
Improving Deep Reinforcement Learning by Reducing
the Chain Effect of Value and Policy Churn

Hongyao Tang
Mila - Québec AI Institute

Université de Montréal
tang.hongyao@mila.quebec

Glen Berseth
Mila - Québec AI Institute

Université de Montréal
glen.berseth@mila.quebec

Abstract

Deep neural networks provide Reinforcement Learning (RL) powerful function
approximators to address large-scale decision-making problems. However, these
approximators introduce challenges due to the non-stationary nature of RL training.
One source of the challenges in RL is that output predictions can churn, leading
to uncontrolled changes after each batch update for states not included in the
batch. Although such a churn phenomenon exists in each step of network training,
how churn occurs and impacts RL remains under-explored. In this work, we start
by characterizing churn in a view of Generalized Policy Iteration with function
approximation, and we discover a chain effect of churn that leads to a cycle where
the churns in value estimation and policy improvement compound and bias the
learning dynamics throughout the iteration. Further, we concretize the study
and focus on the learning issues caused by the chain effect in different settings,
including greedy action deviation in value-based methods, trust region violation in
proximal policy optimization, and dual bias of policy value in actor-critic methods.
We then propose a method to reduce the chain effect across different settings, called
Churn Approximated ReductIoN (CHAIN), which can be easily plugged into most
existing DRL algorithms. Our experiments demonstrate the effectiveness of our
method in both reducing churn and improving learning performance across online
and offline, value-based and policy-based RL settings, as well as a scaling setting.

1 Introduction

One fundamental recipe for the success of Deep Reinforcement Learning (DRL) is powerful approxi-
mation and generalization provided by deep neural networks, which augments the ability of RL with
tabular or linear approximation to large state spaces. However, on the other side of this benefit is less
control over the function dynamics. Network outputs can change indirectly to unexpected values
after any random batch update for input data not included in the batch, called churn in this paper.
This change is particularly problematic for an RL agent due to its non-stationary nature, which can
exacerbate instability, suboptimality, and even collapse. Therefore, it is important to understand and
control these undesired dynamics to address learning issues and improve performance.

Consistent efforts have been devoted by the RL community to gain a better understanding of the
learning dynamics from different perspectives [Achiam et al., 2019, Kumar et al., 2022, Liu et al.,
2023, Lyle et al., 2022b]. Recently, Schaul et al. [2022] studied a novel churn phenomenon in the
learning process of typical value-based RL algorithms like DoubleDQN [van Hasselt et al., 2016].
The phenomenon reveals that the greedy actions of about 10% of states in the replay buffer change
after a single regular batch update. Such a dramatic churn can persist throughout the learning process
of DoubleDQN, causing instabilities.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

In this paper, we aim to take a step further to understand how churn occurs and influences learning in
different DRL settings beyond value-based RL, as well as to propose a method to control churn. We
start by formally characterizing churn in view of Generalized Policy Iteration (GPI) with function
approximation to best cover most DRL settings. The impact of churn is two-fold in this view: the
churn in policy improvement (called the policy churn) changes policy outputs on states that are
not directly updated, while the churn in value estimation (called the value churn) also changes the
action-value landscape, thus altering greedy action and action gradient. We then discover a chain
effect of churn that exhibits a cycle where the two types of churn compound and bias the learning
dynamics throughout the iteration. Further, we move on from the general analysis to concrete DRL
settings. We focus on the learning issues caused by the chain effect including greedy action deviation
in value-based methods, trust region violation in proximal policy optimization [Schulman et al., 2017]
and dual bias of policy value in actor-critic methods. The connection between the chain effect of
churn and the issues necessitates an explicit control of the churn.

To this end, we propose a method called Churn Approximated ReductIoN (CHAIN) to reduce the
chain effect of churn across different DRL settings. The main idea of CHAIN is to reduce the
undesirable changes to the outputs of the policy and value networks for states (and actions) outside
of the current batch of data for regular DRL training. This reduction is achieved by minimizing the
change in target values for a separate batch of data when optimizing the original policy or value
learning objective. CHAIN is easy to implement and plug in most existing DRL algorithms with only a
few lines of code1. In our experiments, we evaluate the efficacy of CHAIN in a range of environments,
including MinAtar [Young and Tian, 2019], OpenAI MuJoCo [Brockman et al., 2016], DeepMind
Control Suite [Tassa et al., 2018] and D4RL [Fu et al., 2020]. The results show that our method can
effectively reduce churn and mitigate the learning issues, thus improving sample efficiency or final
performance across online and offline, value-based and policy-based DRL settings. Moreover, our
results also show that our method helps to scale DRL agents up and achieves significantly better
learning performance when using wider or deeper networks.

The main contributions of this work are summarized as follows: (1) We study how churn occurs and
influences learning from the perspective of GPI with function approximation and present the chain
effect of churn. (2) We show how churn results in three learning issues in typical DRL settings. (3)
We propose a simple and general method and demonstrate its effectiveness in reducing churn and
improving learning performance across various DRL settings and environments.

2 Prior Work

In the past decade, a significant effort has been made to understand the learning issues of DRL
agents and propose improvements that make DRL more stable and effective. The early stage of
this effort studied bias control for value approximation with deep neural networks introducing
many improvements after DQN [Mnih et al., 2015] and DDPG [Lillicrap et al., 2015] to address
overestimation or underestimation for value-based methods [van Hasselt et al., 2016, Bellemare et al.,
2017, Hessel et al., 2018] and deep AC methods [Fujimoto et al., 2018, Haarnoja et al., 2018, Lan
et al., 2020, Kuznetsov et al., 2020, Chen et al., 2021] respectively. Additional works dig deeper
to diagnose the learning issues regarding instability and generalization, related to the Deadly Triad
in DRL [van Hasselt et al., 2018, Achiam et al., 2019], stabilizing effect of target network [Zhang
et al., 2021b, Chen et al., 2022, Piché et al., 2022], difficulty of experience replay [Schaul et al., 2016,
Kumar et al., 2020, Ostrovski et al., 2021], over-generalization [Ghiassian et al., 2020, Pan et al.,
2021, Yang et al., 2022], representations in DRL [Zhang et al., 2021a, Li et al., 2022, Tang et al.,
2022], delusional bias [Lu et al., 2018, Su et al., 2020], off-policy correction [Nachum et al., 2019,
Zhang et al., 2020, Lee et al., 2021], interference [Cobbe et al., 2021, Raileanu and Fergus, 2021,
Bengio et al., 2020] and architecture choices [Ota et al., 2020].

One notable thread is to understand the learning dynamics of DRL agents with a focus on the
non-stationary nature of RL. A prominent phenomenon of representation ability loss is studied
in [Dabney et al., 2021, Igl et al., 2021, Kumar et al., 2021, 2022, Ma et al., 2023], which reveals how
representations become less useful in later stages of learning, leading to myopic convergence. Further,
empirical studies in [Nikishin et al., 2022, D’Oro et al., 2023, Sokar et al., 2023, Nauman et al., 2024]
demonstrate that the loss of approximation ability becomes severe and leads to collapse when high

1https://github.com/bluecontra/CHAIN

2

https://github.com/bluecontra/CHAIN

replay-ratios are adopted for better sample efficiency, while network resets and normalization methods
can be simple and effective remedies. This is further identified as plasticity loss in DRL [Lyle et al.,
2022a, Abbas et al., 2023, Dohare et al., 2023, Lyle et al., 2024, Xu et al., 2024].

Recently, it has been found that there is a dramatic change in the policy distribution where a large
portion of the greedy actions change after each batch update, called policy churn Schaul et al. [2022].
Although intuitively related to generalization [Bengio et al., 2020] and interference [Liu et al., 2023],
it presents a lack of understanding of churn’s effect on the learning behaviors of DRL agents regarding
stability, convergence, exploration, etc. Kapturowski et al. [2023] takes the inspiration and proposes
a method to robustify the agent’s behavior by adding an additional policy head to the value network
that fits the ϵ-greedy policy via policy distillation. In this work, we further the study of churn in a
more general formal framework, where churn occurs in both value and policy learning. In particular,
we focus on the dynamics of churn during the learning process and how it incurs issues in different
DRL algorithms and propose a practical method to reduce churn and improve learning performance.

3 Preliminaries

Reinforcement Learning (RL) is formulated within the framework of a Markov Decision Process
(MDP) ⟨S,A,P,R, γ, ρ0, T ⟩, defined with the state set S, the action set A, the transition function
P : S ×A → P (S), the reward functionR : S ×A → R, the discounted factor γ ∈ [0, 1), the initial
state distribution ρ0 and the horizon T . The agent interacts with the MDP by performing actions
from its policy at ∼ π(st) that defines the mapping from states to actions or action distributions. The
objective of an RL agent is to optimize its policy to maximize the expected discounted cumulative
reward J(π) = Eπ[

∑T
t=0 γ

trt], where s0 ∼ ρ0 (s0), st+1 ∼ P (st+1 | st, at) and rt = R (st, at).
The state-action value function qπ defines the expected cumulative discounted reward for all s, a ∈
S ×A and the policy π, i.e., qπ(s, a) = Eπ

[∑T
t=0 γ

trt | s0 = s, a0 = a
]
.

Policy and value functions are approximated with deep neural networks to cope with large and
continuous state-action space. Conventionally, qπ can be approximated by Qθ with parameters θ
typically through minimizing Temporal Difference (TD) loss [Sutton and Barto, 1988], i.e., L(θ) =
Es,a∼D δθ(s, a)

2 where D is a replay buffer and δθ(s, a) is a type of TD error. A parameterized policy
πϕ with parameters ϕ can be updated by taking the gradient of the objective, i.e., ϕ′ ← ϕ+α∇ϕJ(πϕ)
with a step size α. Value-based methods like Deep Q-Network (DQN) [Mnih et al., 2015] trains a
Q-network Qθ by minimizing L(θ) where δ(s, a) = Qθ(s, a)− (r + γmaxa′ Qθ−(s′, a′)) and θ−

denotes the target network. For policy-based methods, TD3 [Fujimoto et al., 2018] is often used to
update a deterministic policy with Deterministic Policy Gradient (DPG) theorem [Silver et al., 2014]:
∇ϕJ(πϕ) = Es∼D

[
∇ϕπϕ(s)∇aQθ(s, a)|a=πϕ(s)

]
; Soft Actor-Critic (SAC) [Haarnoja et al., 2018]

learns a stochastic policy with the gradient: ∇ϕĴ(πϕ) = Es∼D

[
∇ϕ log πϕ(a|s)+(∇a log πϕ(a|s))−

∇aQθ(s, a))∇ϕfϕ(ϵ; s))|a=fϕ(ϵ;s)

]
, with noise ϵ and implicit function fϕ for re-parameterization.

4 A Chain Effect of Value and Policy Churn

In this section, we present a formal study on value and policy churn and their impact on learning.
We first introduce an intuitive overview of how churn is involved in DRL (Section 4.1). Then, we
propose the definitions of the value and policy churn (Section 4.2), followed by a chain effect that
reveals how the churns interplay and bias parameter update (Section 4.3).

4.1 Generalized Policy Iteration under Churn

Generalized Policy Iteration (GPI) [Sutton and Barto, 1988] is widely used to refer to the general
principle of learning in an Evaluation-Improvement iteration manner, which applies to almost all RL
methods. In the context of DRL, i.e., with network representation and mini-batch training, the value
and policy networks’ outputs can have unexpected changes, i.e., the churn, after each mini-batch
training for the states not included in the batch. Such churns are neglected in most DRL methods, let
alone their influence on the practical learning process. In Figure 1, we extend the classic GPI diagram
by considering churn to show how it is involved in the learning process intuitively.

In the evaluation process, the parameterized Q-network Qθ approximates the value of the current
policy via repeated mini-batch training. Under the impact of churn, the Q-network is not likely to

3

have output predictions the same as what was updated with explicit mini-batch training. For example,
let’s imagine we have a virtual network Q̄θ that only accepts the changes for the states updated by
mini-batch training directly and remains unchanged for the others.

Evaluation
Qθ ⇝ qπϕ

Improvement

πϕ ⇝ greedy(Qθ)

Value
Churn

Policy
Churn

πϕ Q̄θ

Qθπ̄ϕ

Figure 1: Generalized Policy Iteration
(GPI) under the value and policy churn.

Thus, the value churn, denoted by Q̄θ ⇝ Qθ, is an im-
plicit process that alters the virtual network Q̄θ to the
approximation Qθ we obtained in practice. Similarly, the
policy churn π̄ϕ ⇝ πϕ occurs in the improvement process.
As illustrated in Figure 1, the value churn and the pol-
icy churn are interwoven in the Evaluation-Improvement
process. Usually, we can assume that the churns make
non-negligible changes, i.e., Qθ ̸= Q̄θ and πϕ ̸= π̄ϕ.
Therefore, we delve into the cause of churn, its impact on
learning, and possible remedies to mitigate its negative
impact in the following sections.

4.2 Definition of Value and Policy Churn

A deep neural network can have the form fθ : X → Y with parameters θ. The network is optimized
for a set of input data Btrain = {xi} with a loss function, leading to a parameter update of θ → θ′.
Given a reference set of input data Bref = {x̄i} (where Bref ∩Btrain = ∅) and a metric d for the output
space, the churn is formally defined as:

Cf (θ, θ′, Bref) =
1

|Bref|
∑

x̄∈Bref

d(fθ′(x̄), fθ(x̄)).

Arguably, churn is an innate property of neural networks, and it is closely related to problems like
interference [Liu et al., 2020, 2023] and catastrophic forgetting [Lan et al., 2023] in different contexts.

In this paper, we focus on the churn in Q-value network Qθ and policy network πϕ. We then obtain
the definitions of the Q-value churn (CQ, w.r.t. θ → θ′) and the policy churn (Cπ , w.r.t. ϕ→ ϕ′, using
a deterministic policy for demonstration) for an arbitrary state-action pair s̄, ā ∈ Bref as follows:

cQ(θ, θ
′, s̄, ā) = Qθ′(s̄, ā)−Qθ(s̄, ā), cπ(ϕ, ϕ

′, s̄) = πϕ′(s̄)− πϕ(s̄). (1)

Then, the definitions regarding Bref can be generalized to the batch setting by aggregating data in
Bref: CQ(θ, θ′, Bref) =

1
|Bref|

∑
s̄,ā∈Bref

|cQ(θ, θ′, s̄, ā)|, Cπ(ϕ, ϕ′, Bref) =
1

|Bref|
∑

s̄∈Bref
|cπ(ϕ, ϕ′, s̄)|.

Without loss of generality, we carry out our analysis mainly regarding s̄, ā for clarity in the following.

(U.I) How the churns CQ, Cπ are caused by parameter updates First, we look into the relationship
between the Q-value churn CQ, the policy churn Cπ and the network parameter updates ∆θ =
θ′ − θ,∆ϕ = ϕ′ − ϕ. For ∆θ,∆ϕ, we use typical TD learning and DPG for demonstration: ∆θ =

α
|Btrain|

∑
s,a∈Btrain

∇θQθ(s, a)δθ(s, a), and ∆ϕ = α
|Btrain|

∑
s∈Btrain

∇ϕπϕ(s)∇aQθ(s, a)|a=πϕ(s).

Now we characterize CQ and Cπ as functions of ∆θ,∆ϕ with the help of Neural Tangent Kernel
(NTK) [Achiam et al., 2019]. For clarity, we use Btrain = {s, a} and Bref = {s̄, ā} and abbreviate
Btrain, Bref and step size α when context is clear. Concretely,

cQ(θ, θ
′) = ∇θQθ(s̄, ā)

⊤∆θ +O(∥∆θ∥2) ≈ ∇θQθ(s̄, ā)
⊤∇θQθ(s, a)︸ ︷︷ ︸

kθ(s̄,ā,s,a)

δθ(s, a)

cπ(ϕ, ϕ
′) = ∇ϕπϕ(s̄)

⊤∆ϕ +O(∥∆ϕ∥2) ≈ ∇ϕπϕ(s̄)
⊤∇ϕπϕ(s)︸ ︷︷ ︸

kϕ(s̄,s)

∇aQθ(s, a)|a=πϕ(s)

(2)

Eq. 2 shows that the value and policy churn are mainly determined by the kernels of the Q-network
kθ and the policy network kϕ, along with the TD error and the action gradient. This indicates that
churn is determined by both the network’s property itself and the learning we performed with the
network.

4.3 From Single-step Interplay to The Chain Effect of Churn

In addition to the first piece of understanding (U.I) that presents how parameter updates cause the
churns, we discuss how the churns affect parameter updates backward with two more pieces of
understanding (U.II) and (U.III), finally shedding light on a chain effect of churn.

4

(U.II) How CQ, Cπ deviates action gradient and policy value First, we introduce two types of
deviation derived from the value and policy churn: (1) Action Gradient Deviation (DQ

∇a
), the change

of action gradient regarding the Q-network for states and actions that are affected by the Q-value
churn CQ; (2) Policy Value Deviation (Dπ

Q), the change of Q-value due to the action change for states
that are affected by policy churn Cπ . Formally, the two types of deviation are:

dQ∇a
(θ, θ′, s̄) =∇āQθ′(s̄, ā)|ā=π(s̄) −∇āQθ(s̄, ā)|ā=π(s̄).

dπQ(ϕ, ϕ
′, s̄) = Q(s̄, πϕ′(s̄))−Q(s̄, πϕ(s̄)).

(3)

One thing to note is the two types of deviation show the interplay between the value and policy churn,
as the value churn derives the deviation in policy (cQ

derive−−−→ dQ∇a
) and the policy churn derives the

deviation in value (cπ
derive−−−→ dπQ), as denoted by the superscripts. This interplay between the policy

and value can be shown better with the expressions below (derivation details in Appendix B):

dQ∇a
(θ, θ′) = ∇ācQ(θ, θ

′)|ā=π(s̄), dπQ(ϕ, ϕ
′) ≈ (∇āQθ(s̄, ā)|ā=πϕ(s̄))

⊤cπ(ϕ, ϕ
′) (4)

Since the action gradient and policy value play key roles in parameter updates, the deviations in them
naturally incur negative impacts on learning.

The discussion thus far is within a single parameter update. Now, we discuss the implications of these
single updates towards a chain of updates to shed light on the long-term effect of churn.

(U.III) How parameter updates are biased by CQ, Cπ and the deviations DQ
∇a

,Dπ
Q Let us

consider a segment of two consecutive updates, denoted by (θ−, ϕ−)→ (θ, ϕ)→ (θ′, ϕ′). The churns
occurred during the last update (θ−, ϕ−)→ (θ, ϕ) participate in the current update (θ, ϕ)→ (θ′, ϕ′)
about to perform. Concretely, the churns affect the following aspects: (1) Q-value estimate, (2) action
selection in both TD error and policy objective, and (3) the gradient of network parameters.

From these aspects, we can deduce the difference between the parameter updates under the impact of
the value and policy churn (denoted by ∆̃θ, ∆̃ϕ) and the conventional ones ∆θ,∆ϕ. As a result, we
can find that the value and policy churn, as well as the deviations derived, introduce biases in the
parameter updates. We provide the complete discussion and derivation in Appendix B.2.

The analysis on the update segment (θ−, ϕ−)→ (θ, ϕ)→ (θ′, ϕ′) can be forwarded, and taking the
three pieces of understanding together, we arrive at the chain effect of churn.

The Chain Effect of Churn: (U.I) Parameter updates cause the value and policy churn,
(U.II) which further leads to the deviations in the action gradient and policy value; (U.III) the
churns and the deviations then bias following parameter updates.

Parameter Update
of Q and Policy

Q-value and Policy Churn Deviation in Action Gradient and Policy Value

Cause

Derive

Influence

∆̃θt(Btrain), ∆̃ϕt(Btrain)

CQ(θt, θt+1, {s̄, ā})

Cπ(ϕt, ϕt+1, {s̄, ā})
DQ

∇a
(θt, θt+1, {s, πϕt(s)})

Dπ
Q(ϕt, ϕt+1, {s′, πϕt

(s′)})

Figure 2: Illustration of the logical cycle of the chain
effect of the value and policy churn.

As the cycle illustrated in Figure 2, the
value and policy churn and the parame-
ter update bias accumulate and can am-
plify each other throughout the learning
process. Intuitively, the parameter update
chain could derail and fluctuate under the
accumulating churns and biases, thus pre-
venting stable and effective learning. We
concretize our study on the consequences
in the next section.

5 Reducing Value and Policy Churn in Deep RL

In this section, we show concrete learning issues caused by churn in typical DRL scenarios (Sec-
tion 5.1), followed by a simple plug-in method to reduce churn and address the issues (Section 5.2).

5.1 Consequences of the Chain Effect of Churn in Different DRL Scenarios

Since churn is involved in most DRL methods, as illustrated by Figure 1, our study focuses on several
typical DRL scenarios below.

5

Greedy action deviation in value-based methods Value-based methods like DQN train a Q-
network Qθ and compute the policy by choosing the greedy action of Qθ. A consequence of
computing the action greedily is that changes in the values will directly cause changes in the
action distribution [Schaul et al., 2022]. Similarly to Eq. 4, this deviation can be formalized as:
DQ

a∗(θ, θ′, Bref) = 1
|Bref|

∑
s̄∈Bref

IA\{argmaxa Qθ(s̄,a)}
(
argmaxā Qθ′(s̄, ā)

)
. We suspect that this

deviation introduces instability and hinders learning, and we focus on whether reducing churn can
improve the performance of value-based methods.

Trust region violation in policy gradient methods Trust region plays a critical role in many
policy gradient methods for reliable and efficient policy updates. Proximal Policy Optimization
(PPO) [Schulman et al., 2017] uses a clipping mechanism as a simple but effective surrogate of the trust
region for TRPO [Schulman et al., 2015]: Clip

(
r(ϕold, ϕ), 1− ϵ, 1 + ϵ

)
and r(ϕold, ϕ) =

πϕ(a|s)
πϕold (a|s)

.
With respect to policy churn, even though the PPO policy conforms to the trust region for the states in
the current training batch, it could silently violate the trust region for other states, including previously
updated ones. Consider the policy update ϕ→ ϕ′, it is highly likely to have r(ϕ, ϕ′) =

πϕ′ (ā|s̄)
πϕ(ā|s̄) ̸= 1

and thus r(ϕold, ϕ
′) =

πϕ′ (ā|s̄)
πϕold (ā|s̄)

= r(ϕold, ϕ)r(ϕ, ϕ
′) ̸= r(ϕold, ϕ). Since we have no information

about r(ϕ, ϕ′), there is no guarantee for the trust region 1− ϵ ≤ r(ϕold, ϕ
′) ≤ 1 + ϵ to be respected

after churn. Intuitively, this implicit violation is hazardous and detrimental to learning.

Dual bias of policy value in Actor-Critic methods Deep AC methods interleave the training
between the actor-network and the critic-network. Unlike the two scenarios above, where either
the value churn or the policy churn raises a learning stability issue, we present the dual bias of
policy value that stems from the bilateral effect of churn. The dual bias exists in the policy value
as Qθ′(s̄, πϕ′(s̄)) ̸= Qθ(s̄, πϕ(s̄)). In the context of AC methods, the policy value is used for the
target computation of the critic rt + γQθ′(st+1, πϕ′(st+1)) and the optimization objective of the
actor ∇ϕQθ′(s, πϕ′(s)). Thus, the dual bias steers the training of the actor and the critic.

Given these negative consequences of churn, a question is raised naturally: how can we control the
level of churn to mitigate the issues without introducing complex trust regions or constraints?

5.2 A Regularization Method for Churn Reduction

In this section, we propose a regularization method to reduce value and policy churn, called Churn
Approximated ReductIoN (CHAIN). To combat the prevalence of churn’s negative influence on DRL,
our method should be simple to implement and easy to use with different RL methods.

Based on the definitions of the value churn (CQ) and the policy churn (Cπ) in Section 4.2, we propose
two corresponding loss functions LQC and LPC for churn reduction. Formally, for parameterized
networks Qθt , πϕt at time t and a reference batch Bref sampled from replay buffer, we have:

LQC(θt, Bref) =
1

|Bref|
∑

s̄,ā∈Bref

(
Qθt(s̄, ā)−Qθt−1(s̄, ā)

)2 (5)

LPC(ϕt, Bref) =
1

|Bref|
∑

s̄∈Bref

dπ(πϕt(s̄), πϕt−1(s̄)) (6)

where dπ is a policy distance metric, and we use mean square error or KL divergence for deterministic
or stochastic policies. Ideally, the regularization should be imposed on the post-update network
parameters θt+1, ϕt+1. Since they are not available at time t, we regularize θt, ϕt and use θt−1, ϕt−1

as the targets for a convenient and effective surrogate.

By minimizing LQC and LPC, we can reduce the value and policy churn and suppress the chain
effect further. This allows us to use the churn reduction regularization terms along with standard RL
objectives and arrives at DRL with CHAIN finally:

minimizeθ L(θt, Btrain) + λQLQC(θt, Bref) (7)

maximizeϕ J(ϕt, Btrain)− λπLPC(ϕt, Bref) (8)
where Btrain, Bref are two separate batches randomly sampled from D, and λQ, λπ are coefficients that
control the degree of regularization. CHAIN serves as a plug-in component that can be implemented
with only a few lines of code modification in most DRL methods. The pseudocode is omitted here,
and we refer the readers to Algorithm 1 in the Appendix.

6

Automatic adjustment of λQ, λπ To alleviate the difficulty of manually selecting the regularization
coefficients, we add a simple but effective method to adjust λQ, λπ adaptively during the learning
process. The key principle behind this is to keep a consistent relative scale (denoted by β) between the
churn reduction regularization terms and the original DRL objectives. More precisely, by maintaining
the running means of the absolute Q loss |L̄Q| and the VCR term |L̄QC|, λQ is computed dynamically
as λQ = β

|L̄Q|
|L̄QC|

, which is similar for λπ. This is inspired by our empirical observations and the
recent study on addressing the reward scale difference across different domains [Hafner et al., 2023].

Another thing worth noting is that CHAIN helps to mitigate the loss of plasticity via churn reduction.
This connection can be established by referring to the NTK expressions in Eq. 2: reducing churn
encourages kθ, kϕ to 0 and thus prevents the empirical NTK matrix from being low-rank, which is
shown to be a consistent indicator of plasticity loss [Lyle et al., 2024].

6 Experiments

In the experiments, we aim to answer the following questions: (1) How large is the value and policy
churn in practice, and can our method effectively reduce churn? (2) Does our method’s reduction of
churn address learning issues and improve performance in terms of efficiency and episode return? (3)
Does CHAIN also improve the scaling abilities of deep RL?

We organize our experiments into the four subsections below that correspond to the three DRL
scenarios discussed in Section 5.1 as well as a DRL scaling setting. Our experiments include 20
online RL tasks from MinAtar, MuJoCo, DMC, and 8 offline RL datasets from D4RL, as well as 6
popular algorithms, i.e., DoubleDQN, PPO, TD3, SAC, IQL, AWAC. We provide the experimental
details in Appendix C and more results in Appendix D.

6.1 Results for CHAIN DoubleDQN in MinAtar

We use DoubleDQN (DDQN) [van Hasselt et al., 2016] as the value-based method and Mi-
nAtar [Young and Tian, 2019] as the experiment environments. MinAtar is an Atari-inspired testbed
for convenient evaluation and reproduction. We build our DoubleDQN based on the official MinAtar
code with no change to the network structure and hyperparameters. We implement CHAIN DDQN by
adding a few lines of code to apply the value churn reduction regularization in the standard training
of the Q-network (Eq. 7). For CHAIN DDQN, λQ is set to 50 for Breakout and 100 for the other
tasks. For CHAIN DDQN with automatic adjustment of λQ (denoted by the suffix ‘Auto’), the target
relative loss scale β is set to 0.05 for all the tasks.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.02

0.04

0.06

0.08

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

breakout
DDQN
DDQN w/ Churn Reduction

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

space_invaders

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

asterix

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.000

0.002

0.004

0.006

0.008

0.010

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

freeway

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

seaquest

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

breakout
DDQN
DDQN w/ Churn Reduction

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

space_invaders

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

asterix

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

freeway

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

seaquest

Figure 3: The value churn (left) and the
greedy action deviation percentage (right) in
Breakout w/ and w/o CHAIN.

First, to answer Question (1), we report the value
churn and the greedy action deviation of DDQN
in Figure 3. Each point means the average metric
across randomly sampled states and the whole learn-
ing process. As expected, we can observe that the
value churn accumulates as more training updates
take place, leading to the growth of greedy action
deviation. With CHAIN, the churn and deviation are
reduced significantly. We refer the readers to Figure 9
for more statistics on the value churn.

Further, we show the learning curves of CHAIN DDQN regarding episode return in Figure 4. We
can see that CHAIN consistently achieves clear improvements over DDQN in terms of both sample
efficiency and final scores, especially for Asterix and Seaquest. Moreover, CHAIN (Auto) matches or
surpasses the results achieved by manual coefficients, which supports Question (2) positively. In the
next subsection, we evaluate how much CHAIN can improve policy gradient-based RL algorithms.

6.2 Results for CHAIN PPO in MuJoCo and DMC

Corresponding to the second DRL scenario discussed in Section 5.1, we focus on the policy churn in
Proximal Policy Optimization (PPO) [Schulman et al., 2017] and try to answer the first three questions
for policy gradient-based RL algorithms. We build the experiments on the public implementation
of PPO from CleanRL [Huang et al., 2022] and use the continuous control tasks in MuJoCo and

7

0 10 20 30 40 50 60
Timestep (5e4)

5

10

15

20

25

30

35

Ep
iso

de
 R

et
ur

n

breakout

DDQN
CHAIN DDQN
CHAIN DDQN (Auto)

0 10 20 30 40 50 60
Timestep (5e4)

10

20

30

40

50

60

70

80

90

Ep
iso

de
 R

et
ur

n

space_invaders

0 10 20 30 40 50 60
Timestep (5e4)

0

5

10

15

20

25

Ep
iso

de
 R

et
ur

n

asterix

0 10 20 30 40 50 60
Timestep (5e4)

10

20

30

40

50

Ep
iso

de
 R

et
ur

n

freeway

0 20 40 60 80 100
Timestep (5e4)

0

10

20

30

40

Ep
iso

de
 R

et
ur

n

seaquest

Figure 4: The evaluation of CHAIN DoubleDQN in MinAtar regarding episode return. Curves and
shades denote means and standard errors over six random seeds.

DeepMind Control (DMC) as the environments for evaluation. Following the same principle, we
implement CHAIN PPO by adding the policy churn reduction regularization to the standard PPO
policy training (Eq. 6), with no other modification to the public PPO implementation.

First, to understand the level of churn, we compare PPO and CHAIN PPO with different choices of
λπ in terms of policy churn and episode return. In summary, we observed that PPO also exhibits clear
policy churn, and CHAIN significantly reduces it throughout learning, which answers Question (1).
Figure 10 shows the details for this analysis. Note that more policy churn makes it more likely to
violate the trust region as Cπ ∝ r(ϕ, ϕ′) discussed in Section 5.1. In turn, we also observed CHAIN
PPO consistently outperforms PPO in Ant-v4 and HalfCheetah-v4 across different choices of λπ .

Further, we aim to answer Question (2) and evaluate whether CHAIN can improve the learning
performance of PPO in terms of episode return. For CHAIN PPO (Auto), we set the target relative
loss scale β to 0.1 for MuJoCo tasks and 0.02 for DMC tasks. The results for MuJoCo and DMC
tasks are reported in Figure 5. The results show that CHAIN PPO outperforms PPO in most cases
with higher sample efficiency and final episode return, often significantly. We believe that our results
reveal a promising direction to improve more trust-region-based and constraint-based methods in
DRL by addressing the issues caused by churn.

0 10 20 30 40 50
Timestep (4e4)

0

500

1000

1500

2000

2500

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

PPO
CHAIN PPO (Auto)

0 10 20 30 40 50
Timestep (4e4)

500

1000

1500

2000

2500

Ep
iso

de
 R

et
ur

n

Hopper-v4

0 10 20 30 40 50
Timestep (4e4)

0

500

1000

1500

2000

2500

3000

3500

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

0 10 20 30 40 50
Timestep (1e5)

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

et
ur

n

Ant-v4

0 10 20 30 40 50
Timestep (1e5)

500

1000

1500

2000

2500

3000

3500

4000

Ep
iso

de
 R

et
ur

n

Humanoid-v4

0 10 20 30 40 50
Timestep (2e4)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

dm_control/ball_in_cup-catch-v0

PPO
CHAIN PPO (Auto)

0 10 20 30 40 50
Timestep (2e4)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

dm_control/cartpole-balance_sparse-v0

0 10 20 30 40 50
Timestep (2e4)

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

dm_control/quadruped-walk-v0

0 10 20 30 40 50
Timestep (2e4)

100

125

150

175

200

225

250

275

Ep
iso

de
 R

et
ur

n

dm_control/quadruped-run-v0

0 10 20 30 40 50
Timestep (2e4)

0

100

200

300

400

500

600

700

Ep
iso

de
 R

et
ur

n
dm_control/finger-spin-v0

0 10 20 30 40 50
Timestep (2e4)

50

100

150

200

250

300

350

400

Ep
iso

de
 R

et
ur

n

dm_control/dog-stand-v0

0 10 20 30 40 50
Timestep (2e4)

20

40

60

80

100

120

140

Ep
iso

de
 R

et
ur

n

dm_control/dog-walk-v0

0 10 20 30 40 50
Timestep (2e4)

10

20

30

40

50

60

70

80

Ep
iso

de
 R

et
ur

n

dm_control/dog-run-v0

0 10 20 30 40 50
Timestep (2e4)

20

40

60

80

Ep
iso

de
 R

et
ur

n

dm_control/dog-trot-v0

0 10 20 30 40 50
Timestep (2e4)

5

10

15

20

25

30

35

Ep
iso

de
 R

et
ur

n

dm_control/dog-fetch-v0

Figure 5: The evaluation of CHAIN PPO in MuJoCo and DeepMind Control (DMC) tasks regarding
episode return. Curves and shades denote means and standard errors over twelve random seeds.

6.3 Results for Deep Actor-Critic Methods with CHAIN in MuJoCo and D4RL

Next, we continue our empirical study and evaluate our method for deep actor-critic (AC) methods.
We separate our study into online and offline settings, as presented below.

Online AC methods We use TD3 [Fujimoto et al., 2018] and SAC [Haarnoja et al., 2018] and
MuJoCo environments based on the public implementation of TD3 and SAC from CleanRL. Since
AC methods are bilaterally affected by churn, we consider two variants of CHAIN, either of which
only applies the value churn reduction (VCR) or the policy churn reduction (PCR).

8

For Question (1), we again find that both TD3 and SAC exhibit value and policy churn in all
environments, and CHAIN-VCR and CHAIN-PCR effectively reduce them respectively in Figure 11
and 12. For Question (2), Figure 6 shows the evaluation results regarding episode return. We can
see that CHAIN-PCR often improves the learning performance, especially for Ant-v4; in contrast,
CHAIN-VCR improves slightly. We hypothesize that this is because the policy interacts with the
environment directly, and the target critic-network also helps to reduce the value churn due to its
delayed synchronization with the online critic.

Due to the limitation of space, we refer the readers to Appendix D.3 for more results on churn
reduction, the influence of different choices of λQ, λπ, the results of combining VCR and PCR, as
well as the effect of auto-adjustment of the regularization coefficient for TD3 and SAC.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Ant-v4
TD3
CHAIN TD3 (VCR)
CHAIN TD3 (PCR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Ant-v4

SAC
CHAIN SAC (VCR)
CHAIN SAC (PCR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

Figure 6: The evaluation of CHAIN TD3 and CHAIN SAC in MuJoCo regarding episode return.

Offline AC methods In Offline RL, a policy is trained over a fixed dataset. We investigate if reducing
churn can also improve the convergence of Offline RL. We use IQL [Kostrikov et al., 2022] with D4RL
Antmaze dataset [Fu et al., 2020] and AWAC [Nair et al., 2020] with Adroit for our demonstration
due to their popularity and good performance in corresponding tasks. Concretely, we use the public
implementation and benchmark scores for IQL and AWAC from CORL2. To apply CHAIN to IQL and
AWAC, we implement the regularization for value churn reduction (VCR, Eq. 7) and policy churn
reduction (PCR, Eq. 8) separately by adding a couple of lines of code without any other modification.
We use λπ = 1e3 for both CHAIN IQL (PCR) and CHAIN AWAC (PCR); λQ = 0.01 for CHAIN
IQL (VCR) and 0.1 for CHAIN AWAC (VCR) across different tasks. The results are summarized in
Table 1 and 2.

Table 1: Results for CHAIN IQL in Antmaze, with means and standard errors over twelve seeds.

Task IQL CHAIN IQL (PCR) CHAIN IQL (VCR)

AM-umaze-v2 77.00 ± 5.52 84.44 ± 3.19 83.33 ± 2.72
AM-umaze-diverse-v2 54.25 ± 5.54 62.50 ± 3.75 71.67 ± 7.23
AM-medium-play-v2 65.75 ± 11.71 72.50 ± 2.92 70.00 ± 3.33

AM-medium-diverse-v2 73.75 ± 5.45 76.67 ± 4.51 66.67 ± 3.79
AM-large-play-v2 42.00 ± 4.53 50.00 ± 4.56 43.33 ± 4.14

AM-large-diverse-v2 30.25 ± 3.63 26.67 ± 3.96 31.67 ± 2.31

Table 2: Results for CHAIN AWAC in Adroit, with means and standard errors over twelve seeds.

Task AWAC CHAIN AWAC (PCR) CHAIN AWAC (VCR)

pen-human-v1 81.12 ± 13.47 99.72 ± 2.04 97.37 ± 3.51
pen-cloned-v1 89.56 ± 15.57 95.49 ± 2.34 96.66 ± 2.54

We observe that both CHAIN PCR and CHAIN VCR improve the scores for IQL and AWAC in most
Antmaze and Adroit tasks. We hypothesize that CHAIN suppresses churn in the training of value
and policy networks, thus reducing the bias caused by churn in parameter updates. One thing here
that differs from TD3 and SAC considered in the online setting is that the policy network of IQL has
no impact on the training of the value networks since the value networks (i.e., Q and V) are trained
purely based on in-sample data without accessing a′ = πϕ(s

′). Thus, although IQL does not exhibit
a chain effect explicitly, the policy and value networks of IQL still have churns, which are reduced by
CHAIN in this case. We provide a further empirical study in Appendix D.4.

2https://github.com/tinkoff-ai/CORL

9

https://github.com/tinkoff-ai/CORL

6.4 Scaling DRL Agents with CHAIN

It is widely known that scaling DRL agents up is challenging. Naively scaling DRL agents by
widening or deepening the conventional MLP networks straightforwardly often fails and could even
lead to collapse. Here, we investigate the relationship between churn and scale for DRL agents, as
well as the effect of CHAIN on boosting scaling performance, to answer Question (3). We take
PPO and MuJoCo tasks as the exemplary setting and scale up both the policy and value networks
by a scale-up ratio within {2, 4, 8, 16} via widening or deepening. Note that the default network
architecture (i.e., when the scale-up ratio equals one) for both the policy and value networks is a
two-layer MLP with 256 neurons for each layer, followed by an output layer.

As expected, we observed that the performance of PPO degraded severely as the scale-up ratio
increased, as shown by the solid gray lines in Figure 7. Inspired by the prior study [Obando-Ceron
et al., 2024], we found using a decreased learning rate as lr / sqrt(scale-up ratio) alleviates
the degradation of PPO scaling to some degree (shown by the solid red lines). We then use the
learning rate setting below by default. From the perspective of churn, we also observed that scaling
PPO escalates the scale of the policy churn in PPO. More results can be found in Appendix D.5.
Therefore, we then evaluate the effect of CHAIN in this scaling setting. The results are shown in
Figure 7 with dashed lines. By comparing the lines in the same color, we found that CHAIN improves
the learning performance of PPO across almost all scale-up ratios and the two learning rate settings.

1 2 4 8 16
Scale Up Ratio

0

500

1000

1500

2000

2500

3000

Pe
rfo

rm
an

ce
 (s

co
re

)

Ant-v4 (2M)

PPO
PPO (w/ sqrt_lr)
CHAIN PPO
CHAIN PPO (w/ sqrt_lr)

1 2 4 8 16
Scale Up Ratio

500

1000

1500

2000

2500

3000

3500

Pe
rfo

rm
an

ce
 (s

co
re

)

Humanoid-v4 (2M)

1 2 4 8 16
Scale Up Ratio

2000

2500

3000

3500

4000

Pe
rfo

rm
an

ce
 (s

co
re

)

Walker2d-v4 (2M)

Figure 7: The results regarding episode return for scaling PPO via widening. CHAIN helps to scale
almost across all the configurations. Similar results can be found for widening scaling in Figure 20.

In addition, we extend the training horizon from 2M to 10M for Ant, Humanoid, and Walker2d. The
results are reported in Table 3. For both widening or deepening cases, CHAIN helps to scale up
PPO and achieves clear improvement in terms of episode return. Comparatively, scaling by widening
slightly outperforms deepening, which echoes the observation in [Ota et al., 2020] to some extent.

Table 3: Scaling PPO with CHAIN. Means and standard errors of final episode return over six seeds.

Alg. (scale) Ant (10M) Human. (10M) Walker2d (10M)

PPO 2238.45 ± 256.07 1620.45 ± 212.10 3316.77 ± 269.42

PPO (4x wider) 3013.95 ± 223.77 2998.18 ± 237.95 3795.05 ± 208.17
CHAIN PPO (4x wider) 4916.66 ± 109.01 4830.58 ± 231.42 4668.16 ± 234.45

PPO (4x deeper) 2777.62 ± 136.78 3489.47 ± 166.28 2845.68 ± 260.02
CHAIN PPO (4x deeper) 3760.46 ± 158.29 4090.80 ± 187.01 3242.83 ± 173.54

PPO (8x wider) 4235.63 ± 209.68 3198.01 ± 344.71 4335.17 ± 123.12
CHAIN PPO (8x wider) 5592.94 ± 205.23 5246.15 ± 130.73 5161.42 ± 343.40

PPO (8x deeper) 3364.46 ± 173.25 2780.67 ± 304.10 3057.89 ± 299.61
CHAIN PPO (8x deeper) 4278.76 ± 122.61 4434.48 ± 144.92 3324.29 ± 255.88

Our results indicate that uncontrolled churn could be a possible reason for the scaling issue of DRL
agents, and CHAIN improves scaling by reducing churn effectively. Though appealing, CHAIN does
not fully address the scaling issue per se, and achieves sub-linear scaling on DRL agents.

7 Conclusion

In this paper, we conduct a formal study of churn in a general view and present the chain effect of
value and policy churn. The chain effect indicates a compounding cycle, which biases parameter
updates throughout learning. We propose an easy-to-implement method for value and policy churn
reduction. Our experimental results demonstrate the effectiveness of our method in reducing churn
and improving learning performance over a range of DRL environments and algorithms.

10

Acknowledgements

We want to acknowledge funding support from NSERC, FQRNT and CIFAR and compute support
from Digital Research Alliance of Canada, Mila IDT, and NVidia.

References
Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plasticity

in continual deep reinforcement learning. arXiv preprint, arXiv:2303.07507, 2023.

J. Achiam, E. Knight, and P. Abbeel. Towards characterizing divergence in deep q-learning. arXiv
preprint, arXiv:1903.08894, 2019.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. NeurIPS, 2021.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In ICML, 2017.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. In ICML, 2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint, arXiv:1606.01540, 2016.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-learning:
Learning fast without a model. In ICLR, 2021.

Zaiwei Chen, John-Paul Clarke, and Siva Theja Maguluri. Target network and truncation overcome
the deadly triad in q-learning. arXiv preprint, arXiv:2203.02628, 2022.

Karl Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In ICML, 2021.

W. Dabney, A. Barreto, M. Rowland, R. Dadashi, J. Quan, M. G. Bellemare, and D. Silver. The
value-improvement path: Towards better representations for reinforcement learning. In AAAI,
2021.

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Parash Rahman, Richard S. Sutton, and A. Rupam
Mahmood. Maintaining plasticity in deep continual learning. arXiv preprint, arXiv:2306.13812,
2023.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron C. Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In ICLR, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. arXiv preprint, arXiv:2004.07219, 2020.

S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, 2018.

Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in
reinforcement learning by breaking generalization in neural networks. In AAMAS, 2020.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In ICML, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering diverse domains
through world models. arXiv preprint, arXiv:2301.04104, 2023.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI, 2018.

11

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In ICLR, 2021.

Steven Kapturowski, Victor Campos, Ray Jiang, Nemanja Rakicevic, Hado van Hasselt, Charles
Blundell, and Adrià Puigdomènech Badia. Human-level atari 200x faster. In ICLR, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In ICLR, 2022.

A. Kumar, R. Agarwal, D. Ghosh, and S. Levine. Implicit under-parameterization inhibits data-
efficient deep reinforcement learning. In ICLR, 2021.

A. Kumar, R. Agarwal, T. Ma, A. Courville, G. Tucker, and S. Levine. DR3: value-based deep
reinforcement learning requires explicit regularization. In ICLR, 2022.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. In NeurIPS, 2020.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry P. Vetrov. Controlling over-
estimation bias with truncated mixture of continuous distributional quantile critics. In ICML,
2020.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling the
estimation bias of q-learning. In ICLR, 2020.

Qingfeng Lan, Yangchen Pan, Jun Luo, and A. Rupam Mahmood. Memory-efficient reinforcement
learning with value-based knowledge consolidation. Transaction on Machine Learning Research,
2023.

Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In ICML, 2021.

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. In ICLR, 2022.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. In ICLR, 2015.

Vincent Liu, Adam White, Hengshuai Yao, and Martha White. Towards a practical measure of
interference for reinforcement learning. arXiv preprint, arXiv:2007.03807, 2020.

Vincent Liu, Han Wang, Ruo Yu Tao, Khurram Javed, Adam White, and Martha White. Measuring
and mitigating interference in reinforcement learning. In ICML, 2023.

Tyler Lu, Dale Schuurmans, and Craig Boutilier. Non-delusional q-learning and value-iteration. In
NeurIPS, 2018.

C. Lyle, M. Rowland, and W. Dabney. Understanding and preventing capacity loss in reinforcement
learning. In ICLR, 2022a.

Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning dynamics
and generalization in deep reinforcement learning. In ICML, 2022b.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. arXiv preprint,
arXiv:2402.18762, 2024.

Y. Ma, H. Tang, D. Li, and Z. Meng. Reining generalization in offline reinforcement learning via
representation distinction. In NeurIPS, 2023.

12

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint, arXiv:1912.02074, 2019.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint, arXiv:2006.09359, 2020.

Michal Nauman, Michal Bortkiewicz, Mateusz Ostaszewski, Piotr Milos, Tomasz Trzcinski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of
reinforcement learning. arXiv preprint, arXiv:2403.00514, 2024.

E. Nikishin, M. Schwarzer, P. D’Oro, P. Bacon, and A. C. Courville. The primacy bias in deep
reinforcement learning. In ICML, Proceedings of Machine Learning Research, 2022.

Johan S. Obando-Ceron, Aaron C. Courville, and Pablo Samuel Castro. In deep reinforcement
learning, a pruned network is a good network. arXiv preprint, arXiv:2402.12479, 2024.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. In NeurIPS, 2021.

Kei Ota, Tomoaki Oiki, Devesh K. Jha, Toshisada Mariyama, and Daniel Nikovski. Can increasing
input dimensionality improve deep reinforcement learning? In ICML, 2020.

Yangchen Pan, Kirby Banman, and Martha White. Fuzzy tiling activations: A simple approach to
learning sparse representations online. In ICLR, 2021.

Alexandre Piché, Valentin Thomas, Joseph Marino, Rafael Pardinas, Gian Maria Marconi, Christopher
Pal, and Mohammad Emtiyaz Khan. Bridging the gap between target networks and functional
regularization. Transactions on Machine Learning Research, 2022.

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement
learning. In ICML, 2021.

T. Schaul, A. Barreto, J. Quan, and G. Ostrovski. The phenomenon of policy churn. arXiv preprint,
arXiv:2206.00730, 2022.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, arXiv:1707.06347, 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A. Riedmiller. Deterministic policy
gradient algorithms. In ICML, 2014.

G. Sokar, R. Agarwal, P. S. Castro, and U. Evci. The dormant neuron phenomenon in deep reinforce-
ment learning. arXiv preprint, arXiv:2302.12902, 2023.

Dijia Su, Jayden Ooi, Tyler Lu, Dale Schuurmans, and Craig Boutilier. Conqur: Mitigating delusional
bias in deep q-learning. In ICML, 2020.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. IEEE Transactions on
Neural Networks, 16:285–286, 1988.

H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, C. Yu, H. Mao, W. Liu, Y. Yang, W. Tao, and
L. Wang. What about inputting policy in value function: Policy representation and policy-extended
value function approximator. In AAAI, 2022.

13

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki, J. Merel,
A. Lefrancq, T. P. Lillicrap, and M. A. Riedmiller. Deepmind control suite. arXiv preprint,
arXiv:1801.00690, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, 2016.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad. arXiv preprint, arXiv:1812.02648, 2018.

Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo,
Xiaoyu Liu, Jiaxin Yuan, Pu Hua, Shuzhen Li, Yanjie Ze, Hal Daumé III, Furong Huang, and
Huazhe Xu. Drm: Mastering visual reinforcement learning through dormant ratio minimization.
In ICLR, 2024.

Ge Yang, Anurag Ajay, and Pulkit Agrawal. Overcoming the spectral bias of neural value approxima-
tion. In ICLR, 2022.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for more efficient reinforcement
learning experiments. arXiv preprint, arXiv:1903.03176, 2019.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In ICLR, 2021a.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of
stationary values. In ICML, 2020.

Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly triad with a target
network. In ICML, 2021b.

14

A Limitations

Our work is limited in several directions below and we expect further studies on these points in the
future.

• First, the theoretical analysis of the chain effect under concrete assumptions remains to
be explored. Other perspectives that may influence churn, such as network structure,
representation learning, and experience replay are not considered in this work, which are
worthwhile to study in the future.

• Moreover, although we provided a simple method to adjust the regularization coefficients
dynamically throughout learning by keeping a consistent relative loss scale, it is not suffi-
cient for us to use the same hyperparameter for different domains. We believe that using
normalization techniques to unify the scales in different domains is necessary to address this
point, similar to the work in [Hafner et al., 2023].

• Besides, for algorithms that involve the learning of both policy and value (e.g., deep AC
methods), the implementation of CHAIN in different problems faces the question of choosing
the best option among PCR, VCR and DCR. For this, we expect to develop a better method
to integrate the effect of PCR and VCR in the future.

• Another remaining problem is the lack of an in-depth understanding of the positive and
negative effects of churn on the generalization of DRL agents, which could drive new
methods that better leverage the potential of churn.

B Additional Formal Analysis

B.1 The NTK Expressions of Two Types of Deviation

The NTK expression for the action gradient deviation DQ
∇a

is straightforward to obtain by plugging
in the NTK expression for the Q-value churn:

DQ
∇a

(θ, θ′) = ∇āQθ′(s̄, ā)|ā=π(s) −∇āQθ(s̄, ā)|ā=π(s̄)

= ∇ā(Qθ′(s̄, ā)−Qθ(s̄, ā)︸ ︷︷ ︸
CQ(θ,θ′)

)|ā=π(s̄)

≈ ∇ā(kθ(s̄, ā, s, a)δθ(s, a))|ā=π(s̄)

≈
(
∂2Qθ(s̄, ā)

∂θ∂ā

)
∆θ|ā=π(s̄)

And for the policy value deviation Dπ
Q, the NTK expression is obtained by performing Taylor

expansion of πϕ(s̄) and plugging in the NTK expression for the policy churn:

Dπ
Q(ϕ, ϕ

′) = (∇āQθ(s̄, ā)|ā=πϕ(s̄))
⊤(πϕ′(s̄)− πϕ(s̄)︸ ︷︷ ︸

Cπ(ϕ,ϕ′)

) +O(∥πϕ′(s̄)− πϕ(s̄)︸ ︷︷ ︸
Cπ(ϕ,ϕ′)

∥2)

≈ (∇āQθ(s̄, ā)|ā=πϕ(s̄))
⊤kϕ(s̄, s)∇aQθ(s, a)|a=πϕ(s)

≈ (∇ϕπϕ(s̄)∇āQθ(s̄, ā)|ā=πϕ(s̄)︸ ︷︷ ︸
DPG of πϕ at s̄

)⊤∆ϕ

The NTK expression of the two types of deviation above indicates that action gradient deviation
and policy value deviation are mainly influenced by the second-order partial derivatives of Qθ and
the deterministic policy gradient (DPG) of πϕ at the state s̄ considered, in addition to the parameter
update. An interesting observation here is, policy value deviation of policy churn has an implicit
optimization effect (while altered by ∆ϕ) for the reference states (i.e., s̄) although the parameter
update ϕ→ ϕ′ is performed for the training states (i.e., s). We observe that Dπ

Q is positive in overall
in our empirical investigation later (Appendix D). However, careful considerations are needed in the
future because the implicit optimization could be delusional as churn also occurs in Qθ through the
learning process.

15

∼
𝑄!!

𝜋"!

𝑄!!"#

𝜋"!"#
𝒟!"(𝜙#$%, 𝜙#)

𝒟∇!
! (𝜃#$%, 𝜃#'%)

Δ("#$

…

∼Δ)"#$

𝒞!(𝜃#$%, 𝜃#)

𝒞"(𝜙#$%, 𝜙#)

𝑄!!$#

Δ("

𝜋"!$#

Δ)"

…

…

…
∼

∼

…

…

Figure 8: An illustration of the parameter update chain with the value and policy churn. Blue and
green arrows denote iterative updates of the value network and policy network. The value and policy
churn and their deviations are marked in red.

B.2 Complete Discussions and Derivations for Section 4.3

Recall conventional gradients ∆θ,∆ϕ of value network and policy network:

∆θ(s, a) = ∇θQθ(s, a)δθ(s, a)

∆ϕ(s) = ∇ϕπϕ(s)∇aQθ(s, a)|a=πϕ(s)

where δθ(s, a) = r + γQθ(s
′, πϕ(s

′)).

Now let us re-consider the gradients by taking into consideration the value and policy churn, denoted
by ∆̃θ, ∆̃ϕ. Our purpose is to formulate the difference between ∆̃θ, ∆̃ϕ and ∆θ,∆ϕ as functions of
the policy and value churns, as well as their derivatives.

More derivatives of CQ, Cπ Before looking into the gradients ∆̃θ, ∆̃ϕ, we need three more defini-
tions for network parameter gradient deviation caused by value and policy churn, and action gradient
deviation caused by policy churn, during parameter update θ → θ′, ϕ→ ϕ′.

• Q-network Gradient Deviation of Value Churn: DQ
∇θ

(θ, θ′, {s̄, ā}) = ∇θ′Qθ′(s̄, ā) −
∇θQθ(s̄, ā).

• Policy Network Gradient Deviation of Policy Churn: Dπ
∇ϕ

(ϕ, ϕ′, {s̄}) = ∇ϕ′πϕ′(s̄) −
∇ϕπϕ(s̄).

• Action Gradient Deviation of Policy Churn: Dπ
∇a

(ϕ, ϕ′, {s̄}) = ∇ā′Q(s̄, ā′)|ā′=πϕ′ (s̄) −
∇āQ(s̄, ā)ā=πϕ(s̄)

Note Dπ
∇a

(ϕ, ϕ′, {s}) denotes the action gradient caused by the policy churn for the Q function
affected by the churns Qθ

::
rather than Qθ. Dπ

∇a
is a further consequence of policy value deviation

caused by the policy churn Dπ
Q(ϕ

−, ϕ, {s}).
To shed light on the long-term effect of churn, we depict a typical iterative update scenario in Figure 8,
where the Q-network and policy network update with corresponding gradients in a chain. Different
from conventional analysis, we explicitly consider the value and policy churn and study how they
affect the chain of parameter updates.

As in Section 4.3, we focus on the segment (θ−, ϕ−)→ (θ, ϕ)→ (θ′, ϕ′) on the chain of update. The
churns occurred during the past update (θ−, ϕ−)→ (θ, ϕ), which should further affect the update
about to perform at present (θ, ϕ) → (θ′, ϕ′). Concretely, the churns and the deviations affect the
following aspects: (1) Q-value estimate and (2) action selection in both TD error and policy objective,
and (3) the gradient of network parameter. Now we are ready to deduce the parameter update under
the effect of the value and policy churn below. Note that we use

:
under the terms that are affected by

16

value and policy churn:

∆̃θ(s, a) = ∇θQθ
:::::

(s, a)∆̃θ(s, a) = ∇θQθ
:::::

(s, a)(r + γQθ
::

(s′, a
:

′)−Qθ
::

(s, a))

=
(
∇θQθ(s, a) + (∇θQθ

:::::
(s, a)−∇θQθ(s, a))

)(
r + γ

[
Qθ(s

′, a′) + (Qθ
::

(s′, a
:

′)−Qθ
::

(s′, a′))

+ (Qθ
::

(s′, a′)−Qθ(s
′, a′))

]
−
[
Qθ(s, a) + (Qθ

::
(s, a)−Qθ(s, a))

])
=

(
∇θQθ(s, a) +DQ

∇θ
(θ−, θ, {s, a})

)(
δθ(s, a) + γ(Dπ

Q(ϕ
−, ϕ, {s′, πϕ

::
(s′)}) + CQ(θ−, θ, {s′, πϕ(s

′)}))

− CQ(θ−, θ, {s, a})
)

= ∇θQθ(s, a)δθ(s, a)

+ γ∇θQθ(s, a)(Dπ
Q(ϕ

−, ϕ, {s′, πϕ
::

(s′)}) + CQ(θ−, θ, {s′, πϕ(s
′)}))−∇θQθ(s, a)CQ(θ−, θ, {s, a})

+DQ
∇θ

(θ−, θ, {s, a})
(
δθ(s, a) + γ(Dπ

Q(ϕ
−, ϕ, {s′, πϕ

::
(s′)}) + CQ(θ−, θ, {s′, πϕ(s

′)}))− CQ(θ−, θ, {s, a})
)

∆̃ϕ(s) = ∇ϕπϕ
::::

(s)∇aQθ
:::::

(s, a
:
)|a=πϕ:::

(s)

=
(
∇ϕπϕ(s) + (∇ϕπϕ

::::
(s)−∇ϕπϕ(s))

)(
∇aQθ(s, a) + (∇aQθ

:::::
(s, a

:
)−∇aQθ

::
(s, a))

+ (∇aQθ
::

(s, a)−∇aQθ(s, a))
)
|a=πϕ:::

(s),a=πϕ(s)

=
(
∇ϕπϕ(s) +Dπ

∇ϕ
(ϕ−, ϕ)

)(
∇aQθ(s, a) +Dπ

∇a
(ϕ−, ϕ, {s}) +DQ

∇a
(θ−, θ, {s, a})

)
|a=πϕ(s)

= ∇ϕπϕ(s)∇aQθ(s, a)|a=πϕ(s) +∇ϕπϕ(s)
(
Dπ

∇a
(ϕ−, ϕ, {s}) +DQ

∇a
(θ−, θ, {s, a})

)
|a=πϕ(s)

+Dπ
∇ϕ

(ϕ−, ϕ)
(
∇aQθ(s, a) +Dπ

∇a
(ϕ−, ϕ, {s}) +DQ

∇a
(θ−, θ, {s, a})

)
|a=πϕ(s)

As a result, we can find that the value and policy churn, as well as the deviations derived, introduce
biases in the parameter updates.

Recall that the parameter updates cause the churns constantly, the analysis on the update segment
(θ−, ϕ−) → (θ, ϕ) → (θ′, ϕ′) can be forwarded and leads to the cycle illustrated in Figure 2: (1)
parameter update causes the value and policy churn CQ, Cπ, which (2) further deviates the action
gradient and policy value Dπ

Q,D
Q
∇a

(and the other deviations); (3) the churns and the deviations then
bias following parameter updates with ∆̃θ, ∆̃ϕ. Consequently, the value and policy churn and the
parameter update bias accumulate and can amplify each other throughout the learning process.

Apparently, the long-term chain effect is intricate as the training process is stochastic and the churns
are influenced by various factors, e.g., network structure, learning objective, and data distribution.
We leave theoretical studies under concrete assumptions in the future.

C Experimental Details

C.1 Compute Resources and Time Cost

We use Nvidia V100 GPU for our experiments. The additional computation introduced by CHAIN
lies in the sampling and training with a second batch of data for the churn reduction regularization.
In essence, it just increases the batch size by 2 to use CHAIN, resulting in a constant change in
complexity with respect to the default DRL algorithm. This is a small price to pay to reduce the
churn and increase policy performance. In practice, we also observe similar wall-clock time cost for
standard DRL methods and their CHAIN versions.

More importantly, since CHAIN often brings higher sample efficiency, i.e., achieving the same level
of score with fewer interaction steps, this implies that CHAIN accelerates learning and achieves good
performance earlier. Concrete examples can be found in our experimental results.

17

C.2 Empirical Metrics for the Investigation of the Chain Effect

To investigate the extent of the value churn and the policy churn, we compare the output changes
between current networks (θt, ϕt) and past network versions (θ−, ϕ−) ∈ {(θt−i, ϕt−i)}Ni=1.

For policy-based methods, we study TD3 and SAC for MuJoCo. We compute the value churn
(ĈQsa , Ĉ|Qsa|), the policy churn (Ĉπ) and the value deviation of policy churn (D̂π

Q) throughout
learning.

For value-based methods, we compute the percentage of the greedy action deviation (D̂Q
a⋆), the

value churn of greedy action (ĈQa⋆) and the value churn of all actions (ĈQs
, Ĉ|Qs|) These metrics are

summarized in Table 4.

Table 4: Churn and deviation metrics used in our experiments. θt, ϕt and θ−, ϕ− are current networks
and previous networks. The metrics are averaged over s̄, ā in a reference buffer.

The Metrics for Policy-based Methods

ĈQsa
(θ−, θt) Qθt(s̄, ā)−Qθ−(s̄, ā) (for TD3, SAC)

Ĉ|Qsa|(θ
−, θt) |Qθt(s̄, ā)−Qθ−(s̄, ā)| (for TD3, SAC)

Ĉπ(ϕ−, ϕt)
∥πϕt(s̄)− πϕ−(s̄))∥1 (for TD3, PPO3)

KL(πϕt(·|s̄), πϕ−(·|s̄)) (for SAC)
D̂π

Q(ϕ
−, ϕt) Qθt(s̄, πϕt

(s̄))−Qθt(s̄, πϕ−(s̄))

The Metrics for Value-based Methods

Ĉ|Qs|(θ
−, θt)

1
|A|

∑
a∈A |Qθt(s̄, a)−Qθ−(s̄, a)|

ĈQa⋆ (θ
−, θt) maxa′ Qθt(s̄, a

′)−maxa Qθ−(s̄, a)

D̂Q
a⋆(θ−, θt) I{argmaxa Qθ− (s̄,a)}(argmaxa′ Qθt(s̄, a

′))

We use N = 50 and N = 20 for MuJoCo and MinAtar environments and compute the metrics
at an interval of 1k parameter updates. For each type of metric in Table 4 and update number
i ∈ {1, . . . , N}, we compute the mean of the quantities throughout learning. We refer the readers to
Figure 9, 11 and 12 for the results in Appendix D.

C.3 Code Implementation

We use the public implementations of PPO, TD3 and SAC in CleanRL4 as our codebase. The actor
and critic networks are two-layer MLPs with 256 units for each layer. For DoubleDQN, we modified
the DQN implementation provided in the official code of MinAtar paper5 with no change to the
network structure, recommended hyperparameter choices, etc. Hyperparameters are listed in Table 5,
Table 6 and Table 7. For the experiments in the offline RL setting, we use the public implementation
and benchmark scores for IQL and AWAC from CORL6.

One thing to note is that the data in the training batch and the regularization batch should be non-
overlapping in principle, but we found simply sampling two random batches from the replay buffer
independently works well. From the probabilistic perspective, the overlap could happen at a low
probability, which is determined by the batch size and the size of the replay buffer.

We make no change to the state/observation and reward of MuJoCo and MinAtar environments. No
additional tricks like state normalization, reward normalization are used in our experiments.

C.4 Other Discussions

Discussion on the Data Batches Used in Training and Anlysis We use separate sets of data for
churn reduction regularization (i.e., the regularization set) and churn investigation/evaluation (i.e.,
the actual reference set), and they are randomly sampled at each network update. In other words, if
count in the regular batch for training, we have three separate batches in total: (1) a regular training

4https://github.com/vwxyzjn/cleanrl
5https://github.com/kenjyoung/MinAtar
6https://github.com/tinkoff-ai/CORL

18

https://github.com/vwxyzjn/cleanrl
https://github.com/kenjyoung/MinAtar
https://github.com/tinkoff-ai/CORL

batch for standard RL loss computation, (2) a regularization batch for churn reduction loss, and
(3) a reference batch for churn evaluation (optional) throughout the learning process. Note that the
reference batch is only used for churn evaluation and does not influence learning.

Table 5: Hyperparameters of DoubleDQN used in MinAtar environments. The values of conventional
hyperparameters are taken from the recommended values in [Young and Tian, 2019].

DoubleDQN Hyperparameters

Learning Rate 3e−4

Training Interval 1 step
Discount Factor (γ) 0.99

Hard Replacement Interval 1000 steps
Replay Buffer Size 0.5M

Batch Size 32
Initial ϵ 1.0
End ϵ 0.1

ϵ Decay Steps 0.5M
Initial Random Steps 10k

Value Churn Reduction Hyperparameter

Value Regularization Coefficient (λQ) 50 for Breakout
100 for others

Target Relative Loss β for Auto λQ 0.05

Table 6: Hyperparameters of PPO used in MuJoCo environments. The values of conventional
hyperparameters are taken from the recommended values in CleanRL.

PPO Hyperparameters

Learning Rate 3e−4

Training Interval 2048 steps
Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95

Num. of Minibatches 32
Update Epoch 10

Clipping Range Parameter (ϵ) 0.1 for MuJoCo tasks
0.2 for DMC tasks

Policy Churn Reduction Hyperparameter

Policy Regularization Coefficient (λπ) 5000 for Ant-v4
50 for other MuJoCo tasks

Target Relative Loss β for Auto λπ
0.1 for MuJoCo tasks
0.02 for DMC tasks

19

Table 7: Hyperparameters of TD3 and SAC used in MuJoCo environments. The values of conventional
hyperparameters are taken from the recommended values in CleanRL. ’-’ means ’not applicable’.

TD3 & SAC Hyperparameters

Hyperparameters TD3 SAC

Actor Learning Rate 3e−4 3e−4

Critic Learning Rate 3e−4 3e−4

Actor Training Interval 2 steps 1 step
Critic Training Interval 1 step 1 step

Exploration Noise N (0, 0.1) -
Target Action Noise N (0, 0.2) -

Target Action Noise Clip 0.5 -
Discount Factor (γ) 0.99 0.99

Soft Replacement Ratio 0.005 0.005
Initial Random Steps 5k 5k
Replay Buffer Size 1M 1M

Batch Size 256 256
Optimizer Adam Adam

Churn Reduction Hyperparameters (refer to the study in Fig. 6, 11, 12)

Policy Regularization Coefficient (λπ) {0.1, 1, 20} {1e−4, 5e−4, 1e−3}
Value Regularization Coefficient (λQ) {0.1, 0.5, 1.0}

Target Relative Loss β for Auto λπ 5e−5

Algorithm 1 Deep RL with Churn Approximated ReductIoN (CHAIN).
1: Initialize the policy network πϕ and the value network Qθ with parameters ϕ, θ if they exist
2: Initialize an empty buffer D
3: set churn reduction hyperparamters λQ, λπ

4: (Optional) Set target relative loss scale β for auto-adjustment of λQ, λπ

5: for iteration t = 1, 2, 3, ... do
6: // Interact with the environment and collect samples
7: Rollout the policy with πϕ or Qθ and store interaction data in D
8: // Perform value and policy network learning
9: if time to update then

10: Sample a training batch Btrain and a reference batch Bref from D
11: Update Qθ with L(θ,Btrain), LQC(θ,Bref) by Eq. 5, 7
12: Update πϕ with L(ϕ,Btrain), LPC(ϕ,Bref) by Eq. 6, 8
13: (Optional) Re-calculate λQ, λπ according to β (refer to Section 5.2)
14: end if
15: end for

20

D Complete Results

D.1 More Empirical Analysis on the Value Churn in DoubleDQN

In Figure 9 shows the statistics of the three metrics defined in Table 4. Horizontal axes show the
number of parameter updates after which the statistics are computed. Each point is obtained by
averaging all the quantities throughout learning. Curves and shades denote means and standard errors
across six random seeds.

We can observe that the amount of value churn (Ĉ|Qs|) accumulates as the update number increases.
Although there does not exist an explicit policy network, the percentage of greedy action deviation
(ĈQa⋆) goes up to over 20%. However, different from the case for TD3 and SAC, the value of greedy
action (D̂Q

a⋆) decreases and the value churn (ĈQs
) exhibits a similar trend.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

breakout
DDQN
DDQN w/ Churn Reduction

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

space_invaders

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

asterix

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

freeway

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
t o

f G
re

ed
y

Ac
tio

n
Ch

an
ge

seaquest

(a) Percentage of Greedy Action Change

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

−0.15

−0.10

−0.05

0.00

0.05

Va
lu

e
Ch

an
ge

 o
f G

re
ed

y
Ac

tio
n

(1
e-

2)

breakout

DDQN
DDQN w/ Churn Reduction

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

−0.4

−0.3

−0.2

−0.1

0.0

Va
lu

e
Ch

an
ge

 o
f G

re
ed

y
Ac

tio
n

(1
e-

2)

space_invaders

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Va
lu

e
Ch

an
ge

 o
f G

re
ed

y
Ac

tio
n

(1
e-

2)

asterix

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

−0.04

−0.03

−0.02

−0.01

0.00

0.01

Va
lu

e
Ch

an
ge

 o
f G

re
ed

y
Ac

tio
n

(1
e-

2)

freeway

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

−0.02

0.00

0.02

0.04

0.06

Va
lu

e
Ch

an
ge

 o
f G

re
ed

y
Ac

tio
n

(1
e-

2)

seaquest

(b) Value Change of Greedy Action

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.02

0.04

0.06

0.08

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

breakout
DDQN
DDQN w/ Churn Reduction

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

space_invaders

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

asterix

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.000

0.002

0.004

0.006

0.008

0.010

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

freeway

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Update Num

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lu

e
Ch

an
ge

 o
f A

ll
Ac

tio
ns

seaquest

(c) Value Change of All Actions

Figure 9: Different statistics on value churn of DoubleDQN in MinAtar. Horizontal axes are numbers
of parameter updates after which the statistics are computed. Each point is obtained by averaging all
the quantities throughout learning. Curves and shades denote means and standard errors across six
random seeds.

D.2 More Results of CHAIN PPO

Figure 10 provides the learning performance of CHAIN PPO on four MuJoCo tasks. Moreover, we
also report the conventional PPO policy loss and the regularization loss LPC(ϕ) during the learning
process. Figure 10 also shows the results for different choices of the hyperparameter λπ .

From the results, we can observe: (1) PPO exhibits clear policy churn (the second column). One thing
to note is that the fading of the policy churn is due to the decay of the learning rate in CleanRL’s PPO
implementation. CHAIN (2) reduces the policy churn of PPO effectively, and (3) shows performance
improvement in Ant and HalfCheetah and comparable performance in Hopper and Walker2d. For the
hyperparameter choice, in practice, we found the churn reduction coefficient between 1e3 and 1e4
works well for Ant, while 50 works best in HalfCheetah.

We hypothesize that the choice of λπ is likely to be related to the scale difference between policy
loss −J(ϕ) (the third column) and regularization term LPC(ϕ) (the fourth column). This motivates
the proposal of our method for automatic adjustment of the regularization coefficient presented in
Section 5.2.

21

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n
PPO
CHAIN PPO (λπ = 2000)
CHAIN PPO (λπ = 5000)
CHAIN PPO (λπ = 10000)

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Po
lic

y
Ch

ur
n

Am
ou

nt

0 5 10 15 20 25 30 35 40
Timestep (5e4)

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Po
lic

y
Lo

ss

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Re
gu

la
riz

at
io

n
Lo

ss
 (1

e-
4)

(a) Ant

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

PPO
CHAIN PPO (λπ = 5)
CHAIN PPO (λπ = 50)
CHAIN PPO (λπ = 2000)

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.000

0.005

0.010

0.015

0.020

Po
lic

y
Ch

ur
n

Am
ou

nt
0 5 10 15 20 25 30 35 40

Timestep (5e4)

−0.05

−0.04

−0.03

−0.02

−0.01

Po
lic

y
Lo

ss

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
gu

la
riz

at
io

n
Lo

ss
 (1

e-
4)

(b) HalfCheetah

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

4000

Ep
iso

de
 R

et
ur

n

PPO
CHAIN PPO (λπ = 5)
CHAIN PPO (λπ = 50)
CHAIN PPO (λπ = 2000)

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.000

0.005

0.010

0.015

0.020

Po
lic

y
Ch

ur
n

Am
ou

nt

0 5 10 15 20 25 30 35 40
Timestep (5e4)

−0.05

−0.04

−0.03

−0.02

−0.01

Po
lic

y
Lo

ss

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
gu

la
riz

at
io

n
Lo

ss
 (1

e-
4)

(c) Walker2d

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0

500

1000

1500

2000

2500

Ep
iso

de
 R

et
ur

n

PPO
CHAIN PPO (λπ = 5)
CHAIN PPO (λπ = 50)
CHAIN PPO (λπ = 2000)

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Po
lic

y
Ch

ur
n

Am
ou

nt

0 5 10 15 20 25 30 35 40
Timestep (5e4)

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

Po
lic

y
Lo

ss

0 5 10 15 20 25 30 35 40
Timestep (5e4)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Re
gu

la
riz

at
io

n
Lo

ss
 (1

e-
4)

(d) Hopper

Figure 10: Results for CHAIN PPO, including the learning performance, the amount of the policy
churn, the loss of conventional policy training, and the loss of regularization.

D.3 More Results of CHAIN for Deep AC Methods

We refer the readers to the following figures and tables for concrete additional results:

• Figure 11 and Figure 12 show how the value churn reduction (VCR) and policy churn
reduction (PCR) take effect during the learning process of TD3 and SAC. The four metrics
defined in Table 4 are used.

• Figure 13 and Figure 14 show the results of different choices of λQ and λπ when VCR,
PCR, or VCR+PCR (i.e., denoted by DCR) in CHAIN TD3 and CHAIN SAC.

• Figure 15 shows an overall comparison among VCR, PCR, DCR when using either of
them in CHAIN TD3 and CHAIN SAC. We also provide the comparison with Reliable
Metrics7 [Agarwal et al., 2021] in Figure 17 and Figure 18.

• Figure 16 shows the evaluation of the automatic adjustment method of λπ for CHAIN TD3
in four MuJoCo tasks.

The Effect of CHAIN-VCR and CHAIN-PCR in Reducing Churn For TD3 and SAC, the
amount of value churn (Ĉ|Qsa|) and policy churn (Ĉπ) increases as the update number i increases.
This is expected as the chain effect indicates the accumulation of churn and deviation. Besides, the
churn saturates after a sufficient number of updates on the networks. We hypothesize the target
network helps cap the amount of churn.

Moreover, we observe a positive policy value deviation of action churn (D̂π
Q), which matches our

discussion on implicit optimization effect of the policy churn in Appendix B; in contrast, the value
churn (ĈQsa) fluctuates above and below 0.

7https://github.com/google-research/rliable

22

https://github.com/google-research/rliable

According to the relative scale, TD3 and SAC show less value and policy churn than DoubleDQN.
This is due to the structure independence of actor and critic networks. Another possible reason is that
MuJoCo locomotion may have smoother underlying problem dynamics than the MinAtar.

0 5 10 15 20
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

TD3
TD3 w/ VCR (λQ = 0.5)
TD3 w/ VCR (λQ = 1.0)
TD3 w/ PCR (λπ = 0.1)
TD3 w/ PCR (λπ = 1.0)

0 10 20 30 40 50
Update Num

40

60

80

100

120

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

0

1

2

3

4

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0.01

0.02

0.03

0.04

0.05

Po
lic

y
Ch

ur
n

̂

π

0 10 20 30 40 50
Update Num

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(a) HalfCheetah-v4

0 5 10 15 20
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ VCR (λQ = 1.0)
TD3 w/ PCR (λπ = 0.1)
TD3 w/ PCR (λπ = 1.0)

0 10 20 30 40 50
Update Num

20

30

40

50

60

70

80

90

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

−1

0

1

2

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0.02

0.04

0.06

0.08

0.10

Po
lic

y
Ch

ur
n

̂

π

0 10 20 30 40 50
Update Num

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(b) Hopper-v4

0 5 10 15 20
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ VCR (λQ = 0.5)
TD3 w/ PCR (λπ = 0.5)
TD3 w/ PCR (λπ = 1.0)

0 10 20 30 40 50
Update Num

40

60

80

100

120

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

−1

0

1

2

3

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Po
lic

y
Ch

ur
n

̂

π

0 10 20 30 40 50
Update Num

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(c) Walker2d-v4

0 5 10 15 20
Timestep (5e4)

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ VCR (λQ = 0.5)
TD3 w/ PCR (λπ = 10)
TD3 w/ PCR (λπ = 20)

0 10 20 30 40 50
Update Num

10

15

20

25

30

35

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

−0.5

0.0

0.5

1.0

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Po
lic

y
Ch

ur
n

̂

π

0 10 20 30 40 50
Update Num

0.0

0.5

1.0

1.5

2.0

2.5

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(d) Ant-v4

Figure 11: Churn reduction of TD3 in MuJoCo. The 2nd-4th columns report the value of the four
metrics defined in Table 4. Horizontal axes are numbers of parameter updates after which the statistics
are computed. Each point is obtained by averaging all the quantities throughout learning.

Discussion on the Effect of CHAIN-VCR, -PCR, -DCR in Improving Episode Return In
addition to the two variants of CHAIN introduced in the main body of this paper, we introduce the
third one, i.e., Double Churn Reduction (DCR), which corresponds to applying VCR and PCR at the
same time. The related results are reported in Figure 13, 14, 15.

For CHAIN-VCR and CHAIN-PCR, we found that CHAIN-PCR often improves the learning per-
formance, especially for Ant-v4. In contrast, CHAIN-VCR improves slightly. We hypothesize that
this is because policy interacts with the environment directly and the target critic-network also helps
to cap the value churn. Between TD3 and SAC, CHAIN-PCR works better for TD3 rather than
SAC. We hypothesize that the variation (regarding the scale and range) is higher in optimizing the
Maximum-Entropy objective and KL-based PCR term together for SAC than in optimizing the Q
objective and L2-based PCR term for TD3. Another hypothesis is that the Maximum-Entropy nature
of SAC prefers the encouragement of more stochasticity in policy.

For CHAIN-DCR, we found that it is not easy to gain an immediate additive improvement regarding
episode return when using the same hyperparameter choices λQ, λπ from both sides. We suggest that
this reflects the intricate nature of the chain effect. As mentioned in Section 7, this points out the
limitation of this work in aspects like the in-depth theoretical analysis of the long-term chain effect,
the lack of automatic coefficient adjustment, and the finer-grained understanding of the positive and
negative effects of churn. We leave these directions for future work.

23

0 5 10 15 20
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n
SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ VCR (λQ = 1.0)
SAC w/ PCR (λπ = 5e− 4)

0 10 20 30 40 50
Update Num

40

60

80

100

120

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

−1

0

1

2

3

4

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y
Ch

ur
n

(K
L)

̂


π

0 10 20 30 40 50
Update Num

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(a) HalfCheetah-v4

0 5 10 15 20
Timestep (5e4)

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

SAC
SAC w/ VCR (λQ = 0.5)
SAC w/ VCR (λQ = 1.0)
SAC w/ PCR (λπ = 1e− 4)
SAC w/ PCR (λπ = 5e− 4)

0 10 20 30 40 50
Update Num

20

30

40

50

60

70

80

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Po
lic

y
Ch

ur
n

(K
L)

̂


π

0 10 20 30 40 50
Update Num

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(b) Hopper-v4

0 5 10 15 20
Timestep (5e4)

0

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ VCR (λQ = 1.0)
SAC w/ PCR (λπ = 1e− 4)
SAC w/ PCR (λπ = 5e− 4)

0 10 20 30 40 50
Update Num

40

60

80

100

120

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

−2

−1

0

1

2

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0

1

2

3

4

Po
lic

y
Ch

ur
n

(K
L)

̂


π

0 10 20 30 40 50
Update Num

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(c) Walker2d-v4

0 5 10 15 20
Timestep (5e4)

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

SAC
SAC w/ VCR (λQ = 0.5)
SAC w/ VCR (λQ = 1.0)
SAC w/ PCR (λπ = 1e− 3)
SAC w/ PCR (λπ = 5e− 4)

0 10 20 30 40 50
Update Num

10

20

30

40

50

60

70

80

90

Ab
s.

Va
lu

e
Ch

ur
n

̂


|Q
sa

| (
1e

-2
)

0 10 20 30 40 50
Update Num

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

e
Ch

ur
n

̂

Q
sa
 (1

e-
2)

0 10 20 30 40 50
Update Num

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
lic

y
Ch

ur
n

(K
L)

̂


π

0 10 20 30 40 50
Update Num

0

1

2

3

4

Po
lic

y
Va

lu
e

De
vi

at
io

n
̂
π Q
 (1

e-
2)

(d) Ant-v4

Figure 12: Churn reduction of SAC in MuJoCo. The 2nd-4th columns report the value of the four
metrics defined in Table 4. Horizontal axes are numbers of parameter update after which the statistics
are computed. Each point is obtained by averaging all the quantities throughout learning.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ VCR (λQ = 0.5)
TD3 w/ VCR (λQ = 1.0)
TD3 w/ VCR (λQ = 5.0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ VCR (λQ = 0.5)
TD3 w/ VCR (λQ = 1.0)
TD3 w/ VCR (λQ = 5.0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ VCR (λQ = 0.5)
TD3 w/ VCR (λQ = 1.0)
TD3 w/ VCR (λQ = 5.0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

1500

2000

2500

3000

Ep
iso

de
 R

et
ur

n

Ant-v4

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ VCR (λQ = 0.5)
TD3 w/ VCR (λQ = 1.0)
TD3 w/ VCR (λQ = 5.0)

(a) Value Churn Reduction (VCR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

TD3
TD3 w/ PCR (λπ = 0.1)
TD3 w/ PCR (λπ = 0.5)
TD3 w/ PCR (λπ = 1.0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

TD3
TD3 w/ PCR (λπ = 0.1)
TD3 w/ PCR (λπ = 0.5)
TD3 w/ PCR (λπ = 1.0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

TD3
TD3 w/ PCR (λπ = 0.1)
TD3 w/ PCR (λπ = 0.5)
TD3 w/ PCR (λπ = 1.0)
TD3 w/ PCR (λπ = 10)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Ant-v4

TD3
TD3 w/ PCR (λπ = 1.0)
TD3 w/ PCR (λπ = 10)
TD3 w/ PCR (λπ = 20)
TD3 w/ PCR (λπ = 50)

(b) Policy Churn Reduction (PCR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

TD3
TD3 w/ DCR (λQ = 0.05, λπ = 0.05)
TD3 w/ DCR (λQ = 0.1, λπ = 0.1)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

TD3
TD3 w/ DCR (λQ = 0.05, λπ = 0.05)
TD3 w/ DCR (λQ = 0.1, λπ = 0.1)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

TD3
TD3 w/ DCR (λQ = 0.1, λπ = 0.5)
TD3 w/ DCR (λQ = 0.5, λπ = 1.0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Ant-v4

TD3
TD3 w/ DCR (λQ = 0.1, λπ = 10)
TD3 w/ DCR (λQ = 0.5, λπ = 20)

(c) Double Churn Reduction (DCR = VCR + PCR)

Figure 13: Hyperparameter choices for the value and policy churn reduction regularization for TD3
in MuJoCo. Curves and shades denote means and standard errors across six random seeds.

24

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ VCR (λQ = 0.5)
SAC w/ VCR (λQ = 1.0)
SAC w/ VCR (λQ = 0.05)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

et
ur

n

Hopper-v4

SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ VCR (λQ = 0.5)
SAC w/ VCR (λQ = 1.0)
SAC w/ VCR (λQ = 0.05)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ VCR (λQ = 0.5)
SAC w/ VCR (λQ = 1.0)
SAC w/ VCR (λQ = 0.05)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Ant-v4

SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ VCR (λQ = 0.5)
SAC w/ VCR (λQ = 1.0)
SAC w/ VCR (λQ = 0.05)

(a) Value Churn Reduction (VCR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

SAC
SAC w/ PCR (λπ = 1e− 4)
SAC w/ PCR (λπ = 5e− 4)
SAC w/ PCR (λπ = 1e− 3)
SAC w/ PCR (λπ = 5e− 3)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

SAC
SAC w/ PCR (λπ = 1e− 4)
SAC w/ PCR (λπ = 5e− 4)
SAC w/ PCR (λπ = 1e− 3)
SAC w/ PCR (λπ = 5e− 3)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

SAC
SAC w/ PCR (λπ = 1e− 4)
SAC w/ PCR (λπ = 5e− 4)
SAC w/ PCR (λπ = 1e− 3)
SAC w/ PCR (λπ = 5e− 3)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Ant-v4

SAC
SAC w/ PCR (λπ = 1e− 4)
SAC w/ PCR (λπ = 5e− 4)
SAC w/ PCR (λπ = 1e− 3)
SAC w/ PCR (λπ = 5e− 3)

(b) Policy Churn Reduction (PCR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

SAC
SAC w/ DCR (λQ = 0.1, λπ = 5e− 4)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

et
ur

n

Hopper-v4

SAC
SAC w/ DCR (λQ = 0.1, λπ = 1e− 4)
SAC w/ DCR (λQ = 0.5, λπ = 5e− 4)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

SAC
SAC w/ DCR (λQ = 0.1, λπ = 1e− 4)
SAC w/ DCR (λQ = 0.5, λπ = 5e− 4)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Ant-v4

SAC
SAC w/ DCR (λQ = 0.1, λπ = 5e− 4)
SAC w/ DCR (λQ = 0.5, λπ = 1e− 3)

(c) Double Churn Reduction (DCR = VCR + PCR)

Figure 14: Hyperparameter choices for the value and policy churn reduction regularization for SAC
in MuJoCo. Curves and shades denote means and standard errors across six random seeds.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Ant-v4

TD3
TD3 w/ VCR (λQ = 0.5)
TD3 w/ PCR (λπ = 20)
TD3 w/ DCR (λQ = 0.5, λπ = 20)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ PCR (λπ = 0.1)
TD3 w/ DCR (λQ = 0.05, λπ = 0.05)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

TD3
TD3 w/ VCR (λQ = 0.5)
TD3 w/ PCR (λπ = 1.0)
TD3 w/ PCR (λQ = 0.5, λπ = 1.0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n
HalfCheetah-v4

TD3
TD3 w/ VCR (λQ = 0.1)
TD3 w/ PCR (λπ = 0.1)
TD3 w/ DCR (λQ = 0.1, λπ = 0.1)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Ant-v4

SAC
SAC w/ VCR (λQ = 0.5)
SAC w/ PCR (λπ = 1e− 3)
SAC w/ DCR (λQ = 0.5, λπ = 1e− 3)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

SAC
SAC w/ VCR (λQ = 0.5)
SAC w/ PCR (λπ = 1e− 3)
SAC w/ DCR (λQ = 0.5, λπ = 5e− 4)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

5000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ PCR (λπ = 1e− 4)
SAC w/ DCR (λQ = 0.5, λπ = 5e− 4)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

SAC
SAC w/ VCR (λQ = 0.1)
SAC w/ PCR (λπ = 5e− 4)
SAC w/ DCR (λQ = 0.1, λπ = 5e− 4)

Figure 15: An overall comparison among using value churn reduction, using policy churn reduction,
and using them both for TD3 and SAC.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

2000

4000

6000

8000

10000

Ep
iso

de
 R

et
ur

n

HalfCheetah-v4

TD3
CHAIN TD3 (λπ = 0.1)
CHAIN TD3 (Auto)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Hopper-v4

TD3
CHAIN TD3 (λπ = 0.1)
CHAIN TD3 (Auto)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

0

1000

2000

3000

4000

Ep
iso

de
 R

et
ur

n

Walker2d-v4

TD3
CHAIN TD3 (λπ = 1.0)
CHAIN TD3 (Auto)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (5e4)

1000

1500

2000

2500

3000

3500

Ep
iso

de
 R

et
ur

n

Ant-v4

TD3
CHAIN TD3 (λπ = 20)
CHAIN TD3 (Auto)

Figure 16: The results for auto-adjustment of λπ for CHAIN TD3 in four MuJoCo tasks, with means
and standard errors across six seeds. The target relative loss scale β is set to 5e-5. CHAIN (Auto)
achieves comparable performance with manually selected coefficients and improves TD3.

25

The Effect of Automatic Adjustment of λπ Figure 16 shows the evaluation of the automatic
adjustment method of λπ for CHAIN TD3 in four MuJoCo tasks. We can observe that CHAIN (Auto)
achieves comparable performance with manually selected coefficients and improves TD3, similarly
to the conclusions we found in Figure 4 and 5.

0.0 0.1 0.2
TD3

TD3 w/ VCR

TD3 w/ PCR

TD3 w/ DCR
Median

0.0 0.1 0.2 0.3

IQM

0.0 0.1 0.2

Mean

0.8 0.9 1.0

Optimality Gap

Normalized Score
(a) Final scores in Ant

0.00 0.08 0.16
TD3

TD3 w/ VCR

TD3 w/ PCR

TD3 w/ DCR
Median

0.0 0.1 0.2

IQM

0.00 0.08 0.16

Mean

0.80 0.88 0.96 1.04

Optimality Gap

Normalized Score
(b) AUC scores in Ant

0.08 0.16 0.24 0.32
TD3

TD3 w/ VCR

TD3 w/ PCR

TD3 w/ DCR
Median

0.06 0.12 0.18 0.24

IQM

0.08 0.16 0.24 0.32

Mean

0.72 0.80 0.88

Optimality Gap

Normalized Score
(c) Final scores over all MuJoCo tasks

0.08 0.16 0.24 0.32
TD3

TD3 w/ VCR

TD3 w/ PCR

TD3 w/ DCR
Median

0.08 0.16 0.24

IQM

0.0 0.1 0.2 0.3

Mean

0.7 0.8 0.9 1.0

Optimality Gap

Normalized Score
(d) AUC scores over all MuJoCo tasks

Figure 17: Reliable [Agarwal et al., 2021] metrics for TD3 with different churn reduction options.

0.4 0.6 0.8
SAC

SAC w/ VCR

SAC w/ PCR

SAC w/ DCR
Median

0.4 0.6 0.8 1.0

IQM

0.4 0.6 0.8

Mean

0.2 0.4 0.6

Optimality Gap

Normalized Score
(a) Final scores in Ant

0.25 0.50 0.75 1.00
SAC

SAC w/ VCR

SAC w/ PCR

SAC w/ DCR
Median

0.3 0.6 0.9

IQM

0.25 0.50 0.75 1.00

Mean

0.25 0.50 0.75

Optimality Gap

Normalized Score
(b) AUC scores in Ant

0.3 0.4 0.5
SAC

SAC w/ VCR

SAC w/ PCR

SAC w/ DCR
Median

0.30 0.45

IQM

0.3 0.4 0.5

Mean

0.5 0.6 0.7

Optimality Gap

Normalized Score
(c) Final scores over all MuJoCo tasks

0.3 0.4 0.5 0.6
SAC

SAC w/ VCR

SAC w/ PCR

SAC w/ DCR
Median

0.3 0.4 0.5 0.6

IQM

0.3 0.4 0.5

Mean

0.5 0.6 0.7

Optimality Gap

Normalized Score
(d) AUC scores over all MuJoCo tasks

Figure 18: Reliable [Agarwal et al., 2021] metrics for SAC with different churn reduction options.

26

D.4 More Results of CHAIN for IQL with Sequential Training

As mentioned in Section 6.3, the policy network of IQL has no impact on the training of the value
networks, since the value networks (i.e., Q and V) are trained purely based on in-sample data without
accessing a′ = πϕ(s

′). Thus, although the policy and value networks of IQL still have churns, the
chain effect of churn does not apply in this case.

The default implementation of IQL follows the fashion of iterative training between the policy
network and the value network(s). Since the training of the value networks of IQL is independent of
the policy, one natural idea is to first fully train the value networks for a sufficient budget and then
train the policy value with the well-trained and frozen value networks. We call this actor-trained-
against-final-frozen-critic fashion as sequential training of IQL.

We slightly modified the training process of the CORL implementation of IQL to realize the sequential
training of IQL: (1) First train the value network and Q network for 1M steps; (2) Then train the
policy network for 1M steps with the value network and Q network frozen; (3) We do not modify any
other implementation detail and use the same hyperparameters; (4) We check the learning curves of
the policy network and the final scores. We call this variation IQL (sequential). The total number of
gradient step is the same as the default IQL implementation where the critic and actor are trained
iteratively.

We report the final scores of IQL (sequential) with means and standard errors over 12 seeds in Table 8.
The results show that IQL (sequential) performs worse than IQL in 5 of 6 tasks. The difference
between IQL (sequential) and IQL can be fully attributed to the difference in the training dynamics,
mainly on the policy network. This also means exposing the actor network to the training process of
the Q network is helpful compared to training the actor based on a sufficiently trained and frozen Q
network. To provide some possible explanation, we guess that this is because the final Q network
is a product of accumulated value churns, and the difference in the training dynamics of the policy
network of IQL results in a further difference in the policy output on out-of-sample states. However,
it is somewhat tricky to explain the difference between IQL (sequential) and IQL. The dynamics is
beyond the scope of the chain effect of churn mechanism studied in our work.

Table 8: Results for IQL, IQL (sequential) and CHAIN IQL in Antmaze.

Task IQL IQL (sequential) CHAIN IQL (PCR) CHAIN IQL (VCR)

AM-umaze-v2 77.00 ± 5.52 60.00 ± 3.91 84.44 ± 3.19 83.33 ± 2.72
AM-umaze-diverse-v2 54.25 ± 5.54 55.00 ± 5.46 62.50 ± 3.75 71.67 ± 7.23
AM-medium-play-v2 65.75 ± 11.71 52.50 ± 3.36 72.50 ± 2.92 70.00 ± 3.33

AM-medium-diverse-v2 73.75 ± 5.45 53.33 ± 5.93 76.67 ± 4.51 66.67 ± 3.79
AM-large-play-v2 42.00 ± 4.53 17.5 ± 4.10 50.00 ± 4.56 43.33 ± 4.14

AM-large-diverse-v2 30.25 ± 3.63 5.83 ± 2.19 26.67 ± 3.96 31.67 ± 2.31

D.5 More Results for Scaling PPO with CHAIN

We take PPO and MuJoCo tasks as the exemplary setting and widen both the policy and value
networks by a scale-up ratio within {2, 4, 8, 16}. Note that the default network architecture (i.e.,
when the scale-up ratio equals one) for both the policy and value networks is a two-layer MLP with
256 neurons for each layer, followed by an output layer.

Inspired by the prior study [Obando-Ceron et al., 2024], in addition to directly scaling PPO up
(‘direct’), we use two variants that use different learning rate settings for comparison: (1) ‘linear’
means using a decreased learning rate as lr / scale-up ratio, and (2) ‘sqrt’ means using lr /
sqrt(scale-up ratio). The results of scaling PPO with different learning rate settings are shown
in Figure 19 by different colors.

As expected, we observed that the performance of PPO degrades as the increase of the scale-up ratio
severely. We found using a decreased learning rate with ‘linear’ or ‘sqrt’ alleviates the degradation of
PPO scaling to some degree.

The evaluation results of the effect of CHAIN in this scaling setting are shown in Figure 7, Figure ??
and Table 3 as discussed in the main body of this paper.

27

1 2 4 8 16
Scale Up Ratio

2000

2500

3000

3500

4000

Pe
rfo

rm
an

ce
 (s

co
re

)

Walker2d-v4 (2M)

direct
sqrt_lr
linear_lr

1 2 4 8 16
Scale Up Ratio

0

500

1000

1500

2000

2500

Pe
rfo

rm
an

ce
 (s

co
re

)

Ant-v4 (2M)

1 2 4 8 16
Scale Up Ratio

500

1000

1500

2000

2500

Pe
rfo

rm
an

ce
 (s

co
re

)

Humanoid-v4 (2M)

1 2 4 8 16
Scale Up Ratio

1800

1900

2000

2100

2200

2300

2400

Pe
rfo

rm
an

ce
 (s

co
re

)

Hopper-v4 (2M)

1 2 4 8 16
Scale Up Ratio

1400

1600

1800

2000

2200

Pe
rfo

rm
an

ce
 (s

co
re

)

HalfCheetah-v4 (2M)

1 2 4 8 16
Scale Up Ratio

2000

2500

3000

3500

4000

Pe
rfo

rm
an

ce
 (s

co
re

)

Walker2d-v4 (2M)

direct
sqrt_lr
linear_lr

1 2 4 8 16
Scale Up Ratio

0

500

1000

1500

2000

2500

Pe
rfo

rm
an

ce
 (s

co
re

)

Ant-v4 (2M)

1 2 4 8 16
Scale Up Ratio

500

1000

1500

2000

2500

Pe
rfo

rm
an

ce
 (s

co
re

)

Humanoid-v4 (2M)

1 2 4 8 16
Scale Up Ratio

1800

1900

2000

2100

2200

2300

2400

Pe
rfo

rm
an

ce
 (s

co
re

)
Hopper-v4 (2M)

1 2 4 8 16
Scale Up Ratio

1400

1600

1800

2000

2200

Pe
rfo

rm
an

ce
 (s

co
re

)

HalfCheetah-v4 (2M)

Figure 19: The results for PPO scaling by widening with different learning rate settings. ‘direct’ means
using the default learning rate, ‘linear’ means using a decreased learning rate as lr / scale-up
ratio, and ‘sqrt’ means using lr / sqrt(scale-up ratio).

1 2 4 8 16
Scale Up Ratio

0

500

1000

1500

2000

2500

3000

Pe
rfo

rm
an

ce
 (s

co
re

)

Ant-v4 (2M)

PPO
PPO (w/ sqrt_lr)
CHAIN PPO
CHAIN PPO (w/ sqrt_lr)

1 2 4 8 16
Scale Up Ratio

500

1000

1500

2000

2500

3000

3500

Pe
rfo

rm
an

ce
 (s

co
re

)

Humanoid-v4 (2M)

1 2 4 8 16
Scale Up Ratio

2000

2500

3000

3500

4000

Pe
rfo

rm
an

ce
 (s

co
re

)

Walker2d-v4 (2M)

(a) PPO Scaling by Widening

1 2 4 8 16
Scale Up Ratio

500

1000

1500

2000

2500

Pe
rfo

rm
an

ce
 (s

co
re

)

Ant-v4 (2M)

PPO
PPO (w/ sqrt_lr)
CHAIN PPO
CHAIN PPO (w/ sqrt_lr)

1 2 4 8 16
Scale Up Ratio

500

1000

1500

2000

2500

Pe
rfo

rm
an

ce
 (s

co
re

)

Humanoid-v4 (2M)

1 2 4 8 16
Scale Up Ratio

1500

2000

2500

3000

3500

Pe
rfo

rm
an

ce
 (s

co
re

)

Walker2d-v4 (2M)

(b) PPO Scaling by Deepening

Figure 20: The results in terms of episode return for scaling PPO with CHAIN. CHAIN helps to scale
almost across all the configurations.

D.6 More Results for CHAIN v.s. Slowing Down Learning

Since churn accompanies each time mini-batch training performed for the networks, a natural question
is: whether slowing down learning can alleviate the issue of churn. In principle, using smaller learning
rates or target network replacement rates should lead to less churn. This is because churn is positively
related to the parameter update amount (as shown by the NTK expressions in Eq. 2) and a slower
target network also slows the churn that occurs instantly in each training more when computing the
target value to fit for the critic-network.

Empirically, we ran DDQN in Asterix and Freeway and TD3 in Walker2d and Ant, with different
learning rates and target network replacement rates. The results are summarized in Table 9. We can
observe that either reducing learning rate or target network replacement rate often leads to worse

28

performance, especially for TD3. To some extent, this also matches the common knowledge in the
RL community.

Table 9: Different learning rates (lr) and target network replacement rates (trr), e.g., "/ 2" means
"divided by 2". Mean final episode returns over six seeds are reported.

Alg. - Task Walker2d Ant Alg. - Task Asterix Freeway

TD3 4059.45 3069.14 DDQN 15.05 49.21

TD3 (lr / 2) 2774.87 2408.75 DDQN (lr / 2) 19.26 55.83
TD3 (lr / 10) 1314.12 1023.78 DDQN (lr / 10) 16.20 49.20

TD3 (trr / 5) 3170.18 3375.33 DDQN (trr / 5) 11.36 50.76
TD3 (trr * 5) 4057.33 2743.25 DDQN (trr * 5) 18.26 54.33

This indicates that the issue of churn cannot be addressed by reducing learning rate or target network
replacement rate (which usually slows down the learning process). Churn is a “by-product” of the
training of DRL agents and should be addressed separately.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction summarize our contributions
and are supported by our formal analysis in Section 4 and our experiment results in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

30

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide sufficient experiment and implementation details in Section 6 and
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

Answer: [Yes]
Justification: Our code can be found at https://github.com/bluecontra/CHAIN.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide necessary experimental details in Section 6 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results in our paper are accompanied by error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

32

https://github.com/bluecontra/CHAIN
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of compute resources in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Deep Rein-
forcement Learning (DRL). No specific real-world application is concerned. Our study on
the churn phenomenon may help us better understand and control the behaviours of DRL
agents, which can have a positive impact in general on the applicability and safety of DRL
techniques.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

33

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the environments, data and codes of baseline methods used in this paper
are publicly available on Github. We cited the original papers and provided the URLs to the
assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

34

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the necessary details for implementing our proposed method in
this paper. We will provide a README document alongside the code to release after the
review process.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

35

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Prior Work
	Preliminaries
	A Chain Effect of Value and Policy Churn
	Generalized Policy Iteration under Churn
	Definition of Value and Policy Churn
	From Single-step Interplay to The Chain Effect of Churn

	Reducing Value and Policy Churn in Deep RL
	Consequences of the Chain Effect of Churn in Different DRL Scenarios
	A Regularization Method for Churn Reduction

	Experiments
	Results for CHAIN DoubleDQN in MinAtar
	Results for CHAIN PPO in MuJoCo and DMC
	Results for Deep Actor-Critic Methods with CHAIN in MuJoCo and D4RL
	Scaling DRL Agents with CHAIN

	Conclusion
	Limitations
	Additional Formal Analysis
	The NTK Expressions of Two Types of Deviation
	Complete Discussions and Derivations for Section 4.3

	Experimental Details
	Compute Resources and Time Cost
	Empirical Metrics for the Investigation of the Chain Effect
	Code Implementation
	Other Discussions

	Complete Results
	More Empirical Analysis on the Value Churn in DoubleDQN
	More Results of CHAIN PPO
	More Results of CHAIN for Deep AC Methods
	More Results of CHAIN for IQL with Sequential Training
	More Results for Scaling PPO with CHAIN
	More Results for CHAIN v.s. Slowing Down Learning

