
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOISEAR: AUTOREGRESSING INITIAL NOISE PRIOR
FOR DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have emerged as powerful generative frameworks, creating data
samples by progressively denoising an initial random state. Traditionally, this
initial state is sampled from a simple, fixed distribution like isotropic Gaussian, in-
herently lacking structure and a direct mechanism for external control. While recent
efforts have explored ways to introduce controllability into the diffusion process,
particularly at the initialization stage, they often rely on deterministic or heuristic
approaches. These methods can be suboptimal, lack expressiveness, and are diffi-
cult to scale or integrate into more sophisticated optimization frameworks. In this
paper, we introduce NoiseAR, a novel method for AutoRegressive Initial Noise
Prior for Diffusion Models. Instead of a static, unstructured source, NoiseAR learns
to generate a dynamic and controllable prior distribution for the initial noise. We
formulate the generation of the initial noise prior’s parameters as an autoregressive
probabilistic modeling task over spatial patches. This approach enables NoiseAR to
capture complex spatial dependencies and introduce learned structure into the initial
state. Crucially, NoiseAR is designed to be conditional, allowing text prompts to
directly influence the learned prior, thereby achieving fine-grained control over the
diffusion initialization. Our experiments demonstrate that NoiseAR can generate
initial noise priors that lead to improved sample quality and enhanced consistency
with conditional inputs, offering a powerful, learned alternative to traditional ran-
dom initialization. A key advantage of NoiseAR is its probabilistic formulation,
which naturally supports seamless integration into probabilistic frameworks like
Markov Decision Processes and Reinforcement Learning. This integration opens
promising avenues for further optimizing and scaling controllable generation for
downstream tasks. Furthermore, NoiseAR acts as a lightweight, plug-and-play
module, requiring minimal additional computational overhead during inference,
making it easy to integrate into existing diffusion pipelines.

1 INTRODUCTION

Recent breakthroughs in generative modeling, particularly with the advent of Diffusion Models
(DMs) (Ho et al., 2020; Song et al., 2020a;b; Rombach et al., 2022; Podell et al., 2023), have
revolutionized data synthesis, achieving unprecedented levels of fidelity and diversity, especially
in image generation. These models achieve this by learning to reverse a gradual noise injection
process, starting from a simple random noise sample – typically drawn from an isotropic Gaussian
distribution (Ho et al., 2020) – and progressively refining it into a coherent data sample. While highly
successful for unconditional generation, the practical utility of DMs in real-world scenarios heavily
relies on the ability to control the generation process to produce outputs with specific desired attributes
or according to explicit instructions. This capability is indispensable for tasks like text-driven content
creation, complex image manipulation, and generating data with predefined structural or semantic
characteristics.

Significant research efforts have been dedicated to making diffusion models controllable. Much of
this work has focused on steering the generative process after the initial noise is sampled. Common
strategies involve conditioning the denoising network throughout the reverse steps, using techniques
like Classifier Guidance (Dhariwal & Nichol, 2021), Classifier-Free Guidance (Ho & Salimans, 2021;
Nichol et al., 2021), or leveraging cross-attention mechanisms with conditional inputs (Rombach
et al., 2022; Ramesh et al., 2021; Saharia et al., 2022a; Ramesh et al., 2022; Chefer et al., 2023;
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Figure 1: Comparison of our autoregressive generation of initial noise (A) with existing approaches
based on the refinement or mapping of initial noise (B). NoiseAR can generate initial noise from
scratch without the need for any uncontrollable, more primitive noise.

Peebles & Xie, 2023b; Chen et al., 2023). Other methods manipulate the sampling path or apply
objectives/constraints during the later stages of diffusion or related generative flows (Lipman et al.,
2022; Liu et al., 2022; Karras et al., 2022; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023;
Song & Dhariwal, 2024; Song et al., 2023; Geng et al., 2024; Lu & Song, 2025; Yang et al., 2024),
including carefully designed noise schedulers (Nichol & Dhariwal, 2021; Chen, 2023; Lu et al.,
2022) which govern the denoising dynamics. While these methods are effective at guiding how
the denoising path unfolds, the generative process fundamentally begins with the initial noise. The
potential of influencing the final output by injecting structured, controllable information right at this
foundational starting point remains relatively underexplored compared to methods focusing on the
later stages or process dynamics. Existing attempts to manipulate the initial state are limited, often
relying on simple deterministic mappings (Fig. 1B) (Eyring et al., 2024; Ma et al., 2025; Zhou et al.,
2024) or heuristic rules (Guo et al., 2024; Xu et al., 2025). Critically, these approaches still need to
rely on uncontrollable gaussian for refining, which fail to model a flexible, probabilistic distribution
over the initial noise conditioned on control, restricting their expressiveness and hindering integration
with powerful probabilistic optimization frameworks.

In this paper, we explore this underexplored potential by proposing NoiseAR, a novel framework
designed to learn a controllable, probabilistic prior distribution specifically for the initial noise of
diffusion models. Unlike standard unstructured noise or deterministic initial state manipulations in
Fig. 1B, NoiseAR (Fig. 1A) leverages the power of Autoregressive (AR) modeling (Van Den Oord
et al., 2016; Van den Oord et al., 2016; Parmar et al., 2018; Chen et al., 2020; Li et al., 2024a) to
capture complex spatial dependencies and define a conditional probability distribution over the initial
noise grid. This allows NoiseAR to generate a structured, conditioned initial state distribution (e.g.,
mean and variance of Gaussian) from which samples can be drawn, offering a fundamentally new
way to inject control and structure into the diffusion process right from its inception.

A key advantage of NoiseAR is its ability to model and provide access to the full probability
distribution of the initial noise given the control signal, rather than merely outputting a single sample
or a deterministic transformation. The probabilistic nature of our learned initial prior makes NoiseAR
uniquely compatible with probabilistic optimization and decision-making paradigms like Markov
Decision Processes (MDPs) and Reinforcement Learning (RL) (Sutton et al., 1998). This opens up
new avenues for optimizing complex, high-level conditional generation objectives by learning to
control the parameters of the initial noise distribution, leveraging the established power of frameworks
integrating generative models with RL for planning and control (Hafner et al., 2019).

To our knowledge, NoiseAR is the first method to utilize autoregressive probabilistic modeling to
learn a controllable initial noise prior for diffusion models, specifically designed to provide a learned,
structured probabilistic starting point. We validate the effectiveness of NoiseAR in enabling enhanced
controllable generation through comprehensive experiments with negligible computation. Our main
contributions are summarized as follows:

• We propose NoiseAR, the first framework utilizing AR modeling to learn a controllable probabilis-
tic prior distribution over the initial noise of diffusion models.

• We demonstrate that NoiseAR enables enhanced controllable generation by providing a learned,
structured initial state distribution.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Bad Init Noises Good Init Noises

(A): Prompt: "A photo of  three persons" (B): Replace init noise in the red box 

Figure 2: Observation of Initial Noise in Diffusion Models. (A): Not all initial noise vectors yield
desirable results; sampling in the vicinity of a “bad” noise vector consistently produces unfavorable
outcomes, whereas sampling near a “good” one reliably generates high-quality results. (B): Localized
edits to the noise vector (e.g., within the red bounding box) correspond to distinct, block-level
modifications in the generated output.

• We highlight the unique advantage of NoiseAR’s probabilistic nature, which facilitates seamless
integration with probabilistic optimization frameworks like MDP/RL for future work on optimizing
controllable diffusion generation.

2 METHOD

We brief our motivations. Fig. 2 presents our two novel observations regarding the initial noise
in diffusion models, which motivate our approach:1) Quality of Initial Noise Matters (Fig. 2A):
Not all initial noise vectors yield desirable results. This suggests that the latent space is locally
consistent and learning a structured prior over the initial noise can significantly improve generation
quality. 2) Localized Control via Noise Patches (Fig. 2B): This observation indicates a strong spatial
correspondence between the noise map and the image canvas, motivating a patch-based autoregressive
model to achieve fine-grained, controllable generation.

2.1 PROBLEM FORMULATION AND AUTOREGRESSIVE PRIOR

2.1.1 PRELIMINARIES: DIFFUSION MODELS AND INITIAL NOISE

Diffusion Models (DMs) operate through a two-step process: a fixed forward diffusion process that
gradually adds noise to data, transforming a data sample z0 into a pure noise sample zT over T steps;
and a learned reverse denoising process that transforms the noise zT back into a data sample z0. The
reverse process, used for generation, starts from an initial noise zT , typically sampled from a simple,
fixed prior distribution, most commonly the isotropic Gaussian distribution p(zT ) = N (0, I). While
the standard practice of using unstructured Gaussian noise is simple and effective for unconditional
generation, it provides no inherent mechanism to control the attributes, structure, or semantics of the
final generated output from the very beginning.

2.1.2 PROBLEM FORMULATION

Instead of relying on a fixed, unstructured Gaussian prior p(zT ), our goal is to learn a controllable
probabilistic prior distribution over the initial noise tensor zT ∈ RC×H×W (where C,H,W are
channels, height, and width) conditioned on a given control signal c. Formally, we aim to learn the
conditional probability distribution P (zT |c). This learned distribution P (zT |c) replaces the standard
p(zT ), allowing us to sample a structured and conditioned initial noise zT that is specifically tailored
to the desired control c, thereby influencing the diffusion process from its absolute start.

2.1.3 AUTOREGRESSIVE PRIOR

To effectively model the complex dependencies and structure within zT and its relationship with
the control signal c, we leverage the power of autoregressive (AR) modeling, applied at the patch
level. This approach factorizes the joint probability distribution of zT into a product of conditional
probabilities over its constituent patches, ordered sequentially.
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Figure 3: Overall Architecture of NoiseAR. During training, paired data (zT , c) is used. The
input noise zT is processed by first dividing it into non-overlapping patches, flattening them, and
projecting them into patch embeddings. The text-prompt c is processed by a separate text encoder to
produce conditioning text embeddings. A learnable Start Token embedding (red dot) is prepended
to the sequence of patch embeddings, and positional encodings are added to the entire sequence
to form the input tokens for the Transformer Decoder. The Transformer Decoder stack processes
this token sequence. Within each layer, masked multi-head self-attention captures dependencies
among preceding tokens (patches and Start Token), enforcing the autoregressive property. Multi-head
cross-attention integrates the conditioning vectors from the control signal. The final hidden states
of the Transformer Decoder are fed to a Prediction Head, which outputs the parameters (e.g., mean
µpatch and log-variance log(σ2

patch)) defining the conditional distribution for the next patch in the
sequence. During inference, this process is used autoregressively to sample patch by patch based on
the control signal c, generating a conditioned ẑT .

First, the 3D noise tensor zT ∈ RC×H×W is spatially divided into M = (H/P ) × (W/P )
non-overlapping patches (Dosovitskiy et al., 2021; Peebles & Xie, 2023a; Ma et al., 2024),
where P is the patch size. These patches are then linearized into a 1D sequence of patches
ZT = [ZT,1,ZT,2, . . . ,ZT,M ] following a predefined ordering (a raster scan order by default).
Each patch ZT,j is itself a tensor containing K = P × P × C elements.

Using this sequence of patches, the conditional probability distribution P (zT |c) can be factorized
autoregressively as:

P (zT |c) =
M∏
j=1

P (ZT,j |ZT,<j , c)

where ZT,j denotes the j-th patch in the sequence, and ZT,<j = [ZT,1, . . . ,ZT,j−1] represents all
preceding patches in the defined order.

NoiseAR is designed to learn the parameters of these conditional distributions P (ZT,j |ZT,<j , c)
for each patch position j, conditioned on the previously processed patches and the control signal
c. Specifically, for each patch ZT,j , the model predicts parameters (mean and variance) for K
independent Gaussian distributions, conditioned on ZT,<j and c. The core AR dependency is
maintained between sequential patches, allowing the model to build up spatial dependencies across
the image. By modeling the distribution patch by patch in this sequential manner, the AR approach
allows NoiseAR to capture dependencies between regions and learn a structured prior over zT .

2.2 NOISEAR MODEL ARCHITECTURE

The NoiseAR model is designed to parameterize the conditional probability distributions
P (ZT,j |ZT,<j , c) derived from the patch-level autoregressive factorization of P (zT |c). As illustrated
in Figure 3. Our architecture is based on the powerful Transformer Decoder framework, well-suited
for sequential data modeling with attention mechanisms. The model takes the control signal c and
the sequence of previously processed noise patches (represented as tokens) as input and outputs the
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parameters defining the probability distribution for the next patch in the sequence. The architecture
consists of several key components:

2.2.1 INPUT TOKENIZATION AND EMBEDDING

The raw input for the autoregressive model is constructed from the control signal c and the sequence
of noise patches derived from zT .

Noise Patching and Linearization: As defined previously, the C ×H ×W noise tensor zT is first
divided into non-overlapping patches of size P ×P ×C. These patches are then flattened into vectors
and arranged in a predefined sequential order, forming a sequence of Mpatches patch vectors.

Patch Embedding Layer: Each flattened patch vector is projected into a higher-dimensional
embedding space using a linear layer that maps the patch features (RP×P×C) to a token embedding
vector (RDmodel ), where Dmodel is the dimensionality of the model.

Start Token Embedding: A special, learnable vector (RDmodel) is prepended to the sequence of
patch embeddings. This Start Token serves as an initial input to the model, allowing it to generate
the first patch’s distribution based only on the control signal c and contextual information learned
through this special token.

Positional Encoding: Transformers are inherently permutation-invariant, meaning they do not intrin-
sically understand the order of tokens in a sequence. To inject information about the spatial/sequential
position of each patch (and the Start Token) within the overall grid structure, we add positional en-
codings to the token embeddings. These can be fixed or learned vectors (we use sinusoidal functions
by default), added element-wise to the patch and Start Token embeddings before feeding them into
the Transformer layers.

The resulting input sequence of tokens for the Transformer consists of the Start Token embedding
followed by the patch embeddings of the noise sequence, totalling Mpatches + 1 tokens.

2.2.2 TRANSFORMER DECODER BLOCKS

The core of NoiseAR is a stack of Transformer Decoder layers. Each layer typically comprises
a masked multi-head self-attention block, a multi-head cross-attention block, and a position-wise
feed-forward network. These layers process the sequence of input tokens (representing the Start
Token and the noise patches) to build rich contextual representations.

Masked Self-Attention: This is the critical component enabling the autoregressive property at the
patch level. For any given token position j in the input sequence (corresponding to the Start Token
or the j-th patch), the masked self-attention mechanism ensures that the token’s representation can
only attend to tokens at positions k ≤ j. This prevents information leakage from future patches in the
sequence, strictly adhering to the patch-level factorization P (ZT,j |ZT,<j , c).

Cross-Attention: This block integrates the control signal c into the model. The control signal
c is first processed (e.g., by a separate encoder network or simple projection layers) into a set of
conditioning vectors. The Transformer sequence tokens (queries) attend to these conditioning vectors
(keys and values), allowing the model to modulate its predictions based on the desired control. This
ensures that the learned prior distribution is conditional on c.

Feed-Forward Network: A standard two-layer feed-forward network with a non-linearity is applied
independently to each token position after the attention blocks, enhancing the model’s capacity.

2.2.3 PREDICTION HEAD

The final component is the prediction head, a stack of layers responsible for mapping the Transformer’s
output into the parameters of the conditional distribution for the next patch ZT,j . This head consists
of a sequence of layers: a linear layer, followed by a GELU (Hendrycks & Gimpel, 2016) activation
function, and a final linear layer. These layers take the hidden state from the Transformer’s output
corresponding to the position of the patch being predicted (a Dmodel-dimensional vector), and map it
to an output vector of size 2× (P × P × C). These values represent the predicted means µj,px,py,c

and log-variances log(σ2
j,px,py,c

) for each of the K = P ×P ×C individual elements ZT,j [px, py, c]
within the j-th patch. Consequently, the conditional distribution for the j-th patch, given the preceding

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

context and control signal, is a product of P × P × C independent Gaussian distributions, one for
each element:

P (ZT,j |ZT,<j , c) =

P∏
px=1

P∏
py=1

C∏
c=1

N (ZT,j [px, py, c]|µj,px,py,c, σ
2
j,px,py,c)

As described in the problem formulation, each element ZT,j [px, py, c] is sampled independently from
its own conditional Gaussian distribution N (µj,px,py,c, σ

2
j,px,py,c

).

2.3 TRAINING OBJECTIVE

The model is trained to minimize the Negative Log-Likelihood (NLL) of the training data (zT , c).
Leveraging the autoregressive factorization over M patches, the total NLL loss for a training pair is:

LNLL(zT , c) = − logP (zT |c) = −
M∑
j=1

logP (ZT,j |ZT,<j , c)

where ZT,j is the j-th patch and ZT,<j are preceding patches.

We use teacher forcing (Williams & Zipser, 1989) to produce training target. The model predicts the
parameters (µj,px,py,c, σ

2
j,px,py,c

) for all elements within patch j based on ground truth ZT,<j and c.
The loss for this step j is computed as the sum of NLLs for all elements in the actual target patch
ZT,j , where each element zT,j [px, py, c]’s NLL is calculated using the specific predicted parameters
(µj,px,py,c, σ

2
j,px,py,c

) predicted for that element. Additionally, a 0.2-weighted reconstruction loss is
calculated for the sampled data against the ground truth noise (GT), serving as an auxiliary loss.

2.4 INFERENCE AND SAMPLING

NoiseAR generates a novel ẑT autoregressively, patch by patch.Given c and previously sampled
patches ẐT,<j , NoiseAR generates patch ẐT,j for j = 1, . . . ,M as follows:

1. Predict the parameters (means µ̂j,px,py,c and log-variances log(σ̂2
j,px,py,c

)) for each individual

element ẐT,j [px, py, c] within the target patch ZT,j , based on ẐT,<j and c. This results in
P × P × C pairs of (µ̂, log(σ̂2)) values for the patch.

2. Sample each element ẐT,j [px, py, c] independently from its corresponding predicted Gaussian
distribution N (µ̂j,px,py,c, σ̂

2
j,px,py,c

).

3. Append the sampled patch ẐT,j to the sequence of generated patches.

Finally, the sequence of M sampled patches is reshaped into the full noise tensor ẑT .

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Dataset: To train our NoiseAR model, we constructed a dataset consisting of 100K pairs of
(prompt, initial noise). We began by randomly sampling 100K prompts from the Pick-a-Pic training
dataset (Kirstain et al., 2023), which contains a total of 1 million prompts. Using these prompts, we
generated a synthetic initial noise using one-step Weak-to-Strong method (Bai et al., 2025), which
applies one step forward and inversion to extract the corresponding initial noise vector zT for each
prompt. This process yielded our final training dataset of 100K (c, zT ) pairs. Examples of training
data can be found in Appendix E.2.

For evaluation, we utilized three test datasets: all 500 prompts from the Pick-a-Pic (Kirstain et al.,
2023) test dataset, all 200 prompts from DrawBench (Saharia et al., 2022b), and all 553 prompts from
GenEval (Ghosh et al., 2023). Further details regarding these datasets can be found in Appendix E.1.

Downstream Diffusion Model(s): We employed several pre-trained diffusion models as downstream
generators, taking zT sampled from NoiseAR prior. These included Stable Diffusion XL (Podell
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Table 1: Performance Comparison of Initial Noise Generation Methods (NoiseAR, Standard Isotropic
Gaussian Baseline, Golden Noise) across Downstream Diffusion Models and Benchmarks.

Downstream
DM Method HPSv2↑ AES↑ Pick

Score↑
Image

Reward↑
CLIP

Score(%)↑ MPS(%)↑
D

ra
w

B
en

ch
R

es
ul

ts SDXL
Standard 26.78 5.52 46.31 52.74 83.34 44.29
Golden Noise 27.47 5.52 53.53 57.49 83.30 52.83
NoiseAR 27.86 5.56 58.06 75.99 84.27 58.09

DreamShaper
-xl-v2-turbo

Standard 30.31 5.60 48.54 99.47 85.88 48.03
Golden Noise 30.18 5.59 51.45 97.57 85.79 51.96
NoiseAR 31.02 5.61 53.58 107.91 86.62 56.08

Hunyuan-DiT
Standard 29.09 5.75 50.67 90.88 82.32 50.39
Golden Noise 29.02 5.74 49.32 89.66 82.42 49.60
NoiseAR 29.51 5.76 52.65 92.51 82.47 52.03

Pi
ck

-a
-P

ic
R

es
ul

ts SDXL
Standard 28.58 5.92 47.40 74.07 83.25 46.21
Golden Noise 29.04 5.94 52.59 85.57 83.69 53.78
NoiseAR 29.40 5.95 54.56 90.72 84.13 56.27

DreamShaper
-xl-v2-turbo

Standard 32.70 6.00 48.77 118.82 85.34 44.67
Golden Noise 32.70 6.00 50.05 117.65 85.25 48.97
NoiseAR 33.03 6.01 50.15 121.06 86.03 50.83

Hunyuan-DiT
Standard 29.78 6.12 50.52 95.94 81.29 49.64
Golden Noise 29.81 6.10 49.37 97.70 81.39 50.35
NoiseAR 30.24 6.13 50.60 106.80 81.59 54.46

G
en

E
va

lR
es

ul
ts SDXL

Standard 27.80 5.45 46.30 40.92 81.15 45.04
Golden Noise 28.30 5.47 53.69 58.12 81.83 54.95
NoiseAR 28.61 5.48 58.09 68.33 82.27 54.98

DreamShaper
-xl-v2-turbo

Standard 31.02 5.45 47.75 98.06 83.78 45.34
Golden Noise 30.77 5.46 52.24 99.19 84.16 53.52
NoiseAR 31.75 5.47 52.51 109.63 84.17 55.08

Hunyuan-DiT
Standard 30.26 5.64 50.43 107.51 82.76 49.02
Golden Noise 30.23 5.65 49.56 107.50 82.76 50.98
NoiseAR 31.12 5.67 53.73 116.59 83.15 55.12

et al., 2023), DreamShaper-xl-v2-turbo (fine-tuned from SDXL Turbo (Sauer et al., 2024)), and
Hunyuan-DiT (Li et al., 2024b). And we all used 50 denoising steps at inference time.

Evaluation Metrics: To evaluate the performance of our NoiseAR model, we employ a set of metrics
assessing generated image quality and text alignment. We utilize human preference metrics (HPS
v2 (Wu et al., 2023), PickScore (Kirstain et al., 2023), ImageReward (IR) (Xu et al., 2023)) that
capture perceived quality and adherence based on human judgments. We also report the Aesthetic
Score (AES) (Schuhmann et al., 2022) for general aesthetic quality, CLIPScore (Hessel et al., 2021)
for text-image alignment, and the Multi-dimensional Preference Score (MPS) (Zhang et al., 2024),
offering a more comprehensive assessment across various dimensions of human preference. More
details regarding these evalution metrics can be found in Appendix E.1.

3.2 QUANTITATIVE AND QUALITATIVE RESULTS

We present the quantitative evaluation of our NoiseAR model in this section, comparing its perfor-
mance against baseline methods and demonstrating the benefits of reinforcement learning fine-tuning.

Comparison with Baselines: Table 1 shows the performance comparison of using initial noise
sampled from our learned NoiseAR distribution against the standard isotropic Gaussian distribution
(baseline) and the recently proposed Golden Noise (Zhou et al., 2024) method. We evaluate per-
formance across different downstream diffusion models and test sets using the metrics described
in Section 3.1. We can see guiding the diffusion model with the initial noise distribution learned
by NoiseAR consistently and significantly outperforms using the isotropic Gaussian distribution.
This superior performance indicates that NoiseAR effectively captures more informative structural
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Table 2: Performance Comparison with and without DPO on DrawBench Dataset Using NoiseAR.

Downstream
DM Method HPSv2↑ AES↑ Pick

Score↑
Image

Reward↑
CLIP

Score(%)↑ MPS(%)↑

SDXL NoiseAR 27.86 5.56 58.06 76.00 84.27 58.09
NoiseAR-DPO 27.87 5.57 58.12 76.20 84.22 58.42

DreamShaper
-xl-v2-turbo

NoiseAR 31.02 5.61 53.58 107.91 86.62 56.08
NoiseAR-DPO 31.24 5.62 54.26 112.58 86.62 56.48

Hunyuan-DiT NoiseAR 29.51 5.76 52.65 92.51 82.47 52.03
NoiseAR-DPO 29.42 5.77 53.06 93.27 82.12 52.17

information in the initial noise space compared to a structureless Gaussian prior. Furthermore, our
method also achieves better results than Golden Noise with analogical data collection method, which
similarly aims to predict initial noise. We attribute this improved performance to our more sophisti-
cated probabilistic modeling approach, specifically the autoregressive prediction of the distribution
for each patch, which enables better generalization.

Reinforcement Learning Fine-tuning with DPO: Thanks to the probabilistic prior distribution
learned by NoiseAR, the process of sampling initial noise can be naturally formulated as a Markov
Decision Process. This allows us to leverage reinforcement learning techniques to further optimize
the learned distribution for improved image generation quality and alignment with human preferences.
We demonstrate the effectiveness of this approach by applying Direct Preference Optimization
(Rafailov et al., 2023) as an initial validation. Our DPO data preparation was designed for simplicity
and efficiency. After training the initial NoiseAR model on the cold-start dataset 3.1, we used 2,000
randomly sampled prompts from Pick-a-Pic training dataset for inference. For each of these prompts,
we generated 20 image samples through separate rollouts (each involving sampling initial noise from
NoiseAR and then denoising with the downstream model). We then used the previously described
evaluation metrics (merged from IR, PickScore, and MPS) to score the resulting set of images for
each prompt. For each prompt, we identified the image with the highest score and the image with the
lowest score among the generated samples. A preference pair, consisting of the highest-scoring image
(designated as the preferred sample) and the lowest-scoring image (designated as the rejected sample),
was constructed only if the difference between the highest score and the lowest score for that prompt
exceeded a threshold of 3.0. This filtering process based on score difference resulted in a final dataset
of 348 preference pairs. For training, we use only simple NLL loss. Table 2 presents the results
after fine-tuning the NoiseAR model with DPO on these preference pairs. It shows that applying
DPO further enhances the performance in our chose metrics compared to the NoiseAR model before
fine-tuning. A key advantage of using NoiseAR for generating DPO preference data is its inherent
probabilistic sampling property, which naturally yields diverse samples for the same prompt, thereby
facilitating the creation of informative preference pairs. This contrasts with methods that rely on
sampling from a fixed, uncontrolled Gaussian distribution for the initial noise or a deterministic
initial noise generation process, making it harder to generate varied rollouts for a given input.

Visual Comparison with Baselines: Figure 4 presents a visual comparison It shows that images
generated using the initial noise sampled from our learned NoiseAR distribution are visually more
coherent and plausible compared to those generated using the standard isotropic Gaussian baseline
and Non-AR Golden Noise. More critically, the text-image alignment, representing how well the
generated image matches the input prompt, is significantly improved with NoiseAR. Furthermore,
after applying reinforcement learning fine-tuning with DPO, the consistency between the generated
image and the text prompt is further enhanced.

3.3 ABLATION STUDIES

To understand the contribution of different components of our NoiseAR model and its efficiency, we
conduct several ablation studies.

Impact of Patch Size: We investigate the effect of the spatial patch size (P × P ) used for splitting
the noise tensor on NoiseAR’s performance (Table 3a). Results show that performance generally
increases with patch size, peaking at 32× 32. The smallest 4× 4 patch size yields the lowest scores,
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“A photo of three 
persons” 

“A photo of an 
elephant below 
a surfboard” 

“Two cats and 
two dogs sitting 
on the grass” 

“A photo of a 
person and 
a stop sign” 

“A laptop on top 
of a teddy bear” 

“A photo of a 
yellow tv 
remote” 

“A photo of a 
baseball bat 
and a bear” 

“A photo of a 
red potted 

plant” 

NoiseAR

Golden 
Noise

Origin 
Noise

NoiseAR
+DPO

Figure 4: Visual Comparison of Image Generation Results using different Initial Noise Sources:
Isotropic Gaussian (Baseline), Golden Noise, NoiseAR, and NoiseAR+DPO. The downstream DM
and data are SDXL and DrawBench respectively. Note the improved visual coherence and text-image
alignment with NoiseAR and NoiseAR+DPO.

Table 3: Ablations.

Patch
Size

CLIP
Score

Image
Reward

4× 4 83.59 65.99
8× 8 83.88 68.68
16× 16 84.13 75.04
32× 32 84.27 76.00
64× 64 84.17 74.36

(a) Effect of patch-size used for
splitting noise.

Decoder
Layers

CLIP
Score

Image
Reward

1 84.27 76.00
2 84.47 75.99
3 84.61 76.17
4 84.47 75.43
5 83.10 49.12

(b) Effect of layer stack number on
Transformer Decoder.

Head
Layers

CLIP
Score

Image
Reward

1 84.27 76.00
2 84.47 76.53
3 84.27 74.18
4 84.13 73.15
5 83.83 71.80

(c) Effect of layer stack number on
Prediction Head.

likely due to the significantly increased autoregressive sequence length which raises training difficulty.
Performance drops slightly for the 64× 64 size. This suggests 32× 32 provides the best trade-off
between capturing contextual dependencies and managing sequence complexity.

Impact of Network Depth: We also ablate the depth of the core network components. Table 3b
and Table 3c presents a comparison using different numbers of stacked layers for the Transformer
decoder and the prediction head. The results indicate that noticeable performance improvements can
be achieved even with a relatively small number of stacked layers. This demonstrates the robustness
of our method, suggesting that significant gains in predicting a better initial noise distribution can be
obtained without requiring an excessively deep architecture. In order to maintain high efficiency, this
work uses only one layer by default, although the result is not the best.

Table 4: Efficiency Analysis of NoiseAR.

Model GFLOPs Speed (s/iter)

SDXL 2600 15.00
NoiseAR 23.12 0.03

Efficiency Analysis: We analyze the computa-
tional efficiency of our proposed method. As
shown in Table 4, integrating NoiseAR intro-
duces very little overhead to the overall infer-
ence process compared to the baseline diffusion
model. The additional time cost is 0.2%, and the
additional computational load is also negligible,
less than 1%. This high efficiency demonstrates that our method can be seamlessly integrated into
existing diffusion pipelines as a plug-and-play module, highlighting its practicality and extendability.

9
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TextPrompt: "A cute cat."

Isotropic Gaussian Initial Noise

TextPrompt: "A cute cat."

Controlled Initial Noise

(A): Traditional Diffusion Models

(B): Diffusion Models with NoiseAR

Start
Token

Figure 5: Motivation for enhanced end-to-end controllable generation. We replace the uncontrolled
isotropic Gaussian initial noise (top) with learned, prompt-conditioned autoregressive generation
(bottom, highlighted by red arrows).

A MOTIVATION

Motivation and Approach: Traditional diffusion models, as illustrated in the top path of Figure 5,
initiate the generation process by sampling initial noise from a standard isotropic Gaussian distribution.
While simple, this approach introduces an element of randomness at the very start that is largely
disconnected from the input text prompt, thus limiting the degree of end-to-end control achievable.

Our proposed NoiseAR model fundamentally addresses this limitation by replacing the uncontrolled
isotropic Gaussian noise with a learned, structured initial noise distribution (bottom path in Figure 5).
Critically, this initial noise is not random, but is generated autoregressively, directly conditioned
on the input text prompt and a special start token. This key architectural difference, highlighted
by the red arrows in Figure 5, represents a shift from an uncontrolled random initialization to a
prompt-conditioned, learned generation process.

This novel approach offers two main advantages: firstly, providing a more informative and potentially
text-aligned starting point can lead to improved visual quality and coherence in the final generated
images. More significantly, by making the initial noise generation itself dependent on the text prompt,
NoiseAR enables a much more enhanced and direct end-to-end controllable generation pipeline,
where the prompt’s influence extends to the very first step of the diffusion process, ensuring greater
consistency between the input text and the generated image from the outset.

B RELATED WORK

B.1 DIFFUSION MODELS AND CONTROLLABLE GENERATION

Diffusion Models (DMs) (Ho et al., 2020; Song et al., 2020a;b; Rombach et al., 2022; Podell
et al., 2023) have become dominant in generative AI, excelling in synthesizing high-fidelity data,
particularly images. DMs work by reversing a gradual noise-adding process, starting from a pure
noise sample—typically drawn from a simple isotropic Gaussian distribution (Ho et al., 2020)—and
iteratively denoising it into a coherent data sample. While powerful, the standard Gaussian initial
noise provides no inherent structure or control handle for guiding the generated output from the
outset. Significant research effort has been directed towards achieving controllable generation with
diffusion models. Existing methods can broadly be categorized into several approaches:

1. Conditioning Mechanisms during Denoising: The most common approach is to integrate condi-
tional information (e.g., text embeddings, class labels, spatial masks) directly into the diffusion
model’s denoising network throughout the reverse process. Techniques like Classifier Guid-
ance(Dhariwal & Nichol, 2021), Classifier-Free Guidance (Ho & Salimans, 2021; Nichol et al.,
2021), and cross-attention layers (Rombach et al., 2022; Ramesh et al., 2021; Saharia et al., 2022a;
Ramesh et al., 2022; Chefer et al., 2023; Peebles & Xie, 2023b; Chen et al., 2023) allow steering
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the generation towards outputs consistent with the given conditions by modifying the predicted
noise or the estimated score function at each step. These methods effectively guide the ‘path’ of
the diffusion process based on external input.

2. Initial State Manipulation: Some works have explored influencing the starting noise to affect the
generation (Ma et al., 2025; Guo et al., 2024; Zhou et al., 2024). However, these approaches often
rely on deterministic mappings from the condition to the initial noise (Ma et al., 2025; Zhou et al.,
2024) or heuristic rules (Guo et al., 2024; Xu et al., 2025) for generating or modifying the initial
state. Such deterministic or heuristic methods are limited in their expressiveness, may struggle to
capture complex dependencies or structures inherent in a rich initial state, and critically, do not
model a probability distribution over the initial noise, making them difficult to integrate seamlessly
with probabilistic optimization frameworks.

3. Later Stage Manipulation: This category encompasses methods that alter the dynamics, speed, or
specific steps of the diffusion process or analogous generative trajectory after the initial state is
set(e.g., (Song et al., 2020a; Lipman et al., 2022; Liu et al., 2022; Karras et al., 2022; Albergo et al.,
2023)). Noise schedulers, which define the sequence of noise levels (αt, σt) over the diffusion
steps within the diffusion framework, fall under this umbrella (Nichol & Dhariwal, 2021; Chen,
2023). They focus on how the denoising happens along the trajectory, rather than structuring what
the starting point represents controllably.

Our work aligns with the “Initial State Manipulation” category but distinguishes itself by learning a
structured, controllable probabilistic prior distribution for the initial noise, addressing the limitations
of existing deterministic or heuristic approaches and opening avenues for integration with advanced
probabilistic optimization.

B.2 AUTOREGRESSIVE MODELING, LEARNED PRIORS, AND INTEGRATION WITH
PROBABILISTIC FRAMEWORKS

Autoregressive (AR) models are powerful sequence models that learn complex joint distributions by
factoring them into a product of conditional distributions. Their success is evident in high-quality
text generation using Transformers (Sutskever et al., 2014; Vaswani et al., 2017; Radford et al., 2018;
Devlin et al., 2019) and image generation tasks (Van Den Oord et al., 2016; Van den Oord et al.,
2016; Parmar et al., 2018; Chen et al., 2020; Li et al., 2024a). AR models are particularly adept at
capturing long-range dependencies and modeling structured data distributions sequentially, making
them suitable for learning complex priors. The concept of learning rich prior distributions is well-
established in other generative model families, such as Variational Autoencoders (VAEs) (Kingma
et al., 2013). Replacing simple fixed priors (like isotropic Gaussians) with learned, flexible priors
(e.g., using AR models or Normalizing Flows (Rezende & Mohamed, 2015)) has been shown to
improve the generative capacity and sample quality of VAEs (Razavi et al., 2019). This underscores
the potential benefits of learning a structured prior for a key component of a generative process.
Furthermore, probabilistic modeling is a cornerstone of advanced decision-making and optimization
frameworks, including Markov Decision Processes (MDPs) and Reinforcement Learning (RL) (Sutton
et al., 1998). Algorithms in these fields often operate on or require access to probability distributions
over states, actions, or outcomes. A generative model that provides a probabilistic representation,
rather than just deterministic outputs, is thus naturally better positioned for integration into such
frameworks, enabling tasks like policy optimization, value estimation, or model-based planning that
rely on probabilistic transitions or outcomes (Hafner et al., 2019).

NoiseAR leverages the strengths of autoregressive probabilistic modeling by applying it to learn a
controllable prior distribution for the initial noise of diffusion models. Unlike existing methods that
deterministically generate initial states or use simple noise, NoiseAR learns a structured, conditional
probability distribution over the initial noise. To our knowledge, NoiseAR is the first work to
utilize autoregressive probabilistic modeling to learn a controllable initial noise prior specifically for
diffusion models, offering a learned, structured starting point. Crucially, the probabilistic nature of our
learned prior makes NoiseAR uniquely suited for seamless integration into probabilistic optimization
frameworks like MDPs and RL, enabling future work on optimizing controllable diffusion generation
through such methods.
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C BROADER IMPACTS

Our work on learning a structured initial noise distribution for diffusion models significantly enhances
the controllability and fidelity of text-to-image generation by improving text-image alignment. This
offers considerable potential for positive applications, such as creating content that better reflects
constructive human intentions and societal values, facilitating artistic expression, and aiding in
educational or design processes. However, the increased ability to precisely control generated images
also presents potential risks. The same technology that allows for better alignment with positive
prompts can be used to generate harmful, misleading, or biased content more effectively when driven
by malicious intent. This includes the potential for creating convincing misinformation, generating
discriminatory imagery, or producing content that violates privacy or safety norms.

Therefore, responsible development, deployment, and careful consideration of ethical implications
and potential misuse are paramount. Safeguards and policies to mitigate the generation and spread of
harmful content will be increasingly important as models like NoiseAR enhance the capabilities of
generative systems.

D TRAINING NOISEAR WITH REINFORCEMENT LEARNING

While the Negative Log-Likelihood (NLL) objective trains NoiseAR to accurately model the distri-
bution of training data zT at a patch level, it may not directly optimize for desired qualities of the
final generated data sample z0. To address this, Reinforcement Learning (RL) offers a framework to
optimize NoiseAR’s initial noise generation for downstream criteria.

The NoiseAR model’s autoregressive structure, which models the sequence patch by patch
ZT,1,ZT,2, . . . ,ZT,M based on previous patches and the control signal, lends itself to formula-
tion as a Markov Decision Process (MDP). Each step j in the autoregressive generation of a patch
corresponds to a time step in the RL episode. The model’s prediction of the conditional distribution
P (ZT,j |ZT,<j , c) defines the policy’s output at each state. In this context, we frame the NoiseAR
sampling process as an episodic Reinforcement Learning problem:

Agent: The NoiseAR model. Its “decision” at step j is to define the conditional distribution for the
next patch ZT,j by predicting its parameters (means µj,px,py,c and log-variances log(σ2

j,px,py,c
)) for

each individual element within the patch, for px = 1, . . . , P, py = 1, . . . , P, c = 1, . . . , C.

Environment: Includes the partially generated sequence of patches, the control, the sampling process,
the downstream Diffusion Model, and the reward function.

State (sj): At step j, the state is the input context for NoiseAR: the sequence of previously sampled
patches ẐT,<j and the control signal c.

Action (aj): The action taken by the agent at step j is sampling the entire patch ẐT,j . This patch
is sampled by drawing each element ẐT,j [px, py, c] independently from its corresponding predicted
Gaussian distribution N (µ̂j,px,py,c, σ̂

2
j,px,py,c

).

Policy (π): The NoiseAR model defines the policy π(aj |sj), which is the conditional distribution
P (ẐT,j |ẐT,<j , c) for the next patch. This probability is the product of the probabilities of its
individual elements, where each element’s probability is determined by its element-specific predicted
Gaussian:

P (ẐT,j |sj) =
P∏

px=1

P∏
py=1

C∏
c=1

N (ẑT,j [px, py, c]|µj,px,py,c, σ
2
j,px,py,c)

The log-probability log π(aj |sj) is straightforward to compute as the sum of the log-probabilities of
all elements in the sampled patch, using the predicted parameters for each element.

Episode: Generating the complete sequence ẑT through M sequential actions (sampling M patches),
followed by generating ẑ0.

Reward (R): A scalar reward R is assigned at the end of the episode, based on the quality of ẑ0. For
e.g., we use score of ImageReward + (PickScore > 0.5 ) + (MPS > 0.5) to define the reward when
collecting data for DPO.
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The objective in this RL setup is to train the NoiseAR model (the policy π) to maximize the
expected reward Eπ[R]. Standard policy gradient methods can be adapted by using the computed
log-probability of the sampled patch action log π(aj |sj), which is the sum of the log-probabilities of
sampling each element independently from its predicted distribution.

E EXPERIMENTS

E.1 EXPERIMENTAL SETUP

E.1.1 TRAINING DATASETS

DrawBench is a benchmark dataset specifically designed for the in-depth evaluation of text-to-
image synthesis models. It was introduced by the Imagen to assess model performance compre-
hensively. DrawBench comprises a challenging set of prompts, often categorized to test various
capabilities such as rendering colors accurately, counting objects, understanding spatial relationships,
incorporating text into scenes, and generating images based on unusual interactions between objects.
This structured suite of prompts allows for a rigorous comparison of different text-to-image models,
helping researchers understand their strengths and weaknesses.

Pick-a-Pic is a large, open dataset focused on capturing real user preferences for images generated
from text prompts. It was created by logging user interactions with a web application where users
could generate images and then select their preferred output from a pair, or indicate a tie if neither was
significantly better. The dataset contains over 500,000 examples covering 35,000 distinct prompts. A
key advantage of Pick-a-Pic is that the preference data originates from genuine user choices rather
than from paid crowd-sourcing, offering a more authentic reflection of user preferences. This dataset
is instrumental in training preference prediction models like PickScore and is recommended for
evaluating future text-to-image models.

GenEval is an object-focused framework and benchmark for evaluating the compositional align-
ment of text-to-image generative models. It aims to address limitations in holistic metrics like FID or
CLIPScore by enabling a more fine-grained, instance-level analysis. GenEval evaluates properties
such as object co-occurrence, position, count, and color by leveraging existing object detection models
and can be linked with other discriminative vision models to verify specific attributes. The framework
is designed to help identify failure modes in current models, particularly in complex capabilities like
spatial relations and attribute binding, to inform the development of future text-to-image systems.

E.1.2 TRAINING DETAILS

Training for NoiseAR model was conducted on a single NVIDIA A6000 GPU and completed within
one hour. We trained the model for 10 epochs with a batch size of 40. The Adam (Kingma &
Ba, 2015) optimizer was used, paired with a cosine learning rate scheduler for decay. The initial
learning rate was set to 6.25e-5. The model architecture utilized a simplified structure where both the
transformer decoder and the prediction head consisted of a single layer stack. A patch size of 32 was
employed for speed and accuracy trade-off.

E.1.3 EVALUATION METRICS

Human Preference Score v2 (HPSv2) is an advanced preference prediction model created by
fine-tuning CLIP on the Human Preference Dataset v2 (HPD v2). This dataset is extensive, containing
798,090 human preference choices on 433,760 pairs of images, and is designed to mitigate potential
biases found in earlier datasets. HPSv2 aims to align text-to-image synthesis with human preferences
by predicting the likelihood of a synthesized image being preferred by users. It has demonstrated better
generalization across various image distributions and responsiveness to algorithmic improvements in
text-to-image models, making it a reliable tool for their evaluation.

PickScore is a CLIP-based scoring function trained on “Pick-a-Pic”, a large, open dataset of real
user preferences for images generated from text prompts. It has shown superhuman performance in
predicting user preferences, achieving a high correlation with human judgments, even outperforming
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expert humans in some tests. PickScore, especially when used with the Pick-a-Pic dataset’s natural
distribution prompts, enables a more relevant evaluation of text-to-image models than traditional
standards like FID Heusel et al. (2017) over MS-COCO Lin et al. (2014). It is recommended for
evaluating future text-to-image generation models due to its strong correlation with human rankings
and its ability to assess both visual quality and text alignment.

ImageReward is a general-purpose human preference reward model specifically designed for eval-
uating text-to-image synthesis. It was trained on a substantial dataset of 137,000 expert comparisons,
enabling it to effectively encode human preferences regarding aspects like text-image alignment and
aesthetic quality. Studies have shown that ImageReward outperforms other scoring methods like
CLIP and Aesthetic Score in understanding and aligning with human preferences. It serves as a
promising automatic metric for comparing text-to-image models and selecting individual samples.

Aesthetic Score (AES) is a metric derived from a model trained on top of CLIP embeddings,
typically with additional MLP (multilayer perceptron) layers, to specifically reflect the visual appeal
or attractiveness of an image. It evaluates images based on factors like design balance, composition,
color harmony, and clarity, providing a score (often 0 to 1) that quantifies how aesthetically pleasing
an image is. This metric is used to assess the aesthetic quality of synthesized images, offering insights
into how well they align with human aesthetic preferences.

CLIPScore is a reference-free metric that leverages the CLIP (Contrastive Language-Image Pre-
training) model to evaluate the similarity or alignment between an image and a text description. It
calculates the cosine similarity between the visual CLIP embedding of an image and the textual CLIP
embedding of a caption in a shared embedding space. A higher CLIPScore, typically ranging from 0
to 100 (or -1 to 1 before scaling), indicates better semantic correlation between the image and the text.
It has been found to correlate well with human judgment, particularly for literal image captioning
tasks.

Multi-dimensional Preference Score (MPS) is the first preference scoring model designed to
evaluate text-to-image models across multiple aspects of human preference, rather than a single
overall score. It introduces a preference condition module built upon the CLIP model to learn these
diverse preferences. MPS is trained on the Multi-dimensional Human Preference (MHP) Dataset,
which contains 918,315 human preference choices across four dimensions: aesthetics, semantic
alignment, detail quality, and overall assessment, covering 607,541 images generated by various
text-to-image models. MPS calculates the preference scores between two images, where the sum of
these two scores equals 1, and has shown to outperform existing methods in capturing these varied
human judgments.

E.1.4 DOWNSTREAM DIFFUSION MODELS

Stable Diffusion XL (SDXL) is a flagship open-source text-to-image generation model developed
by Stability AI. It represents a significant advancement over previous Stable Diffusion versions,
capable of producing higher-resolution images (typically 1024x1024 pixels) with enhanced photo-
realism, more intricate detail, and improved understanding of complex prompts. SDXL features a
UNet backbone that is three times larger than its predecessors and often utilizes a two-stage pipeline:
a base model generates initial latents, which can then be processed by a refiner model to add finer
details and improve overall image quality. It also incorporates two text encoders (OpenCLIP-ViT/G
and CLIP-ViT/L) to enhance prompt comprehension and supports features like image-to-image
generation, inpainting, and outpainting. Due to its robust performance and open nature, SDXL
is widely used in the image generation community and serves as a foundational model for many
subsequent fine-tuned versions.

DreamShaper-xl-v2-turbo is a text-to-image generation model that has been fine-tuned from the
Stable Diffusion XL (SDXL) base model, specifically stabilityai/stable-diffusion-xl-base-1.0. As
suggested by “turbo” in its name, this model is optimized for faster image synthesis while aiming
to maintain high-quality output, often with fewer sampling steps (e.g., 4-8 steps) and a low CFG
scale (e.g., 2). The PDF document indicates that DreamShaper-xl-v2-turbo retains the high-quality
image output characteristic of its predecessor and achieves quicker synthesis cycles due to its “turbo”
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Figure 6: Examples of training data sampled from PickaPick for NoiseAR. Each column shows a text
prompt, the corresponding image (z0), and the initial noise tensor (zT ) generated by the diffusion
model conditioned on the prompt. These representative examples are presented to illustrate the
diverse inputs and targets used for training NoiseAR.

enhancement. It is described as excelling in various artistic styles, from photorealistic to anime and
manga, with particular strengths in generating detailed human figures, sharp edges, and specific
subjects like dragons. Models like DreamShaper are often tailored by creators like Lykon to excel in
particular styles or to enhance efficiency for specific use cases.

Hunyuan-DiT is a text-to-image diffusion transformer model developed by Tencent Hunyuan. It
is designed for fine-grained understanding of both English and Chinese text prompts. The model
architecture features a diffusion transformer backbone operating in the latent space, leveraging a
pre-trained Variational Autoencoder (VAE) for image compression. To encode text prompts, Hunyuan-
DiT combines a bilingual (English and Chinese) CLIP with a multilingual T5 encoder. A notable
feature mentioned in the PDF and search results is its ability to engage in multi-turn multimodal
dialogues with users, allowing for iterative image generation and refinement based on conversational
context. Tencent has also developed a comprehensive data pipeline and utilizes a Multimodal Large
Language Model (MLLM) to refine image captions, enhancing the data quality for training and
enabling the generation of images with high semantic accuracy, particularly for Chinese cultural
elements.

E.2 TRAINING DATA VISUALIZATION

To provide insight into the data used for training the NoiseAR model, we present a visualization
of sixteen representative examples in Figure 6. As described in Section 3.1. NoiseAR is trained
to model the conditional distribution P (zT |c), where zT is the initial noise tensor at the diffusion
timestep T , and c is the conditioning signal (in our case, a text prompt). These examples showcase
the variety of text prompts and the corresponding pairs of initial noise and final images used to teach
NoiseAR how to generate appropriate initial noise priors conditioned on textual descriptions.

E.3 DPO TRAINING DATA VISUALIZATION

Figure 7 presents 8 representative examples from the Pick-a-Pic dataset used for DPO training. As
detailed in Section 3.2 , this dataset consists of preference pairs derived from outputs of the initial
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Figure 7: Examples of training data pairs for DPO. It displays the text prompt, the initial noise tensor
(zpT ) that led to the preferred image, the preferred image (zp0), the initial noise tensor (zrT ) that led to
the rejected image, and the rejected image (zr0). Eight representative pairs are shown to illustrate the
structure and content of the DPO training dataset.

NoiseAR model, filtered based on score differences. For a given text prompt, it displays two generated
outcomes: a preferred image and a rejected image, along with the specific initial noise tensors (zT )
from which they were generated via the diffusion process. As indicated in the caption, each row thus
comprises the text prompt, the initial noise and corresponding image for the preferred outcome, and
the initial noise and corresponding image for the rejected outcome. Training with DPO on these pairs
helps the NoiseAR model learn to assign higher probability to initial noise tensors like zpT that lead
to preferred images (zp0), and lower probability to tensors like zrT that result in rejected images (zr0),
conditioned on the same input prompt. These examples highlight the contrast between the initial
noise inputs that produce subjectively (or metric-wise) better versus worse image results.

F LIMITATIONS

Despite the promising results achieved by NoiseAR in improving image generation quality and
text-image alignment through a learned initial noise prior, our current work has several limitations
that suggest avenues for future research. Firstly, our exploration of reinforcement learning fine-tuning
was limited to using Direct Preference Optimization (DPO) as a proof-of-concept to demonstrate
the potential benefits of optimizing the learned distribution. More sophisticated or alternative RL
algorithms, such as Proximal Policy Optimization (PPO), could potentially yield further improvements.
Furthermore, we did not investigate the scaling properties of NoiseAR or the effectiveness of
learning the initial noise distribution with respect to model size, dataset size, or other relevant factors.
Understanding these scaling laws would be crucial for assessing the method’s performance and
potential benefits at larger scales. Secondly, our method focuses on optimizing the initial noise
distribution (zT ) used to start the diffusion process. While theoretically orthogonal to techniques that
modify the intermediate noise schedule or the denoising steps within the diffusion process, we did
not conduct experiments to verify whether combining NoiseAR with such orthogonal techniques
(e.g., advanced noise scheduling strategies or noise search methods applied at later timesteps) can
lead to further synergistic improvements. Exploring these combinations could uncover additional
performance gains. Finally, while our work focused exclusively on text-to-image generation, the
core concept of learning a better prior distribution for the initial noise vector zT is theoretically
applicable to diffusion models across different modalities. This includes tasks like audio, video, and
3D generation, where diffusion models are increasingly used. Due to the scope of the current study,
we were unable to explore the applicability and effectiveness of NoiseAR in these domains, which
represents a significant area for future investigation.
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G DECLARATION OF LLM USAGE

LLM is used only for writing, editing, or formatting purposes and does not impact the core methodol-
ogy or originality of the research.
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