
YuLan-Mini: Pushing the Limits of Open Data-efficient Language Model

Anonymous ACL submission

Abstract
Due to the immense resource demands and the001
involved complex techniques, it is still chal-002
lenging for successfully pre-training a large lan-003
guage models (LLMs) with state-of-the-art per-004
formance. In this paper, we explore the key bot-005
tlenecks and designs during pre-training, and006
make the following contributions: (1) a com-007
prehensive investigation into the factors con-008
tributing to training instability; (2) a robust op-009
timization approach designed to mitigate train-010
ing instability effectively; (3) an elaborate data011
pipeline that integrates data synthesis, data cur-012
riculum, and data selection. By integrating the013
above techniques, we create a rather low-cost014
training recipe and use it to pre-train YuLan-015
Mini, a fully-open base model with 2.4B pa-016
rameters on 1.08T tokens. Remarkably, YuLan-017
Mini achieves top-tier performance among018
models of similar parameter scale, with com-019
parable performance to industry-leading mod-020
els that require significantly more data. To fa-021
cilitate reproduction, we release the full de-022
tails of training recipe and data composition.023
Project details can be accessed at the following024
link: https://anonymous.4open.science/025
r/YuLan-Mini/README.md.026

1 Introduction027

In recent years, large language models (LLMs)028

have significantly advanced the frontier of AI tech-029

nology (OpenAI, 2023; Dubey et al., 2024; Bi et al.,030

2024). It is widely recognized that pre-training031

is crucial for building the foundational capabili-032

ties of the LLMs (Zhao et al., 2023). Although033

the prevailing pre-training approach of next-token034

prediction is straightforward, it involves several035

complexities: First, researchers must design an ef-036

fective and efficient data pipeline, which typically037

involves data filtering, data mixing, and data cur-038

riculum, as “data” is the most crucial element in039

enhancing model capabilities. Second, since LLMs040

consist of a vast number of meticulously organized041

parameters, accelerating and stabilizing the training042

Figure 1: YuLan-Mini achieves performance compa-
rable to Qwen2.5-1.5B on comprehensive benchmarks
i.e., MMLU, ARC-Challenge, HellaSwag, WinoGrande,
GSM8K, MATH-500, HumanEval, MBPP, and CEval,
using only 1/6 of FLOPs budget, where FLOPs ≈
6× training tokens × model size (Kaplan et al., 2020).

process presents a significant challenge. Despite 043

the availability of extensive model checkpoints re- 044

leased by industry companies (Qwen-Team, 2024; 045

Yang et al., 2024b), the core technical details often 046

remain undisclosed in public reports. 047

Fortunately, the research community has made 048

significant efforts to enhance the availability of 049

data resources (Lozhkov et al., 2024a; Li et al., 050

2024b; Yu et al., 2025) and the openness of pre- 051

training methodologies (Allal et al., 2024; AllenAi, 052

2024; Zhang et al., 2024a). These contributions 053

offer basic technical approaches and essential re- 054

sources for pre-training an LLM. Despite these 055

advancements, open LLMs—those with fully dis- 056

closed technical details still face main limitations of 057

under-performance compared to industry counter- 058

parts, or requiring large data and computational re- 059

sources. Therefore, developing competitive LLMs 060

with limited training resources remains a challenge, 061

particularly in university-level laboratories. 062

Motivated by the above considerations, our con- 063

1

https://anonymous.4open.science/r/YuLan-Mini/README.md
https://anonymous.4open.science/r/YuLan-Mini/README.md
https://anonymous.4open.science/r/YuLan-Mini/README.md

0 100 200 300 400
Tokens

2

4

8

Lo
ss

YuLan-Mini
Baseline

Figure 2: YuLan-Mini improves final training stability
under large learning rate and deep architecture.

tributions in are as follows: (1) We present a fully-064

open 2.4B-parameter language model, YuLan-Mini,065

that achieves top-tier performance among models066

of similar parameter scale. To facilitate reproduc-067

tion, we report the complete training details for068

YuLan-Mini, including all data composition for069

training curriculum, training source code, and opti-070

mizer states. (2) We devise an elaborately designed071

efficient data pipeline that compiles data synthesis,072

data curriculum, and data selection. In particular,073

we extensively leverage an classifier-based “easy-074

to-hard” curriculum learning and synthetic data075

like formal mathematics reasoning. (3) We investi-076

gate deeply into the transformers architecture and077

provide an efficient pre-training method that effec-078

tively mitigates training instability. We identify079

several training instability factors e.g., exploding080

hidden states and RMSNorm representation col-081

lapse. By exploring a variety of techniques to sta-082

bilize under radical configuration and enhance the083

performance of YuLan-Mini.084

To demonstrate the effectiveness of our efficient085

pre-training methodologies, we compare it with a086

few competitive base models from both research087

and industry on a variety of benchmarks. We088

also conduct extensive ablation experiments on our089

training stability methods (Section 6.1) and data090

pipeline (Section 6.2). Experimental results show091

that our base model, YuLan-Mini, can achieve very092

promising results among these compared models093

(Figure 1). For instance, it outperforms recent mod-094

els e.g., OLMo2-7B, SmolLM2-1.7B, and Llama3-095

8B.096

2 Related Work097

Pre-Training of LLMs The prevailing pre-098

training approach often incurs significant099

costs (Radford et al., 2019; Brown et al., 2020;100

OpenAI, 2023). Therefore, much recent research101

has focused on optimizing the performance102

of relatively small language models (Zhang103

et al., 2024b; Hu et al., 2024; Liu et al., 2024c; 104

Bellagente et al., 2024; Allal et al., 2024). Existing 105

research on Transformer training stability has 106

identified various sources of instability and 107

proposed mitigation methods (Yang et al., 2022; 108

Takase et al., 2023; Nishida et al., 2024). However, 109

few studies have examined training stability 110

from the perspective of efficiency. For instance, 111

while QK LayerNorm improves stability, it adds 112

computational overhead (Henry et al., 2020; 113

Bellagente et al., 2024; Rybakov et al., 2024). 114

The µP method stabilizes early training but still 115

faces instability under large learning rates (Yang 116

et al., 2022). Similarly, reducing the AdamW 117

epsilon parameter works well only for larger 118

models (Molybog et al., 2023; Wortsman et al., 119

2024), while techniques like Z-Loss and weight 120

decay offer limited benefits (Zoph et al., 2022b). 121

Pre-Training data pipeline Data pipelines gen- 122

erally involve data filtering, curriculum learning, 123

and data synthesis (Young et al., 2024). Data fil- 124

tering eliminates redundant data using methods 125

like de-duplication (Sun et al., 2024), model-based 126

scoring (Lozhkov et al., 2024a), or gradient-based 127

selection (Xia et al., 2024). Curriculum learning 128

adjusts the order of data across training stages (Zhu 129

et al., 2024), while data synthesis leverages ex- 130

isting models to integrate posterior insights (e.g., 131

specific topics) (Gunasekar et al., 2023; Wei et al., 132

2024; Chen et al., 2024). However, most research 133

work focuses on isolated components, and indus- 134

trial models seldom reveal pipeline details. 135

3 Efficient Pre-Training 136

Training instability poses a significant challenge 137

to the effective training of LLMs, e.g., irrecover- 138

able divergent training. While large learning rates 139

or deep architectures can accelerate model conver- 140

gence, this improvement is only feasible as long as 141

there are no loss spikes or an escalating gradient 142

norm (AllenAi, 2024). Our training approach com- 143

bines such configuration with improved stability, 144

enabling performance on par with industry-level 145

models while using significantly fewer resources. 146

3.1 Architecture Improvements 147

We summarize our architecture details in Table 1. 148

Specifically, YuLan-Mini employs a 2.4B LLaMA- 149

like transformer architecture with embedding ty- 150

ing (Press and Wolf, 2017). The decoder layer can 151

2

Table 1: Architecture comparison between LLMs fea-
turing training stability.

Methods MiniCPM OLMo2 7B YuLan-Mini

Arch Shallow Shallow Deep
Param Init µP / µP
Numerical / / Re-Param
LayerNorm Pre-LN Reordered Pre-LN
Residual Scale / Scale
Attention / QK-Norm /
Embedding Tie+Scale w/o WD Tie+Scale
Peak LR 0.01 3× 10−4 0.01

Avg Perf 49.5 52.5 57.5

0 2500 5000 7500 10000
Training Steps

1

10

0 2500 5000 7500 10000
Training Steps

1

10

Layer 1
Layer 7

Layer 13
Layer 19

Layer 25
Layer 30

Grad Norm

Figure 3: Comparison of training dynamics (hidden
state variance and gradient norm) between convergent
(left) and divergent (right) trials on a log-scale. Both tri-
als exhibit consistent loss, but the divergent trial shows
increasing hidden state variance and gradient norm.

be formalized as:152

zl = yl + FFN(RMSNorm(yl)), (1)153

yl = xl + MHA(RMSNorm(xl)), (2)154

where xl,yl, zl are hidden states of each layer l155

and u = RMSNorm(xl) and v = RMSNorm(yl) are156

RMSNorm outputs. For training efficiency, we specif-157

ically use large global learning rate of 0.01 and158

a deep and thin architecture (56 decoder layers).159

We combine a parameter initialization approach160

akin to µP with matrix-level re-parameterization161

to stabilize training under this configuration. We162

estimate a calculation-efficient vocabulary size of163

99K, and apply BPE-dropout (p = 0.2) (Provilkov164

et al., 2020) and individual-digit tokenization to165

further balance the update of embedding. We lever-166

age several fused kernels (Hsu et al., 2024; Dao,167

2024) to enhance efficient calculation, achieving168

a 51.57% Model FLOPs Utilization (MFU). The169

detailed overall configuration is provided in Ap-170

pendix A.171

3.2 Bounding Dynamics of Transformers to 172

Mitigate Abnormal Gradients 173

After analyzing the training dynamics of our model, 174

we observe that hidden states (a.k.a., activations) 175

can reveal deeper underlying issues which are dif- 176

ficult to detect in the early stages when focus- 177

ing solely on the loss (Figure 3 Right). Specifi- 178

cally, hidden states diverge increasingly with model 179

depth (i.e., more layers) and, more significantly, ex- 180

hibit an exponential upward trend with increasing 181

training steps. This empirically results in substan- 182

tial gradient updates, which, in turn, can lead to 183

training instability. To address this, we next esti- 184

mate the bounds of hidden states in transformers, 185

forming the foundation for the development of mit- 186

igation strategies in Section 3.3. 187

Residual connection To investigate the growing 188

hidden states and subsequent exploding gradient 189

across model depth (Figure 3), we analyze the vari- 190

ance addition of each layer ∆H l = var(zl) − 191

var(xl) = var(MHA(v)) + var(FFN(u)). By plug- 192

ging in the variance of MHA and FFN into Equa- 193

tion 1 and 2, we can estimate the upper bound of 194

variance addition in initial steps as: 195

∆H l <d2model · var(Wv) · var(Wo) 196

+ dffn · dmodel · var(Wup) · var(Wdown),
(3)

197

which greatly accumulates across decoder layers. 198

A detailed derivation can be found in Appendix C 199

and Takase et al. (2023). 200

Layer normalization RMSNorm is proposed to
re-scale data, providing scale-insensitivity to mod-
els (Zhang and Sennrich, 2019). We observe a
behavior in Layer Normalization (LN) commonly
associated with training instability, referred to as
“RMSNorm representation collapse”. In this phe-
nomenon, the LN outputs rapidly collapse to a very
small variance, which can lead to spikes in attention
weights and loss (Figure 4). Previous work sug-
gests that the variance of RMSNorm inputs should
be ≥ 1, as values below this threshold can lead to
gradient inflation (Takase et al., 2023):∥∥∥∥∂RMSNorm(x)∂x

∥∥∥∥
2

= O

(√
d

∥x∥2

)
,

which suggests initializing embeddings to 1 or em- 201

ploying more complex techniques, such as separate 202

weight decay on embedding (AllenAi, 2024) or 203

3

0.0

0.5

1.0

(a
)

LN
 o

ut
pu

t V
ar

YuLan-Mini RMSNorm Collapse

0

10

20

(b
)

A
ttn

 W
ei

gh
ts

 V
ar

0 2000 4000 6000 8000
Train Steps

5

10

(c
)

Lo
ss

Figure 4: RMSNorm representation collapse. The out-
put of LN collapsing to small values may lead to insta-
bility.

embedding normalization (Scao et al., 2022). How-204

ever, we find these methods can trigger RMSNorm205

representation collapse, by hindering necessary up-206

dates of the scale vector g in it.207

3.3 Mitigating Instability through µP and208

Re-parameterization209

To mitigate training instability, we employ a two-210

pronged approach: 1) preventing growing hid-211

den states and RMSNorm representation collapse212

through carefully designed model initialization,213

and 2) absorbing large gradient variability via ma-214

trix re-parameterization:215

Consistent architecture Compared to original216

scaled initialization (Shoeybi et al., 2020; Takase217

et al., 2023), the Maximal Update Parametriza-218

tion (µP) has been proposed (Yang et al., 2022,219

2024c) to provide a consistent architecture for220

model initialization and scaling, including embed-221

ding scaler, residual scaler, learning rate scaler,222

and scaled initialization. µP mitigate training in-223

stability within transformers architecture. For in-224

stance, the scaled initialization initialize MHA and225

FFN with small values std(Wv) = std(Wup) =226 √
2/(5dmodel) and std(Wo) = std(Wdown) =227 √
1/(5dmodel · nlayers), thereby mitigating grow-228

ing hidden states rooted across all hidden layers229

shown in Equation 3:230

nlayers∑
l=1

∆H l <
7

25
.231

∆𝑊𝑊
#𝑊

𝛼

𝑥!"#

𝑥!

𝑥!⨂𝕀
Σ	𝑊𝑥

𝛼𝑥!⨂𝕀

Loss: 3536.0 Loss: 972.0

Baseline Re-Param

(a) Derivatives of Re-Param.

0 200 400
Steps

0.000
0.001
0.002
0.003
0.004
0.005

W W w/o Re-Param

4e5
2e5

0
 2e5
 4e5

 (Right)

(b) Gradient norm.

Figure 5: Re-Param enhances gradient representation
by “absorbing” large gradient variability to ∆α.

Besides µP, we also incorporate embedding ty- 232

ing by initializing the embeddings with a variance 233

smaller than 1. This helps prevent RMSNorm rep- 234

resentation collapse by enabling updates to RM- 235

SNorm during the early stages of training. 236

Gradient representation However, we observe
that spikes in loss still occur with large learning
rates when using µP. We empirically find that
this is suffered from variability in gradient up-
dates. Inspired by recent studies in training in-
stability (Nishida et al., 2024; Chung et al., 2024),
we find re-parameterization (Re-Param) method
provides a different gradient representation as illus-
trated in Figure 5a:

W = αW̃, α ∈ R,

where the matrix weights W is re-parameterized 237

with an additional learnable parameter α. Our sur- 238

rogate experiments on a simple linear regression 239

show that Re-Param successfully decompose the 240

original gradient and absorb the variability of it. 241

Combined with the consistent architecture provided 242

by µP, we find the above Re-Param method to be 243

effective in addressing exploding hidden states and 244

thereby enhance pre-training efficiency. 245

4 Efficient Data Pipeline 246

Effective data curation and curriculum design have 247

been shown to be key to improving model perfor- 248

mance when the data volume for training is fixed. 249

However, few open studies provide full technical 250

details about the entire data pipeline. In this section, 251

we present a comprehensive, efficient, and fully 252

open data pipeline that includes filtering data, syn- 253

thesizing high-quality reasoning data, optimizing 254

training data scheduling, and improving data selec- 255

tion during the annealing stage. By utilizing only 256

1.08T of training data, we achieve industry-level 257

4

Data Collection De-duplication

Heuristic
Filtering

Topic-based
Text Recall

DecontaminationModel-based
Quality Scoing

 Math Doc Competition
 Code Doc

 Math CoT

 Program
 Generated

 OSS-Instruct

 Science CoT

Mathematics Coding

Science

 Formal
 Mathematics

Data Filtering Pipeline Synthetic Generation of Reasoning Data

Figure 6: Illustration of our data filtering and synthetic
for reasoning data pipeline.

results with relatively low cost. Figure 6 illustrates258

the data filtering and synthesis process, with the259

implementation details provided in Appendix D.260

4.1 Synthetic Generation of Reasoning Data261

Reasoning is a crucial skill for LLMs (Huang and262

Chang, 2023), but real-world datasets often lack263

texts with complex reasoning. Recent research in-264

dicates that reasoning structures are important to265

enhance a model’s reasoning abilities (Yang et al.,266

2025; Li et al., 2025). In YuLan-Mini, we propose267

an efficient approach to systematically scale reason-268

ing structures, leading to significant improvements269

in mathematical and coding capabilities. We show270

in Appendix E that this does not compromise the271

subsequent post-training capability.272

Formal theorem proving Lean provides a ver-273

ifiable environment to explore theorem proving274

formally, which has been shown effective in im-275

proving mathematical reasoning (Xin et al., 2024;276

Ying et al., 2024b). As far as we know, we are the277

first public study to introduce formal mathematics278

data in pre-training, using a total amount of 0.2B279

lean-based synthesized data.280

Reasoning primitives In addition to the “pre-281

dict the next tactic” used in existing for-282

mal theorem proving research (Ying et al.,283

2024a; Wu et al., 2024), we extend it to284

three new reasoning primitives: (1) Deduction:285

Statebefore,Tactic → Stateafter; (2) Abduction:286

Stateafter,Tactic → Statebefore; and (3) Induction:287

Statebefore,Stateafter → Tactic.288

CoT reasoning We generate CoT reasoning data289

for three fields: mathematics, coding, and sci-290

ence, by using instruct version of Qwen2.5-7B and291

Qwen2.5-Math-7B. Additionally, we develop a pro-292

gram to automatically convert simple mathematical293

queries (e.g., “What is 0.079 + 162?”) into294

detailed calculation procedures.295

1 3
0

20

40

60

80

100

%

11 13 15 17 19 21 23 25 27

General-Pretrain
General-SFT
Math-Pretrain
Math-SFT

Code-Pretrain
Code-SFT
Web
Chinese

Curriculum Phase

Figure 7: The data mixture proportion. The annealing
stage begin after the dashed line.

Reflection To enhance model’s reasoning 296

ability, we incorporate the reflection mech- 297

anism for solving math problems. We use 298

Qwen2.5-7B-Instruct to generate both correct 299

and incorrect solutions with corresponding error 300

analysis to form a synthetic reflection process. 301

This enhances model’s reasoning ability without 302

reinforcement learning. 303

4.2 Data Curriculum 304

Data curriculum intuitively aligns with the learn- 305

ing process of LLMs, but existing research rarely 306

achieves real-world effectiveness due to its large 307

costs. Our approach offers a potential solution 308

for small corpus (e.g., 1T tokens). Building on 309

the WSD three-stage learning rate scheduler, we 310

further divide the process into 27 stages, each span- 311

ning 40B tokens. We dynamically design the cur- 312

riculum based on content difficulty and model ca- 313

pability while keeping adjustments within 3% to 314

avoid loss spikes. We primarily implement curricu- 315

lum learning in mathematics and coding content. 316

Figure 7 illustrates the data distribution for each 317

curriculum phase. 318

Content difficulty Text of varying difficulty lev- 319

els are unevenly distributed in datasets. Typically, 320

we reorder and perform weighted sampling on the 321

content according to difficulty, which facilitates an 322

efficient learning process. To estimate a difficulty 323

level, we primarily use quality classifiers such as 324

fineweb-edu-scorer and python-edu-scorer. 325

We heuristically analyze the difficulty distribution 326

across score segments to ensure the curriculum is 327

correctly ordered due to its inherent bias.1 328

1For instance, when using the python-edu-scorer, low
scores in large datasets often correspond to noisy data, whereas
in meticulously curated datasets, low scores typically repre-

5

Dynamic model capabilities For each curricu-329

lum phase, we reassess the model’s overall perfor-330

mance and adjust the data ratio based on it. For ex-331

ample, if the model presents strong performance in332

HumanEval, we may consider decrease the amount333

of code data in subsequent phases. To further im-334

prove its reasoning ability, a small amount (<5%)335

of instruction data is introduced to the later stage of336

stable stage, and is increased to 19.19% in the an-337

nealing stage. Specifically, we incorporate the for-338

mal mathematical reasoning data (theorem proving339

in Lean) and advanced reasoning data (Section 4.1).340

4.3 Data Selection for Annealing Stage341

Selecting high-quality data during the annealing342

stage is crucial, as learning rate annealing enables343

the model to rapidly improve its performance (Hu344

et al., 2024). For this reason, we carefully cu-345

rate high-quality data for the annealing process.346

Previous studies on data selection often yield sub-347

optimal results or incur significant computational348

overhead (Xia et al., 2024). Thus, we mainly con-349

sider an improved LESS method (Xia et al., 2024),350

combining the method InsTag (Lu et al., 2024) for351

constructing a diversified target set (a subset of352

training set). Specifically, we replace the random353

matrix used in the gradient mapping with a matrix354

derived through PCA dimensionality reduction on355

the target set. Furthermore, we observe that the gra-356

dients at each layer are nearly orthogonal, allowing357

us to remove certain layers to enhance efficiency.358

5 Experiments359

Experimental results of different base models on360

public benchmarks are shown in Table 2, and we361

can make the following observations:362

• Superior training efficacy. Overall, YuLan-363

Mini achieves highly competitive performance364

compared to leading small industry models, de-365

spite being trained on just 1.08T tokens. Mean-366

while, most of our training data comes from open-367

source and synthetic datasets, demonstrating that368

with careful data cleaning, selection, and schedul-369

ing, we develop a robust base model even with370

limited resources in a university-level laboratory.371

• Excellence in mathematical and coding. On372

specific benchmarks for mathematical reasoning373

(MATH-500 and GSM8K) and coding generation374

(HumanEval and MBPP), YuLan-Mini achieves375

leading performance. This consistent superior-376

sent high-quality competition-level problems.

0 10 20 30 40 50 60
LAMBADA Accuracy

B+C+E+F

B+C+E

B+D

B+C

B

A

Baseline

29.37

28.93

22.68

27.57

23.06

22.10

21.86

29.37

28.93

22.68

27.57

23.06

22.10

21.86

Convergent Divergent LR=0.001 LR=0.01

3.87

3.87

3.01

3.87

4.07

4.79

3.87
 Training Time (h)

Figure 8: Ablation experiments on training instability
mitigation methods: (A) QK LayerNorm, (B) Weight
Decay, (C) Cerebrase µP, (D) Shallow and Wide Archi-
tecture, (E) Depth µP, (F) Re-Param.

0 100 200 300 400
Tokens

0

10

20

30

40

50

60

LA
M

B
A

D
A

Baseline
YuLan-Mini

(a) Our stable training recipe
improves model capability.

10 3 10 2 10 1

LR

0

2

4

8

Va
l L

os
s

1e4

w/o Re-Param
w/ Re-Param

(b) Re-Param offers insensitiv-
ity to learning rate.

Figure 9: Ablation study of overall training recipe and
Re-Param.

ity can be mainly attributed to the use of high- 377

quality pre-training corpus and reasoning synthetic 378

data (e.g., formal mathematics reasoning problems). 379

Our core idea is to extend the types of reasoning 380

data and enhance the complex reasoning capacities 381

of our base model, which leads to large improve- 382

ments on mathematical benchmarks. 383

• Strong general capability. Beyond specialized 384

tasks, YuLan-Mini also demonstrates strong perfor- 385

mance on various general benchmarks, spanning 386

from language modeling and commonsense reason- 387

ing, highlighting the versatility of the model. It 388

indicates that our pre-training approach well bal- 389

ances the learning of diverse abilities, resulting in 390

a robust general-purpose foundation model. 391

Details of the benchmarks and evaluation set- 392

tings are provided in Appendix B. 393

6 Ablation Study 394

6.1 Methods of Mitigating Training Instability 395

396

Surrogate experiments on Re-Param We con- 397

duct surrogate linear regression experiments to 398

6

Table 2: Performance on math, code, and reasoning benchmarks. Results marked with * are cited from their official
paper or report. The best and second best results (±1.0) are bold and underlined, respectively.

Models Model
Size

Data
Size

MATH
500

GSM
8K

Human
Eval MBPP MMLU CEval ARC-c Hella

Swag
Wino

Grande Avg

MiniCPM 2.7B 1T 15.0 53.8 50.0∗ 47.3 53.4 48.2 43.9 67.9 65.7 49.5
Qwen2 1.5B 7T 22.6 46.9∗ 34.8∗ 46.9∗ 55.9 71.9 42.9 66.1 66.1 50.5
Qwen2.5 0.5B 18T 23.6 41.6∗ 30.5∗ 39.3∗ 47.5 54.3 39.5 50.5 55.9 42.5
Qwen2.5 1.5B 18T 45.4 68.5∗ 37.2∗ 60.7 60.2∗ 69.1 53.4 67.2 64.5 58.5
Gemma2 2.6B 2T 18.3∗ 30.3∗ 19.5∗ 42.1∗ 52.2∗ 28.0∗ 55.7∗ 74.6∗ 71.5∗ 43.6
StableLM2 1.6B 2T 1.8 20.6 8.5 17.5 40.4 27.0 40.8 69.8 64.6 32.3
SmolLM2 1.7B 11T 11.8 31.1∗ 23.4 45.0 51.9 35.1 35.5 73.0 67.4 41.6
Llama3.2 3.2B / 7.4 3.2 29.3 49.7 63.4 44.4 48.8 75.6 67.5 43.3
Falcon3 3.2B / 44.6 66.0 34.4 52.5 59.7 38.2 51.6 65.8 64.4 53.0

YuLan-Mini 2.4B 1T 37.8 68.5 64.0 65.9 49.1 48.2 49.3 67.2 67.2 57.5

0 100 200 300
Tokens

0

2

4

6

8

GS
M

8K

Baseline
Curricula

(a) Math.

0 100 200 300
Tokens

0

5

10

15

20

25

M
BP

P

(b) Code.

Figure 10: Performance of different data curricula on
math and code benchmarks.

validate the effectiveness of Re-Param, as dis-399

cussed in Section 3.3. Specifically, we train a400

20,000-dimensional linear regression model using401

the Adam optimizer. Our results demonstrate that402

Re-Param improves insensitivity to the learning403

rate by decomposing gradient variability into a404

learnable factor. This method effectively stabilizes405

training across a wide range of learning rates.406

Main training recipe The effectiveness of our407

pre-training recipe mainly comes from a combi-408

nation use of µP and re-parameterization, which409

also provides: (1) consistent training dynamics, in-410

cluding training loss, gradient norm, and hidden411

states, (2) enhanced model capabilities in language412

modeling and generation (Figure 9a Left), and (3)413

stable model weights (Figure 9a Right).414

We provide ablation study on our recipe in Fig-415

ure 8. Unlike previous studies that focus on test416

loss (AllenAi, 2024), our work primarily examines417

LAMBADA accuracy, which we observe can be-418

have differently despite comparable test loss. We419

build a 0.2B proxy model with a deep and thin ar-420

chitecture resembling YuLan-Mini and train it on421

20B tokens. The main observations are as follows.422

• QK LayerNorm. This method addresses gra-423

dient divergence (green bar) but introduces a 24% 424

runtime overhead. However, it has a similar loss, 425

with no additional improvement in LAMBADA. 426

• Weight decay. Using weight decay achieves 427

comparable stabilization and 23.06% accuracy 428

without computational penalty. 429

• Cerebrase µP. Combining Cerebrase µP with 430

larger learning rate yields improvements, but loss 431

spikes occur and ultimately lead to divergence. 432

• Shallow architecture. Shallow and wide model 433

are less likely encounter training instability even in 434

large LR, but fails to deliver better performance. 435

• Depth µP. By scaling down FFN and MHA in 436

residual, Depth µP provides further stabilization 437

besides Cerebras µP in our deep architecture. 438

• Re-Param. Our solution achieves peak perfor- 439

mance (29.37% accuracy) through absorbing vari- 440

ability in large gradients, while introducing only 441

5% additional runtime compared to baseline. 442

6.2 Ablation Study on Data Pipeline 443

Synthetic data We utilize various data synthesis 444

methods, as outlined in Section 4.1. The key ob- 445

servations regarding the use of formal mathematics 446

data (i.e., Lean theorem proving) during the learn- 447

ing rate annealing stage are as follows: (1) w. Lean 448

incorporates 0.1B Lean data into the annealing data 449

(80B tokens), and (2) w/o Lean incorporates 0.1B 450

web data into the annealing data. As shown in Ta- 451

ble 4, the integration of formal mathematical data 452

notably enhances the model’s mathematical capa- 453

bilities, even when incorporating non-formal math. 454

This results in a 2.7% improvement on GSM8K 455

and a 16.4% improvement on MATH-500, with 456

the most significant gains observed on the more 457

challenging problems (i.e., MATH-500). Impor- 458

tantly, the inclusion of Lean data does not affect 459

the model’s generative capabilities. 460

7

Table 3: Performance on math, code and reasoning benchmarks. The best result is bold.

Models MATH GSM8K HumanEval MBPP MMLU CEval ARC-c GPQA IFeval Avg

Qwen-2.5-1.5B-Instruct 55.2 73.2 61.6 88.1 57.5 65.4 47.8 29.8 42.5 57.9
Llama3.2-3B-Instruct 48.0 43.4 51.5 80.4 60.0 45.9 78.6 38.6 - 55.8

YuLan-Mini-Instruct 55.2 81.8 67.7 85.7 53.6 50.5 51.8 30.1 44.0 57.8

Table 4: Performance on math benchmarks during the
annealing stage with and without Lean data.

Setting GSM8K MATH-500 LAMBADA

(1) w/o Lean 66.65 32.6 64.72

(2) w. Lean 68.46 39 65.67

Table 5: Ablation study on our data selection method.
HE refers to HumanEval.

Method LAM
BADA MMLU GSM

8K HE Time

(1) Random 54.6 38.3 31.6 36.8 -

(2) LESS 50.9 38.6 31.5 33.1 3.5h
(3) w. PCA 52.6 41.4 30.4 30.0 3.5h
(4) w. LR 51.7 37.8 35.1 36.7 1h
(5) Ours 56.4 40.9 40.3 34.9 1h

Curriculum learning We choose GSM8K and461

MBPP benchmarks to measure the effectiveness462

of our data curriculum. As shown in Figure 10,463

a gradually increasing difficulty level (math and464

code curricula) is more beneficial compared to a re-465

versed “hard-to-easy” curriculum (math baseline),466

or a randomly shuffled difficulty order (code base-467

line). Specifically, on the GSM8K dataset, the468

math baseline’s “hard-to-easy” approach leads to469

faster initial performance gains. However, as high-470

difficulty content is quickly exhausted, the “easy-471

to-hard” strategy surpasses it in the later stages472

(Figure 10a). On the MBPP dataset, according to473

our investigation, when simpler data is used in the474

early stages of training, the model can quickly mas-475

ter basic coding skills (such as basic operations476

with lists and dictionaries). As training progresses,477

model can gradually learn more advanced coding478

operations (Figure 10b).479

Data selection for micro-annealing Here we480

validate the effectiveness of our data selection481

method employed during the annealing phase482

through micro-annealing surrogate experiments483

(Section 4.3). We examine five distinct configu-484

rations: (1) Random selects data randomly; (2)485

LESS represents the original LESS method for data486

selecting; (3) LESS w. PCA uses the PCA matrix 487

obtained from the target set for projection; (4) LESS 488

w. LR removes 80% of the layers from the original 489

model; (5) LESS w. PCA & LR is our enhanced 490

LESS method. We perform data selection on 0.16B 491

instructional tokens, retaining the top 50% based 492

on scores, and utilize a 0.42B pre-training dataset 493

to maintain the data distribution. As shown in Ta- 494

ble 5, substituting a random matrix with a PCA 495

matrix for projection generally enhances model 496

performance. Notably, removing 80% of the lay- 497

ers can increase selection speed by 3.5 times, and 498

enhance the performance. 499

6.3 Post-training Performance 500

We conduct post-training for YuLan-Mini. We first 501

fine-tune YuLan-Mini on collected high-quality 502

datasets, then utilize the DPO and PPO algorithm 503

to further fine-tune our model on human alignment 504

and complex reasoning datasets. The experiment 505

details can be found in Appendix E. As the results 506

shown in Table 3, we can see our YuLan-mini also 507

exhibits better performance than these competitive 508

baselines, indicating its learned strong capability 509

from our designed pre-training method. 510

7 Conclusion 511

In this paper, we introduced YuLan-Mini, a highly 512

capable base model comprising 2.42 billion pa- 513

rameters. We provided comprehensive technical 514

details and resources, including the composition of 515

the training curriculum, the source code, and the 516

optimizer state. We investigated the causes of train- 517

ing instability and proposed an effective method 518

for stabilizing the training process. Furthermore, 519

we designed a complete and efficient data pipeline, 520

detailing the synthesis of high-quality reasoning 521

data, the design of the data curriculum, and the 522

selection of data during the annealing phase. The 523

advanced stabilization techniques and meticulously 524

organized data pipeline enabled us to conduct effi- 525

cient pre-training, achieving commendable perfor- 526

mance with only 1.08T tokens. 527

8

Limitations528

In this paper, we explore the training stability529

of large language models during pre-training and530

present a comprehensive data pipeline. Utilizing531

only 1.08T tokens, we successfully trained a highly532

effective base model with 2.4 billion parameters,533

demonstrating the efficiency of our training ap-534

proach. But there are also two limitations in this535

work. Firstly, due to the substantial computational536

resources required for pre-training, and given that537

we operate within a university-level laboratory with538

constrained computing capabilities. We currently539

have only 48 A800 GPUs, which limits us to train-540

ing a smaller model with 2.4 billion parameters.541

Similarly, due to hardware constraints, we can not542

explore more efficient pre-training using FP8. Sec-543

ondly, due to the extensive volume of training data,544

comprising 1.08 trillion tokens, we only conduct545

data curriculum ablation experiments on approx-546

imately 400 billion tokens and we are unable to547

perform a comprehensive ablation study on the548

data curriculum encompassing the entirety of the549

training process.550

Ethics Statement551

We abide by ethical norms. We adhere to the rele-552

vant licenses and usage guidelines for the datasets,553

ensuring that no personal or offensive information554

is included. Documentation for the datasets is avail-555

able in our project repository. We only use the AI556

assistant during the paper refinement process.557

References558

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury559
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.560
2023. GQA: training generalized multi-query trans-561
former models from multi-head checkpoints. In Pro-562
ceedings of the 2023 Conference on Empirical Meth-563
ods in Natural Language Processing, EMNLP 2023,564
Singapore, December 6-10, 2023, pages 4895–4901.565
Association for Computational Linguistics.566

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch,567
Gabriel Martín Blázquez, Lewis Tunstall, Agustín568
Piqueres, Andres Marafioti, Cyril Zakka, Leandro569
von Werra, and Thomas Wolf. 2024. Smollm2 - with570
great data, comes great performance.571

AllenAi. 2024. OLMo 2: The best fully open language572
model to date. blog post.573

Jacob Austin, Augustus Odena, Maxwell I. Nye,574
Maarten Bosma, Henryk Michalewski, David Dohan,575
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,576

and Charles Sutton. 2021. Program synthesis with 577
large language models. CoRR, abs/2108.07732. 578

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. 579
Hinton. 2016. Layer normalization. CoRR, 580
abs/1607.06450. 581

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy 582
Phung, Maksym Zhuravinskyi, Reshinth Adithyan, 583
James Baicoianu, Ben Brooks, Nathan Cooper, 584
Ashish Datta, Meng Lee, Emad Mostaque, Michael 585
Pieler, Nikhil Pinnaparaju, Paulo Rocha, Harry 586
Saini, Hannah Teufel, Niccoló Zanichelli, and Carlos 587
Riquelme. 2024. Stable LM 2 1.6b technical report. 588
CoRR, abs/2402.17834. 589

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, 590
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, 591
Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun 592
Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong 593
Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie 594
Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi 595
Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, 596
Alex X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin 597
Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, 598
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Jun- 599
jie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong 600
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, 601
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui 602
Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, 603
Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin 604
Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei 605
Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang 606
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei 607
Zhang, Lecong Zhang, Liyue Zhang, Mingchuan 608
Zhang, Minghua Zhang, Wentao Zhang, Yichao 609
Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou, 610
Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. 2024. 611
Deepseek LLM: scaling open-source language mod- 612
els with longtermism. CoRR, abs/2401.02954. 613

Piotr Bojanowski, Edouard Grave, Armand Joulin, and 614
Tomas Mikolov. 2017. Enriching word vectors with 615
subword information. Transactions of the Associa- 616
tion for Computational Linguistics, 5:135–146. 617

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 618
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 619
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 620
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 621
Gretchen Krueger, Tom Henighan, Rewon Child, 622
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 623
Clemens Winter, Christopher Hesse, Mark Chen, 624
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin 625
Chess, Jack Clark, Christopher Berner, Sam Mc- 626
Candlish, Alec Radford, Ilya Sutskever, and Dario 627
Amodei. 2020. Language models are few-shot learn- 628
ers. Preprint, arXiv:2005.14165. 629

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yu- 630
tao Zhu, Jinhao Jiang, Yingqian Min, Wayne Xin 631
Zhao, Zhicheng Dou, Jiaxin Mao, Yankai Lin, Rui- 632
hua Song, Jun Xu, Xu Chen, Rui Yan, Zhewei Wei, 633
Di Hu, Wenbing Huang, and Ji-Rong Wen. 2024. To- 634
wards effective and efficient continual pre-training of 635
large language models. CoRR, abs/2407.18743. 636

9

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://allenai.org/blog/olmo2
https://allenai.org/blog/olmo2
https://allenai.org/blog/olmo2
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1607.06450
https://doi.org/10.48550/ARXIV.2402.17834
https://doi.org/10.48550/ARXIV.2401.02954
https://doi.org/10.48550/ARXIV.2401.02954
https://doi.org/10.48550/ARXIV.2401.02954
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2407.18743
https://doi.org/10.48550/ARXIV.2407.18743
https://doi.org/10.48550/ARXIV.2407.18743
https://doi.org/10.48550/ARXIV.2407.18743
https://doi.org/10.48550/ARXIV.2407.18743

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming637
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-638
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,639
Greg Brockman, Alex Ray, Raul Puri, Gretchen640
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-641
try, Pamela Mishkin, Brooke Chan, Scott Gray,642
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz643
Kaiser, Mohammad Bavarian, Clemens Winter,644
Philippe Tillet, Felipe Petroski Such, Dave Cum-645
mings, Matthias Plappert, Fotios Chantzis, Eliza-646
beth Barnes, Ariel Herbert-Voss, William Hebgen647
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie648
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,649
William Saunders, Christopher Hesse, Andrew N.650
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan651
Morikawa, Alec Radford, Matthew Knight, Miles652
Brundage, Mira Murati, Katie Mayer, Peter Welinder,653
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya654
Sutskever, and Wojciech Zaremba. 2021. Evaluat-655
ing large language models trained on code. CoRR,656
abs/2107.03374.657

Shouyuan Chen, Sherman Wong, Liangjian Chen, and658
Yuandong Tian. 2023. Extending context window of659
large language models via positional interpolation.660
CoRR, abs/2306.15595.661

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,662
Maarten Bosma, Gaurav Mishra, Adam Roberts,663
Paul Barham, Hyung Won Chung, Charles Sutton,664
Sebastian Gehrmann, Parker Schuh, Kensen Shi,665
Sasha Tsvyashchenko, Joshua Maynez, Abhishek666
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-667
odkumar Prabhakaran, Emily Reif, Nan Du, Ben668
Hutchinson, Reiner Pope, James Bradbury, Jacob669
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,670
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,671
Sunipa Dev, Henryk Michalewski, Xavier Garcia,672
Vedant Misra, Kevin Robinson, Liam Fedus, Denny673
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,674
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,675
David Dohan, Shivani Agrawal, Mark Omernick, An-676
drew M. Dai, Thanumalayan Sankaranarayana Pil-677
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,678
Rewon Child, Oleksandr Polozov, Katherine Lee,679
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark680
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy681
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,682
and Noah Fiedel. 2023. Palm: Scaling language mod-683
eling with pathways. J. Mach. Learn. Res., 24:240:1–684
240:113.685

Woojin Chung, Jiwoo Hong, Na Min An, James Thorne,686
and Se-Young Yun. 2024. Stable language model687
pre-training by reducing embedding variability. In688
Proceedings of the 2024 Conference on Empirical689
Methods in Natural Language Processing, EMNLP690
2024, Miami, FL, USA, November 12-16, 2024, pages691
10852–10863. Association for Computational Lin-692
guistics.693

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,694
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias695
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro696
Nakano, Christopher Hesse, and John Schulman.697

2021. Training verifiers to solve math word prob- 698
lems. CoRR, abs/2110.14168. 699

Gautier Dagan, Gabriel Synnaeve, and Baptiste Rozière. 700
2024. Getting the most out of your tokenizer for 701
pre-training and domain adaptation. In Forty-first In- 702
ternational Conference on Machine Learning, ICML 703
2024, Vienna, Austria, July 21-27, 2024. OpenRe- 704
view.net. 705

Tri Dao. 2024. Flashattention-2: Faster attention with 706
better parallelism and work partitioning. In The 707
Twelfth International Conference on Learning Rep- 708
resentations, ICLR 2024, Vienna, Austria, May 7-11, 709
2024. OpenReview.net. 710

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 711
and Christopher Ré. 2022. Flashattention: Fast and 712
memory-efficient exact attention with io-awareness. 713
In Advances in Neural Information Processing Sys- 714
tems 35: Annual Conference on Neural Information 715
Processing Systems 2022, NeurIPS 2022, New Or- 716
leans, LA, USA, November 28 - December 9, 2022. 717

Alexandre de Brébisson and Pascal Vincent. 2016. 718
The z-loss: a shift and scale invariant classifica- 719
tion loss belonging to the spherical family. CoRR, 720
abs/1604.08859. 721

Nolan Dey, Gurpreet Gosal, Zhiming Chen, Hemant 722
Khachane, William Marshall, Ribhu Pathria, Marvin 723
Tom, and Joel Hestness. 2023a. Cerebras-gpt: Open 724
compute-optimal language models trained on the 725
cerebras wafer-scale cluster. CoRR, abs/2304.03208. 726

Nolan Dey, Gurpreet Gosal, Zhiming, Chen, Hemant 727
Khachane, William Marshall, Ribhu Pathria, Mar- 728
vin Tom, and Joel Hestness. 2023b. Cerebras-GPT: 729
Open Compute-Optimal Language Models Trained 730
on the Cerebras Wafer-Scale Cluster. arXiv preprint. 731
ArXiv:2304.03208 [cs]. 732

Hantian Ding, Zijian Wang, Giovanni Paolini, Varun 733
Kumar, Anoop Deoras, Dan Roth, and Stefano Soatto. 734
2024. Fewer truncations improve language modeling. 735
In Forty-first International Conference on Machine 736
Learning, ICML 2024, Vienna, Austria, July 21-27, 737
2024. OpenReview.net. 738

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 739
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 740
Akhil Mathur, Alan Schelten, Amy Yang, Angela 741
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 742
Archi Mitra, Archie Sravankumar, Artem Korenev, 743
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien 744
Rodriguez, Austen Gregerson, Ava Spataru, Bap- 745
tiste Rozière, Bethany Biron, Binh Tang, Bobbie 746
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe 747
Bi, Chris Marra, Chris McConnell, Christian Keller, 748
Christophe Touret, Chunyang Wu, Corinne Wong, 749
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al- 750
lonsius, Daniel Song, Danielle Pintz, Danny Livshits, 751
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, 752
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, 753
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, 754

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://aclanthology.org/2024.emnlp-main.606
https://aclanthology.org/2024.emnlp-main.606
https://aclanthology.org/2024.emnlp-main.606
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=ZFYBnLljtT
https://openreview.net/forum?id=ZFYBnLljtT
https://openreview.net/forum?id=ZFYBnLljtT
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://arxiv.org/abs/1604.08859
https://arxiv.org/abs/1604.08859
https://arxiv.org/abs/1604.08859
https://doi.org/10.48550/ARXIV.2304.03208
https://doi.org/10.48550/ARXIV.2304.03208
https://doi.org/10.48550/ARXIV.2304.03208
https://doi.org/10.48550/ARXIV.2304.03208
https://doi.org/10.48550/ARXIV.2304.03208
http://arxiv.org/abs/2304.03208
http://arxiv.org/abs/2304.03208
http://arxiv.org/abs/2304.03208
http://arxiv.org/abs/2304.03208
http://arxiv.org/abs/2304.03208
https://openreview.net/forum?id=kRxCDDFNpp

Emily Dinan, Eric Michael Smith, Filip Radenovic,755
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-756
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,757
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-758
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,759
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan760
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan761
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,762
Jeet Shah, Jelmer van der Linde, Jennifer Billock,763
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,764
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,765
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph766
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,767
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate768
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and769
et al. 2024. The llama 3 herd of models. CoRR,770
abs/2407.21783.771

Falcon-LLM Team. 2024. The falcon 3 family of open772
models.773

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi774
Chen. 2024. How to train long-context language775
models (effectively). CoRR, abs/2410.02660.776

Gemma Team. 2024. Gemma.777

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio778
César Teodoro Mendes, Allie Del Giorno, Sivakanth779
Gopi, Mojan Javaheripi, Piero Kauffmann, Gus-780
tavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,781
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,782
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and783
Yuanzhi Li. 2023. Textbooks Are All You Need.784
arXiv preprint. ArXiv:2306.11644 [cs].785

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai786
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,787
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-788
feng Liang. 2024. Deepseek-coder: When the large789
language model meets programming - the rise of code790
intelligence. CoRR, abs/2401.14196.791

Dan Hendrycks, Collin Burns, Steven Basart, Andy792
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-793
hardt. 2021a. Measuring massive multitask language794
understanding. In 9th International Conference on795
Learning Representations, ICLR 2021, Virtual Event,796
Austria, May 3-7, 2021. OpenReview.net.797

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul798
Arora, Steven Basart, Eric Tang, Dawn Song, and799
Jacob Steinhardt. 2021b. Measuring mathematical800
problem solving with the MATH dataset. In Pro-801
ceedings of the Neural Information Processing Sys-802
tems Track on Datasets and Benchmarks 1, NeurIPS803
Datasets and Benchmarks 2021, December 2021, vir-804
tual.805

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar,806
and Yuxuan Chen. 2020. Query-Key Normalization807
for Transformers. arXiv preprint. ArXiv:2010.04245808
[cs].809

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan810
Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam811

Sahni, Haowen Ning, and Yanning Chen. 2024. Liger 812
kernel: Efficient triton kernels for LLM training. 813
CoRR, abs/2410.10989. 814

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, 815
Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, 816
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, 817
Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan 818
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu 819
Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li, 820
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm: Un- 821
veiling the potential of small language models with 822
scalable training strategies. CoRR, abs/2404.06395. 823

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 824
wards reasoning in large language models: A survey. 825
In Findings of the Association for Computational 826
Linguistics: ACL 2023, Toronto, Canada, July 9-14, 827
2023, pages 1049–1065. Association for Computa- 828
tional Linguistics. 829

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Li- 830
uyihan Song, Yang Xu, J. Yang, J. H. Liu, Chenchen 831
Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang 832
Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili Wang, Yuan 833
Qi, Yinghui Xu, and Wei Chu. 2024. OpenCoder: 834
The Open Cookbook for Top-Tier Code Large Lan- 835
guage Models. CoRR, abs/2411.04905. 836

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei 837
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, 838
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, 839
Maosong Sun, and Junxian He. 2023. C-eval: A 840
multi-level multi-discipline chinese evaluation suite 841
for foundation models. In Advances in Neural Infor- 842
mation Processing Systems. 843

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, 844
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 845
2020. TinyBERT: Distilling BERT for Natural 846
Language Understanding. arXiv preprint. Is- 847
sue: arXiv:1909.10351 1097 citations (Semantic 848
Scholar/arXiv) [2023-07-31] arXiv:1909.10351 [cs]. 849

J. Kaplan, Sam McCandlish, T. Henighan, Tom B. 850
Brown, Benjamin Chess, Rewon Child, Scott Gray, 851
Alec Radford, Jeff Wu, and Dario Amodei. 2020. 852
Scaling Laws for Neural Language Models. ArXiv. 853

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin 854
Xu, and Deepak Ramachandran. 2023. LAMBADA: 855
backward chaining for automated reasoning in nat- 856
ural language. In Proceedings of the 61st Annual 857
Meeting of the Association for Computational Lin- 858
guistics (Volume 1: Long Papers), ACL 2023, Toronto, 859
Canada, July 9-14, 2023, pages 6547–6568. Associa- 860
tion for Computational Linguistics. 861

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 862
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza- 863
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem- 864
ory management for large language model serving 865
with pagedattention. In Proceedings of the 29th Sym- 866
posium on Operating Systems Principles, SOSP 2023, 867
Koblenz, Germany, October 23-26, 2023, pages 611– 868
626. ACM. 869

11

https://doi.org/10.48550/ARXIV.2407.21783
https://huggingface.co/blog/falcon3
https://huggingface.co/blog/falcon3
https://huggingface.co/blog/falcon3
https://doi.org/10.48550/ARXIV.2410.02660
https://doi.org/10.48550/ARXIV.2410.02660
https://doi.org/10.48550/ARXIV.2410.02660
https://doi.org/10.34740/KAGGLE/M/3301
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2010.04245
https://doi.org/10.48550/arXiv.2010.04245
https://doi.org/10.48550/arXiv.2010.04245
https://doi.org/10.48550/ARXIV.2410.10989
https://doi.org/10.48550/ARXIV.2410.10989
https://doi.org/10.48550/ARXIV.2410.10989
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://doi.org/10.48550/ARXIV.2308.10755
https://doi.org/10.48550/ARXIV.2308.10755
https://doi.org/10.48550/ARXIV.2308.10755
https://doi.org/10.48550/ARXIV.2308.10755
https://doi.org/10.48550/ARXIV.2308.10755
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
https://www.semanticscholar.org/paper/Scaling-Laws-for-Neural-Language-Models-Kaplan-McCandlish/e6c561d02500b2596a230b341a8eb8b921ca5bf2
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,870
and Eduard Hovy. 2017. Race: Large-scale reading871
comprehension dataset from examinations. Preprint,872
arXiv:1704.04683.873

Joonhyung Lee, Jeongin Bae, Byeongwook Kim,874
Se Jung Kwon, and Dongsoo Lee. 2024. To FP8875
and back again: Quantifying the effects of reduc-876
ing precision on LLM training stability. CoRR,877
abs/2405.18710.878

Conglong Li, Minjia Zhang, and Yuxiong He. 2022.879
The stability-efficiency dilemma: Investigating se-880
quence length warmup for training GPT models. In881
Advances in Neural Information Processing Systems882
35: Annual Conference on Neural Information Pro-883
cessing Systems 2022, NeurIPS 2022, New Orleans,884
LA, USA, November 28 - December 9, 2022.885

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi886
Mo, Shishir G. Patil, Matei Zaharia, Joseph E. Gonza-887
lez, and Ion Stoica. 2025. LLMs Can Easily Learn to888
Reason from Demonstrations Structure, not content,889
is what matters! (arXiv:2502.07374).890

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai891
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-892
win. 2024a. CMMLU: measuring massive multitask893
language understanding in chinese. In Findings of894
the Association for Computational Linguistics, ACL895
2024, Bangkok, Thailand and virtual meeting, Au-896
gust 11-16, 2024, pages 11260–11285. Association897
for Computational Linguistics.898

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi,899
Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal,900
Etash Kumar Guha, Sedrick Keh, Kushal Arora,901
Saurabh Garg, Rui Xin, Niklas Muennighoff, Rein-902
hard Heckel, Jean Mercat, Mayee Chen, Suchin903
Gururangan, Mitchell Wortsman, Alon Albalak,904
Yonatan Bitton, Marianna Nezhurina, Amro Abbas,905
Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Ma-906
ciej Kilian, Hanlin Zhang, Rulin Shao, Sarah M.907
Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras,908
Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang,909
Khyathi Raghavi Chandu, Thao Nguyen, Igor Vasil-910
jevic, Sham M. Kakade, Shuran Song, Sujay Sang-911
havi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer,912
Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari,913
Alexander Toshev, Stephanie Wang, Dirk Groen-914
eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev,915
Thomas Kollar, Alexandros G. Dimakis, Yair Car-916
mon, Achal Dave, Ludwig Schmidt, and Vaishaal917
Shankar. 2024b. Datacomp-lm: In search of the918
next generation of training sets for language models.919
CoRR, abs/2406.11794.920

Xinyu Lian, Sam Ade Jacobs, Lev Kurilenko, Masahiro921
Tanaka, Stas Bekman, Olatunji Ruwase, and Minjia922
Zhang. 2024. Universal checkpointing: Efficient923
and flexible checkpointing for large scale distributed924
training. CoRR, abs/2406.18820.925

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-926
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,927

John Schulman, Ilya Sutskever, and Karl Cobbe. 928
2024. Let’s verify step by step. In The Twelfth In- 929
ternational Conference on Learning Representations, 930
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open- 931
Review.net. 932

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, 933
Yifeng Ding, and Lingming Zhang. 2024a. Evaluat- 934
ing language models for efficient code generation. In 935
First Conference on Language Modeling. 936

Xiaoran Liu, Kai Lv, Qipeng Guo, Hang Yan, Conghui 937
He, Xipeng Qiu, and Dahua Lin. 2024b. Longwan- 938
juan: Towards systematic measurement for long text 939
quality. In Findings of the Association for Compu- 940
tational Linguistics: EMNLP 2024, Miami, Florida, 941
USA, November 12-16, 2024, pages 5709–5725. As- 942
sociation for Computational Linguistics. 943

Zechun Liu, Changsheng Zhao, Forrest N. Iandola, 944
Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang 945
Xiong, Ernie Chang, Yangyang Shi, Raghuraman 946
Krishnamoorthi, Liangzhen Lai, and Vikas Chandra. 947
2024c. Mobilellm: Optimizing sub-billion parameter 948
language models for on-device use cases. In Forty- 949
first International Conference on Machine Learning, 950
ICML 2024, Vienna, Austria, July 21-27, 2024. Open- 951
Review.net. 952

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 953
weight decay regularization. In 7th International 954
Conference on Learning Representations, ICLR 2019, 955
New Orleans, LA, USA, May 6-9, 2019. OpenRe- 956
view.net. 957

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, 958
and Thomas Wolf. 2024a. Fineweb-edu. 959

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 960
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 961
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 962
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 963
Zucker, Younes Belkada, Zijian Wang, Qian Liu, 964
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen- 965
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue 966
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, 967
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 968
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, 969
Niklas Muennighoff, Xiangru Tang, Muhtasham 970
Oblokulov, Christopher Akiki, Marc Marone, Cheng- 971
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 972
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa- 973
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten 974
Scholak, Sébastien Paquet, Jennifer Robinson, Car- 975
olyn Jane Anderson, Nicolas Chapados, and et al. 976
2024b. Starcoder 2 and the stack v2: The next gener- 977
ation. CoRR, abs/2402.19173. 978

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun- 979
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren 980
Zhou. 2024. #instag: Instruction tagging for analyz- 981
ing supervised fine-tuning of large language models. 982
In The Twelfth International Conference on Learning 983
Representations, ICLR 2024, Vienna, Austria, May 984
7-11, 2024. OpenReview.net. 985

12

https://arxiv.org/abs/1704.04683
https://arxiv.org/abs/1704.04683
https://arxiv.org/abs/1704.04683
https://doi.org/10.48550/ARXIV.2405.18710
https://doi.org/10.48550/ARXIV.2405.18710
https://doi.org/10.48550/ARXIV.2405.18710
https://doi.org/10.48550/ARXIV.2405.18710
https://doi.org/10.48550/ARXIV.2405.18710
http://papers.nips.cc/paper_files/paper/2022/hash/aac02401755a65904cf977a33136af4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/aac02401755a65904cf977a33136af4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/aac02401755a65904cf977a33136af4a-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.671
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.671
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.671
https://doi.org/10.48550/ARXIV.2406.11794
https://doi.org/10.48550/ARXIV.2406.11794
https://doi.org/10.48550/ARXIV.2406.11794
https://doi.org/10.48550/ARXIV.2406.18820
https://doi.org/10.48550/ARXIV.2406.18820
https://doi.org/10.48550/ARXIV.2406.18820
https://doi.org/10.48550/ARXIV.2406.18820
https://doi.org/10.48550/ARXIV.2406.18820
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=IBCBMeAhmC
https://openreview.net/forum?id=IBCBMeAhmC
https://openreview.net/forum?id=IBCBMeAhmC
https://aclanthology.org/2024.findings-emnlp.327
https://aclanthology.org/2024.findings-emnlp.327
https://aclanthology.org/2024.findings-emnlp.327
https://aclanthology.org/2024.findings-emnlp.327
https://aclanthology.org/2024.findings-emnlp.327
https://openreview.net/forum?id=EIGbXbxcUQ
https://openreview.net/forum?id=EIGbXbxcUQ
https://openreview.net/forum?id=EIGbXbxcUQ
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.57967/hf/2497
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=pszewhybU9

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,986
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,987
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,988
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-989
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex990
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea991
Tacchetti, Anna Bulanova, Antonia Paterson, Beth992
Tsai, Bobak Shahriari, Charline Le Lan, Christo-993
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,994
Daphne Ippolito, David Reid, Elena Buchatskaya,995
Eric Ni, Eric Noland, Geng Yan, George Tucker,996
George-Cristian Muraru, Grigory Rozhdestvenskiy,997
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,998
Jacob Austin, James Keeling, Jane Labanowski,999
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,1000
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.1001
2024. Gemma: Open models based on gemini re-1002
search and technology. CoRR, abs/2403.08295.1003

Igor Molybog, Peter Albert, Moya Chen, Zachary De-1004
Vito, David Esiobu, Naman Goyal, Punit Singh1005
Koura, Sharan Narang, Andrew Poulton, Ruan Silva,1006
Binh Tang, Diana Liskovich, Puxin Xu, Yuchen1007
Zhang, Melanie Kambadur, Stephen Roller, and1008
Susan Zhang. 2023. A theory on adam insta-1009
bility in large-scale machine learning. CoRR,1010
abs/2304.09871.1011

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong1012
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,1013
Pushmeet Kohli, and James Allen. 2016. A1014
corpus and evaluation framework for deeper un-1015
derstanding of commonsense stories. Preprint,1016
arXiv:1604.01696.1017

Kosuke Nishida, Kyosuke Nishida, and Kuniko Saito.1018
2024. Initialization of large language models via1019
reparameterization to mitigate loss spikes. In Pro-1020
ceedings of the 2024 Conference on Empirical Meth-1021
ods in Natural Language Processing, EMNLP 2024,1022
Miami, FL, USA, November 12-16, 2024, pages1023
22699–22714. Association for Computational Lin-1024
guistics.1025

OpenAI. 2023. GPT-4 technical report. CoRR,1026
abs/2303.08774.1027

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,1028
and Jimmy Ba. 2024. Openwebmath: An open1029
dataset of high-quality mathematical web text. In1030
The Twelfth International Conference on Learning1031
Representations, ICLR 2024, Vienna, Austria, May1032
7-11, 2024. OpenReview.net.1033

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-1034
lal, Anton Lozhkov, Margaret Mitchell, Colin Raf-1035
fel, Leandro Von Werra, and Thomas Wolf. 2024.1036
The FineWeb Datasets: Decanting the Web for1037
the Finest Text Data at Scale. arXiv preprint.1038
ArXiv:2406.17557.1039

Ofir Press and Lior Wolf. 2017. Using the output embed-1040
ding to improve language models. In Proceedings of1041
the 15th Conference of the European Chapter of the1042
Association for Computational Linguistics, EACL1043

2017, Valencia, Spain, April 3-7, 2017, Volume 2: 1044
Short Papers, pages 157–163. Association for Com- 1045
putational Linguistics. 1046

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. 1047
2020. Bpe-dropout: Simple and effective subword 1048
regularization. In Proceedings of the 58th Annual 1049
Meeting of the Association for Computational Lin- 1050
guistics, ACL 2020, Online, July 5-10, 2020, pages 1051
1882–1892. Association for Computational Linguis- 1052
tics. 1053

Qwen-Team. 2024. Qwen2.5: A party of foundation 1054
models. 1055

Alec Radford, Jeff Wu, Rewon Child, David Luan, 1056
Dario Amodei, and Ilya Sutskever. 2019. Language 1057
models are unsupervised multitask learners. 1058

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 1059
and Yuxiong He. 2020. Zero: memory optimizations 1060
toward training trillion parameter models. In Pro- 1061
ceedings of the International Conference for High 1062
Performance Computing, Networking, Storage and 1063
Analysis, SC 2020, Virtual Event / Atlanta, Georgia, 1064
USA, November 9-19, 2020, page 20. IEEE/ACM. 1065

Oleg Rybakov, Mike Chrzanowski, Peter Dykas, Jinze 1066
Xue, and Ben Lanir. 2024. Methods of improving 1067
LLM training stability. CoRR, abs/2410.16682. 1068

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 1069
ula, and Yejin Choi. 2021. Winogrande: an adver- 1070
sarial winograd schema challenge at scale. Commun. 1071
ACM, 64(9):99–106. 1072

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lu- 1073
cile Saulnier, Stas Bekman, M. Saiful Bari, Stella 1074
Biderman, Hady Elsahar, Niklas Muennighoff, Jason 1075
Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng 1076
Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin 1077
Yong, Julien Launay, and Iz Beltagy. 2022. What 1078
Language Model to Train if You Have One Million 1079
GPU Hours? arXiv preprint. ArXiv:2210.15424 1080
[cs]. 1081

Noam Shazeer. 2020. GLU variants improve trans- 1082
former. CoRR, abs/2002.05202. 1083

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, 1084
Patrick LeGresley, Jared Casper, and Bryan Catan- 1085
zaro. 2020. Megatron-lm: Training multi-billion 1086
parameter language models using model parallelism. 1087
Preprint, arXiv:1909.08053. 1088

Yiding Sun, Feng Wang, Yutao Zhu, Wayne Xin Zhao, 1089
and Jiaxin Mao. 2024. An integrated data process- 1090
ing framework for pretraining foundation models. In 1091
Proceedings of the 47th International ACM SIGIR 1092
Conference on Research and Development in Infor- 1093
mation Retrieval, SIGIR 2024, Washington DC, USA, 1094
July 14-18, 2024, pages 2713–2718. ACM. 1095

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and 1096
Jun Suzuki. 2023. Spike no more: Stabilizing 1097
the pre-training of large language models. CoRR, 1098
abs/2312.16903. 1099

13

https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2304.09871
https://doi.org/10.48550/ARXIV.2304.09871
https://doi.org/10.48550/ARXIV.2304.09871
https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://aclanthology.org/2024.emnlp-main.1264
https://aclanthology.org/2024.emnlp-main.1264
https://aclanthology.org/2024.emnlp-main.1264
https://doi.org/10.48550/ARXIV.2303.08774
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu
http://arxiv.org/abs/2406.17557
http://arxiv.org/abs/2406.17557
http://arxiv.org/abs/2406.17557
https://doi.org/10.18653/V1/E17-2025
https://doi.org/10.18653/V1/E17-2025
https://doi.org/10.18653/V1/E17-2025
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.48550/ARXIV.2410.16682
https://doi.org/10.48550/ARXIV.2410.16682
https://doi.org/10.48550/ARXIV.2410.16682
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.48550/arXiv.2210.15424
https://doi.org/10.48550/arXiv.2210.15424
https://doi.org/10.48550/arXiv.2210.15424
https://doi.org/10.48550/arXiv.2210.15424
https://doi.org/10.48550/arXiv.2210.15424
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.1145/3626772.3657671
https://doi.org/10.1145/3626772.3657671
https://doi.org/10.1145/3626772.3657671
https://doi.org/10.48550/ARXIV.2312.16903
https://doi.org/10.48550/ARXIV.2312.16903
https://doi.org/10.48550/ARXIV.2312.16903

Tianyi Tang, Hu Yiwen, Bingqian Li, Wenyang Luo,1100
ZiJing Qin, Haoxiang Sun, Jiapeng Wang, Shiyi Xu,1101
Xiaoxue Cheng, Geyang Guo, Han Peng, Bowen1102
Zheng, Yiru Tang, Yingqian Min, Yushuo Chen, Jie1103
Chen, Ranchi Zhao, Luran Ding, Yuhao Wang, Zi-1104
can Dong, Xia Chunxuan, Junyi Li, Kun Zhou, Xin1105
Zhao, and Ji-Rong Wen. 2024. LLMBox: A Com-1106
prehensive Library for Large Language Models. In1107
Proceedings of the 62nd Annual Meeting of the As-1108
sociation for Computational Linguistics (Volume 3:1109
System Demonstrations), pages 388–399, Bangkok,1110
Thailand. Association for Computational Linguistics.1111

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,1112
and Ari Morcos. 2023. D4: improving LLM pretrain-1113
ing via document de-duplication and diversification.1114
In Advances in Neural Information Processing Sys-1115
tems 36: Annual Conference on Neural Information1116
Processing Systems 2023, NeurIPS 2023, New Or-1117
leans, LA, USA, December 10 - 16, 2023.1118

Howe Tissue, Venus Wang, and Lu Wang. 2024.1119
Scaling law with learning rate annealing. CoRR,1120
abs/2408.11029.1121

Dixuan Wang, Yanda Li, Junyuan Jiang, Zepeng Ding,1122
Guochao Jiang, Jiaqing Liang, and Deqing Yang.1123
2024. Tokenization matters! degrading large lan-1124
guage models through challenging their tokenization.1125
CoRR, abs/2405.17067.1126

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and1127
Lingming Zhang. 2024. Magicoder: Empowering1128
code generation with oss-instruct. In Forty-first In-1129
ternational Conference on Machine Learning, ICML1130
2024, Vienna, Austria, July 21-27, 2024. OpenRe-1131
view.net.1132

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie E.1133
Everett, Alexander A. Alemi, Ben Adlam, John D.1134
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman1135
Novak, Jeffrey Pennington, Jascha Sohl-Dickstein,1136
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon1137
Kornblith. 2024. Small-scale proxies for large-scale1138
transformer training instabilities. In The Twelfth In-1139
ternational Conference on Learning Representations,1140
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-1141
Review.net.1142

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.1143
Lean-github: Compiling github LEAN repositories1144
for a versatile LEAN prover. CoRR, abs/2407.17227.1145

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,1146
Sanjeev Arora, and Danqi Chen. 2024. LESS: se-1147
lecting influential data for targeted instruction tuning.1148
In Forty-first International Conference on Machine1149
Learning, ICML 2024, Vienna, Austria, July 21-27,1150
2024. OpenReview.net.1151

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,1152
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and1153
Xiaodan Liang. 2024. Deepseek-prover: Advancing1154
theorem proving in llms through large-scale synthetic1155
data. CoRR, abs/2405.14333.1156

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, 1157
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan 1158
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer 1159
normalization in the transformer architecture. In Pro- 1160
ceedings of the 37th International Conference on 1161
Machine Learning, ICML 2020, 13-18 July 2020, Vir- 1162
tual Event, volume 119 of Proceedings of Machine 1163
Learning Research, pages 10524–10533. PMLR. 1164

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, 1165
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi 1166
Rungta, Karthik Abinav Sankararaman, Barlas Oguz, 1167
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan 1168
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, 1169
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao 1170
Ma. 2024. Effective long-context scaling of founda- 1171
tion models. In Proceedings of the 2024 Conference 1172
of the North American Chapter of the Association 1173
for Computational Linguistics: Human Language 1174
Technologies (Volume 1: Long Papers), NAACL 2024, 1175
Mexico City, Mexico, June 16-21, 2024, pages 4643– 1176
4663. Association for Computational Linguistics. 1177

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. 1178
2019. Quick and (not so) dirty: Unsupervised se- 1179
lection of justification sentences for multi-hop ques- 1180
tion answering. In Proceedings of the 2019 Confer- 1181
ence on Empirical Methods in Natural Language Pro- 1182
cessing and the 9th International Joint Conference 1183
on Natural Language Processing, EMNLP-IJCNLP 1184
2019, Hong Kong, China, November 3-7, 2019, pages 1185
2578–2589. Association for Computational Linguis- 1186
tics. 1187

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, 1188
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, 1189
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng 1190
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, 1191
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, 1192
Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei 1193
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, 1194
Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie, 1195
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng 1196
Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xian- 1197
grong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin 1198
Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding 1199
Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yu- 1200
peng Zhang, Zenan Zhou, and Zhiying Wu. 2023. 1201
Baichuan 2: Open large-scale language models. 1202
CoRR, abs/2309.10305. 1203

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 1204
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 1205
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 1206
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, 1207
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin 1208
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, 1209
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke- 1210
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, 1211
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize 1212
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, 1213
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, 1214
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, 1215
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing 1216
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, 1217

14

https://doi.org/10.18653/v1/2024.acl-demos.37
https://doi.org/10.18653/v1/2024.acl-demos.37
https://doi.org/10.18653/v1/2024.acl-demos.37
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/a8f8cbd7f7a5fb2c837e578c75e5b615-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2408.11029
https://doi.org/10.48550/ARXIV.2405.17067
https://doi.org/10.48550/ARXIV.2405.17067
https://doi.org/10.48550/ARXIV.2405.17067
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://doi.org/10.48550/ARXIV.2407.17227
https://doi.org/10.48550/ARXIV.2407.17227
https://doi.org/10.48550/ARXIV.2407.17227
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://doi.org/10.48550/ARXIV.2405.14333
https://doi.org/10.48550/ARXIV.2405.14333
https://doi.org/10.48550/ARXIV.2405.14333
https://doi.org/10.48550/ARXIV.2405.14333
https://doi.org/10.48550/ARXIV.2405.14333
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html
https://doi.org/10.18653/V1/2024.NAACL-LONG.260
https://doi.org/10.18653/V1/2024.NAACL-LONG.260
https://doi.org/10.18653/V1/2024.NAACL-LONG.260
https://doi.org/10.18653/V1/D19-1260
https://doi.org/10.18653/V1/D19-1260
https://doi.org/10.18653/V1/D19-1260
https://doi.org/10.18653/V1/D19-1260
https://doi.org/10.18653/V1/D19-1260
https://doi.org/10.48550/ARXIV.2309.10305

Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,1218
Zhifang Guo, and Zhihao Fan. 2024a. Qwen2 techni-1219
cal report. CoRR, abs/2407.10671.1220

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,1221
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-1222
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,1223
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang1224
Ren, and Zhenru Zhang. 2024b. Qwen2.5-math tech-1225
nical report: Toward mathematical expert model via1226
self-improvement. CoRR, abs/2409.12122.1227

Greg Yang, Edward J. Hu, Igor Babuschkin, Szy-1228
mon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,1229
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao.1230
2022. Tensor programs V: tuning large neural net-1231
works via zero-shot hyperparameter transfer. CoRR,1232
abs/2203.03466.1233

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou.1234
2024c. Tensor programs VI: feature learning in in-1235
finite depth neural networks. In The Twelfth Inter-1236
national Conference on Learning Representations,1237
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-1238
Review.net.1239

Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi Wang.1240
2025. ReasonFlux: Hierarchical LLM Reasoning via1241
Scaling Thought Templates. (arXiv:2502.06772).1242

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,1243
Dahua Lin, and Kai Chen. 2024a. Lean workbook: A1244
large-scale lean problem set formalized from natural1245
language math problems. CoRR, abs/2406.03847.1246

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,1247
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,1248
Kuikun Liu, Ziyi Wang, et al. 2024b. Internlm-math:1249
Open math large language models toward verifiable1250
reasoning. arXiv preprint arXiv:2402.06332.1251

Andy B. Yoo, Morris A. Jette, and Mark Grondona.1252
2003. SLURM: simple linux utility for resource1253
management. In Job Scheduling Strategies for Paral-1254
lel Processing, 9th International Workshop, JSSPP1255
2003, Seattle, WA, USA, June 24, 2003, Revised Pa-1256
pers, volume 2862 of Lecture Notes in Computer1257
Science, pages 44–60. Springer.1258

Alex Young, Bei Chen, Chao Li, Chengen Huang,1259
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng1260
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:1261
Open foundation models by 01. ai. arXiv preprint1262
arXiv:2403.04652.1263

Yijiong Yu, Ziyun Dai, Zekun Wang, Wei Wang, Ran1264
Chen, and Ji Pei. 2025. Opencsg chinese corpus: A1265
series of high-quality chinese datasets for llm training.1266
Preprint, arXiv:2501.08197.1267

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-1268
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.1269
2024. Mammoth: Building math generalist models1270
through hybrid instruction tuning. In The Twelfth1271
International Conference on Learning Representa-1272
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.1273
OpenReview.net.1274

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 1275
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 1276
machine really finish your sentence? In Proceedings 1277
of the 57th Conference of the Association for Compu- 1278
tational Linguistics, ACL 2019, Florence, Italy, July 1279
28- August 2, 2019, Volume 1: Long Papers, pages 1280
4791–4800. Association for Computational Linguis- 1281
tics. 1282

Biao Zhang and Rico Sennrich. 2019. Root mean 1283
square layer normalization. In Advances in Neural 1284
Information Processing Systems 32: Annual Confer- 1285
ence on Neural Information Processing Systems 2019, 1286
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, 1287
Canada, pages 12360–12371. 1288

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, 1289
Chenghua Lin, Chou Leuang Yu, Danny Pan, Es- 1290
ther Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney 1291
Zheng, Wei Pang, Xinrun Du, Yiming Liang, Ying- 1292
hao Ma, Yizhi Li, Ziyang Ma, Bill Y. Lin, Em- 1293
manouil Benetos, Huan Yang, Junting Zhou, Kaijing 1294
Ma, Minghao Liu, Morry Niu, Noah Wang, Quehry 1295
Que, Ruibo Liu, Sine Liu, Shawn Guo, Soren Gao, 1296
Wangchunshu Zhou, Xinyue Zhang, Yizhi Zhou, 1297
Yubo Wang, Yuelin Bai, Yuhan Zhang, Yuxiang 1298
Zhang, Zenith Wang, Zhenzhu Yang, Zijian Zhao, 1299
Jiajun Zhang, Wanli Ouyang, Wenhao Huang, and 1300
Wenhu Chen. 2024a. Map-neo: Highly capable and 1301
transparent bilingual large language model series. 1302
CoRR, abs/2405.19327. 1303

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and 1304
Wei Lu. 2024b. TinyLlama: An Open-Source Small 1305
Language Model. arXiv preprint. ArXiv:2401.02385 1306
[cs]. 1307

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 1308
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be- 1309
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, 1310
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao 1311
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang 1312
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 1313
2023. A survey of large language models. CoRR, 1314
abs/2303.18223. 1315

Yutao Zhu, Kun Zhou, Kelong Mao, Wentong Chen, 1316
Yiding Sun, Zhipeng Chen, Qian Cao, Yihan Wu, 1317
Yushuo Chen, Feng Wang, Lei Zhang, Junyi Li, 1318
Xiaolei Wang, Lei Wang, Beichen Zhang, Zican 1319
Dong, Xiaoxue Cheng, Yuhan Chen, Xinyu Tang, 1320
Yupeng Hou, Qiangqiang Ren, Xincheng Pang, Sh- 1321
ufang Xie, Wayne Xin Zhao, Zhicheng Dou, Jiaxin 1322
Mao, Yankai Lin, Ruihua Song, Jun Xu, Xu Chen, 1323
Rui Yan, Zhewei Wei, Di Hu, Wenbing Huang, Ze- 1324
Feng Gao, Yueguo Chen, Weizheng Lu, and Ji-Rong 1325
Wen. 2024. Yulan: An open-source large language 1326
model. CoRR, abs/2406.19853. 1327

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan- 1328
ping Huang, Jeff Dean, Noam Shazeer, and William 1329
Fedus. 2022a. Designing effective sparse expert mod- 1330
els. CoRR, abs/2202.08906. 1331

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan- 1332
ping Huang, Jeff Dean, Noam Shazeer, and William 1333

15

https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2203.03466
https://doi.org/10.48550/ARXIV.2203.03466
https://doi.org/10.48550/ARXIV.2203.03466
https://openreview.net/forum?id=17pVDnpwwl
https://openreview.net/forum?id=17pVDnpwwl
https://openreview.net/forum?id=17pVDnpwwl
https://doi.org/10.48550/arXiv.2502.06772
https://doi.org/10.48550/arXiv.2502.06772
https://doi.org/10.48550/arXiv.2502.06772
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.48550/ARXIV.2406.03847
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://arxiv.org/abs/2501.08197
https://arxiv.org/abs/2501.08197
https://arxiv.org/abs/2501.08197
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.48550/ARXIV.2405.19327
https://doi.org/10.48550/ARXIV.2405.19327
https://doi.org/10.48550/ARXIV.2405.19327
http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.48550/ARXIV.2406.19853
https://doi.org/10.48550/ARXIV.2406.19853
https://doi.org/10.48550/ARXIV.2406.19853
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906

Fedus. 2022b. ST-MoE: Designing Stable and Trans-1334
ferable Sparse Expert Models. (arXiv:2202.08906).1335

A Overall Pre-Training Configuration 1336

In this section, we will provide an overview of 1337

the pre-training configuration, introducing its key 1338

components and the algorithms involved in the pro- 1339

cess. For a more detailed discussion of the major 1340

contributions made in this work, please refer to 1341

Section 3.2 and Section 4. 1342

A.1 Model Architecture 1343

Our model is based on a decoder-only transformer 1344

with a tall and narrow architecture, inspired by pre- 1345

vious studies (Liu et al., 2024c; Hu et al., 2024). 1346

It comprises a total of 2.42B parameters, of which 1347

2.23B are non-embedding parameters. The hyper- 1348

parameter configurations for our model architec- 1349

ture are provided in Table 6. Additionally, we re- 1350

parameterize each weight matrix of different mod- 1351

ules with an extra learnable parameter (Nishida 1352

et al., 2024), enhancing the model’s training sta- 1353

bility (discussed in Section 3.2). Next, we briefly 1354

introduce the main components in our architecture. 1355

Embedding tying We utilize embedding ty- 1356

ing (Press and Wolf, 2017) to reduce the model’s 1357

parameter size and stabilize training. In our prelim- 1358

inary experiments, we find that sharing the embed- 1359

ding and unembedding matrices improves model 1360

convergence. Furthermore, when these matrices 1361

are not shared, they often necessitate different ini- 1362

tialization strategies, which we will discuss in Sec- 1363

tion 3.2. 1364

Pre-RMSNorm Layer normalization (LN) has 1365

been shown to enhance numerical stability and ac- 1366

celerate learning speed (Ba et al., 2016). We in- 1367

tegrate Pre-LN into our model architecture to im- 1368

prove convergence stability and speed compared to 1369

Post-LN (Xiong et al., 2020). Regarding the form 1370

of normalization, we opt for RMSNorm over the con- 1371

ventional LayerNorm, as it conserves CUDA mem- 1372

ory while attaining a comparable effect (Zhang and 1373

Sennrich, 2019). 1374

SwiGLU Our model introduces non-linearity us- 1375

ing a gated linear unit (GLU) with the Swish activa- 1376

tion function, known as SwiGLU (Shazeer, 2020). 1377

This method effectively captures complex data rela- 1378

tionships and has proven to be effective in relatively 1379

small language models, as demonstrated by (Liu 1380

et al., 2024c). 1381

Attention mechanism We adopt the grouped- 1382

query attention (GQA, (Ainslie et al., 2023)), 1383

16

https://doi.org/10.48550/arXiv.2202.08906
https://doi.org/10.48550/arXiv.2202.08906
https://doi.org/10.48550/arXiv.2202.08906

which enables the model to reduce KV cache us-1384

age while maintaining high performance. Specifi-1385

cally, we employ 30 heads for query attention and 61386

groups for key-value heads. We opt not to make the1387

KV head size divisible by 8 since small language1388

models rarely require tensor parallelism during in-1389

ference. We only add bias for QKV projections.1390

Rotary Embedding We adopt rotary positional1391

embedding (RoPE) to capture the positional infor-1392

mation in our model, since it integrates absolute1393

and relative positioning in an unified way. During1394

the stable training stage, we set the parameter θ1395

to 10,000, and increase it to 49 000 during the an-1396

nealing stage to extend the context length to 28,6721397

(28K) tokens using adjusted base frequency (ABF).1398

A.2 Tokenizer1399

Tokenization is a critical preprocessing step that1400

splits input text into sequences of tokens. Below,1401

we provide details of our tokenizer.1402

Vocabulary size Generally, the vocabulary size1403

should be chosen to balance its effects on the1404

model’s parameter size and efficiency. We adopt1405

the three approaches proposed by (Dagan et al.,1406

2024) to balance the compute budget and vocab-1407

ulary capacity, yielding a final vocabulary size of1408

around 99,000. For simplicity, we reuse the Byte1409

Pair Encoding (BPE) tokenizer of MiniCPM (Hu1410

et al., 2024). Specifically, we truncate the vocab-1411

ulary by applying the corresponding BPE merge1412

rules to reduce the number of tokens. We also1413

heuristically remove rare domain-specific tokens,1414

while add some reserved tokens in the vocabu-1415

lary. The statistics of the modified vocabulary and1416

the compression rate are shown at Table 7. The1417

test set for the tokenization experiments is sourced1418

from a diverse array of datasets, as detailed in Sec-1419

tion B.4. Overall, our tokenization method achieves1420

a well-balanced compression rate across different1421

domains.1422

BPE-dropout Existing sub-word tokenization1423

methods prevent the language models from under-1424

standing the alphabetic composition of a token. To1425

mitigate this issue, BPE-dropout (Provilkov et al.,1426

2020) has been proposed to help the model bet-1427

ter learn the internal representation of a token, en-1428

abling it to more effectively capture possible sub-1429

words within a word. Specifically, we use a rel-1430

atively low dropout rate of 0.2, and applying the1431

dropout method results in only a slight increase in1432

the number of tokens (0.07%), as shown in Table 7. 1433

Digit tokenization Digit tokenization plays a cru- 1434

cial role in mathematical tasks, including numerical 1435

calculation and complex reasoning. We follow the 1436

common practice of splitting numbers into indi- 1437

vidual digits (Bi et al., 2024; Yang et al., 2023). 1438

Although other methods, such as three-digit tok- 1439

enization, may achieve higher compression rates, 1440

using individual-digit tokenization typically leads 1441

to improved numerical calculation accuracy (Wang 1442

et al., 2024). 1443

A.3 Training Data Preparation 1444

Data serves as the foundation for developing the 1445

model’s capabilities, and we employ specially de- 1446

signed strategies for collecting and preparing the 1447

training dataset. Next, we briefly describe the gen- 1448

eral procedure for data preparation. A more de- 1449

tailed and comprehensive description of the data 1450

pipeline is provided in Section 4. 1451

Data collection and selection To ensure repro- 1452

ducibility, our pre-training data is primarily sourced 1453

from open-source pretraining datasets and syn- 1454

thetically generated data. The main open-source 1455

datasets include FineWeb-Edu (Lozhkov et al., 1456

2024a), the-stack-v2 (Lozhkov et al., 2024b), open- 1457

web-math (Paster et al., 2024), Chinese-FineWeb- 1458

Edu (?), and OpenCoder-LLM (Huang et al., 2024). 1459

The entire pre-training dataset has undergone rigor- 1460

ous preprocessing, with 1.08T tokens for training. 1461

Among them are 481B English web data, 138B 1462

general English knowledge, 227B code pre-training 1463

data, 16.7B code instruction data, 93.8B mathemat- 1464

ics pre-training data, 15.5B mathematics instruc- 1465

tion data, and 108B Chinese data. 1466

Data schedule Using the WSD scheduling 1467

method (Hu et al., 2024), the training process is di- 1468

vided into three main stages: warmup, stable train- 1469

ing, and annealing. The warmup stage uses 10B to- 1470

kens, the stable training stage utilizes 990B tokens, 1471

and the annealing stage uses 80B tokens. To bet- 1472

ter manage the training process, we divide the en- 1473

tire training trajectory into 27 consecutive curricu- 1474

lum phases, each consisting of 40B tokens. When 1475

transitioning between these curriculum phases, the 1476

dataset proportions are slightly adjusted based on 1477

the model’s performance on various benchmarks 1478

and the perplexity (PPL) of validation texts. How- 1479

ever, the internal data distribution of each curricu- 1480

lum phase cannot be modified once it has been 1481

17

Table 6: Hyperparameter settings of diffrent models. rffn is the ratio of the feed-forward network’s hidden size to
the model’s hidden size. The definition of the symbols is available at Table 8

Model nlayers dmodel rffn nheads nkv_heads

LLaMA-3.2-3B 28 3,072 2.7 24 8
Phi-3-mini-4k-instruct 32 3,072 2.7 32 32
MiniCPM-2B 40 2,304 2.5 36 36
MiniCPM3-4B 62 2,560 2.5 40 40
Qwen2.5-1.5B 28 1,536 5.8 12 2
MobileLLM-1B 54 1,280 2.8 20 5

YuLan-Mini 56 1,920 2.5 30 6

Table 7: Compression rate of different tokenizers. Higher values indicate more effective compression.

Tokenizer Vocabulary Size Web Chinese Math Code

Gemma2-2B 256,000 4.928 3.808 2.865 3.309
Qwen2.5 151,936 4.935 3.956 2.890 3.881
LLaMA-3.1 128,000 4.994 3.263 3.326 3.911
MiniCPM-2.4B 122,753 4.753 4.273 2.739 3.052
Phi-3.5-mini 100,352 4.311 1.914 2.654 3.110
MiniCPM-1.2B 73,440 4.631 4.042 2.696 3.017

YuLan-Mini 99,000 4.687 4.147 2.716 3.033
+ Dropout 99,000 4.687 4.146 2.715 3.031

scheduled for training. During the annealing stage,1482

the proportion of instruction data and long context1483

data is increased. Following the work by (Hu et al.,1484

2024), we estimate the optimal annealing ratio to1485

be 8%, i.e., 80 billion tokens. We maintain the1486

same batch size used during stable training, i.e., 41487

million tokens. The learning rate is decreased from1488

10−2 to 5.22 × 10−5 over a span of 18,802 steps.1489

Subsequently, the learning rate is held constant at1490

5.22× 10−5 for the final 772 steps.1491

A.4 Model Optimization1492

For model optimization, hyperparameters are cru-1493

cial for training stability and model performance.1494

Specifically, we adopt the WSD learning rate1495

scheduler (Hu et al., 2024). Maintaining a constant1496

learning rate during the stable training stage elim-1497

inates the necessity to specify an ending step, as1498

required by the cosine scheduler. This approach fa-1499

cilitates continuing pre-training from the last check-1500

point during stable training. It also allows for more1501

flexible data preparation: we can prepare the data1502

while the preceding curriculum phase is running.1503

Additionally, we estimate an optimal annealing ra-1504

tio of 8% for the stable training stage using the1505

scaling law of learning rate annealing (Tissue et al.,1506

2024).1507

For training stability, we combine a parame-1508

ter initialization approach akin to µP (Dey et al., 1509

2023b; Hu et al., 2024; Yang et al., 2022) with 1510

WeSaR re-parameterization (Nishida et al., 2024), 1511

using a relatively large global learning rate of 1512

0.01. The rationale behind adopting a large learn- 1513

ing rate is the expectation that the model will 1514

possess greater potential for enhancement during 1515

the annealing stage. We set the AdamW hyper- 1516

parameters as follows: β1 = 0.9, β2 = 0.95, ϵ = 1517

10−15, with the weight_decay of 0.1 and the 1518

z-loss coefficient of 10−4 (de Brébisson and Vin- 1519

cent, 2016). We use a variance of 5 × 10−5 for 1520

initialization. As found by (Wortsman et al., 2024), 1521

extending the warm-up ratio enhances training sta- 1522

bility, so we linearly warm up the model over 10B 1523

tokens. We use a batch size of 4.12M tokens with 1524

a sequence length of 4,096, extending the context 1525

length during the annealing stage while keeping 1526

the total token count in the batch size unchanged. 1527

We avoid using gradient accumulation to prevent 1528

numerical precision error of bfloat16. Detailed 1529

analysis of training stability can be found in Sec- 1530

tion 3.2. 1531

A.5 Training Infrastructure 1532

We build a simple yet efficient training framework 1533

based on the HuggingFace Trainer and other open- 1534

source libraries (DeepSpeed, flash-attention, 1535

18

and liger-kernel).1536

Specifically, we first use ZeRO-1 (Rajbhan-1537

dari et al., 2020) data parallelism provided by1538

DeepSpeed intergration and then switch to ZeRO-1539

2 after confirming that it does not cause training1540

divergence in our model.2 We also leverage Flash1541

Attention (Dao et al., 2022; Dao, 2024) and a triton1542

kernel library liger-kernel (Hsu et al., 2024) to1543

accelerate training processes. By employing fused1544

kernels, we achieve a 30% reduction in training1545

time and up to 70% savings in CUDA memory.31546

We further optimize the balance between CUDA1547

memory usage and training time by adjusting the1548

number of layers through the activation checkpoint-1549

ing function. For enhanced training efficiency, we1550

use bfloat16 precision for both model parameters1551

and NCCL communications. The model’s FLOPs1552

utilization (MFU) is estimated at 51.57%.1553

Regarding the hardware setup, we initially em-1554

ploy a 56 A800-GPU cluster managed by the1555

SLURM system (Yoo et al., 2003). We later reduce1556

the number of GPUs to 48 by transitioning the dis-1557

tributed optimizer to a universal checkpoint (Lian1558

et al., 2024). To maximize device utilization, we1559

perform tokenization and packing asynchronously.1560

Given the modest size of our cluster, the likelihood1561

of encountering NCCL failures is relatively low.1562

Therefore, after assessing the advantages and dis-1563

advantages, we decide to store a checkpoint every1564

hour and implement automatic restarts.1565

For efficient evaluation, we utilize LLM-1566

Box (Tang et al., 2024) to integrate vLLM (Kwon1567

et al., 2023) for generative tasks and employ KV1568

cache scheduling for multiple-choice tasks. For1569

a detailed description of the evaluation setup and1570

results, please refer to Appendix B.1571

A.6 Long Context1572

Previous research (Chen et al., 2023) has demon-1573

strated that LLMs can hardly process texts ex-1574

ceeding their context windows due to the out-of-1575

distribution (OOD) rotation angles in RoPE. To1576

achieve the context window extension, increasing1577

the base frequency of RoPE to migrate the OOD1578

rotation angles and continual pre-training has been1579

an effective method (Xiong et al., 2024). Conse-1580

quently, during the annealing stage, we increase1581

the base frequency of RoPE θ from 10,000, em-1582

2https://github.com/microsoft/DeepSpeed/issues/6351
3Fused kernels include: SelfAttention, RMSNorm,

RoPE, SwiGLU, FusedLinearCrossEntropy, and AdamW.
torch.compile is also enabled in our implementation.

ployed during stable training, to 490,000 and train 1583

the model on long texts. This adjustment success- 1584

fully extends the context length from 4,096 (4K) 1585

tokens to 28,672 (28K) tokens. 1586

During the annealing stage of the final 80B to- 1587

kens, we adjust the base frequency of RoPE from 1588

10,000 to 490,000 and train on long sequences to 1589

extend the context length from 4,096 tokens to 1590

28,672 tokens. We avoid training with long con- 1591

texts in earlier stages because the computational 1592

cost of self-attention layers increases quadratically 1593

with sequence length, making it prohibitively ex- 1594

pensive (Dubey et al., 2024). 1595

When training on long contexts, we observe a 1596

decline in the model’s performance on short-text 1597

benchmarks. To enhance the long-text capacities 1598

and preserve the short-text capacities, we carefully 1599

design the mixture of data. We upample books 1600

and concatenated GitHub code texts (Liu et al., 1601

2024b) as long context data to capture long-term 1602

dependencies, while using high-quality short texts 1603

to preserve short-text capabilities. Additionally, 1604

inspired by previous studies (Ding et al., 2024; Gao 1605

et al., 2024), we also apply masked cross-document 1606

attention that prevents attention across different 1607

documents to preserve short-context capabilities. 1608

A.7 Other Strategies 1609

Packing Since the training data during the an- 1610

nealing stage includes some instruction data, us- 1611

ing a traditional simple packing method for pre- 1612

training data could result in instruction data being 1613

split, thereby compromising its effectiveness. To 1614

address this, we propose a packing strategy de- 1615

signed to maintain training efficiency while min- 1616

imizing the disruption of instruction data. This 1617

strategy involves different packing methods based 1618

on data type. Pre-training data is directly spliced, 1619

whereas for instruction data, if it is divided into two 1620

sequences, the remaining part of the previous se- 1621

quence is padded directly, and this instruction data 1622

serves as the beginning of the second sequence. 1623

Subsequently, any redundant padding tokens are re- 1624

placed with pre-training data tokens. By including 1625

the instruction data, our main goal is to learn the 1626

reasoning process rather than focusing solely on 1627

the question-and-answer format. Therefore, we em- 1628

ploy the same data processing method used in pre- 1629

training, which directly includes question-answer 1630

pairs without relying on a chat template. When 1631

calculating the loss, the instruction and response 1632

are treated as a single document, and the loss for 1633

19

https://github.com/microsoft/DeepSpeed/issues/6351

the instruction is not masked.1634

Checkpoint merging Following the approach1635

used in LLaMA3 (Dubey et al., 2024), we com-1636

bine the last few checkpoints during the annealing1637

stage to produce the final pre-trained model. While1638

this strategy might result in a slight reduction in1639

certain specific capabilities (e.g., GSM8K), it gen-1640

erally leads to a more well-rounded model.1641

B Experimental Setup1642

B.1 Evaluation Benchmarks1643

For a comprehensive evaluation of LLMs perfor-1644

mance, we select the benchmarks from the follow-1645

ing aspects.1646

• Language comprehension: We select1647

the widely-used English benchmarks1648

MMLU (Hendrycks et al., 2021a), LAM-1649

BADA (Kazemi et al., 2023) and RACE (Lai1650

et al., 2017), along with the Chinese bench-1651

marks CMMLU (Li et al., 2024a) and1652

CEval (Huang et al., 2023), to evaluate1653

the bilingual comprehension capabilities of1654

the LLM. These benchmarks span various1655

domains, such as history, science, and culture.1656

• Code generation: We select Humaneval (Chen1657

et al., 2021) and MBPP (Austin et al., 2021)1658

to assess the capability of LLMs to generate1659

accurate code snippets for natural language1660

problems.1661

• Mathematical reasoning: We utilize1662

GSM8K (Cobbe et al., 2021) and MATH-1663

500 (Hendrycks et al., 2021b; Lightman et al.,1664

2024) to evaluate the mathematical reasoning1665

capabilities of LLMs. These benchmarks1666

range from basic arithmetic to advanced1667

mathematical problems.1668

• Logical reasoning: We assess the logical1669

reasoning capabilities of LLMs using ARC-1670

E (Yadav et al., 2019), ARC-C (Yadav et al.,1671

2019), which provide a comprehensive evalua-1672

tion of logical reasoning across various knowl-1673

edge domains.1674

• Commonsense reasoning: We evaluate the1675

LLM’s commonsense reasoning ability us-1676

ing WinoGrande (Sakaguchi et al., 2021),1677

HellaSwag (Zellers et al., 2019), Sto-1678

ryCloze (Mostafazadeh et al., 2016) which1679

test the understanding and utilization of daily 1680

commonsense knowledge. 1681

B.2 Baseline Models 1682

To ensure a comprehensive evaluation, we select 1683

several small LLMs with comparable scales (i.e., 1684

base models ranging from 0.5 to 3B, including 1685

embedding sizes) as baselines for comparison: 1686

• MiniCPM-2.4B (Hu et al., 2024): MiniCPM- 1687

2.4B is pre-trained on 1.06T tokens and also 1688

employs the annealing training strategy. De- 1689

spite its small size (2.7B total model size), it 1690

exhibits impressive performance in general 1691

tasks while supporting deployments with lim- 1692

ited hardware resource. 1693

• Qwen series models (Qwen-Team, 2024; 1694

Yang et al., 2024a): We select Qwen2-1.5B, 1695

Qwen2.5-0.5B, and Qwen2.5-1.5B for com- 1696

parison. The latest Qwen2.5 series of small 1697

LLMs have been pre-trained on 18T tokens, 1698

and the training details have not been fully 1699

publicly released. They demonstrate state 1700

of the arts performance in both general and 1701

domain-specific tasks. 1702

• StableLM2-1.6B (Bellagente et al., 2024): 1703

StableLM2-1.6B is a small LLM proposed by 1704

StabilityAI. It has been pre-trained on a mix- 1705

ture of open-source datasets, which utilizes 1706

several small LLMs to determine the training 1707

data proportion. 1708

• SmolLM2-1.7B (Allal et al., 2024): SmolLM2- 1709

1.7B is developed by HuggingFace TB Re- 1710

search based on its collected high-quality pre- 1711

training corpus, which has been trained on 1712

11T tokens, and maintains a good balance be- 1713

tween speed and accuracy. 1714

• Llama3.2-3B (Dubey et al., 2024): Llama3.2- 1715

3B (3.2B total model size) is developed by 1716

MetaAI, which is trained on up to 9T to- 1717

kens. It further distills the knowledge from 1718

LLaMA3.1-8B and 70B models by using their 1719

logits during the pre-training stage. 1720

• Gemma2-2.6B (Gemma Team, 2024): 1721

Gemma2-2.6B is developed by Google, 1722

which is trained on 2T tokens, mainly includ- 1723

ing web documents, code, and mathematical 1724

text. 1725

20

• Falcon3-3B (Falcon-LLM Team, 2024):1726

Falcon3-3B is a transformer model initialized1727

from Falcon3-7B-Base by pruning with fur-1728

ther distillation to recover using 1024 H1001729

GPU chips.1730

B.3 Implementation Details1731

To comprehensively compare the performance of1732

different LLMs, we employ diverse evaluation set-1733

tings and design specific methods for guaranteeing1734

the fairness and efficiency.1735

• Zero-shot and few-shot settings: Follow-1736

ing existing work (Qwen-Team, 2024), For1737

LAMBADA, HumanEval, MBPP, RACE, Sto-1738

ryCloze and RULER, we adopt the zero-shot1739

setting. For GSM8K and MATH, we adopt the1740

4-shot setting. For MMLU, CMMLU, Wino-1741

Grande and CEval, we adopt the 5-shot setting.1742

For HellaSwag, we adopt the 10-shot setting.1743

For ARC-E, ARC-C, we adopt the 25-shot1744

setting.1745

• Chain-of-Thought (CoT): For GSM8K and1746

MATH, we follow previous work (Qwen-1747

Team, 2024) that uses CoT prompting to facil-1748

itate the LLM to perform step-by-step reason-1749

ing. Considering the potential performance1750

variance caused by CoT prompts, we utilize1751

both the short ones provided by the origi-1752

nal dataset and the long ones generated by1753

kimi-k0-math. For each model, we evaluate1754

the performance using both prompt types, and1755

select the one yielding the higher score as the1756

result.1757

• Evaluation metrics: For QA tasks, we em-1758

ploy maj@1 for GSM8K and MATH, pass@11759

for HumanEval and MBPP, and accuracy of1760

the model response for remaining generation1761

tasks. For multiple-choice questions, we pri-1762

marily evaluate based on the accuracy of the1763

generated answer, which is determined by se-1764

lecting the choice with the lowest perplexity.1765

However, for ARC-E and ARC-C, we uti-1766

lize normalized accuracy (Brown et al., 2020).1767

performance of MATH-500, we further use1768

gpt-4o-mini to verify the correctness of the1769

results generated by all models and conducted1770

manual checks.1771

• Maximum length: For GSM8K and MATH,1772

since CoT prompting may result in longer out-1773

puts, we set the maximum generation length1774

to 596 for short context (i.e., 4K) models 1775

and 2,048 for long context models. For Hu- 1776

manEval and MBPP, we set the maximum 1777

generation length to 400. For other generative 1778

tasks, we set it to 128 for efficiency. 1779

• Evaluation framework: For the majority of 1780

tasks, we employ LLMBox (Tang et al., 2024) 1781

to assess performance. Specifically, for gen- 1782

eration tasks, we enable vLLM (Kwon et al., 1783

2023). However, to ensure reproducibility, we 1784

utilize EvalPlus (Liu et al., 2024a) for Hu- 1785

manEval and MBPP. 1786

Despite our considerable efforts, fully reproduc- 1787

ing the results of these baseline models as origi- 1788

nally reported remains challenging, due to the lack 1789

of detailed evaluation setup information. For a fair 1790

comparison, we report the performance results of 1791

the baselines as provided in their official technical 1792

reports. 1793

B.4 Evaluating Model Performance during 1794

Pre-Training 1795

During pre-training, it is crucial to continuously 1796

evaluate the model’s performance to monitor for 1797

any unstable or abnormal training issues. However, 1798

existing benchmarks rely on advanced abilities 1799

(e.g., instruction following), which often develop 1800

with sufficient data training. Thus, the model’s per- 1801

formance tends to remain at a low level on these 1802

benchmarks in the early stages, and directly evaluat- 1803

ing the model’s performance on specific validation 1804

sets would not provide an accurate assessment. 1805

To address this, we have designed two monitor- 1806

ing strategies for different stages of training. In the 1807

early stages, we assess the model’s performance 1808

primarily through perplexity measures on the con- 1809

structed validation datasets and LAMBADA bench- 1810

mark. In the later stages, we shift to using perfor- 1811

mance on selected benchmarks (e.g., HumanEval 1812

and GSM8K) for more comprehensive evaluation. 1813

Next, we introduce how to construct the validation 1814

set for perplexity measurement at early stage of 1815

pre-training. 1816

To comprehensively evaluate the key abilities of 1817

our model, we create four validation sets from the 1818

following aspects, namely English understanding, 1819

Chinese understanding, code generation, and math 1820

reasoning. The detailed data composition is as 1821

follows. 1822

• English understanding: We randomly select 1823

21

0 100 200 300 400 500
Trained Tokens (B)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
H

um
an

Ev
al

 (0
-s

ho
t,

pa
ss

@
k=

1)
HumanEval (0-shot, pass@k=1)
Code PPL

1.0

1.2

1.4

1.6

1.8

2.0

C
od

e
PP

L

(a) Performance curve on HumanEval.

0 100 200 300 400 500
Trained Tokens (B)

2

4

6

8

10

12

14

16

G
SM

-8
K

(8
-s

ho
t)

GSM-8K(8-shot)
Math PPL

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
M

at
h

PP
L

(b) Performance curve on GSM8K.

Figure 11: Performance comparison using perplexity
(PPL) and accuracy-based metrics to monitor the code
generation and math reasoning abilities of YuLan-Mini.

2,118 samples from FineWeb-Edu and com-1824

pute the perplexity for ability evaluation.1825

• Chinese understanding: We randomly select1826

1,679 samples from Chinese-FineWeb-Edu for1827

computing the perplexity.1828

• Code generation: We randomly select 2,0671829

samples from a widely-used code instruc-1830

tion datasets, Python-Code-Instructions-18k-1831

Alpaca for perplexity evaluation.41832

• Math reasoning: We randomly sample 1,4991833

open-ended questions from MathInstruct (Yue1834

et al., 2024) for perplexity.1835

4https://huggingface.co/datasets/iamtarun/
python_code_instructions_18k_alpaca

Once the advanced capabilities are well- 1836

developed, we can directly monitor the model’s 1837

performance by evaluating it on the selected bench- 1838

marks. 1839

Training setup Since it is resource-intense to 1840

perform extensive experiments on our model, we 1841

explore the training dynamics by conducting surro- 1842

gate experiment with a small proxy model of 0.2B 1843

with similar architecture. We employ a relatively 1844

large learning rate of 0.01, to expose potential in- 1845

stabilities within the model. We keep this baseline 1846

model setup in the subsequent experiment, which 1847

we elaborate on in Appendix C. Specifically, our op- 1848

timization goal is to achieve optimal performance 1849

while ensuring that the training process does not 1850

result in divergent loss or an increasing trend in 1851

gradient norm. 1852

C Training Stability 1853

1854

C.1 Indicators Setup 1855

In large-scale training, distributed optimizers are 1856

often used, which means that the gradients of dif- 1857

ferent modules may be distributed across various 1858

data parallel ranks. This distribution makes it inef- 1859

ficient to directly obtain the gradients. As a result, 1860

we primarily track each module’s weight matrix 1861

and hidden states (i.e., their outputs). Specifically, 1862

we record the mean and variance of the weights 1863

and hidden states, as well as the root mean square 1864

(RMS), which is calculated using the follow for- 1865

mula RMS =
√

Var + Mean2. Note we consider 1866

the outputs of various modules in the transformer 1867

(i.e., FFN, Attention, RMSNorm) as hidden states. 1868

C.2 Exploding Hidden States Due to Residual 1869

Connection 1870

Here we provide a detailed derivation for Equa- 1871

tion 3, which aims to investigate the growing hid- 1872

den states due to residual connection. To under- 1873

stand the underlying cause, we express the hidden 1874

states in terms of the model’s weights and inputs: 1875

var(zl) = var(yl) + var(FFN(RMSNorm(yl))), 1876

var(yl) = var(xl) + var(MHA(RMSNorm(xl))). 1877

For ease of analysis, we first assume that: 1878

x,y ∼ N (0, σ2). (4) 1879

22

https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca
https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca

Table 8: Definition of the variables for computing the hyperparameters.

Variables Meaning

nlayers The num of model’s layers, i.e., num_hidden_layers.

nheads The num of model’s attention heads, i.e., num_attention_heads.

nkv_heads The num of model’s kv-heads used in GQA, i.e., num_key_value_heads.

dmodel Model dimension, i.e., hidden_size.

dhead Dimension of attention head, i.e., hidden_size / num_attention_heads.

dffn The hidden size of feed-forward network, i.e., intermediate_size.

σbase Initialization standard deviation for each matrix, i.e., initializer_range.

ηbase Learning rate, i.e., max learning rate.

⊙ Element-wise multiplication.

FFN SwiGLU FFN(u) = [F(uWgate)⊙ (uWup)]Wdown, where SiLU F(x) = x⊙ σ(x).

RMSNorm Root mean square layer normalization without bias RMSNorm(x) = x
RMS(x)

⊙ g.

MHA Multi-head attention MHA(v) = concathi=1[headi(v)]Wo.

head(X) head(X) = Softmax(S√
dheads

)XWV, where the attention weights S = XTWT
QWKX.

dmodel_proxy dmodel for proxy model, i.e., the 0.05B model

mwidth Width scaling factor in µP, i.e., dmodel/dmodel_proxy

Under this assumption, we can obtain var(u) =1880

var(v) = 1. In this case, we can express the vari-1881

ance as the following form:1882

var(zl) = var(xl)+var(FFN(u))+var(MHA(v)),
(5)1883

which means, the hidden states will grow by the1884

variance of MHA and FFN in each layer:1885

var(headi(v)) = var(softmax(Z)V) · dmodel

· var(Wv) < dmodel · var(Wv),

(6)

1886

var(FFN) = dffn · dmodel · var(Wup)

· var(Wdown),
(7)1887

var(MHA) = var(head(v)) · dmodel · var(Wo)

< d2model · var(Wv) · var(Wo),

(8)

1888

where Z denotes the scaled attention scores. The1889

base dimensionality dmodel of LLMs are often large1890

(e.g., 1,920 in our model).1891

Therefore, the variance addition of each layer1892

∆H l = var(zl) − var(xl) = var(MHA(v)) +1893

var(FFN(u)). By plugging in Equation 7 and 8,1894

we can estimate the upper bound of ∆H l as:1895

∆H l <d2model · var(Wv) · var(Wo)1896

+ dffn · dmodel · var(Wup) · var(Wdown).
(9)

1897

C.3 Discussion on Other Training 1898

Stabilization Methods 1899

During our training process, we thoroughly ex- 1900

plore and utilize various training stabilization tech- 1901

niques. Below, we provide a brief introduction to 1902

these methods. 1903

C.3.1 Warmup Based Methods 1904

To ensure the model transitions smoothly from its 1905

initial state to a stable training phase, we empiri- 1906

cally find that employing learning rate warmup and 1907

sequence length warmup is often effective, which 1908

are detailed below. 1909

Learning rate warmup Learning rate warmup 1910

involves gradually increasing the learning rate from 1911

a small initial value (e.g., 0) to the max learning 1912

rate in TLR steps. (Wortsman et al., 2024) suggests 1913

that a longer learning rate warmup can reduce sen- 1914

sitivity to the learning rate, as measured by training 1915

stability across different learning rates. We em- 1916

pirically verify this conclusion and find increasing 1917

TLR indeed enhances training stability. For our 1918

final training, we set TLR = 2,433, which approxi- 1919

mately corresponds to 10 billion tokens of data. 1920

Sequence length warmup Sequence length 1921

warmup starts training with short sequences (e.g., 1922

64 tokens) and gradually increases their length 1923

within the steps of TSL, which is typically set to a 1924

23

0 5 10 15 20 25
Number of steps (×104)

1

2

4

8

(a) Training loss.

0 5 10 15 20 25
Number of steps (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

 n
or

m

(b) Gradient norm.

Figure 12: Training loss and gradients during pre-training process.

Table 9: Comparison of the used hyperparameter settings for training stability, where the detailed explanation
for the variables are in Table 8. We include SI (Takase et al., 2023) for comparison, MiniCPM (Hu et al., 2024),
CerebrasGPT (Dey et al., 2023a). The definition of the symbols is available at Table 8 .

Method SI MiniCPM CerebrasGPT YuLan-Mini

Scale Embedding Output 1 12 10 10

Scale MHA equation 1/
√
dhead 1/

√
dhead 1/dhead 1/

√
dhead

Scale Residual Connection 1 1.4√
nlayers

1 1.4√
nlayers

QKV Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

QKV σ Init σ2
base σ2

base/mwidth σ2
base/mwidth σ2

base/mwidth

O Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

O σ Init σ2
base

2nlayers
σ2

base/mwidth
σ2

base
2mwidth·nlayers

σ2
base

2mwidth·nlayers

FFN1 Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

FFN1 σ Init σ2
base σ2

base/mwidth σ2
base/mwidth σ2

base/mwidth

FFN2 Weights LR ηbase ηbase/mwidth ηbase/mwidth ηbase/mwidth

FFN2 σ Init σ2
base

2nlayers
σ2

base/mwidth
σ2

base
2mwidth·nlayers

σ2
base

2mwidth·nlayers

Scale Output logits 1 1/mwidth 1/mwidth 1

few multiples of TLR (Li et al., 2022). The ratio-1925

nale behind this approach is that longer sequence1926

lengths contribute significantly to extreme gradient1927

variance, particularly in the early stages of training.1928

In our experiments, we also observe similar fluctua-1929

tions in loss during long context training (especially1930

in the 27-th curriculum phase). However, since we1931

have stabilized the training using other methods1932

and this approach requires additional preparation1933

of the data, we ultimately decided not to adopt it.1934

C.3.2 Module Based Methods1935

In this part, we introduce module-based methods1936

which regularize the model states by adjusting spe-1937

cific components in it.1938

QK LayerNorm QK LayerNorm and its variants 1939

(e.g., QKV LayerNorm or capped QK LayerNorm) 1940

have have been shown to effectively mitigate the 1941

growth of attention logits (Rybakov et al., 2024), 1942

which we also have identified in Section 6.1. We 1943

highlight the effectiveness of QK LayerNorm be- 1944

cause it directly addresses the exponential growth 1945

of gradients caused by the interaction of hidden 1946

states (QKT), whereas some other methods only 1947

attempt to control the downstream instability. Our 1948

empirical study, which is shown in Figure 13a 1949

and 13b, demonstrates the advantages of QK Lay- 1950

erNorm in terms of training stability. However, it 1951

significantly slows down the calculation in training: 1952

with the same acceleration configuration, using QK 1953

LayerNorm increases the training time by 34%. 1954

24

Note that the implementation of QK LayerNorm1955

here is similar to StableLM’s per-head approach,1956

allowing each attention head to learn independently.1957

Considering that the previously mentioned methods1958

have already demonstrated stability in our prelimi-1959

nary experiments, we ultimately decided not to use1960

QK LayerNorm (Section 6.1).1961

Embedding tying Embedding tying aims to1962

share the weights of embedding and unembedding1963

(i.e., lm_head) parameters (Press and Wolf, 2017).1964

Our experiments demonstrate that the utilization1965

of embedding sharing enables faster convergence1966

and more stable training, and there is no significant1967

degradation in training performance.1968

Z-loss Z-loss was originally proposed to allevi-1969

ate the shift and scale of logits in classification1970

tasks (de Brébisson and Vincent, 2016). Sub-1971

sequently, it has been introduced to LLM and1972

MoE training to mitigate the growth of the log-1973

its layer (Chowdhery et al., 2023; Zoph et al.,1974

2022a). It adds an auxiliary term related to the1975

softmax normalizer logZ to the original loss: L =1976

lm_loss + ζ log2 Z. In our experiments, we set1977

the coefficient ζ = 10−4 to encourage the logits1978

to be close to 0. Although ablation studies did not1979

show significant effects, we incorporate it into the1980

final training.1981

C.3.3 Numerical Optimization Based1982

Methods1983

In addition, we consider using several commons1984

methods to reduce abnormal updates during opti-1985

mization, as described below.1986

Weight decay To prevent abnormal model1987

weights due to large gradient updates, weight decay1988

functions by subtracting a penalty term from the1989

weights during the update step, rather than directly1990

modifying the gradients. Formally, we denote the1991

AdamW update without learning rate or weight1992

decay as:1993

∆ = αm̂t/(
√
v̂t + ϵ). (10)1994

Then at update step t, the AdamW update with1995

weight decay is given by θ → θ − stη(∆ − λθ),1996

where λ is the weight decay coefficient, st is learn-1997

ing rate schedule and η is the max learning rate.1998

Previous work has recommended using an inde-1999

pendent weight decay for updates, expressed as2000

θ → θ−st(η∆−λ′θ), which is claimed to be appli-2001

cable to a wider range of learning rates (Loshchilov2002

and Hutter, 2019; Wortsman et al., 2024). In the 2003

PyTorch implementation, this approach can be 2004

achieved by tuning the weight decay coefficient 2005

λ in conjunction with the maximum learning rate, 2006

following the relationship λ′ = η · λ. 2007

Optimizer hyper-parameter In the update of 2008

AdamW (Equation (10)), m̂t and v̂t represent the 2009

first and second gradient moment exponential mov- 2010

ing averages (EMA), respectively. If the gradient 2011

is of the same order of magnitude as ϵ, then the 2012

update value ∆ will be significantly reduced due 2013

to ϵ, which empirically leads to training instability 2014

inherent in embedding layer. A direct solution is to 2015

reduce ϵ from the default value of 10−8 to 10−15. 2016

Generally speaking, this method can alleviate the 2017

divergence caused by abnormal embedding gradi- 2018

ent values in larger-scale models (Wortsman et al., 2019

2024; Molybog et al., 2023). 2020

Numerical stability In practice, paying close at- 2021

tention to numerical stability is crucial, as it can be 2022

an important source of training instability. In large- 2023

scale model training, float32 often suffers from 2024

low computational efficiency. Although float16 2025

offers comparable precision with higher compu- 2026

tational efficiency, it has a limited numerical rep- 2027

resentation range (e.g., maximum positive num- 2028

ber that can be represented is 65,504). Therefore, 2029

bfloat16 has been proposed as a trade-off between 2030

precision and representation range. It largely al- 2031

leviates the training instability caused by exceed- 2032

ing the representable range. However, in practice, 2033

bfloat16 introduces precision problems compared 2034

to float16. In experiments conducted by (Lee 2035

et al., 2024) using bfloat16 with 188 random 2036

seeds, 18 runs diverged, whereas using float32 2037

under the same configuration resulted in all runs 2038

converging normally. To mitigate precision issues 2039

with bfloat16, Gemma (Mesnard et al., 2024) find 2040

that shifting the RMSNorm weight from 1 to 0 2041

helps, considering that bfloat16 has symmetric 2042

numerical precision around 0 but greater inaccura- 2043

cies near 1. 2044

Value clipping To further limit the gradient 2045

within certain range, we utilize a gradient clip- 2046

ping of 1. We find using a smaller limit does not 2047

help stabilize the training. In addition, initializ- 2048

ing the LLM in accordance with “3-σ” rule with 2049

nn.init.trunc_normal_ may be helpful for nu- 2050

merical stability. 2051

25

0 2000 4000 6000 8000 10000
Training steps

1

10
Avg LN variance w/o QK LayerNorm
Avg attention logits w/o QK LayerNorm
Avg LN variance w/o QK LayerNorm
Avg attention logits w/ QK LayerNorm

(a) Variance of attention values and LN outputs

0 2000 4000 6000 8000 10000
Training steps

10 1

100

101

G
ra

d
N

or
m

Loss w/o QK LayerNorm
Loss w/ QK LayerNorm
Grad Norm w/o QK LayerNorm
Grad Norm w/ QK LayerNorm

1

10

Lo
ss

(b) Gradient norm and loss trajectory

Figure 13: The curves of attention value and LN output variances (left) and gradient norm and loss (right). After
using QK LayerNorm, we prevent the explosion of attention logits and gradients, keeping the LN output stable
around 1 and the loss consistent.

D Data Filtering Pipeline2052

2053

As we aim for a data-efficient training approach,2054

data quality is crucial to the final model’s perfor-2055

mance. For this purpose, we implement a thorough2056

data cleaning process to remove low-quality texts2057

(Figure 6).2058

De-duplication Data de-duplication is a crucial2059

step in standard LLM training practices, as previ-2060

ous research has demonstrated that duplicate data2061

can significantly degrade model performance (Tiru-2062

mala et al., 2023). We use the MinHash algorithm2063

implemented by the Yulan-GARDEN library (Sun2064

et al., 2024) to deduplicate the training data.2065

Heuristic filtering We adopt heuristic methods2066

to filter the data, some of which are listed as fol-2067

lows:2068

• All: we remove the documents containing2069

fewer than 20 tokens.2070

• Code: we apply filtering criteria based on2071

code metrics (e.g., average line length, alpha-2072

betic characters ratio, and keyword statistics)2073

similar to DeepSeek-Coder (Guo et al., 2024).2074

• Synthetic data: we remove responses that are2075

garbled or contain repeated content. For math2076

texts, we remove response that do not contain2077

an hightlited answer part (e.g., $box{}$).2078

Topic-based text recall To enhance the model’s 2079

capabilities in specialized areas, it is essential to in- 2080

clude ample knowledge documents related to math- 2081

ematics, code, and reasoning. For this purpose, we 2082

extract relevant documents from unused web pages 2083

by training fasttext (Bojanowski et al., 2017) and 2084

TinyBert (Jiao et al., 2020) classifiers specifically 2085

tailored to these categories. From the FineWeb- 2086

Edu (Lozhkov et al., 2024a) and DCLM (Li et al., 2087

2024b) web corpus, we extract 10.4B math text to- 2088

kens, 1.11B code text tokens, and 1.01B reasoning 2089

text tokens. which are directly used for training 2090

or serve as seed data for synthesizing instruction 2091

data. Furthermore, we reuse the synthesized sci- 2092

ence data (1.5B) from Llama-3-SynE (Chen et al., 2093

2024), which covers an extensive range of disci- 2094

plines, such as math and physics. 2095

Model-based quality scoring For general web 2096

page data and mathematical pre-training data, 2097

we use the fineweb-edu-scorer released by 2098

FineWeb-Edu for data scoring. For Python code 2099

data, we use the python-edu-scorer released by 2100

FineWeb-Edu. To avoid language models favor- 2101

ing highly technical pages like arXiv abstracts and 2102

submitted papers, these two classifiers focus on 2103

knowledge at the elementary and middle school 2104

levels. Following the methodology of (Penedo 2105

et al., 2024), we conduct quality assessments on 2106

all Python code data, most mathematical data, and 2107

web page data using scoring tools. We exclude data 2108

with scores of 1 and 2 and then heuristically sort 2109

data with scores from 3 to 5 . 2110

26

Decontamination To ensure the fairness of com-2111

parison, we perform decontamination based on the2112

selected evaluation benchmarks. Initially, we tok-2113

enize both the training set and the benchmarks that2114

require decontamination, such as GSM8K (Cobbe2115

et al., 2021), MATH (Hendrycks et al., 2021b),2116

HumanEval (Chen et al., 2021), and ARC (Yadav2117

et al., 2019). Next, we divide all the benchmarks2118

using n-gram tokens to create a contamination set.2119

We use tokens rather than words to form n-gram2120

segment, which achieves a higher level of decon-2121

tamination in the domains of mathematics and code.2122

Additionally, we exclude 20-gram segments that oc-2123

cur more than four times, as they are typically not2124

relevant to the questions or solutions. Ultimately,2125

the contamination set comprises 1,917,428 tuples.2126

For each training document, if more than 10% of2127

its generated 20-grams are present in the contami-2128

nation set, we exclude that document from the final2129

pre-training set.2130

E Post-training Details2131

2132

We conduct post-training for YuLan-Mini, with2133

specific details for each stage as described below.2134

Experimental results of post-training on public2135

benchmarks are shown in Table 3.2136

E.1 SFT Stage2137

During the Supervised Fine-Tuning (SFT) phase,2138

we implement comprehensive optimization of train-2139

ing data through the following core strategies:2140

Diversified Data Sources Our SFT data com-2141

prises two categories: 1) high-quality open-source2142

general-purpose data spanning diverse domains and2143

topics, and 2) specialized data generated through2144

synthesis, distillation, and paraphrasing techniques2145

to ensure broad knowledge coverage and strong2146

domain adaptability.2147

Rigorous Data Filtering Beyond conventional2148

deduplication and filtering, our pipeline incor-2149

porates multi-stage quality control measures, in-2150

cluding corpus quality assessment and curriculum2151

learning-based selection to optimize training effec-2152

tiveness.2153

Systematic Data Schedule We strategically bal-2154

ance proportions between general-purpose and spe-2155

cialized data based on their respective character-2156

istics. Furthermore, we dynamically adjust data2157

ratios according to real-time training feedback to 2158

achieve better performance. 2159

E.2 DPO Stage 2160

In the Direct Preference Optimization (DPO) phase, 2161

we adopt a hybrid data sampling strategy: 1) sam- 2162

pling from the SFT instruction dataset, and 2) incor- 2163

porating diverse external instructions. Responses 2164

are generated using both our SFT-tuned model and 2165

high-performing open-source models. To ensure 2166

response quality, we utilize open-source models 2167

for evaluation and filtering, ultimately constructing 2168

high-quality preference datasets containing both 2169

on-policy and off-policy samples. This DPO train- 2170

ing significantly enhances the model’s capabilities 2171

in mathematical reasoning, code generation, and 2172

instruction adherence. 2173

E.3 PPO Stage 2174

Building upon the DPO-enhanced model, we em- 2175

ploy Proximal Policy Optimization (PPO) with a 2176

dual-reward mechanism: combining RM-based re- 2177

wards with rule-based rewards. The latter proves 2178

particularly effective in verifiable domains like 2179

mathematics and instruction following. Our train- 2180

ing dataset comprises thousands of samples cov- 2181

ering diverse task scenarios, which enables robust 2182

policy optimization. 2183

27

	Introduction
	Related Work
	Efficient Pre-Training
	Architecture Improvements
	Bounding Dynamics of Transformers to Mitigate Abnormal Gradients
	Mitigating Instability through P and Re-parameterization

	Efficient Data Pipeline
	Synthetic Generation of Reasoning Data
	Data Curriculum
	Data Selection for Annealing Stage

	Experiments
	Ablation Study
	Methods of Mitigating Training Instability
	Ablation Study on Data Pipeline
	Post-training Performance

	Conclusion
	Overall Pre-Training Configuration
	Model Architecture
	Tokenizer
	Training Data Preparation
	Model Optimization
	Training Infrastructure
	Long Context
	Other Strategies

	Experimental Setup
	Evaluation Benchmarks
	Baseline Models
	Implementation Details
	Evaluating Model Performance during Pre-Training

	Training Stability
	Indicators Setup
	Exploding Hidden States Due to Residual Connection
	Discussion on Other Training Stabilization Methods
	Warmup Based Methods
	Module Based Methods
	Numerical Optimization Based Methods

	Data Filtering Pipeline
	Post-training Details
	SFT Stage
	DPO Stage
	PPO Stage

