theory due to their many parameters [45]. However over the past years, there has been success in constructing meaningful
bounds such as for image classification models [12], vision-language models [1], and tabular data [16], often through the
methodology of compression [47; 28]. Lotfi et al. [29] extend compression-based generalization bounds to the LLM setting,
and obtain non-vacuous bounds at the document level. Li et al. [24] explore generalization in few-shot learning, establishing
bounds based on in-context examples while maintaining a fixed pretrained model. In contrast, we investigate pretraining
generalization bounds to understand why models do not overfit at training time, despite the increased dataset complexity.

Non-IID Generalization bounds. Ralaivola et al. [37] analyze the dependence graph of the random variables, deriving a
bound based on the graph coloring number, fitting into a broader line of work making use of properties of the dependence
graph [46]. Unfortunately for text data, the dependencies are unknown or assumed to follow the triangular autoregressive
dependency structure for all pairs in the sequence. A related line of work has been to explicitly estimate coefficients which
quantify the extent that random variables relate to each other, see e.g. Mohri & Rostamizadeh [30]; Kuznetsov & Mohri
[22]. However, it is unclear how best to apply these methods to neural networks. Martingale tail bounds are sometimes
used in online learning and reinforcement learning, e.g., for establishing regret bounds [36]. Chugg et al. [6] present a
large collection of generalization bounds both in the IID and martingale settings. These results extend and generalize many
existing bounds. We view our contribution as orthogonal to the efforts since we focus on constructing the components
necessary to generate practical bounds for LLMs rather than abstractly innovating on concentration inequalities.

Large language models and compression. Parameter-efficient finetuning methods, such as LoRA [18], parametrize weight
matrices as products of two trainable low-rank matrices on top of frozen pretrained weights. QLoRA uses 4-bit NormalFloat
(NF4) and double quantization, enabling single-GPU finetuning for a 65B parameter LLM without performance degradation
[9; 10]. Post-training quantization approaches, such as GPTQ [15], rely on second-order information and quantize each
row of weight matrices independently. QuIP uses adaptive rounding and incoherence processing of second-order Hessian
matrices, enabling 2-bit quantization of LLMs [5]. Other compression techniques for LLMs include replacing most of the
16-bit operations with 8-bit matrix multiply [9], using data-free distillations [25], designing custom kernels and sub-4-bit
integer quantization [20; 32], and compressing embeddings as low-rank matrix-product state [44].

B. Token-Level Martingale Bound
B.1. Proof of the Main Theorem

Theorem B.1. With probability at least 1− δ over the randomness in a sampled sequence x1, x2, . . . , xm, if the negative
log likelihood of a model h ∈ H can be bounded − log2 ph(·|x<i) ∈ [a, a +∆i] for some ∆i (possibly a function of h),
then the negative log likelihood of the data of a given hypothesis h satisfies

1

m

m∑
i=1

E[− log2 ph(Xi|x<i)|x<i] ≤ −
1

m
log2 ph(x≤m) + ∆̂

√
log 1/P (h) + log 1/δ

2m
, (3)

where ∆̂ =
√

1
m

∑m
i=1 ∆

2
i , the expectation is taken over Xi ∼ p(Xi|x<i) from the data generating process, and P (h) is

any normalized prior over a discrete hypothesis spaceH that does not depend on {xi}mi=1.

Proof sketch. The proof of Theorem 3.1 is an application of Azuma’s inequality [2] and can be broken down into the
following steps:

• Construct a martingale difference sequence from the difference between the NLL on token xi, and its expectation given
the tokens x<i. From the boundedness of NLL one can show that the differences are bounded.

• Apply Azuma’s inequality for each hypothesis, choosing failure probability proportional to the chosen prior P (h).

• Perform a union bound of the failure probabilities over all hypotheses. If all of the hypotheses satisfy the bound
simultaneously, then so does the data dependent hypothesis h∗.
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Proof. Given the autoregressive predictions R(h, xi, x<i) := − log2 ph(xi|x<i) where x<i := {x1, x2, . . . , xi−1}. Let
{xi} denote the actual values of the sequence that were found empirically, and {Xi} be the random variables for these
quantities.

The collection of random variables (indexed by i) Zi = E[R(h,Xi, x<i)|x<i]−R(h,Xi, x<i) form a Martingale difference
sequence with respect to x<i. Note here that the expectation is over the distribution Xi ∼ p(Xi|x<i). From the construction,
E[Zi|x<i] = 0 and the sequence is bounded: Ai = E[R(h,Xi, x<i)|x<i]−a ≤ Zi ≤ ∆i+E[R(h,Xi, x<i)|x<i]−a = Bi,
with Bi −Ai = ∆i.

∆i may depend on x≥i but only through it’s dependence on the hypothesis h({x}mi=1). For a fixed h we may conclude that∑m
i=1 Zi is bounded difference Martingale sequence (with respect to {x<i}mi=1), and we can apply Azuma’s inequality [2]

to derive that for any t > 0:

P
( m∑
i=1

Zi > mt
)
≤ exp

(
− 2m2t2/

m∑
i=1

∆2
i

)
P
( 1

m

m∑
i=1

Zi > t
)
≤ exp

(
− 2mt2/∆̂2

)
.

Judiciously choosing

t(h) = ∆̂

√
log 1/P (h) + log 1/δ

2m
,

we have that P
(

1
m

∑m
i=1 Zi > t(h)

)
= P (h)δ.

Applying a union over the events
⋃

h∈H
[
1
m

∑m
i=1 Zi(h) > t(h)

]
, we have

P
( 1

m

m∑
i=1

Zi > t(h)
)
≤

∑
h

P (h)δ = δ,

therefore P
(

1
m

∑m
i=1 Zi ≤ t(h)

)
> 1− δ. Unpacking the definition of Zi, we have that with probability at least 1− δ

1

m

m∑
i=1

E[R(h,Xi, x<i)|x<i] ≤
1

m

m∑
i=1

R(h, xi, x<i) + ∆̂

√
log 1/P (h) + log 1/δ

2m
.

Expressed in terms of the log likelihood, we can write this as:

1

m

m∑
i=1

E[− log2 ph(Xi|x<i)|x<i] ≤ −
1

m
log2 ph(x≤m) + ∆̂

√
log 1/P (h) + log 1/δ

2m

B.2. Sampling and Empirical Risk Evaluation

In this section, we define more precisely the sequence x≤m for which we compute the empirical risk in Equation (2).
We construct a sample x≤m from the stochastic process pdata by first sampling independent and identically distributed
documents, e.g., the documents that form the OpenWebText dataset. Then, we concatenate these documents deterministically
using end of text (EOT) tokens. Consequently, the ground truth stochastic process has the following property:

pdata(xi|x<i) = pdata(xi|xk, ...., xi−1), (4)

where xk is the previous EOT token. This equality holds exactly due to how the stochastic process is implemented.
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On the other hand, it would not be guaranteed that a generative model ph(x) satisfies the property in Equation (4) apriori
if the model were allowed to attend to tokens x<k, even when the data generating process has this property. However,
we explicitly prohibit our generative model h from attending to tokens x<k through the attention mask, as we have the
flexibility to do so in defining our hypothesis class and model family. Therefore, our model ph that we bound also satisfies
this property ph(xi|x<i) = ph(xi|xk, ...., xi−1) exactly, and not approximately.

In conclusion, the empirical risk for our generative model h and a sequence x≤m sampled from the stochastic process
defined above can be written as follows:

− 1

m
log2 ph(x≤m) = − 1

m

∑
i

log2 ph(xi|x<i) = −
1

m

∑
i

log2 ph(xi|xk, . . . xi−1),

where xk is the nearest EOT token occurring before xi. Given the large size of the OpenWebtext and Amber datasets,
containing 9 billions and 1.2 trillion tokens respectively, we use subsampling for the evaluation of the empirical risk. More
details can be found in Appendix B.3.

B.3. Empirical Risk Subsampling

We evaluate our bounds for the OpenWebtext and Amber datasets which contain 9 billion and 1.2 trillion tokens, respectively.
Computing the exact empirical risk for these datasets would be prohibitively expensive. Therefore, we use subsampling for
the evaluation of the empirical risk to accelerate bound computation. In Equation (2), we use the following inequality which
holds with probability at least 1− δ2:

− 1

m
log2 ph(x≤m) ≤ − 1

n

n∑
j=1

log2 ph(xσ(j)|x<σ(j)) + ∆̂

√
log 1/δ2

2n
(5)

for a subsample of size n where σ is a random permutation. We choose δ1 in Equation (2) with respect to a new overall
failure probability δ to be δ1 = δn/(n+m) and choose δ2 = δm/(n+m) so that the overall failure probability is still δ.
The proof is simple and similar to that provided in Lotfi et al. [29].

B.4. Interpretation of Our Token-level Bounds

Token-level vs. document-level bounds. In contrast to document-level bounds, our token-level bounds increase the number
of samples, driving down the size of the complexity term, and do not require the IID assumption. Whereas the number of
samples previously would be the number of documents, it now is simply the number of tokens in the dataset, a far higher
number. As a consequence of decreasing the complexity term, the empirical risk will be a more significant contributor to
our bounds compared to document-level bounds. Therefore, we achieve non-vacuous bounds for much larger and more
performant models that generate high-quality text. This development brings our theoretical bounds a large step closer to
aligning with empirical generalization.

Our bounds are predictive of downstream performance. To provide further empirical evidence of the meaningfulness of
our bounds, we compute an approximation of the quantity that we bound in Equation (2) by sampling next tokens xi using
LLaMA2-7B given fixed contexts x<i from the Amber dataset. We plot this quantity on the right y-axis of Figure 2(Right),
and show on the left y-axis the performance of GPT2 models of varying sizes on downstream datasets as reported in Radford
et al. [35]; see Appendix F.4 for more details. Not only does the approximation of the BPD objective show the same trend
as the downstream performance for different GPT2 variants, but it also achieves 97.9% and 99.1% correlation [3] with
downstream task accuracy and perplexity metrics, respectively.

C. Token-Level Prediction Smoothing
Rather than using a single label smoothing α for all data points, we propose to use the network itself to determine which
tokens warrant more confidence and which ones require more smoothing to limit their worst-case behavior. We perform
token-level prediction smoothing by adding a linear head to the LLM that outputs the probability α for each token, such
that ph(xi|x<i) =

(
1 − αθ(x<i)

)
pθ(xi|x<i) + αθ(x<i)/V . The training objective corresponds to the upper bound in

Equation (2) rather than the empirical risk alone, where the α parameter factors into the bound via the interval size
∆i = log2

(
1 + (1− αθ(x<i))V/αθ(x<i)

)
. Therefore, the values of αθ(x<i) are adjusted to achieve the best trade-off
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Figure 3. Token-level prediction smoothing improves our bounds. Left: After training, we optimize a conservative upper bound on the
generalization bound that we would get from Equation (2) with respect to the α head parameters. Doing so yields a noticeable reduction
in the value of the bound. Middle: BPD generalization bound as a function of a single global parameter chosen from a discrete number of
values vs. the generalization bound for the token-dependent α after optimization. Right: Histogram of the values taken by α(x<i) over
different inputs.

between the empirical risk and the compressed model size. We perform this optimization post-training using a subset of the
training dataset.

We demonstrate in Figure 3(Left) that using this token-dependent α significantly improves the value of the bounds. In
Figure 3 (Middle), we compare to the setting where the optimal α is obtained through a grid search, and in Figure 3(Right)
we examine the distribution of α produced by the model.

D. Exploring Different Compression Techniques
D.1. Efficient Nonlinear Parametrizations

In addition to LoRA, we explore two expressive nonlinear parametrizations f(θ) that make efficient use of the parameter
space: Kronecker structures [14] and Monarch matrices [8]. We can use these nonlinear parametrizations directly, or in
conjunction with subspace compression, parametrizing the full parameters as θ = θ0 + f(Pw) for a projection matrix
P ∈ RD×d. After training, the parameters are quantized as in and coded using arithmetic coding. We describe these
structures below.

LoRA. With LoRA [18], the weight matrices of linear layers are parametrized via low rank updates. Each weight matrix
W ∈ Ra×b is parametrized W = W0 + AB for A ∈ Ra×r, B ∈ Rr×b with a small rank r, where W0 is given by the
initialization and A, B form the trainable parameters in each layer. Rather than considering only self-attention layer weights
[18; 29], we extend SubLoRA to all linear layers in the model and compress the biases and layernorm weights in the
subspace projection.

Kronecker Product. We can represent W as a Kronecker product W = A ⊗ B, where ⊗ is the Kronecker product,
A ∈ Ra1×b1 , B ∈ Ra2×b2 and a1a2 = a, b1b2 = b, which reduces the parameters over the dense layer. This approach has
been used in recent work for parameter-efficient finetuning [14] and as an alternative structure for pretraining.

Monarch Matrices. We also consider Monarch matrices [8], which employ two block diagonal matrices A, and B typically
with A and B formed by

√
a blocks of size

√
a×
√
b and a reshape or permutation operation R: W = ARB. The matrix

multiplication is implemented by reshaping the input axis a into (
√
a,
√
a), applying matrix A as a batched matrix multiply

on one axis, and then applying B to the other axis by permuting the axes. Monarch matrices have shown considerable
promise as an expressive and hardware-efficient replacement for linear layers.

D.2. QuIP 2-Bit Quantization of LLM

In addition to pretraining LLMs in efficient nonlinear subspaces, we explore recent post-training quantization methods to
reduce the model complexity. Quantization with Incoherence Process (QuIP) compresses LLM weights to a smaller number
of bits while preserving model performance [5].
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Model BPD Top-1
Error (%)

Top-100
Error (%)

GPT2 (124M) 7.61 74.82 26.98
GPT2 (355M) 8.50 79.19 32.72
GPT2 (774M) 10.47 89.50 44.23
Random Guess 15.62 99.99 99.80

Table 3. Pretrained GPT2 models achieve non-vacuous bounds for next token prediction on OpenWebText through post-training quantiza-
tion only and without altering the pretraining.

Adaptive Rounding. For a weight matrix W ∈ Ra×b, QuIP minimizes the proxy quadratic objective ℓ(Ŵ ) = E[∥(Ŵ −
W )x∥2] = tr((Ŵ −W )H(Ŵ −W )⊤), where Ŵ ∈ Ra×b are the quantized weights, x ∈ Rb is a vector drawn randomly
from a calibration set, and H is the second moment matrix of these vectors used as a proxy hessian [5].

Incoherence Processing. Based on the observation that incoherences between the weights W and the proxy Hessian H
benefit quantization, QuIP further applies incoherence post-processing using Kronecker products of random orthogonal
matrices U ∈ Ra×a, V ∈ Rb×b such that H̃ ← V HV ⊤, W̃ ← UWV ⊤. Here U = U1 ⊗ · · · ⊗Uk and V = V1 ⊗ · · · ⊗ Vk.

To compute the compressed size C(h) of QuIP-quantized models, we use gzip [11] to compress the quantized model
checkpoint and obtain the term C(h) as the bits required for the storage afterawrds.

E. Additional Results
E.1. Token-level Bounds via Nonlinear Parametrizations

As discussed in Appendix D.1, we experiment with LoRA in addition to the Kronecker and Monarch subspace parametriza-
tions in order to train compressed versions of GPT2 small (124M parameters). Compared to previous work, we enhance
both LoRA and SubLoRA by not only applying the low-rank decomposition to the attention layers and the linear head,
but to all the fully-connected layers in the LLM. Additionally, we train all the bias and layer normalization parameters
instead of keeping them fixed at their values at initialization. We also use rotary position embeddings [41] to directly encode
the positional information into the LLM. Combined with our proposed token-level optimization of the label smoothing
probability α, we significantly improve upon the LoRA subspace compression, as shown in Table 1. It is worth noting the
LoRA alone led to vacuous BPD document-level bounds obtained by Lotfi et al. [29] while our version is non-vacuous.

Among all subspace compression strategies that we explore, Monarch without subspace leads to the tightest token-level.
This result can be attributed to two key factors. Firstly, the substantial scale of our dataset, comprising 9 billion tokens,
significantly changes the trade-off between the empirical risk and the compressed model size compared to previous work,
since the compressed size factor in the bound is divided by the size of the dataset. Consequently, we have greater flexibility
in selecting larger models that achieve an improved empirical risk. The second factor is that the Monarch approximation
indeed outperforms the 2 other approximations as we increase the number of trainable parameters; this effect can be seen in
Figure 1(Right). Combining the two factors, we conclude that the Monarch approximation achieves the best bounds by
striking the right trade-off between empirical risk and compressed model size. This argument also explains why subspace
compression does not help, as further reducing the number of trainable parameters through linear subspace projection leads
to a worse trade-off between the empirical performance of the compressed model and its compressed size.

E.2. Non-vacuous Bounds for Pretrained LLMs: GPT2, LLaMA1 and LLaMA2

Intensive quantization is another way we can achieve model compression, and therefore tighter generalization bounds. We
explore the setting where we only apply post-training quantization to pretrained LLMs and compute the corresponding
token-level generalization bounds.

Pretrained GPT2 models. We apply the post-training quantization [28] to the publicly available GPT2 models [35] of
sizes 124M (GPT2 small), 354M (GPT2 medium), and 773M (GPT2 large) parameters that were pretrained on the WebText
dataset and report the numbers in Table 3. We find that GPT2 small not only yields non-vacuous bounds, but these bounds
are quite comparable to those obtained using aggressive compression techniques in Table 1. GPT2 medium and large also
achieve non-vacuous bounds despite having almost a billion parameters.
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Training Context Length 0 1 2 4 1024

GPT2-S-Quantized 13.9 11.1 9.0 7.9 7.6
Markov Chain 11.3 10.5 15.3 22.4 -

Table 4. Our LLM bounds provide a much stronger statement than what would be explained by low order Markov models.

Pretrained LLaMA models. In this set of experiments, we use pretrained and pre-quantized publicly available LLaMA1,
LLaMA2 and LLaMA2-Chat models and plug in their empirical risk and compressed size directly into our token-level
bounds. We report the bounds obtained for 2-bit LLaMA2 in Table 2. The full set of results is reported in Table 5. The bounds
are computed for the next token prediction task on the Amber dataset, which contains 1.2T tokens. We obtain non-vacuous
bounds for these models despite their large scale, ranging from 7 billion to 70 billions parameters. Our experiments show that
the LLaMA2-Chat models achieve worse generalization bounds as reported in Table 5 and Figure 1(Left), demonstrating that
fine-tuning Chat models for dialogue use cases hurts their generalization performance on next token prediction. Although
we do not know what data was used to pretrain the LLaMA models, our bounds remain valid since they do not require for
the models to be trained on the same data that the empirical risk is evaluated on.

High-quality text generation. A significant limitation of document-level bounds is that the SubLoRA model achieving the
best document-level bound generates un-grammatical, low-quality text as demonstrated by Lotfi et al. [29] and shown in
Table 6. In contrast, our top-performing model in terms of token-level BPD bounds on the OpenWebText dataset, which is
the quantized GPT2 small model, generates high-quality text, ensuring a unique combination of practical usefulness and
tight guarantees on the population risk.

E.3. Contextualizing GPT2 Bounds Against Markov Chains

The best token-level bound that we achieve for BPD on the OpenWebText dataset is 7.6. But what does this value exactly
mean? One might consider the possibility that our bounds are describing only the simplest components of fitting the data
that exist in the model, such as the predictions of a 0th or 1st order Markov chain [31].

In Table 4 we show that this is not the case, by explicitly training a sparse k-th order Markov chain on OpenWebText and
computing our token-level bounds for the result. Sweeping over different numbers of n-grams to use for the Markov chains,
our bounds for these models cap out at 10.5 BPD and rapidly degrade with higher order as more statistics need to be stored.
We also train and compress versions of GPT2 that are restricted to only seeing k tokens as context, mirroring the restrictions
of the Markov chains. We find that for the simple 0 and 1st order Markov chains, our compression via the transformer is
slightly worse. However, the LLM performs much better for higher orders.

E.4. Memorization vs. Reasoning

LLMs are capable of memorizing facts from their pretraining data, but they also can learn highly structured patterns. As we
compress a model more and more, it must lose its ability to recall memorized facts, but it may still remember patterns, since
they are compressible. In this section, we examine the difference between memorization and reasoning by measuring the
ability of LLMs to compress structured and unstructured sequence data. To generate structured sequences, we first use short
binary expression trees to generate numerical sequences of integers [16]. These sequences are highly compressible as they
are generated using short and deterministic programs. To generate unstructured sequences, we collect the set of all unique
integers from the structured sequences and form random sequences composed of IID samples from the set of unique integers
(see Appendix F.5 for details). We train standard GPT2 models from scratch on structured and random sequences separately.
In Figure 4, we show the integer prediction training accuracy with varying degrees of post-training quantization. We observe
that as models are quantized more aggressively, i.e. the number of quantization levels decreases, they forget unstructured
sequences far faster than structured sequences. These results parallel the findings of Jin et al. [19] who show that smaller
models can retain in-context learning capabilities but lose their ability to recall facts.
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Figure 4. As language models are compressed, they retain their understanding of patterns, but they forget highly random and
unstructured data rapidly. Experiments performed on GPT-2 models with datasets created as detailed in Appendix E.4. Compression
performed via post-training quantization.

F. Experimental Details
F.1. Pretraining with Nonlinear Parametrizations

To achieve necessary model compressions for computing non-vacuous bounds, we consider GPT2 Small with 124M
parameters for pretraining on OpenWebText1 based on the nanoGPT implementation2 [35]. We parametrize the linear
layers of CausalSelfAttention, MLP, and the LinearHead for the GPT2 models with our nonlinear compression
(LoRA, Kronecker, Monarch), where we turn bias to be on except for LinearHead. For LoRA and Kronecker, we turn on
weight-tying between the token embedding and the final LinearHead parametrized by nonlinear compressions. For LoRA
and Kronecker, we train the layer norm parameters in addition to all of the nonlinear compressions applied to the linear
layers. For Monarch, we only train the linear layers parametrized by Monarch matrices. For all pretraining runs, we use a
batch size of 8, a sequence length of 1024, and a standard AdamW optimizer [27] with a learning rate of 0.0002. We perform
learning rate warm-up for 500 iterations, and we apply rotary embedding [41] to all three nonlinear parametrizations.

F.1.1. HYPERPARAMETER SWEEPS FOR LORA

LoRA. We sweep over rank r ∈ {1, 4, 16, 32, 64, 128, 256}.

We choose a learning rate of 0.0002 with a LoRA dropout value of 0.1 and LoRA alpha value of 32.

SubLoRA. We report the rank r and corresponding subspace dimension that we sweep over for SubLoRA in Table 7.

F.1.2. HYPERPARAMETER SWEEPS FOR KRONECKER

For Kronecker W = A⊗ B, we factorize the A,B matrices with A ∈ Ra1×b1 , B ∈ Ra2×b2 for a1a2 = a, b1b2 = b. We
sweep over all possible combinations of {a1, a2} and {b1, b2} by performing prime factorizations with multiplicity on the
numbers a, b and enumerating all possible combinations. All of our jobs use a learning rate of 0.0002.

F.1.3. HYPERPARAMETER SWEEPS FOR MONARCH

For Monarch, we relax the restrictions for the number of blocks to be strictly
√
a and instead by a number divisible by a to

sweep over different numbers of blocks. We also include runs for Monarch where we’re using absolute position encodings
and runs where we’re only applying the Monarch matrices factorizations to the attention layers and the linear classification
heads.

1http://Skylion007.github.io/OpenWebTextCorpus
2https://github.com/karpathy/nanoGPT

14

http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/karpathy/nanoGPT


Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models

Model Bits per
Dimension

Top-1
Error (%)

Top-10
Error (%)

Top-100
Error (%)

2 bits

LLaMA1-7B 4.291 48.08 22.82 12.83
LLaMA1-13B 4.598 48.87 24.23 14.59
LLaMA1-30B 5.373 52.91 28.06 19.14
LLaMA1-65B 6.100 56.63 32.29 24.14
LLaMA2-7B 4.282 47.55 22.48 12.56
LLaMA2-Chat-7B 4.536 49.10 24.18 13.50
LLaMA2-13B 4.515 47.85 23.54 14.44
LLaMA2-Chat-13B 4.764 49.82 24.95 15.10
LLaMA2-70B 6.140 56.24 32.61 24.32
LLaMA2-Chat-70B 6.396 58.26 34.16 25.04

3 bits

LLaMA1-7B 4.371 47.42 22.87 13.63
LLaMA1-13B 4.801 48.97 25.23 16.14
LLaMA1-30B 5.694 53.54 29.91 21.63
LLaMA1-65B 6.728 59.56 36.14 28.08
LLaMA2-7B 4.351 47.15 22.75 13.62
LLaMA2-Chat-7B 4.648 48.84 24.23 14.24
LLaMA2-13B 4.754 48.45 24.67 15.95
LLaMA2-Chat-13B 5.056 50.90 26.26 16.66
LLaMA2-70B 6.772 59.35 36.27 28.56
LLaMA2-Chat-70B 7.081 61.66 38.00 29.30

4 bits

LLaMA1-7B 4.502 47.52 23.53 14.52
LLaMA1-13B 5.023 49.96 26.46 17.47
LLaMA1-30B 6.054 55.55 32.09 23.93
LLaMA1-65B 7.269 62.56 39.38 31.54
LLaMA2-7B 4.493 47.64 23.64 14.53
LLaMA2-Chat-7B 4.825 49.49 25.15 15.12
LLaMA2-13B 4.959 49.46 25.67 17.21
LLaMA2-Chat-13B 5.271 51.61 27.23 18.12
LLaMA2-70B 7.331 62.53 39.89 32.11
LLaMA2-Chat-70B 7.679 65.32 41.59 32.87

Random Guess 14.965 99.99 99.96 99.68

Table 5. Token-level generalization bounds for open-source pretrained LLM checkpoint on the Amber dataset. All of these models were
quantized post-training using QuIP# to different numbers of bits as shown above. All the bounds are non-vacuous compared to random
guess performance.

F.2. Quantization

Quantization Following Lotfi et al. [28], we apply quantization over the weights from the subspace training or the trainable
LoRA, Kronecker, Monarch parameters along with layer norm weights depending on the compression setup.

Experiments on QuIP-quantized Models. We compute token-level bounds on pretrained LLaMA1 and LLaMA2 models
[42] quantized with QuIP with publicly-available checkpoint [38]. Although we do not know what data was used to pre-train
these models, we can evaluate the generalization bound on the Amber dataset and consider other tokens used in training as a
data-dependent prior.

F.3. Bounds Evaluation

In the sequence of text, we use end of text tokens (EOT) which separate the documents. In this way, we can consider
concatenating many documents together to form one long sequence. As a result of the EOT tokens and the structure of the
text, the distribution p(xi|x<i) can be simplified into p(xi|xk, xk+1, . . . xi−1) where k is the index of the most recent EOT
token because the documents are sampled independently. In the evaluation of the LLM we likewise have no dependence on
tokens outside the given document in question.
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Generated Text

GPT2 (124M)
Quantized

(BPD Bound: 7.61)
The study, published in Proceedings of the National Academy of Sci-
ences, examined the relationships between brain activity, gene expression
and inflammation in diseases including Alzheimer’s disease, dementia,
Parkinson’s disease, glioblastoma and Alzheimer’s disease. ”Our study
demonstrates that omega-3 fatty acids play a role in the link between
inflammation and brain function,” said lead author Dr Richard Collins,
PhD, of Duke University’s Duke Center for Bioethomics and Bioengi-
neering. After controlling for.

GPT2 (124M)
SubLoRA

[29]
th he the startedt at its,, the a more be power and- by. S and, of of -’s
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Table 6. Examples of generated text from the GPT2 small quantized model that achieves the best token-level bounds compared to the
SubLoRA-pretrained GPT2 small model in Lotfi et al. [29]. In contrast to the text generated by the best performing model in terms of
BPD bounds by Lotfi et al. [29], our quantized GPT2 small generates significantly higher-quality text while simultaneously achieving the
best BPD and Top-1/10/100 error bounds.

Rank r Subspace Dimension d

1 25000
4 50000
8 50000

16 50000
32 10000, 750000
64 25000, 2000000

128 7000000, 15000000

Table 7. Hyperparameter sweep for SubLoRA. For all runs, we used a learning rate of 0.0002, a LoRA dropout value of 0.1, and a LoRA
alpha value of 32.

To compute token-level bounds, we evaluate all of our generalization bounds with failure probability δ = 0.05, subsample
size of n = 10k on the OpenWebText training dataset of size m = 9B tokens.

F.4. Correlation with Downstream Performance

We retrieve the downstream task performance of difference GPT2 variants ranging in scale from 117M to 1.5B averaged
over the downstream datasets as shown in Table 8. To obtain an approximation of the conditional BPD expectation that we
bound in Equation (2), we resample xi from a LLaMA2-7B given fixed training contexts x<i from the Amber dataset. We
use a sample size equal to 10, 000 samples.

F.5. Memorization Experiment

Following Goldblum et al. [16], we picked a complexity value of 4 and sequence length of 30 and generated 984 sequences
as the training dataset. IID sampled elements from a uniform distribution over the set of unique integers from the structured
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Model Size
LAMBADA

(PPL)
LAMBADA

(ACC)
CBT-CN
(ACC)

CBT-NE
(ACC)

WikiText2
(PPL)

PTB
(PPL)

1BW
(PPL)

117M 35.13 45.99 87.65 83.4 29.41 65.85 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 42.16

Table 8. Zero-shot downstream task performance for GPT2 models with different model sizes as reported in Radford et al. [35].

sequences are used to build the baseline random sequences dataset. Our vocabulary size is 12 as we only have integers,
beginning of text token, and an additional delimiter token. The delimiter token are placed between every distinct integers
during our tokenization process. We selected a GPT-2 Small model with 124M parameters and trained on the structured and
random sequences separately with a learning rate of 0.0001 for 1000 epochs. Our accuracy evaluations are performed on the
single integer levels. Our quantization procedure is the same as described in Appendix F.2. We show the results for this
experiment in Figure 4.

F.6. Amber Dataset

We used a subset of the pretraining dataset for Amber 7B LLM [26] for our bound evaluations. This dataset contains RedPa-
jama V1 [7] (arxiv, C4, GitHub, StackExchange, Wikipedia), StarCoder [23] (The Stack), RefinedWeb [33] (CommonCrawl)
with around 1.2 trillion tokens. We tokenize the entire dataset using a LLaMA tokenizer and then sample tokens from a
uniform distribution over the tokenized dataset.
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