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Abstract
Due to the immense resource demands and the001
involved complex techniques, it is still chal-002
lenging for successfully pre-training a large lan-003
guage models (LLMs) with state-of-the-art per-004
formance. In this paper, we explore the key bot-005
tlenecks and designs during pre-training, and006
make the following contributions: (1) a com-007
prehensive investigation into the factors con-008
tributing to training instability; (2) a robust op-009
timization approach designed to mitigate train-010
ing instability effectively; (3) an elaborate data011
pipeline that integrates data synthesis, data cur-012
riculum, and data selection. By integrating the013
above techniques, we create a rather low-cost014
training recipe and use it to pre-train YuLan-015
Mini, a fully-open base model with 2.4B pa-016
rameters on 1.08T tokens. Remarkably, YuLan-017
Mini achieves top-tier performance among018
models of similar parameter scale, with com-019
parable performance to industry-leading mod-020
els that require significantly more data. To fa-021
cilitate reproduction, we release the full de-022
tails of training recipe and data composition.023
Project details can be accessed at the following024
link: https://anonymous.4open.science/025
r/YuLan-Mini/README.md.026

1 Introduction027

In recent years, large language models (LLMs)028

have significantly advanced the frontier of AI tech-029

nology (OpenAI, 2023; Dubey et al., 2024; Bi et al.,030

2024). It is widely recognized that pre-training031

is crucial for building the foundational capabili-032

ties of the LLMs (Zhao et al., 2023). Although033

the prevailing pre-training approach of next-token034

prediction is straightforward, it involves several035

complexities: First, researchers must design an ef-036

fective and efficient data pipeline, which typically037

involves data filtering, data mixing, and data cur-038

riculum, as “data” is the most crucial element in039

enhancing model capabilities. Second, since LLMs040

consist of a vast number of meticulously organized041

parameters, accelerating and stabilizing the training042

Figure 1: YuLan-Mini achieves performance compa-
rable to Qwen2.5-1.5B on comprehensive benchmarks
i.e., MMLU, ARC-Challenge, HellaSwag, WinoGrande,
GSM8K, MATH-500, HumanEval, MBPP, and CEval,
using only 1/6 of FLOPs budget, where FLOPs ≈
6× training tokens × model size (Kaplan et al., 2020).

process presents a significant challenge. Despite 043

the availability of extensive model checkpoints re- 044

leased by industry companies (Qwen-Team, 2024; 045

Yang et al., 2024b), the core technical details often 046

remain undisclosed in public reports. 047

Fortunately, the research community has made 048

significant efforts to enhance the availability of 049

data resources (Lozhkov et al., 2024a; Li et al., 050

2024b; Yu et al., 2025) and the openness of pre- 051

training methodologies (Allal et al., 2024; AllenAi, 052

2024; Zhang et al., 2024a). These contributions 053

offer basic technical approaches and essential re- 054

sources for pre-training an LLM. Despite these 055

advancements, open LLMs—those with fully dis- 056

closed technical details still face main limitations of 057

under-performance compared to industry counter- 058

parts, or requiring large data and computational re- 059

sources. Therefore, developing competitive LLMs 060

with limited training resources remains a challenge, 061

particularly in university-level laboratories. 062

Motivated by the above considerations, our con- 063
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Figure 2: YuLan-Mini improves final training stability
under large learning rate and deep architecture.

tributions in are as follows: (1) We present a fully-064

open 2.4B-parameter language model, YuLan-Mini,065

that achieves top-tier performance among models066

of similar parameter scale. To facilitate reproduc-067

tion, we report the complete training details for068

YuLan-Mini, including all data composition for069

training curriculum, training source code, and opti-070

mizer states. (2) We devise an elaborately designed071

efficient data pipeline that compiles data synthesis,072

data curriculum, and data selection. In particular,073

we extensively leverage an classifier-based “easy-074

to-hard” curriculum learning and synthetic data075

like formal mathematics reasoning. (3) We investi-076

gate deeply into the transformers architecture and077

provide an efficient pre-training method that effec-078

tively mitigates training instability. We identify079

several training instability factors e.g., exploding080

hidden states and RMSNorm representation col-081

lapse. By exploring a variety of techniques to sta-082

bilize under radical configuration and enhance the083

performance of YuLan-Mini.084

To demonstrate the effectiveness of our efficient085

pre-training methodologies, we compare it with a086

few competitive base models from both research087

and industry on a variety of benchmarks. We088

also conduct extensive ablation experiments on our089

training stability methods (Section 6.1) and data090

pipeline (Section 6.2). Experimental results show091

that our base model, YuLan-Mini, can achieve very092

promising results among these compared models093

(Figure 1). For instance, it outperforms recent mod-094

els e.g., OLMo2-7B, SmolLM2-1.7B, and Llama3-095

8B.096

2 Related Work097

Pre-Training of LLMs The prevailing pre-098

training approach often incurs significant099

costs (Radford et al., 2019; Brown et al., 2020;100

OpenAI, 2023). Therefore, much recent research101

has focused on optimizing the performance102

of relatively small language models (Zhang103

et al., 2024b; Hu et al., 2024; Liu et al., 2024c; 104

Bellagente et al., 2024; Allal et al., 2024). Existing 105

research on Transformer training stability has 106

identified various sources of instability and 107

proposed mitigation methods (Yang et al., 2022; 108

Takase et al., 2023; Nishida et al., 2024). However, 109

few studies have examined training stability 110

from the perspective of efficiency. For instance, 111

while QK LayerNorm improves stability, it adds 112

computational overhead (Henry et al., 2020; 113

Bellagente et al., 2024; Rybakov et al., 2024). 114

The µP method stabilizes early training but still 115

faces instability under large learning rates (Yang 116

et al., 2022). Similarly, reducing the AdamW 117

epsilon parameter works well only for larger 118

models (Molybog et al., 2023; Wortsman et al., 119

2024), while techniques like Z-Loss and weight 120

decay offer limited benefits (Zoph et al., 2022b). 121

Pre-Training data pipeline Data pipelines gen- 122

erally involve data filtering, curriculum learning, 123

and data synthesis (Young et al., 2024). Data fil- 124

tering eliminates redundant data using methods 125

like de-duplication (Sun et al., 2024), model-based 126

scoring (Lozhkov et al., 2024a), or gradient-based 127

selection (Xia et al., 2024). Curriculum learning 128

adjusts the order of data across training stages (Zhu 129

et al., 2024), while data synthesis leverages ex- 130

isting models to integrate posterior insights (e.g., 131

specific topics) (Gunasekar et al., 2023; Wei et al., 132

2024; Chen et al., 2024). However, most research 133

work focuses on isolated components, and indus- 134

trial models seldom reveal pipeline details. 135

3 Efficient Pre-Training 136

Training instability poses a significant challenge 137

to the effective training of LLMs, e.g., irrecover- 138

able divergent training. While large learning rates 139

or deep architectures can accelerate model conver- 140

gence, this improvement is only feasible as long as 141

there are no loss spikes or an escalating gradient 142

norm (AllenAi, 2024). Our training approach com- 143

bines such configuration with improved stability, 144

enabling performance on par with industry-level 145

models while using significantly fewer resources. 146

3.1 Architecture Improvements 147

We summarize our architecture details in Table 1. 148

Specifically, YuLan-Mini employs a 2.4B LLaMA- 149

like transformer architecture with embedding ty- 150

ing (Press and Wolf, 2017). The decoder layer can 151
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Table 1: Architecture comparison between LLMs fea-
turing training stability.

Methods MiniCPM OLMo2 7B YuLan-Mini

Arch Shallow Shallow Deep
Param Init µP / µP
Numerical / / Re-Param
LayerNorm Pre-LN Reordered Pre-LN
Residual Scale / Scale
Attention / QK-Norm /
Embedding Tie+Scale w/o WD Tie+Scale
Peak LR 0.01 3× 10−4 0.01

Avg Perf 49.5 52.5 57.5

0 2500 5000 7500 10000
Training Steps

1

10

0 2500 5000 7500 10000
Training Steps

1

10

Layer  1
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Layer 25
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Grad Norm

Figure 3: Comparison of training dynamics (hidden
state variance and gradient norm) between convergent
(left) and divergent (right) trials on a log-scale. Both tri-
als exhibit consistent loss, but the divergent trial shows
increasing hidden state variance and gradient norm.

be formalized as:152

zl = yl + FFN(RMSNorm(yl)), (1)153

yl = xl + MHA(RMSNorm(xl)), (2)154

where xl,yl, zl are hidden states of each layer l155

and u = RMSNorm(xl) and v = RMSNorm(yl) are156

RMSNorm outputs. For training efficiency, we specif-157

ically use large global learning rate of 0.01 and158

a deep and thin architecture (56 decoder layers).159

We combine a parameter initialization approach160

akin to µP with matrix-level re-parameterization161

to stabilize training under this configuration. We162

estimate a calculation-efficient vocabulary size of163

99K, and apply BPE-dropout (p = 0.2) (Provilkov164

et al., 2020) and individual-digit tokenization to165

further balance the update of embedding. We lever-166

age several fused kernels (Hsu et al., 2024; Dao,167

2024) to enhance efficient calculation, achieving168

a 51.57% Model FLOPs Utilization (MFU). The169

detailed overall configuration is provided in Ap-170

pendix A.171

3.2 Bounding Dynamics of Transformers to 172

Mitigate Abnormal Gradients 173

After analyzing the training dynamics of our model, 174

we observe that hidden states (a.k.a., activations) 175

can reveal deeper underlying issues which are dif- 176

ficult to detect in the early stages when focus- 177

ing solely on the loss (Figure 3 Right). Specifi- 178

cally, hidden states diverge increasingly with model 179

depth (i.e., more layers) and, more significantly, ex- 180

hibit an exponential upward trend with increasing 181

training steps. This empirically results in substan- 182

tial gradient updates, which, in turn, can lead to 183

training instability. To address this, we next esti- 184

mate the bounds of hidden states in transformers, 185

forming the foundation for the development of mit- 186

igation strategies in Section 3.3. 187

Residual connection To investigate the growing 188

hidden states and subsequent exploding gradient 189

across model depth (Figure 3), we analyze the vari- 190

ance addition of each layer ∆H l = var(zl) − 191

var(xl) = var(MHA(v)) + var(FFN(u)). By plug- 192

ging in the variance of MHA and FFN into Equa- 193

tion 1 and 2, we can estimate the upper bound of 194

variance addition in initial steps as: 195

∆H l <d2model · var(Wv) · var(Wo) 196

+ dffn · dmodel · var(Wup) · var(Wdown),
(3)

197

which greatly accumulates across decoder layers. 198

A detailed derivation can be found in Appendix C 199

and Takase et al. (2023). 200

Layer normalization RMSNorm is proposed to
re-scale data, providing scale-insensitivity to mod-
els (Zhang and Sennrich, 2019). We observe a
behavior in Layer Normalization (LN) commonly
associated with training instability, referred to as
“RMSNorm representation collapse”. In this phe-
nomenon, the LN outputs rapidly collapse to a very
small variance, which can lead to spikes in attention
weights and loss (Figure 4). Previous work sug-
gests that the variance of RMSNorm inputs should
be ≥ 1, as values below this threshold can lead to
gradient inflation (Takase et al., 2023):∥∥∥∥∂RMSNorm(x)∂x

∥∥∥∥
2

= O

( √
d

∥x∥2

)
,

which suggests initializing embeddings to 1 or em- 201

ploying more complex techniques, such as separate 202

weight decay on embedding (AllenAi, 2024) or 203
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Figure 4: RMSNorm representation collapse. The out-
put of LN collapsing to small values may lead to insta-
bility.

embedding normalization (Scao et al., 2022). How-204

ever, we find these methods can trigger RMSNorm205

representation collapse, by hindering necessary up-206

dates of the scale vector g in it.207

3.3 Mitigating Instability through µP and208

Re-parameterization209

To mitigate training instability, we employ a two-210

pronged approach: 1) preventing growing hid-211

den states and RMSNorm representation collapse212

through carefully designed model initialization,213

and 2) absorbing large gradient variability via ma-214

trix re-parameterization:215

Consistent architecture Compared to original216

scaled initialization (Shoeybi et al., 2020; Takase217

et al., 2023), the Maximal Update Parametriza-218

tion (µP) has been proposed (Yang et al., 2022,219

2024c) to provide a consistent architecture for220

model initialization and scaling, including embed-221

ding scaler, residual scaler, learning rate scaler,222

and scaled initialization. µP mitigate training in-223

stability within transformers architecture. For in-224

stance, the scaled initialization initialize MHA and225

FFN with small values std(Wv) = std(Wup) =226 √
2/(5dmodel) and std(Wo) = std(Wdown) =227 √
1/(5dmodel · nlayers), thereby mitigating grow-228

ing hidden states rooted across all hidden layers229

shown in Equation 3:230

nlayers∑
l=1

∆H l <
7

25
.231

∆𝑊𝑊
#𝑊

𝛼

𝑥!"#

𝑥!

𝑥!⨂𝕀
Σ	𝑊𝑥

𝛼𝑥!⨂𝕀

Loss: 3536.0 Loss: 972.0

Baseline Re-Param

(a) Derivatives of Re-Param.

0 200 400
Steps

0.000
0.001
0.002
0.003
0.004
0.005

W W w/o Re-Param

4e5
2e5

0
 2e5
 4e5

 (Right)

(b) Gradient norm.

Figure 5: Re-Param enhances gradient representation
by “absorbing” large gradient variability to ∆α.

Besides µP, we also incorporate embedding ty- 232

ing by initializing the embeddings with a variance 233

smaller than 1. This helps prevent RMSNorm rep- 234

resentation collapse by enabling updates to RM- 235

SNorm during the early stages of training. 236

Gradient representation However, we observe
that spikes in loss still occur with large learning
rates when using µP. We empirically find that
this is suffered from variability in gradient up-
dates. Inspired by recent studies in training in-
stability (Nishida et al., 2024; Chung et al., 2024),
we find re-parameterization (Re-Param) method
provides a different gradient representation as illus-
trated in Figure 5a:

W = αW̃, α ∈ R,

where the matrix weights W is re-parameterized 237

with an additional learnable parameter α. Our sur- 238

rogate experiments on a simple linear regression 239

show that Re-Param successfully decompose the 240

original gradient and absorb the variability of it. 241

Combined with the consistent architecture provided 242

by µP, we find the above Re-Param method to be 243

effective in addressing exploding hidden states and 244

thereby enhance pre-training efficiency. 245

4 Efficient Data Pipeline 246

Effective data curation and curriculum design have 247

been shown to be key to improving model perfor- 248

mance when the data volume for training is fixed. 249

However, few open studies provide full technical 250

details about the entire data pipeline. In this section, 251

we present a comprehensive, efficient, and fully 252

open data pipeline that includes filtering data, syn- 253

thesizing high-quality reasoning data, optimizing 254

training data scheduling, and improving data selec- 255

tion during the annealing stage. By utilizing only 256

1.08T of training data, we achieve industry-level 257
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Figure 6: Illustration of our data filtering and synthetic
for reasoning data pipeline.

results with relatively low cost. Figure 6 illustrates258

the data filtering and synthesis process, with the259

implementation details provided in Appendix D.260

4.1 Synthetic Generation of Reasoning Data261

Reasoning is a crucial skill for LLMs (Huang and262

Chang, 2023), but real-world datasets often lack263

texts with complex reasoning. Recent research in-264

dicates that reasoning structures are important to265

enhance a model’s reasoning abilities (Yang et al.,266

2025; Li et al., 2025). In YuLan-Mini, we propose267

an efficient approach to systematically scale reason-268

ing structures, leading to significant improvements269

in mathematical and coding capabilities. We show270

in Appendix E that this does not compromise the271

subsequent post-training capability.272

Formal theorem proving Lean provides a ver-273

ifiable environment to explore theorem proving274

formally, which has been shown effective in im-275

proving mathematical reasoning (Xin et al., 2024;276

Ying et al., 2024b). As far as we know, we are the277

first public study to introduce formal mathematics278

data in pre-training, using a total amount of 0.2B279

lean-based synthesized data.280

Reasoning primitives In addition to the “pre-281

dict the next tactic” used in existing for-282

mal theorem proving research (Ying et al.,283

2024a; Wu et al., 2024), we extend it to284

three new reasoning primitives: (1) Deduction:285

Statebefore,Tactic → Stateafter; (2) Abduction:286

Stateafter,Tactic → Statebefore; and (3) Induction:287

Statebefore,Stateafter → Tactic.288

CoT reasoning We generate CoT reasoning data289

for three fields: mathematics, coding, and sci-290

ence, by using instruct version of Qwen2.5-7B and291

Qwen2.5-Math-7B. Additionally, we develop a pro-292

gram to automatically convert simple mathematical293

queries (e.g., “What is 0.079 + 162?”) into294

detailed calculation procedures.295
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Web
Chinese
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Figure 7: The data mixture proportion. The annealing
stage begin after the dashed line.

Reflection To enhance model’s reasoning 296

ability, we incorporate the reflection mech- 297

anism for solving math problems. We use 298

Qwen2.5-7B-Instruct to generate both correct 299

and incorrect solutions with corresponding error 300

analysis to form a synthetic reflection process. 301

This enhances model’s reasoning ability without 302

reinforcement learning. 303

4.2 Data Curriculum 304

Data curriculum intuitively aligns with the learn- 305

ing process of LLMs, but existing research rarely 306

achieves real-world effectiveness due to its large 307

costs. Our approach offers a potential solution 308

for small corpus (e.g., 1T tokens). Building on 309

the WSD three-stage learning rate scheduler, we 310

further divide the process into 27 stages, each span- 311

ning 40B tokens. We dynamically design the cur- 312

riculum based on content difficulty and model ca- 313

pability while keeping adjustments within 3% to 314

avoid loss spikes. We primarily implement curricu- 315

lum learning in mathematics and coding content. 316

Figure 7 illustrates the data distribution for each 317

curriculum phase. 318

Content difficulty Text of varying difficulty lev- 319

els are unevenly distributed in datasets. Typically, 320

we reorder and perform weighted sampling on the 321

content according to difficulty, which facilitates an 322

efficient learning process. To estimate a difficulty 323

level, we primarily use quality classifiers such as 324

fineweb-edu-scorer and python-edu-scorer. 325

We heuristically analyze the difficulty distribution 326

across score segments to ensure the curriculum is 327

correctly ordered due to its inherent bias.1 328

1For instance, when using the python-edu-scorer, low
scores in large datasets often correspond to noisy data, whereas
in meticulously curated datasets, low scores typically repre-
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Dynamic model capabilities For each curricu-329

lum phase, we reassess the model’s overall perfor-330

mance and adjust the data ratio based on it. For ex-331

ample, if the model presents strong performance in332

HumanEval, we may consider decrease the amount333

of code data in subsequent phases. To further im-334

prove its reasoning ability, a small amount (<5%)335

of instruction data is introduced to the later stage of336

stable stage, and is increased to 19.19% in the an-337

nealing stage. Specifically, we incorporate the for-338

mal mathematical reasoning data (theorem proving339

in Lean) and advanced reasoning data (Section 4.1).340

4.3 Data Selection for Annealing Stage341

Selecting high-quality data during the annealing342

stage is crucial, as learning rate annealing enables343

the model to rapidly improve its performance (Hu344

et al., 2024). For this reason, we carefully cu-345

rate high-quality data for the annealing process.346

Previous studies on data selection often yield sub-347

optimal results or incur significant computational348

overhead (Xia et al., 2024). Thus, we mainly con-349

sider an improved LESS method (Xia et al., 2024),350

combining the method InsTag (Lu et al., 2024) for351

constructing a diversified target set (a subset of352

training set). Specifically, we replace the random353

matrix used in the gradient mapping with a matrix354

derived through PCA dimensionality reduction on355

the target set. Furthermore, we observe that the gra-356

dients at each layer are nearly orthogonal, allowing357

us to remove certain layers to enhance efficiency.358

5 Experiments359

Experimental results of different base models on360

public benchmarks are shown in Table 2, and we361

can make the following observations:362

• Superior training efficacy. Overall, YuLan-363

Mini achieves highly competitive performance364

compared to leading small industry models, de-365

spite being trained on just 1.08T tokens. Mean-366

while, most of our training data comes from open-367

source and synthetic datasets, demonstrating that368

with careful data cleaning, selection, and schedul-369

ing, we develop a robust base model even with370

limited resources in a university-level laboratory.371

• Excellence in mathematical and coding. On372

specific benchmarks for mathematical reasoning373

(MATH-500 and GSM8K) and coding generation374

(HumanEval and MBPP), YuLan-Mini achieves375

leading performance. This consistent superior-376

sent high-quality competition-level problems.
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Figure 9: Ablation study of overall training recipe and
Re-Param.

ity can be mainly attributed to the use of high- 377

quality pre-training corpus and reasoning synthetic 378

data (e.g., formal mathematics reasoning problems). 379

Our core idea is to extend the types of reasoning 380

data and enhance the complex reasoning capacities 381

of our base model, which leads to large improve- 382

ments on mathematical benchmarks. 383

• Strong general capability. Beyond specialized 384

tasks, YuLan-Mini also demonstrates strong perfor- 385

mance on various general benchmarks, spanning 386

from language modeling and commonsense reason- 387

ing, highlighting the versatility of the model. It 388

indicates that our pre-training approach well bal- 389

ances the learning of diverse abilities, resulting in 390

a robust general-purpose foundation model. 391

Details of the benchmarks and evaluation set- 392

tings are provided in Appendix B. 393

6 Ablation Study 394

6.1 Methods of Mitigating Training Instability 395

396

Surrogate experiments on Re-Param We con- 397

duct surrogate linear regression experiments to 398
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Table 2: Performance on math, code, and reasoning benchmarks. Results marked with * are cited from their official
paper or report. The best and second best results (±1.0) are bold and underlined, respectively.

Models Model
Size

Data
Size

MATH
500

GSM
8K

Human
Eval MBPP MMLU CEval ARC-c Hella

Swag
Wino

Grande Avg

MiniCPM 2.7B 1T 15.0 53.8 50.0∗ 47.3 53.4 48.2 43.9 67.9 65.7 49.5
Qwen2 1.5B 7T 22.6 46.9∗ 34.8∗ 46.9∗ 55.9 71.9 42.9 66.1 66.1 50.5
Qwen2.5 0.5B 18T 23.6 41.6∗ 30.5∗ 39.3∗ 47.5 54.3 39.5 50.5 55.9 42.5
Qwen2.5 1.5B 18T 45.4 68.5∗ 37.2∗ 60.7 60.2∗ 69.1 53.4 67.2 64.5 58.5
Gemma2 2.6B 2T 18.3∗ 30.3∗ 19.5∗ 42.1∗ 52.2∗ 28.0∗ 55.7∗ 74.6∗ 71.5∗ 43.6
StableLM2 1.6B 2T 1.8 20.6 8.5 17.5 40.4 27.0 40.8 69.8 64.6 32.3
SmolLM2 1.7B 11T 11.8 31.1∗ 23.4 45.0 51.9 35.1 35.5 73.0 67.4 41.6
Llama3.2 3.2B / 7.4 3.2 29.3 49.7 63.4 44.4 48.8 75.6 67.5 43.3
Falcon3 3.2B / 44.6 66.0 34.4 52.5 59.7 38.2 51.6 65.8 64.4 53.0

YuLan-Mini 2.4B 1T 37.8 68.5 64.0 65.9 49.1 48.2 49.3 67.2 67.2 57.5
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Figure 10: Performance of different data curricula on
math and code benchmarks.

validate the effectiveness of Re-Param, as dis-399

cussed in Section 3.3. Specifically, we train a400

20,000-dimensional linear regression model using401

the Adam optimizer. Our results demonstrate that402

Re-Param improves insensitivity to the learning403

rate by decomposing gradient variability into a404

learnable factor. This method effectively stabilizes405

training across a wide range of learning rates.406

Main training recipe The effectiveness of our407

pre-training recipe mainly comes from a combi-408

nation use of µP and re-parameterization, which409

also provides: (1) consistent training dynamics, in-410

cluding training loss, gradient norm, and hidden411

states, (2) enhanced model capabilities in language412

modeling and generation (Figure 9a Left), and (3)413

stable model weights (Figure 9a Right).414

We provide ablation study on our recipe in Fig-415

ure 8. Unlike previous studies that focus on test416

loss (AllenAi, 2024), our work primarily examines417

LAMBADA accuracy, which we observe can be-418

have differently despite comparable test loss. We419

build a 0.2B proxy model with a deep and thin ar-420

chitecture resembling YuLan-Mini and train it on421

20B tokens. The main observations are as follows.422

• QK LayerNorm. This method addresses gra-423

dient divergence (green bar) but introduces a 24% 424

runtime overhead. However, it has a similar loss, 425

with no additional improvement in LAMBADA. 426

• Weight decay. Using weight decay achieves 427

comparable stabilization and 23.06% accuracy 428

without computational penalty. 429

• Cerebrase µP. Combining Cerebrase µP with 430

larger learning rate yields improvements, but loss 431

spikes occur and ultimately lead to divergence. 432

• Shallow architecture. Shallow and wide model 433

are less likely encounter training instability even in 434

large LR, but fails to deliver better performance. 435

• Depth µP. By scaling down FFN and MHA in 436

residual, Depth µP provides further stabilization 437

besides Cerebras µP in our deep architecture. 438

• Re-Param. Our solution achieves peak perfor- 439

mance (29.37% accuracy) through absorbing vari- 440

ability in large gradients, while introducing only 441

5% additional runtime compared to baseline. 442

6.2 Ablation Study on Data Pipeline 443

Synthetic data We utilize various data synthesis 444

methods, as outlined in Section 4.1. The key ob- 445

servations regarding the use of formal mathematics 446

data (i.e., Lean theorem proving) during the learn- 447

ing rate annealing stage are as follows: (1) w. Lean 448

incorporates 0.1B Lean data into the annealing data 449

(80B tokens), and (2) w/o Lean incorporates 0.1B 450

web data into the annealing data. As shown in Ta- 451

ble 4, the integration of formal mathematical data 452

notably enhances the model’s mathematical capa- 453

bilities, even when incorporating non-formal math. 454

This results in a 2.7% improvement on GSM8K 455

and a 16.4% improvement on MATH-500, with 456

the most significant gains observed on the more 457

challenging problems (i.e., MATH-500). Impor- 458

tantly, the inclusion of Lean data does not affect 459

the model’s generative capabilities. 460
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Table 3: Performance on math, code and reasoning benchmarks. The best result is bold.

Models MATH GSM8K HumanEval MBPP MMLU CEval ARC-c GPQA IFeval Avg

Qwen-2.5-1.5B-Instruct 55.2 73.2 61.6 88.1 57.5 65.4 47.8 29.8 42.5 57.9
Llama3.2-3B-Instruct 48.0 43.4 51.5 80.4 60.0 45.9 78.6 38.6 - 55.8

YuLan-Mini-Instruct 55.2 81.8 67.7 85.7 53.6 50.5 51.8 30.1 44.0 57.8

Table 4: Performance on math benchmarks during the
annealing stage with and without Lean data.

Setting GSM8K MATH-500 LAMBADA

(1) w/o Lean 66.65 32.6 64.72

(2) w. Lean 68.46 39 65.67

Table 5: Ablation study on our data selection method.
HE refers to HumanEval.

Method LAM
BADA MMLU GSM

8K HE Time

(1) Random 54.6 38.3 31.6 36.8 -

(2) LESS 50.9 38.6 31.5 33.1 3.5h
(3) w. PCA 52.6 41.4 30.4 30.0 3.5h
(4) w. LR 51.7 37.8 35.1 36.7 1h
(5) Ours 56.4 40.9 40.3 34.9 1h

Curriculum learning We choose GSM8K and461

MBPP benchmarks to measure the effectiveness462

of our data curriculum. As shown in Figure 10,463

a gradually increasing difficulty level (math and464

code curricula) is more beneficial compared to a re-465

versed “hard-to-easy” curriculum (math baseline),466

or a randomly shuffled difficulty order (code base-467

line). Specifically, on the GSM8K dataset, the468

math baseline’s “hard-to-easy” approach leads to469

faster initial performance gains. However, as high-470

difficulty content is quickly exhausted, the “easy-471

to-hard” strategy surpasses it in the later stages472

(Figure 10a). On the MBPP dataset, according to473

our investigation, when simpler data is used in the474

early stages of training, the model can quickly mas-475

ter basic coding skills (such as basic operations476

with lists and dictionaries). As training progresses,477

model can gradually learn more advanced coding478

operations (Figure 10b).479

Data selection for micro-annealing Here we480

validate the effectiveness of our data selection481

method employed during the annealing phase482

through micro-annealing surrogate experiments483

(Section 4.3). We examine five distinct configu-484

rations: (1) Random selects data randomly; (2)485

LESS represents the original LESS method for data486

selecting; (3) LESS w. PCA uses the PCA matrix 487

obtained from the target set for projection; (4) LESS 488

w. LR removes 80% of the layers from the original 489

model; (5) LESS w. PCA & LR is our enhanced 490

LESS method. We perform data selection on 0.16B 491

instructional tokens, retaining the top 50% based 492

on scores, and utilize a 0.42B pre-training dataset 493

to maintain the data distribution. As shown in Ta- 494

ble 5, substituting a random matrix with a PCA 495

matrix for projection generally enhances model 496

performance. Notably, removing 80% of the lay- 497

ers can increase selection speed by 3.5 times, and 498

enhance the performance. 499

6.3 Post-training Performance 500

We conduct post-training for YuLan-Mini. We first 501

fine-tune YuLan-Mini on collected high-quality 502

datasets, then utilize the DPO and PPO algorithm 503

to further fine-tune our model on human alignment 504

and complex reasoning datasets. The experiment 505

details can be found in Appendix E. As the results 506

shown in Table 3, we can see our YuLan-mini also 507

exhibits better performance than these competitive 508

baselines, indicating its learned strong capability 509

from our designed pre-training method. 510

7 Conclusion 511

In this paper, we introduced YuLan-Mini, a highly 512

capable base model comprising 2.42 billion pa- 513

rameters. We provided comprehensive technical 514

details and resources, including the composition of 515

the training curriculum, the source code, and the 516

optimizer state. We investigated the causes of train- 517

ing instability and proposed an effective method 518

for stabilizing the training process. Furthermore, 519

we designed a complete and efficient data pipeline, 520

detailing the synthesis of high-quality reasoning 521

data, the design of the data curriculum, and the 522

selection of data during the annealing phase. The 523

advanced stabilization techniques and meticulously 524

organized data pipeline enabled us to conduct effi- 525

cient pre-training, achieving commendable perfor- 526

mance with only 1.08T tokens. 527
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Limitations528

In this paper, we explore the training stability529

of large language models during pre-training and530

present a comprehensive data pipeline. Utilizing531

only 1.08T tokens, we successfully trained a highly532

effective base model with 2.4 billion parameters,533

demonstrating the efficiency of our training ap-534

proach. But there are also two limitations in this535

work. Firstly, due to the substantial computational536

resources required for pre-training, and given that537

we operate within a university-level laboratory with538

constrained computing capabilities. We currently539

have only 48 A800 GPUs, which limits us to train-540

ing a smaller model with 2.4 billion parameters.541

Similarly, due to hardware constraints, we can not542

explore more efficient pre-training using FP8. Sec-543

ondly, due to the extensive volume of training data,544

comprising 1.08 trillion tokens, we only conduct545

data curriculum ablation experiments on approx-546

imately 400 billion tokens and we are unable to547

perform a comprehensive ablation study on the548

data curriculum encompassing the entirety of the549

training process.550

Ethics Statement551

We abide by ethical norms. We adhere to the rele-552

vant licenses and usage guidelines for the datasets,553

ensuring that no personal or offensive information554

is included. Documentation for the datasets is avail-555

able in our project repository. We only use the AI556

assistant during the paper refinement process.557
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Fedus. 2022b. ST-MoE: Designing Stable and Trans-1334
ferable Sparse Expert Models. (arXiv:2202.08906).1335

A Overall Pre-Training Configuration 1336

In this section, we will provide an overview of 1337

the pre-training configuration, introducing its key 1338

components and the algorithms involved in the pro- 1339

cess. For a more detailed discussion of the major 1340

contributions made in this work, please refer to 1341

Section 3.2 and Section 4. 1342

A.1 Model Architecture 1343

Our model is based on a decoder-only transformer 1344

with a tall and narrow architecture, inspired by pre- 1345

vious studies (Liu et al., 2024c; Hu et al., 2024). 1346

It comprises a total of 2.42B parameters, of which 1347

2.23B are non-embedding parameters. The hyper- 1348

parameter configurations for our model architec- 1349

ture are provided in Table 6. Additionally, we re- 1350

parameterize each weight matrix of different mod- 1351

ules with an extra learnable parameter (Nishida 1352

et al., 2024), enhancing the model’s training sta- 1353

bility (discussed in Section 3.2). Next, we briefly 1354

introduce the main components in our architecture. 1355

Embedding tying We utilize embedding ty- 1356

ing (Press and Wolf, 2017) to reduce the model’s 1357

parameter size and stabilize training. In our prelim- 1358

inary experiments, we find that sharing the embed- 1359

ding and unembedding matrices improves model 1360

convergence. Furthermore, when these matrices 1361

are not shared, they often necessitate different ini- 1362

tialization strategies, which we will discuss in Sec- 1363

tion 3.2. 1364

Pre-RMSNorm Layer normalization (LN) has 1365

been shown to enhance numerical stability and ac- 1366

celerate learning speed (Ba et al., 2016). We in- 1367

tegrate Pre-LN into our model architecture to im- 1368

prove convergence stability and speed compared to 1369

Post-LN (Xiong et al., 2020). Regarding the form 1370

of normalization, we opt for RMSNorm over the con- 1371

ventional LayerNorm, as it conserves CUDA mem- 1372

ory while attaining a comparable effect (Zhang and 1373

Sennrich, 2019). 1374

SwiGLU Our model introduces non-linearity us- 1375

ing a gated linear unit (GLU) with the Swish activa- 1376

tion function, known as SwiGLU (Shazeer, 2020). 1377

This method effectively captures complex data rela- 1378

tionships and has proven to be effective in relatively 1379

small language models, as demonstrated by (Liu 1380

et al., 2024c). 1381

Attention mechanism We adopt the grouped- 1382

query attention (GQA, (Ainslie et al., 2023)), 1383
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which enables the model to reduce KV cache us-1384

age while maintaining high performance. Specifi-1385

cally, we employ 30 heads for query attention and 61386

groups for key-value heads. We opt not to make the1387

KV head size divisible by 8 since small language1388

models rarely require tensor parallelism during in-1389

ference. We only add bias for QKV projections.1390

Rotary Embedding We adopt rotary positional1391

embedding (RoPE) to capture the positional infor-1392

mation in our model, since it integrates absolute1393

and relative positioning in an unified way. During1394

the stable training stage, we set the parameter θ1395

to 10,000, and increase it to 49 000 during the an-1396

nealing stage to extend the context length to 28,6721397

(28K) tokens using adjusted base frequency (ABF).1398

A.2 Tokenizer1399

Tokenization is a critical preprocessing step that1400

splits input text into sequences of tokens. Below,1401

we provide details of our tokenizer.1402

Vocabulary size Generally, the vocabulary size1403

should be chosen to balance its effects on the1404

model’s parameter size and efficiency. We adopt1405

the three approaches proposed by (Dagan et al.,1406

2024) to balance the compute budget and vocab-1407

ulary capacity, yielding a final vocabulary size of1408

around 99,000. For simplicity, we reuse the Byte1409

Pair Encoding (BPE) tokenizer of MiniCPM (Hu1410

et al., 2024). Specifically, we truncate the vocab-1411

ulary by applying the corresponding BPE merge1412

rules to reduce the number of tokens. We also1413

heuristically remove rare domain-specific tokens,1414

while add some reserved tokens in the vocabu-1415

lary. The statistics of the modified vocabulary and1416

the compression rate are shown at Table 7. The1417

test set for the tokenization experiments is sourced1418

from a diverse array of datasets, as detailed in Sec-1419

tion B.4. Overall, our tokenization method achieves1420

a well-balanced compression rate across different1421

domains.1422

BPE-dropout Existing sub-word tokenization1423

methods prevent the language models from under-1424

standing the alphabetic composition of a token. To1425

mitigate this issue, BPE-dropout (Provilkov et al.,1426

2020) has been proposed to help the model bet-1427

ter learn the internal representation of a token, en-1428

abling it to more effectively capture possible sub-1429

words within a word. Specifically, we use a rel-1430

atively low dropout rate of 0.2, and applying the1431

dropout method results in only a slight increase in1432

the number of tokens (0.07%), as shown in Table 7. 1433

Digit tokenization Digit tokenization plays a cru- 1434

cial role in mathematical tasks, including numerical 1435

calculation and complex reasoning. We follow the 1436

common practice of splitting numbers into indi- 1437

vidual digits (Bi et al., 2024; Yang et al., 2023). 1438

Although other methods, such as three-digit tok- 1439

enization, may achieve higher compression rates, 1440

using individual-digit tokenization typically leads 1441

to improved numerical calculation accuracy (Wang 1442

et al., 2024). 1443

A.3 Training Data Preparation 1444

Data serves as the foundation for developing the 1445

model’s capabilities, and we employ specially de- 1446

signed strategies for collecting and preparing the 1447

training dataset. Next, we briefly describe the gen- 1448

eral procedure for data preparation. A more de- 1449

tailed and comprehensive description of the data 1450

pipeline is provided in Section 4. 1451

Data collection and selection To ensure repro- 1452

ducibility, our pre-training data is primarily sourced 1453

from open-source pretraining datasets and syn- 1454

thetically generated data. The main open-source 1455

datasets include FineWeb-Edu (Lozhkov et al., 1456

2024a), the-stack-v2 (Lozhkov et al., 2024b), open- 1457

web-math (Paster et al., 2024), Chinese-FineWeb- 1458

Edu (?), and OpenCoder-LLM (Huang et al., 2024). 1459

The entire pre-training dataset has undergone rigor- 1460

ous preprocessing, with 1.08T tokens for training. 1461

Among them are 481B English web data, 138B 1462

general English knowledge, 227B code pre-training 1463

data, 16.7B code instruction data, 93.8B mathemat- 1464

ics pre-training data, 15.5B mathematics instruc- 1465

tion data, and 108B Chinese data. 1466

Data schedule Using the WSD scheduling 1467

method (Hu et al., 2024), the training process is di- 1468

vided into three main stages: warmup, stable train- 1469

ing, and annealing. The warmup stage uses 10B to- 1470

kens, the stable training stage utilizes 990B tokens, 1471

and the annealing stage uses 80B tokens. To bet- 1472

ter manage the training process, we divide the en- 1473

tire training trajectory into 27 consecutive curricu- 1474

lum phases, each consisting of 40B tokens. When 1475

transitioning between these curriculum phases, the 1476

dataset proportions are slightly adjusted based on 1477

the model’s performance on various benchmarks 1478

and the perplexity (PPL) of validation texts. How- 1479

ever, the internal data distribution of each curricu- 1480

lum phase cannot be modified once it has been 1481
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Table 6: Hyperparameter settings of diffrent models. rffn is the ratio of the feed-forward network’s hidden size to
the model’s hidden size. The definition of the symbols is available at Table 8

Model nlayers dmodel rffn nheads nkv_heads

LLaMA-3.2-3B 28 3,072 2.7 24 8
Phi-3-mini-4k-instruct 32 3,072 2.7 32 32
MiniCPM-2B 40 2,304 2.5 36 36
MiniCPM3-4B 62 2,560 2.5 40 40
Qwen2.5-1.5B 28 1,536 5.8 12 2
MobileLLM-1B 54 1,280 2.8 20 5

YuLan-Mini 56 1,920 2.5 30 6

Table 7: Compression rate of different tokenizers. Higher values indicate more effective compression.

Tokenizer Vocabulary Size Web Chinese Math Code

Gemma2-2B 256,000 4.928 3.808 2.865 3.309
Qwen2.5 151,936 4.935 3.956 2.890 3.881
LLaMA-3.1 128,000 4.994 3.263 3.326 3.911
MiniCPM-2.4B 122,753 4.753 4.273 2.739 3.052
Phi-3.5-mini 100,352 4.311 1.914 2.654 3.110
MiniCPM-1.2B 73,440 4.631 4.042 2.696 3.017

YuLan-Mini 99,000 4.687 4.147 2.716 3.033
+ Dropout 99,000 4.687 4.146 2.715 3.031

scheduled for training. During the annealing stage,1482

the proportion of instruction data and long context1483

data is increased. Following the work by (Hu et al.,1484

2024), we estimate the optimal annealing ratio to1485

be 8%, i.e., 80 billion tokens. We maintain the1486

same batch size used during stable training, i.e., 41487

million tokens. The learning rate is decreased from1488

10−2 to 5.22 × 10−5 over a span of 18,802 steps.1489

Subsequently, the learning rate is held constant at1490

5.22× 10−5 for the final 772 steps.1491

A.4 Model Optimization1492

For model optimization, hyperparameters are cru-1493

cial for training stability and model performance.1494

Specifically, we adopt the WSD learning rate1495

scheduler (Hu et al., 2024). Maintaining a constant1496

learning rate during the stable training stage elim-1497

inates the necessity to specify an ending step, as1498

required by the cosine scheduler. This approach fa-1499

cilitates continuing pre-training from the last check-1500

point during stable training. It also allows for more1501

flexible data preparation: we can prepare the data1502

while the preceding curriculum phase is running.1503

Additionally, we estimate an optimal annealing ra-1504

tio of 8% for the stable training stage using the1505

scaling law of learning rate annealing (Tissue et al.,1506

2024).1507

For training stability, we combine a parame-1508

ter initialization approach akin to µP (Dey et al., 1509

2023b; Hu et al., 2024; Yang et al., 2022) with 1510

WeSaR re-parameterization (Nishida et al., 2024), 1511

using a relatively large global learning rate of 1512

0.01. The rationale behind adopting a large learn- 1513

ing rate is the expectation that the model will 1514

possess greater potential for enhancement during 1515

the annealing stage. We set the AdamW hyper- 1516

parameters as follows: β1 = 0.9, β2 = 0.95, ϵ = 1517

10−15, with the weight_decay of 0.1 and the 1518

z-loss coefficient of 10−4 (de Brébisson and Vin- 1519

cent, 2016). We use a variance of 5 × 10−5 for 1520

initialization. As found by (Wortsman et al., 2024), 1521

extending the warm-up ratio enhances training sta- 1522

bility, so we linearly warm up the model over 10B 1523

tokens. We use a batch size of 4.12M tokens with 1524

a sequence length of 4,096, extending the context 1525

length during the annealing stage while keeping 1526

the total token count in the batch size unchanged. 1527

We avoid using gradient accumulation to prevent 1528

numerical precision error of bfloat16. Detailed 1529

analysis of training stability can be found in Sec- 1530

tion 3.2. 1531

A.5 Training Infrastructure 1532

We build a simple yet efficient training framework 1533

based on the HuggingFace Trainer and other open- 1534

source libraries (DeepSpeed, flash-attention, 1535
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and liger-kernel).1536

Specifically, we first use ZeRO-1 (Rajbhan-1537

dari et al., 2020) data parallelism provided by1538

DeepSpeed intergration and then switch to ZeRO-1539

2 after confirming that it does not cause training1540

divergence in our model.2 We also leverage Flash1541

Attention (Dao et al., 2022; Dao, 2024) and a triton1542

kernel library liger-kernel (Hsu et al., 2024) to1543

accelerate training processes. By employing fused1544

kernels, we achieve a 30% reduction in training1545

time and up to 70% savings in CUDA memory.31546

We further optimize the balance between CUDA1547

memory usage and training time by adjusting the1548

number of layers through the activation checkpoint-1549

ing function. For enhanced training efficiency, we1550

use bfloat16 precision for both model parameters1551

and NCCL communications. The model’s FLOPs1552

utilization (MFU) is estimated at 51.57%.1553

Regarding the hardware setup, we initially em-1554

ploy a 56 A800-GPU cluster managed by the1555

SLURM system (Yoo et al., 2003). We later reduce1556

the number of GPUs to 48 by transitioning the dis-1557

tributed optimizer to a universal checkpoint (Lian1558

et al., 2024). To maximize device utilization, we1559

perform tokenization and packing asynchronously.1560

Given the modest size of our cluster, the likelihood1561

of encountering NCCL failures is relatively low.1562

Therefore, after assessing the advantages and dis-1563

advantages, we decide to store a checkpoint every1564

hour and implement automatic restarts.1565

For efficient evaluation, we utilize LLM-1566

Box (Tang et al., 2024) to integrate vLLM (Kwon1567

et al., 2023) for generative tasks and employ KV1568

cache scheduling for multiple-choice tasks. For1569

a detailed description of the evaluation setup and1570

results, please refer to Appendix B.1571

A.6 Long Context1572

Previous research (Chen et al., 2023) has demon-1573

strated that LLMs can hardly process texts ex-1574

ceeding their context windows due to the out-of-1575

distribution (OOD) rotation angles in RoPE. To1576

achieve the context window extension, increasing1577

the base frequency of RoPE to migrate the OOD1578

rotation angles and continual pre-training has been1579

an effective method (Xiong et al., 2024). Conse-1580

quently, during the annealing stage, we increase1581

the base frequency of RoPE θ from 10,000, em-1582

2https://github.com/microsoft/DeepSpeed/issues/6351
3Fused kernels include: SelfAttention, RMSNorm,

RoPE, SwiGLU, FusedLinearCrossEntropy, and AdamW.
torch.compile is also enabled in our implementation.

ployed during stable training, to 490,000 and train 1583

the model on long texts. This adjustment success- 1584

fully extends the context length from 4,096 (4K) 1585

tokens to 28,672 (28K) tokens. 1586

During the annealing stage of the final 80B to- 1587

kens, we adjust the base frequency of RoPE from 1588

10,000 to 490,000 and train on long sequences to 1589

extend the context length from 4,096 tokens to 1590

28,672 tokens. We avoid training with long con- 1591

texts in earlier stages because the computational 1592

cost of self-attention layers increases quadratically 1593

with sequence length, making it prohibitively ex- 1594

pensive (Dubey et al., 2024). 1595

When training on long contexts, we observe a 1596

decline in the model’s performance on short-text 1597

benchmarks. To enhance the long-text capacities 1598

and preserve the short-text capacities, we carefully 1599

design the mixture of data. We upample books 1600

and concatenated GitHub code texts (Liu et al., 1601

2024b) as long context data to capture long-term 1602

dependencies, while using high-quality short texts 1603

to preserve short-text capabilities. Additionally, 1604

inspired by previous studies (Ding et al., 2024; Gao 1605

et al., 2024), we also apply masked cross-document 1606

attention that prevents attention across different 1607

documents to preserve short-context capabilities. 1608

A.7 Other Strategies 1609

Packing Since the training data during the an- 1610

nealing stage includes some instruction data, us- 1611

ing a traditional simple packing method for pre- 1612

training data could result in instruction data being 1613

split, thereby compromising its effectiveness. To 1614

address this, we propose a packing strategy de- 1615

signed to maintain training efficiency while min- 1616

imizing the disruption of instruction data. This 1617

strategy involves different packing methods based 1618

on data type. Pre-training data is directly spliced, 1619

whereas for instruction data, if it is divided into two 1620

sequences, the remaining part of the previous se- 1621

quence is padded directly, and this instruction data 1622

serves as the beginning of the second sequence. 1623

Subsequently, any redundant padding tokens are re- 1624

placed with pre-training data tokens. By including 1625

the instruction data, our main goal is to learn the 1626

reasoning process rather than focusing solely on 1627

the question-and-answer format. Therefore, we em- 1628

ploy the same data processing method used in pre- 1629

training, which directly includes question-answer 1630

pairs without relying on a chat template. When 1631

calculating the loss, the instruction and response 1632

are treated as a single document, and the loss for 1633
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the instruction is not masked.1634

Checkpoint merging Following the approach1635

used in LLaMA3 (Dubey et al., 2024), we com-1636

bine the last few checkpoints during the annealing1637

stage to produce the final pre-trained model. While1638

this strategy might result in a slight reduction in1639

certain specific capabilities (e.g., GSM8K), it gen-1640

erally leads to a more well-rounded model.1641

B Experimental Setup1642

B.1 Evaluation Benchmarks1643

For a comprehensive evaluation of LLMs perfor-1644

mance, we select the benchmarks from the follow-1645

ing aspects.1646

• Language comprehension: We select1647

the widely-used English benchmarks1648

MMLU (Hendrycks et al., 2021a), LAM-1649

BADA (Kazemi et al., 2023) and RACE (Lai1650

et al., 2017), along with the Chinese bench-1651

marks CMMLU (Li et al., 2024a) and1652

CEval (Huang et al., 2023), to evaluate1653

the bilingual comprehension capabilities of1654

the LLM. These benchmarks span various1655

domains, such as history, science, and culture.1656

• Code generation: We select Humaneval (Chen1657

et al., 2021) and MBPP (Austin et al., 2021)1658

to assess the capability of LLMs to generate1659

accurate code snippets for natural language1660

problems.1661

• Mathematical reasoning: We utilize1662

GSM8K (Cobbe et al., 2021) and MATH-1663

500 (Hendrycks et al., 2021b; Lightman et al.,1664

2024) to evaluate the mathematical reasoning1665

capabilities of LLMs. These benchmarks1666

range from basic arithmetic to advanced1667

mathematical problems.1668

• Logical reasoning: We assess the logical1669

reasoning capabilities of LLMs using ARC-1670

E (Yadav et al., 2019), ARC-C (Yadav et al.,1671

2019), which provide a comprehensive evalua-1672

tion of logical reasoning across various knowl-1673

edge domains.1674

• Commonsense reasoning: We evaluate the1675

LLM’s commonsense reasoning ability us-1676

ing WinoGrande (Sakaguchi et al., 2021),1677

HellaSwag (Zellers et al., 2019), Sto-1678

ryCloze (Mostafazadeh et al., 2016) which1679

test the understanding and utilization of daily 1680

commonsense knowledge. 1681

B.2 Baseline Models 1682

To ensure a comprehensive evaluation, we select 1683

several small LLMs with comparable scales (i.e., 1684

base models ranging from 0.5 to 3B, including 1685

embedding sizes) as baselines for comparison: 1686

• MiniCPM-2.4B (Hu et al., 2024): MiniCPM- 1687

2.4B is pre-trained on 1.06T tokens and also 1688

employs the annealing training strategy. De- 1689

spite its small size (2.7B total model size), it 1690

exhibits impressive performance in general 1691

tasks while supporting deployments with lim- 1692

ited hardware resource. 1693

• Qwen series models (Qwen-Team, 2024; 1694

Yang et al., 2024a): We select Qwen2-1.5B, 1695

Qwen2.5-0.5B, and Qwen2.5-1.5B for com- 1696

parison. The latest Qwen2.5 series of small 1697

LLMs have been pre-trained on 18T tokens, 1698

and the training details have not been fully 1699

publicly released. They demonstrate state 1700

of the arts performance in both general and 1701

domain-specific tasks. 1702

• StableLM2-1.6B (Bellagente et al., 2024): 1703

StableLM2-1.6B is a small LLM proposed by 1704

StabilityAI. It has been pre-trained on a mix- 1705

ture of open-source datasets, which utilizes 1706

several small LLMs to determine the training 1707

data proportion. 1708

• SmolLM2-1.7B (Allal et al., 2024): SmolLM2- 1709

1.7B is developed by HuggingFace TB Re- 1710

search based on its collected high-quality pre- 1711

training corpus, which has been trained on 1712

11T tokens, and maintains a good balance be- 1713

tween speed and accuracy. 1714

• Llama3.2-3B (Dubey et al., 2024): Llama3.2- 1715

3B (3.2B total model size) is developed by 1716

MetaAI, which is trained on up to 9T to- 1717

kens. It further distills the knowledge from 1718

LLaMA3.1-8B and 70B models by using their 1719

logits during the pre-training stage. 1720

• Gemma2-2.6B (Gemma Team, 2024): 1721

Gemma2-2.6B is developed by Google, 1722

which is trained on 2T tokens, mainly includ- 1723

ing web documents, code, and mathematical 1724

text. 1725
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• Falcon3-3B (Falcon-LLM Team, 2024):1726

Falcon3-3B is a transformer model initialized1727

from Falcon3-7B-Base by pruning with fur-1728

ther distillation to recover using 1024 H1001729

GPU chips.1730

B.3 Implementation Details1731

To comprehensively compare the performance of1732

different LLMs, we employ diverse evaluation set-1733

tings and design specific methods for guaranteeing1734

the fairness and efficiency.1735

• Zero-shot and few-shot settings: Follow-1736

ing existing work (Qwen-Team, 2024), For1737

LAMBADA, HumanEval, MBPP, RACE, Sto-1738

ryCloze and RULER, we adopt the zero-shot1739

setting. For GSM8K and MATH, we adopt the1740

4-shot setting. For MMLU, CMMLU, Wino-1741

Grande and CEval, we adopt the 5-shot setting.1742

For HellaSwag, we adopt the 10-shot setting.1743

For ARC-E, ARC-C, we adopt the 25-shot1744

setting.1745

• Chain-of-Thought (CoT): For GSM8K and1746

MATH, we follow previous work (Qwen-1747

Team, 2024) that uses CoT prompting to facil-1748

itate the LLM to perform step-by-step reason-1749

ing. Considering the potential performance1750

variance caused by CoT prompts, we utilize1751

both the short ones provided by the origi-1752

nal dataset and the long ones generated by1753

kimi-k0-math. For each model, we evaluate1754

the performance using both prompt types, and1755

select the one yielding the higher score as the1756

result.1757

• Evaluation metrics: For QA tasks, we em-1758

ploy maj@1 for GSM8K and MATH, pass@11759

for HumanEval and MBPP, and accuracy of1760

the model response for remaining generation1761

tasks. For multiple-choice questions, we pri-1762

marily evaluate based on the accuracy of the1763

generated answer, which is determined by se-1764

lecting the choice with the lowest perplexity.1765

However, for ARC-E and ARC-C, we uti-1766

lize normalized accuracy (Brown et al., 2020).1767

performance of MATH-500, we further use1768

gpt-4o-mini to verify the correctness of the1769

results generated by all models and conducted1770

manual checks.1771

• Maximum length: For GSM8K and MATH,1772

since CoT prompting may result in longer out-1773

puts, we set the maximum generation length1774

to 596 for short context (i.e., 4K) models 1775

and 2,048 for long context models. For Hu- 1776

manEval and MBPP, we set the maximum 1777

generation length to 400. For other generative 1778

tasks, we set it to 128 for efficiency. 1779

• Evaluation framework: For the majority of 1780

tasks, we employ LLMBox (Tang et al., 2024) 1781

to assess performance. Specifically, for gen- 1782

eration tasks, we enable vLLM (Kwon et al., 1783

2023). However, to ensure reproducibility, we 1784

utilize EvalPlus (Liu et al., 2024a) for Hu- 1785

manEval and MBPP. 1786

Despite our considerable efforts, fully reproduc- 1787

ing the results of these baseline models as origi- 1788

nally reported remains challenging, due to the lack 1789

of detailed evaluation setup information. For a fair 1790

comparison, we report the performance results of 1791

the baselines as provided in their official technical 1792

reports. 1793

B.4 Evaluating Model Performance during 1794

Pre-Training 1795

During pre-training, it is crucial to continuously 1796

evaluate the model’s performance to monitor for 1797

any unstable or abnormal training issues. However, 1798

existing benchmarks rely on advanced abilities 1799

(e.g., instruction following), which often develop 1800

with sufficient data training. Thus, the model’s per- 1801

formance tends to remain at a low level on these 1802

benchmarks in the early stages, and directly evaluat- 1803

ing the model’s performance on specific validation 1804

sets would not provide an accurate assessment. 1805

To address this, we have designed two monitor- 1806

ing strategies for different stages of training. In the 1807

early stages, we assess the model’s performance 1808

primarily through perplexity measures on the con- 1809

structed validation datasets and LAMBADA bench- 1810

mark. In the later stages, we shift to using perfor- 1811

mance on selected benchmarks (e.g., HumanEval 1812

and GSM8K) for more comprehensive evaluation. 1813

Next, we introduce how to construct the validation 1814

set for perplexity measurement at early stage of 1815

pre-training. 1816

To comprehensively evaluate the key abilities of 1817

our model, we create four validation sets from the 1818

following aspects, namely English understanding, 1819

Chinese understanding, code generation, and math 1820

reasoning. The detailed data composition is as 1821

follows. 1822

• English understanding: We randomly select 1823

21
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Figure 11: Performance comparison using perplexity
(PPL) and accuracy-based metrics to monitor the code
generation and math reasoning abilities of YuLan-Mini.

2,118 samples from FineWeb-Edu and com-1824

pute the perplexity for ability evaluation.1825

• Chinese understanding: We randomly select1826

1,679 samples from Chinese-FineWeb-Edu for1827

computing the perplexity.1828

• Code generation: We randomly select 2,0671829

samples from a widely-used code instruc-1830

tion datasets, Python-Code-Instructions-18k-1831

Alpaca for perplexity evaluation.41832

• Math reasoning: We randomly sample 1,4991833

open-ended questions from MathInstruct (Yue1834

et al., 2024) for perplexity.1835

4https://huggingface.co/datasets/iamtarun/
python_code_instructions_18k_alpaca

Once the advanced capabilities are well- 1836

developed, we can directly monitor the model’s 1837

performance by evaluating it on the selected bench- 1838

marks. 1839

Training setup Since it is resource-intense to 1840

perform extensive experiments on our model, we 1841

explore the training dynamics by conducting surro- 1842

gate experiment with a small proxy model of 0.2B 1843

with similar architecture. We employ a relatively 1844

large learning rate of 0.01, to expose potential in- 1845

stabilities within the model. We keep this baseline 1846

model setup in the subsequent experiment, which 1847

we elaborate on in Appendix C. Specifically, our op- 1848

timization goal is to achieve optimal performance 1849

while ensuring that the training process does not 1850

result in divergent loss or an increasing trend in 1851

gradient norm. 1852

C Training Stability 1853

1854

C.1 Indicators Setup 1855

In large-scale training, distributed optimizers are 1856

often used, which means that the gradients of dif- 1857

ferent modules may be distributed across various 1858

data parallel ranks. This distribution makes it inef- 1859

ficient to directly obtain the gradients. As a result, 1860

we primarily track each module’s weight matrix 1861

and hidden states (i.e., their outputs). Specifically, 1862

we record the mean and variance of the weights 1863

and hidden states, as well as the root mean square 1864

(RMS), which is calculated using the follow for- 1865

mula RMS =
√

Var + Mean2. Note we consider 1866

the outputs of various modules in the transformer 1867

(i.e., FFN, Attention, RMSNorm) as hidden states. 1868

C.2 Exploding Hidden States Due to Residual 1869

Connection 1870

Here we provide a detailed derivation for Equa- 1871

tion 3, which aims to investigate the growing hid- 1872

den states due to residual connection. To under- 1873

stand the underlying cause, we express the hidden 1874

states in terms of the model’s weights and inputs: 1875

var(zl) = var(yl) + var(FFN(RMSNorm(yl))), 1876

var(yl) = var(xl) + var(MHA(RMSNorm(xl))). 1877

For ease of analysis, we first assume that: 1878

x,y ∼ N (0, σ2). (4) 1879
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Table 8: Definition of the variables for computing the hyperparameters.

Variables Meaning

nlayers The num of model’s layers, i.e., num_hidden_layers.

nheads The num of model’s attention heads, i.e., num_attention_heads.

nkv_heads The num of model’s kv-heads used in GQA, i.e., num_key_value_heads.

dmodel Model dimension, i.e., hidden_size.

dhead Dimension of attention head, i.e., hidden_size / num_attention_heads.

dffn The hidden size of feed-forward network, i.e., intermediate_size.

σbase Initialization standard deviation for each matrix, i.e., initializer_range.

ηbase Learning rate, i.e., max learning rate.

⊙ Element-wise multiplication.

FFN SwiGLU FFN(u) = [F(uWgate)⊙ (uWup)]Wdown, where SiLU F(x) = x⊙ σ(x).

RMSNorm Root mean square layer normalization without bias RMSNorm(x) = x
RMS(x)

⊙ g.

MHA Multi-head attention MHA(v) = concathi=1[headi(v)]Wo.

head(X) head(X) = Softmax( S√
dheads

)XWV, where the attention weights S = XTWT
QWKX.

dmodel_proxy dmodel for proxy model, i.e., the 0.05B model

mwidth Width scaling factor in µP, i.e., dmodel/dmodel_proxy

Under this assumption, we can obtain var(u) =1880

var(v) = 1. In this case, we can express the vari-1881

ance as the following form:1882

var(zl) = var(xl)+var(FFN(u))+var(MHA(v)),
(5)1883

which means, the hidden states will grow by the1884

variance of MHA and FFN in each layer:1885

var(headi(v)) = var(softmax(Z)V) · dmodel

· var(Wv) < dmodel · var(Wv),

(6)

1886

var(FFN) = dffn · dmodel · var(Wup)

· var(Wdown),
(7)1887

var(MHA) = var(head(v)) · dmodel · var(Wo)

< d2model · var(Wv) · var(Wo),

(8)

1888

where Z denotes the scaled attention scores. The1889

base dimensionality dmodel of LLMs are often large1890

(e.g., 1,920 in our model).1891

Therefore, the variance addition of each layer1892

∆H l = var(zl) − var(xl) = var(MHA(v)) +1893

var(FFN(u)). By plugging in Equation 7 and 8,1894

we can estimate the upper bound of ∆H l as:1895

∆H l <d2model · var(Wv) · var(Wo)1896

+ dffn · dmodel · var(Wup) · var(Wdown).
(9)

1897

C.3 Discussion on Other Training 1898

Stabilization Methods 1899

During our training process, we thoroughly ex- 1900

plore and utilize various training stabilization tech- 1901

niques. Below, we provide a brief introduction to 1902

these methods. 1903

C.3.1 Warmup Based Methods 1904

To ensure the model transitions smoothly from its 1905

initial state to a stable training phase, we empiri- 1906

cally find that employing learning rate warmup and 1907

sequence length warmup is often effective, which 1908

are detailed below. 1909

Learning rate warmup Learning rate warmup 1910

involves gradually increasing the learning rate from 1911

a small initial value (e.g., 0) to the max learning 1912

rate in TLR steps. (Wortsman et al., 2024) suggests 1913

that a longer learning rate warmup can reduce sen- 1914

sitivity to the learning rate, as measured by training 1915

stability across different learning rates. We em- 1916

pirically verify this conclusion and find increasing 1917

TLR indeed enhances training stability. For our 1918

final training, we set TLR = 2,433, which approxi- 1919

mately corresponds to 10 billion tokens of data. 1920

Sequence length warmup Sequence length 1921

warmup starts training with short sequences (e.g., 1922

64 tokens) and gradually increases their length 1923

within the steps of TSL, which is typically set to a 1924

23
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Figure 12: Training loss and gradients during pre-training process.

Table 9: Comparison of the used hyperparameter settings for training stability, where the detailed explanation
for the variables are in Table 8. We include SI (Takase et al., 2023) for comparison, MiniCPM (Hu et al., 2024),
CerebrasGPT (Dey et al., 2023a). The definition of the symbols is available at Table 8 .

Method SI MiniCPM CerebrasGPT YuLan-Mini

Scale Embedding Output 1 12 10 10

Scale MHA equation 1/
√
dhead 1/

√
dhead 1/dhead 1/

√
dhead

Scale Residual Connection 1 1.4√
nlayers

1 1.4√
nlayers

QKV Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

QKV σ Init σ2
base σ2

base/mwidth σ2
base/mwidth σ2

base/mwidth

O Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

O σ Init σ2
base

2nlayers
σ2

base/mwidth
σ2

base
2mwidth·nlayers

σ2
base

2mwidth·nlayers

FFN1 Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

FFN1 σ Init σ2
base σ2

base/mwidth σ2
base/mwidth σ2

base/mwidth

FFN2 Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

FFN2 σ Init σ2
base

2nlayers
σ2

base/mwidth
σ2

base
2mwidth·nlayers

σ2
base

2mwidth·nlayers

Scale Output logits 1 1/mwidth 1/mwidth 1

few multiples of TLR (Li et al., 2022). The ratio-1925

nale behind this approach is that longer sequence1926

lengths contribute significantly to extreme gradient1927

variance, particularly in the early stages of training.1928

In our experiments, we also observe similar fluctua-1929

tions in loss during long context training (especially1930

in the 27-th curriculum phase). However, since we1931

have stabilized the training using other methods1932

and this approach requires additional preparation1933

of the data, we ultimately decided not to adopt it.1934

C.3.2 Module Based Methods1935

In this part, we introduce module-based methods1936

which regularize the model states by adjusting spe-1937

cific components in it.1938

QK LayerNorm QK LayerNorm and its variants 1939

(e.g., QKV LayerNorm or capped QK LayerNorm) 1940

have have been shown to effectively mitigate the 1941

growth of attention logits (Rybakov et al., 2024), 1942

which we also have identified in Section 6.1. We 1943

highlight the effectiveness of QK LayerNorm be- 1944

cause it directly addresses the exponential growth 1945

of gradients caused by the interaction of hidden 1946

states (QKT ), whereas some other methods only 1947

attempt to control the downstream instability. Our 1948

empirical study, which is shown in Figure 13a 1949

and 13b, demonstrates the advantages of QK Lay- 1950

erNorm in terms of training stability. However, it 1951

significantly slows down the calculation in training: 1952

with the same acceleration configuration, using QK 1953

LayerNorm increases the training time by 34%. 1954
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Note that the implementation of QK LayerNorm1955

here is similar to StableLM’s per-head approach,1956

allowing each attention head to learn independently.1957

Considering that the previously mentioned methods1958

have already demonstrated stability in our prelimi-1959

nary experiments, we ultimately decided not to use1960

QK LayerNorm (Section 6.1).1961

Embedding tying Embedding tying aims to1962

share the weights of embedding and unembedding1963

(i.e., lm_head) parameters (Press and Wolf, 2017).1964

Our experiments demonstrate that the utilization1965

of embedding sharing enables faster convergence1966

and more stable training, and there is no significant1967

degradation in training performance.1968

Z-loss Z-loss was originally proposed to allevi-1969

ate the shift and scale of logits in classification1970

tasks (de Brébisson and Vincent, 2016). Sub-1971

sequently, it has been introduced to LLM and1972

MoE training to mitigate the growth of the log-1973

its layer (Chowdhery et al., 2023; Zoph et al.,1974

2022a). It adds an auxiliary term related to the1975

softmax normalizer logZ to the original loss: L =1976

lm_loss + ζ log2 Z. In our experiments, we set1977

the coefficient ζ = 10−4 to encourage the logits1978

to be close to 0. Although ablation studies did not1979

show significant effects, we incorporate it into the1980

final training.1981

C.3.3 Numerical Optimization Based1982

Methods1983

In addition, we consider using several commons1984

methods to reduce abnormal updates during opti-1985

mization, as described below.1986

Weight decay To prevent abnormal model1987

weights due to large gradient updates, weight decay1988

functions by subtracting a penalty term from the1989

weights during the update step, rather than directly1990

modifying the gradients. Formally, we denote the1991

AdamW update without learning rate or weight1992

decay as:1993

∆ = αm̂t/(
√
v̂t + ϵ). (10)1994

Then at update step t, the AdamW update with1995

weight decay is given by θ → θ − stη(∆ − λθ),1996

where λ is the weight decay coefficient, st is learn-1997

ing rate schedule and η is the max learning rate.1998

Previous work has recommended using an inde-1999

pendent weight decay for updates, expressed as2000

θ → θ−st(η∆−λ′θ), which is claimed to be appli-2001

cable to a wider range of learning rates (Loshchilov2002

and Hutter, 2019; Wortsman et al., 2024). In the 2003

PyTorch implementation, this approach can be 2004

achieved by tuning the weight decay coefficient 2005

λ in conjunction with the maximum learning rate, 2006

following the relationship λ′ = η · λ. 2007

Optimizer hyper-parameter In the update of 2008

AdamW (Equation (10)), m̂t and v̂t represent the 2009

first and second gradient moment exponential mov- 2010

ing averages (EMA), respectively. If the gradient 2011

is of the same order of magnitude as ϵ, then the 2012

update value ∆ will be significantly reduced due 2013

to ϵ, which empirically leads to training instability 2014

inherent in embedding layer. A direct solution is to 2015

reduce ϵ from the default value of 10−8 to 10−15. 2016

Generally speaking, this method can alleviate the 2017

divergence caused by abnormal embedding gradi- 2018

ent values in larger-scale models (Wortsman et al., 2019

2024; Molybog et al., 2023). 2020

Numerical stability In practice, paying close at- 2021

tention to numerical stability is crucial, as it can be 2022

an important source of training instability. In large- 2023

scale model training, float32 often suffers from 2024

low computational efficiency. Although float16 2025

offers comparable precision with higher compu- 2026

tational efficiency, it has a limited numerical rep- 2027

resentation range (e.g., maximum positive num- 2028

ber that can be represented is 65,504). Therefore, 2029

bfloat16 has been proposed as a trade-off between 2030

precision and representation range. It largely al- 2031

leviates the training instability caused by exceed- 2032

ing the representable range. However, in practice, 2033

bfloat16 introduces precision problems compared 2034

to float16. In experiments conducted by (Lee 2035

et al., 2024) using bfloat16 with 188 random 2036

seeds, 18 runs diverged, whereas using float32 2037

under the same configuration resulted in all runs 2038

converging normally. To mitigate precision issues 2039

with bfloat16, Gemma (Mesnard et al., 2024) find 2040

that shifting the RMSNorm weight from 1 to 0 2041

helps, considering that bfloat16 has symmetric 2042

numerical precision around 0 but greater inaccura- 2043

cies near 1. 2044

Value clipping To further limit the gradient 2045

within certain range, we utilize a gradient clip- 2046

ping of 1. We find using a smaller limit does not 2047

help stabilize the training. In addition, initializ- 2048

ing the LLM in accordance with “3-σ” rule with 2049

nn.init.trunc_normal_ may be helpful for nu- 2050

merical stability. 2051
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Figure 13: The curves of attention value and LN output variances (left) and gradient norm and loss (right). After
using QK LayerNorm, we prevent the explosion of attention logits and gradients, keeping the LN output stable
around 1 and the loss consistent.

D Data Filtering Pipeline2052

2053

As we aim for a data-efficient training approach,2054

data quality is crucial to the final model’s perfor-2055

mance. For this purpose, we implement a thorough2056

data cleaning process to remove low-quality texts2057

(Figure 6).2058

De-duplication Data de-duplication is a crucial2059

step in standard LLM training practices, as previ-2060

ous research has demonstrated that duplicate data2061

can significantly degrade model performance (Tiru-2062

mala et al., 2023). We use the MinHash algorithm2063

implemented by the Yulan-GARDEN library (Sun2064

et al., 2024) to deduplicate the training data.2065

Heuristic filtering We adopt heuristic methods2066

to filter the data, some of which are listed as fol-2067

lows:2068

• All: we remove the documents containing2069

fewer than 20 tokens.2070

• Code: we apply filtering criteria based on2071

code metrics (e.g., average line length, alpha-2072

betic characters ratio, and keyword statistics)2073

similar to DeepSeek-Coder (Guo et al., 2024).2074

• Synthetic data: we remove responses that are2075

garbled or contain repeated content. For math2076

texts, we remove response that do not contain2077

an hightlited answer part (e.g., $box{}$).2078

Topic-based text recall To enhance the model’s 2079

capabilities in specialized areas, it is essential to in- 2080

clude ample knowledge documents related to math- 2081

ematics, code, and reasoning. For this purpose, we 2082

extract relevant documents from unused web pages 2083

by training fasttext (Bojanowski et al., 2017) and 2084

TinyBert (Jiao et al., 2020) classifiers specifically 2085

tailored to these categories. From the FineWeb- 2086

Edu (Lozhkov et al., 2024a) and DCLM (Li et al., 2087

2024b) web corpus, we extract 10.4B math text to- 2088

kens, 1.11B code text tokens, and 1.01B reasoning 2089

text tokens. which are directly used for training 2090

or serve as seed data for synthesizing instruction 2091

data. Furthermore, we reuse the synthesized sci- 2092

ence data (1.5B) from Llama-3-SynE (Chen et al., 2093

2024), which covers an extensive range of disci- 2094

plines, such as math and physics. 2095

Model-based quality scoring For general web 2096

page data and mathematical pre-training data, 2097

we use the fineweb-edu-scorer released by 2098

FineWeb-Edu for data scoring. For Python code 2099

data, we use the python-edu-scorer released by 2100

FineWeb-Edu. To avoid language models favor- 2101

ing highly technical pages like arXiv abstracts and 2102

submitted papers, these two classifiers focus on 2103

knowledge at the elementary and middle school 2104

levels. Following the methodology of (Penedo 2105

et al., 2024), we conduct quality assessments on 2106

all Python code data, most mathematical data, and 2107

web page data using scoring tools. We exclude data 2108

with scores of 1 and 2 and then heuristically sort 2109

data with scores from 3 to 5 . 2110
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Decontamination To ensure the fairness of com-2111

parison, we perform decontamination based on the2112

selected evaluation benchmarks. Initially, we tok-2113

enize both the training set and the benchmarks that2114

require decontamination, such as GSM8K (Cobbe2115

et al., 2021), MATH (Hendrycks et al., 2021b),2116

HumanEval (Chen et al., 2021), and ARC (Yadav2117

et al., 2019). Next, we divide all the benchmarks2118

using n-gram tokens to create a contamination set.2119

We use tokens rather than words to form n-gram2120

segment, which achieves a higher level of decon-2121

tamination in the domains of mathematics and code.2122

Additionally, we exclude 20-gram segments that oc-2123

cur more than four times, as they are typically not2124

relevant to the questions or solutions. Ultimately,2125

the contamination set comprises 1,917,428 tuples.2126

For each training document, if more than 10% of2127

its generated 20-grams are present in the contami-2128

nation set, we exclude that document from the final2129

pre-training set.2130

E Post-training Details2131

2132

We conduct post-training for YuLan-Mini, with2133

specific details for each stage as described below.2134

Experimental results of post-training on public2135

benchmarks are shown in Table 3.2136

E.1 SFT Stage2137

During the Supervised Fine-Tuning (SFT) phase,2138

we implement comprehensive optimization of train-2139

ing data through the following core strategies:2140

Diversified Data Sources Our SFT data com-2141

prises two categories: 1) high-quality open-source2142

general-purpose data spanning diverse domains and2143

topics, and 2) specialized data generated through2144

synthesis, distillation, and paraphrasing techniques2145

to ensure broad knowledge coverage and strong2146

domain adaptability.2147

Rigorous Data Filtering Beyond conventional2148

deduplication and filtering, our pipeline incor-2149

porates multi-stage quality control measures, in-2150

cluding corpus quality assessment and curriculum2151

learning-based selection to optimize training effec-2152

tiveness.2153

Systematic Data Schedule We strategically bal-2154

ance proportions between general-purpose and spe-2155

cialized data based on their respective character-2156

istics. Furthermore, we dynamically adjust data2157

ratios according to real-time training feedback to 2158

achieve better performance. 2159

E.2 DPO Stage 2160

In the Direct Preference Optimization (DPO) phase, 2161

we adopt a hybrid data sampling strategy: 1) sam- 2162

pling from the SFT instruction dataset, and 2) incor- 2163

porating diverse external instructions. Responses 2164

are generated using both our SFT-tuned model and 2165

high-performing open-source models. To ensure 2166

response quality, we utilize open-source models 2167

for evaluation and filtering, ultimately constructing 2168

high-quality preference datasets containing both 2169

on-policy and off-policy samples. This DPO train- 2170

ing significantly enhances the model’s capabilities 2171

in mathematical reasoning, code generation, and 2172

instruction adherence. 2173

E.3 PPO Stage 2174

Building upon the DPO-enhanced model, we em- 2175

ploy Proximal Policy Optimization (PPO) with a 2176

dual-reward mechanism: combining RM-based re- 2177

wards with rule-based rewards. The latter proves 2178

particularly effective in verifiable domains like 2179

mathematics and instruction following. Our train- 2180

ing dataset comprises thousands of samples cov- 2181

ering diverse task scenarios, which enables robust 2182

policy optimization. 2183
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