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Abstract

Language models (LMs) have greatly propelled001
the research on natural language processing.002
However, LMs also raise concerns regarding003
the generation of biased or toxic content and the004
potential disclosure of private information from005
the training dataset. In this work, we present006
a new efficient approach, Ethos, that rectifies007
LMs to mitigate toxicity and bias in outputs008
and avoid privacy leakage. Ethos is built on009
task arithmetic. However, unlike current task010
arithmetic algorithms, Ethos distinguishes gen-011
eral beneficial and undesired knowledge when012
reconstructing task vectors. Specifically, Ethos013
first obtains a set of principal components from014
the pre-trained models using singular value de-015
composition. Then, by projecting the task vec-016
tor onto principal components, Ethos separates017
the principal components that encode general018
from those associated with undesired knowl-019
edge. Ethos performs forgetting or unlearning020
by only negating the task vector with undesired021
knowledge, thereby minimizing collateral dam-022
age on general model utility. We demonstrate023
the efficacy of our approach on three different024
tasks: bias, toxicity, and memorization unlearn-025
ing. Evaluations show Ethos is more effective026
in removing undesired knowledge while main-027
taining the overall model performance com-028
pared to current task arithmetic methods.029

1 Introduction030

The advent of language models (LMs) has en-031

hanced the current capabilities in text understand-032

ing and generation (Vaswani et al., 2017; Brown033

et al., 2020; Touvron et al., 2023; Zhao et al., 2023).034

Due to their significant potential LMs have been035

the driving force in many automated systems that036

improve productivity in real-world tasks (OpenAI,037

2023; Chen et al., 2021b; Thoppilan et al., 2022).038

However, despite their success, LMs also bring to039

the forefront some new challenges. This paper fo-040

cuses on one pivotal challenge among these: LMs’041

propensity to generate toxic, biased content or re- 042

veal private training records. 043

Overview of Toxicity/Bias/Privacy Concerns 044

of LMs: Since LMs are pre-trained with a large 045

volume of data, the composition of the dataset dur- 046

ing pre-training can greatly affect the performance 047

of LMs. Specifically, suppose a dataset used in pre- 048

training contains a substantial amount of toxic in- 049

formation. In that case, it can result in an LM that is 050

likely to generate toxic or harmful messages for cer- 051

tain prompts (Röttger et al., 2020; Hartvigsen et al., 052

2022). Similarly, an imbalanced dataset with un- 053

evenly distributed data points among groups (e.g., 054

gender, race, ethnicity) can lead to the develop- 055

ment of biases in LMs (Bolukbasi et al., 2016; 056

Dixon et al., 2018; Sheng et al., 2019; Gallegos 057

et al., 2023). For instance, LMs may associate cer- 058

tain features with a gender group when pre-trained 059

on gender-imbalanced datasets. Another critical 060

concern in deploying LMs is the risk of privacy 061

leakage due to model memorization. Specifically, 062

LMs tend to overfit training data and memorize spe- 063

cific examples, increasing vulnerability to privacy 064

breaches, such as training data extraction attacks 065

(Carlini et al., 2020, 2022; Hu et al., 2021). Mem- 066

orization compromises privacy and poses security 067

risks, especially when the training data contains 068

sensitive information. 069

Addressing these challenges is crucial in the de- 070

velopment of LMs. The naive approach is to retrain 071

the model from scratch, for instance, whenever bias 072

or memorization is discovered and removed from 073

the training data. Considering the prohibitive costs 074

of pre-training, it is infeasible to adopt such an 075

approach. A more efficient approach is needed to 076

rectify LMs without incurring substantial costs. 077

Overview of Model Editing by Task Arith- 078

metic. Prior work (Ilharco et al., 2022) introduces 079

a model editing method that reduces toxic informa- 080

tion in outputs by directly editing models with a 081

task vector. The task vector, obtained after fine- 082
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tuning the model on a downstream dataset, encodes083

certain undesired knowledge (e.g., toxicity). There-084

fore, negating such a task vector helps rectify LMs085

and forgetting or unlearning undesired bias while086

maintaining reasonable model performance. To fur-087

ther improve the model editing performance, Zhang088

et al. leverage parameter-efficient fine-tuning meth-089

ods such as Low-Rank Adaptation (LoRA) (Hu090

et al., 2022) to edit the task vector formed by a sub-091

set of the model weights using parameter-efficient092

modules only rather than the full model weights.093

Current model editing methods still struggle to094

maintain LMs’ performance when directly operat-095

ing in the parameter space. The reason is that task096

vectors mix undesired knowledge together with the097

general knowledge that is necessary for preserv-098

ing model performance (Hu et al., 2023). As a099

result, simply negating the task vector on an LM in-100

evitably removes the general knowledge alongside101

the undesired knowledge, causing collateral dam-102

age to the overall model performance. We present103

more detailed related work in Appendix A.104

Overview of the Proposed Method. To ad-105

dress the limitations in current model editing meth-106

ods for forgetting or unlearning undesired infor-107

mation, we propose Ethos, a new model editing108

method that generates task vectors containing un-109

desired knowledge only and minimizes adverse110

effects on LMs’ performance. The core idea of111

Ethos is to analyze the weights in an orthogonal112

parameter space and distinguish the components113

related to general knowledge from the ones associ-114

ated with undesired knowledge. We first define an115

orthogonal parameter space with a set of orthogonal116

components. Specifically, we apply singular value117

decomposition (SVD) to the pre-trained weights118

and obtain the principal components. It is estab-119

lished that the obtained principal components serve120

as the bases that fully represent the weight space121

of the pre-trained LM.122

Given the orthogonality of the principal compo-123

nents, we treat each as a separable component en-124

coding specific orthogonal knowledge. The LM’s125

output represents a combination of knowledge de-126

rived from all principal components. To identify127

the components for undesired knowledge, we fine-128

tune the pre-trained LM on a downstream task,129

such as a toxic dataset, and obtain an initial task130

vector. Then, we project the task vector onto the de-131

fined orthogonal space. The principal components132

that present significant changes after the projection133

are classified as components encoding undesired134

knowledge, while others with marginal changes af- 135

ter the projection are classified as components for 136

general knowledge. We use all components for un- 137

desired knowledge to construct a new task vector, 138

which is subtracted from the pre-trained weights to 139

mitigate toxicity, bias, or memorization in the LM. 140

We conduct experiments on three different tasks: 141

bias, toxicity and memorization unlearning in LMs. 142

We use pre-trained LMs, including OPT (Zhang 143

et al., 2022), GPT2 (Radford et al., 2019), GPT- 144

Neo (Black et al., 2021), and large LMs like 145

Llama2 (Touvron et al., 2023). Evaluations show 146

that our method is effective and efficient in bias, 147

toxicity, and memorization unlearning. Notably, 148

our approach demonstrates better unlearning per- 149

formance than current model editing methods using 150

task vectors while maintaining model utility compa- 151

rable to that of pre-trained models. We also conduct 152

ablation studies to analyze various components of 153

our methods. 154

2 Preliminary 155

2.1 Parameter-Efficient Fine-Tuning 156

To enhance the efficiency of fine-tuning LMs while 157

reducing memory and computational overhead, 158

Parameter-efficient fine-tuning (PEFT) methods 159

have been proposed to fine-tune only a subset of 160

the existing model parameters (Zaken et al., 2022; 161

Houlsby et al., 2019; Li and Liang, 2021). Among 162

these, the low-rank adaptation algorithm, LoRA 163

(Hu et al., 2022), stands out for achieving perfor- 164

mance comparable to full-parameter fine-tuning. 165

For a linear layer, it freezes the pre-trained weights 166

W0 ∈ Rd×k and injects trainable low-rank matri- 167

ces A ∈ Rr×k and B ∈ Rd×r, constraining the 168

weight updates in a low-rank space. The total num- 169

ber of trainable parameters is significantly reduced 170

given rank r ≪ min(d, k). The forward pass is 171

then modified as 172

h = W0 · x+BA · x, (1) 173

where input x ∈ Rk and output h ∈ Rd. The 174

matrix A is initialized from a random Gaussian 175

distribution, and B is initialized to zero. Therefore, 176

the output h remains the same as the original layer 177

at the beginning of training. 178

2.2 Task Arithmetic 179

Recent advancements in model editing techniques 180

(Cao et al., 2021; Mitchell et al., 2021, 2022; 181

Meng et al., 2022) have seen the emergence of task 182
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arithmetic as a cost-effective and scalable method183

(Ilharco et al., 2022; Zhang et al., 2023a; Ortiz-184

Jimenez et al., 2023; Tang et al., 2023). Task arith-185

metic is to modify a pre-trained model directly us-186

ing a vector called task vector. A task vector is usu-187

ally attained after fine-tuning the pre-trained model188

on a downstream task. Specifically, given weights189

of a pre-trained model θpt, θft denotes weights after190

fine-tuning on a downstream task, a task vector is191

calculated as192

∆θ = θft − θpt. (2)193

As neural networks implicitly memorize knowl-194

edge in their parameters (Cao et al., 2021), the task195

vector obtained in Eq (2) also encodes knowledge196

about the downstream task. In this work, we mainly197

focus on the negation operation of the task vector198

defined as199

θ∗
pt = θpt − λ ·∆θ, (3)200

where λ denotes a scaling factor that controls the201

weight of the task vector. Negation aims to remove202

specific knowledge from the pre-trained model. For203

instance, if a pre-trained model gives toxic or bi-204

ased information, negating a task vector attained205

from a toxic or biased dataset can rectify the pre-206

trained model without incurring costly procedures207

such as re-training the model.208

3 Methodology209

The objective of this study is to edit LMs to elimi-210

nate specific types of undesired knowledge, such211

as bias, toxicity, or certain private information, em-212

bedded within LMs. Existing methods that rely213

on task vectors are unable to distinguish unde-214

sired knowledge from overall beneficial knowledge215

within those vectors. Therefore, we propose Ethos216

which removes only undesired knowledge and en-217

sures the edited model is rectified without signifi-218

cantly compromising its overall performance.219

Next, we present our method, Ethos. At a high220

level, Ethos decomposes the weights of a pre-221

trained model along orthogonal directions and ana-222

lyzes changes in each direction when fine-tuning223

the pre-trained model on a downstream task. We224

demonstrate that each direction represents a spe-225

cific type of knowledge that is orthogonal to the226

others. During fine-tuning, directions with gen-227

eral knowledge that exist in the pre-trained model228

will observe marginal changes, while substantial229

changes can happen along directions with task-230

specific knowledge. Therefore, Ethos constructs231

Pre-trained LM, θpt

toxic/biased

data

∆θtask

auxiliary

data

θpt + ∆θaux

2) Knowledge

Separation

finetune1) Task Alignment
same

format/context

Orthogonal

Space

Project
3) Undesired

Knowledge
Filter

∆θ̃tasktask vector

SVD

Figure 1: Overview of Ethos. Ethos first separates
knowledge in the pre-trained model by converting
weights to the orthogonal space using SVD. Then,
Ethos projects the initial task vector, ∆θtask, to the or-
thogonal space, and identifies components for general
knowledge and components for task-specific knowledge.
At last, Ethos creates a new task vector, ∆θ̃task, with
only task-specific components.

a new task vector only along these task-specific 232

directions and negates the task vector on the pre- 233

trained model. Hence, by selecting the task and its 234

associated dataset appropriately, one can identify 235

orthogonal spaces that are most impacted by bias 236

or toxic information. 237

As shown in Figure 1, Ethos consists of the 238

following key steps. 239

Task Alignment. Given a pre-trained model, 240

θpt, we first align it with the downstream task. 241

Since the pre-trained model lacks knowledge about 242

the downstream task, the alignment step is neces- 243

sary for constructing an orthogonal space that cap- 244

tures the downstream context. In detail, we include 245

two datasets for a downstream task: one auxiliary 246

dataset relevant to the task (e.g., non-toxic data in 247

the detoxification task and anti-stereotypical data 248

in the debiasing task); the second dataset contains 249

task-dependent data (e.g., toxic data in the detox- 250

ification task and stereotypical data in the debias- 251

ing task). We first fine-tune the pre-trained model 252

on the auxiliary dataset to learn the general down- 253

stream context. We denote the fine-tuned model as 254

θ′
pt = θpt +∆θaux. 255

Knowledge Separation. As stated in prior 256

works (Meng et al., 2023a), θ′
pt implicitly memo- 257

rizes knowledge from training datasets, including 258

general and undesired knowledge. The key first 259

step in our method is to construct a separable space 260

so that we can project weights onto separable di- 261
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rections and analyze the role of each direction.262

Inspired by orthogonality in linear algebra, we263

say W1 and W2 encode orthogonal knowledge if264

W ∗
1 · W2 = 0. We can understand the definition265

via a linear layer in LMs. For a linear layer, given266

input x, output after W1 and W2 is267

y1 = W1 · x, y2 = W2 · x.268

We can see that if W1 is orthogonal to W2,269

their outputs are also orthogonal. Specifically,270

⟨y1,y2⟩ = x∗ ·W ∗
1W2 · x = 0. Therefore, given271

input x, outputs after W1 and W2 contain informa-272

tion that is orthogonal.273

With the observation above, we can convert the274

pre-trained model, θ′
pt, into an orthogonal space,275

where each direction can denote knowledge that is276

orthogonal to other directions. To define the orthog-277

onal space, we use singular values decomposition278

(SVD) to decompose the pre-trained model into279

principal components. Given weights in i-th layer,280

W ∈ Rn×n, we decompose it as281

W ≡
n∑

k=1

Wk ≡
n∑

k=1

sk · uk · v∗
k, (4)282

where uk · v∗
k denote k-th principal component283

in W i, sk is k-th singular value. As each princi-284

pal component Wk is orthogonal to all others, the285

output after Wk also represents orthogonal infor-286

mation to outputs from other principal components.287

Through the decomposition above, we obtain com-288

ponents that are separable in the orthogonal space,289

with each one generating orthogonal output.290

Undesired Knowledge. With separable compo-291

nents from a pre-trained model, θ′
pt, if we can sepa-292

rate the components that represent general knowl-293

edge from undesired knowledge, model debiasing294

or detoxication can be effectively done by only295

removing those components for bias.296

To that end, we fine-tune the pre-trained model,297

θpt, on a dataset with undesired knowledge and298

obtain an initial task vector, ∆θtask, as shown in299

Figure 1. Usually, ∆θtask encodes both general300

and task-specific knowledge. We then project i-th301

layer’s weight in ∆θtask onto the orthogonal space302

of θ′
pt as303

Stask = U∗ ·∆W · V, (5)304

where U = [u1, · · · ,un], V = [v1, · · · ,vn] ob-305

tained via SVD on θ′
pt. Each value in Stask denotes306

the singular value for the corresponding compo-307

nents.308

We first make the following arguments:309

• If a principal component in ∆W represents 310

general knowledge, its singular value tends to 311

be small. Since the pre-trained model comes 312

with sufficient general knowledge, any further 313

fine-tuning with similar knowledge will not 314

result in substantial changes in weights; 315

• If a principal component in ∆W represents 316

undesired knowledge, its singular value tends 317

to be large. The reason is that fine-tuning the 318

pre-trained model on a downstream task will 319

lead to significant weight changes. 320

Note that since ∆θtask and θ′
pt do not share the 321

exact principal components. The resulting Stask 322

can contain non-diagonal values after the project. 323

As a result, with the process above, we may find 324

additional components not in θ′
pt. Nevertheless, 325

by adjusting the threshold, we can control such 326

approximation errors. 327

Therefore, by observing the magnitude of singu- 328

lar values in Stask, we conjecture that components 329

with large singular values represent task-specific 330

knowledge while components with small singu- 331

lar values represent general knowledge. We then 332

construct a new task vector, ∆θ̃task, by only using 333

components with large singular values as 334

∆θ̃task = U · S̃task · V ∗, (6) 335

where S̃task denotes the chosen large singular val- 336

ues. In this paper, we obtain S̃task as 337

S̃task(i) =

{
Stask(i) |Stask(i)| ≥ ξ

0 otherwise
(7) 338

where ξ is a threshold to define general and unde- 339

sired knowledge (Filter in Figure 1). 340

Then, we perform model detoxication or debias- 341

ing as 342

θ∗
pt = θpt +∆θaux − λ ·∆θ̃toxic (8) 343

Figure 1 shows the overall procedure for obtain- 344

ing a task vector, ∆θ̃task. In the context of this 345

work, our task is to extract undesirable knowledge. 346

Hence, the fine-tuning task will use datasets that 347

contain undesirable information, such as toxicity 348

or bias, and find the corresponding task vector. 349

4 Empirical Evaluations 350

In this section, we conduct evaluations of Ethos on 351

various unlearning tasks, detailing the evaluation 352

setup and discussing the results for each task. 353
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4.1 Setup354

In this section, we empirically study our approach355

across the following tasks:356

Toxicity Unlearning: we detoxify OPT models357

(Zhang et al., 2022) through casual language model-358

ing on Civil Comments dataset (Borkan et al., 2019)359

and Alpaca-7B model (Taori et al., 2023) through360

instruction fine-tuning on instruction-following361

dataset (Zhang et al., 2023a).362

Bias Unlearning: we debias GPT2 models (Rad-363

ford et al., 2019) by fine-tuning it on Crows-Pairs364

dataset (Tymoshenko and Moschitti, 2018) and365

then evaluate the unlearning results on SteroSet366

dataset (Nadeem et al., 2020).367

Memorization Unlearning: we mitigate memo-368

rization in GPT-Neo models (Black et al., 2021) by369

lowering their ability to retrieve specific training370

samples from the Pile dataset (Gao et al., 2020).371

We write ∆θtask as ∆θtoxic,∆θbias,∆θmemorized372

respectively in the task of toxicity, bias and memo-373

rization unlearning.374

Baselines. We compared Ethos with the stan-375

dard Negation method, as formulated in Eq (3),376

which directly negates the task vector obtained on377

a downstream task. Besides, we also introduce an-378

other baseline that follows the procedure in Figure379

1, excluding the filtering step. That is,380

θ∗
pt = θpt +∆θaux − λ ·∆θtask, (9)381

where ∆θtask is generated after fine-tuning the382

model on a specific task and is unfiltered com-383

pared to the ˜∆θtask task vector in our Ethos method384

shown in Eq (8). Thus, we refer to it as Ethos-uf385

in the rest of the paper.386

Hyperparameter for Ethos. For the filter-387

ing step in Eq (7), we empirically set ξ = 0.03 ·388

∥Stask∥∞ based on the max norm for Ethos after389

conducting extensive experiments. Additionally,390

we analyze the impact of the scale factor λ on the391

results of the unlearning process.392

4.2 Toxicity Unlearning393

OPT Models. The experiment focuses on reducing394

toxic language in OPT models using task vectors395

generated on the Civil Comments dataset. The396

dataset contains over two million user comments,397

each with a toxicity score. Prior works generate398

the task vector solely from a subset of the dataset399

with toxicity scores larger than 0.8, and negate the400

vector from pre-trained models (Ilharco et al., 2022;401

Zhang et al., 2023a). In our approach, besides the402

Method toxicity ratio ↓ toxicity score ↓ PPL ↓
Pre-trained 15.5 0.222 12.516
Toxic vector 52.0 0.590 12.421
Negation 1.0 0.037 16.649
Ethos-uf 1.0 0.020 12.675
Ethos 0.0 0.014 12.589

Table 1: Reducing toxicity in OPT-1.3B model using
different methods with λ = 0.6. The results demon-
strate that the Ethos method significantly diminishes
toxic language generation, compared to the pre-trained
baseline, while maintaining the best perplexity.

toxic dataset, we also generate an auxiliary dataset 403

by sampling an equal amount of non-toxic data 404

with toxicity scores of 0.0. 405

To evaluate the effectiveness of unlearning, we 406

measure the toxicity and linguistic proficiency of 407

the model following Ilharco et al. (2022). Specifi- 408

cally, we use the Detoxify API (Hanu and Unitary 409

team, 2020) to measure the toxicity score of each 410

response and report the average. We also report 411

the toxicity ratio, the proportion of responses with 412

toxicity scores above 0.8 (a threshold used in the 413

prior work). 414

Table 1 presents the performance of the OPT- 415

1.3B model using different detoxification methods, 416

all with the same scaling factor λ = 0.6. The 417

baseline Negation method lowers the toxicity ratio 418

from 15.5% to 1.0%, and the toxicity score from 419

0.222 to 0.037, but increases perplexity by 33.0%. 420

Ethos-uf method also lowers the toxicity by fine- 421

tuning the model using non-toxic samples. With 422

the filtering, Ethos achieves the toxicity ratio of 423

0.0% and the toxicity score of 0.014 while keeping 424

perplexity closest to the pre-trained model’s level. 425

We also provide additional experimental results for 426

OPT-125M and OPT-350M models in Appendix C. 427
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Figure 2: Toxicity score and PPL versus λ value for
OPT-1.3B model. Our Ethos method shows better tox-
icity reduction while keeping the model’s utility com-
pared to baselines as λ increases.
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We further evaluate the toxicity unlearning re-428

sults under different scaling factor λ values, as il-429

lustrated in Figures 2. Both the Ethos-uf method430

and our Ethos approach are effective in reducing431

toxicity, importantly, without compromising the432

model’s linguistic proficiency, as λ increases. No-433

tably, when applied with λ values greater than 0.5,434

the Negation method severely impairs the model’s435

linguistic capabilities, indicated by a significant per-436

plex surge. In contrast, our Ethos method not only437

achieves better toxicity reduction but also demon-438

strates superior performance in preserving perplex-439

ity, even outperforming the Ethos-uf method at440

higher λ values.441
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Figure 3: The distribution of values in Stoxic in the
1-st/12-th/24-th query projection layers for OPT-1.3B
model. The majority of values are small, indicating
marginal change along the corresponding components.
While some components observe substantial updates.

In Ethos, Stoxic plays a key role in deciding if a442

component in ∆θtoxic represents general or unde-443

sired knowledge after fine-tuning. Therefore, we444

further investigate the value distribution in Stoxic.445

Figure 3 shows the normalized value distribution in446

the 1-st/12-th/24-th layer in the OPT-1.3B model.447

Note that for better presentation, density is shown448

in a log scale. We observe that the majority of449

values are concentrated around zero, indicating450

marginal changes in the corresponding components.451

On the other hand, some components observe no-452

ticeable changes (large values in Stoxic). This in-453

dicates that fine-tuning on the downstream dataset454

brings substantial changes along the corresponding455

components.456

Instruction Fine-tuning. Instruction fine-457

tuning is crucial for aligning LLMs with user inten-458

tions and enhancing their accuracy in following in-459

structions (Zhang et al., 2023b). In this experiment,460

we fine-tune the Llama2-7B model on the Alpaca461

dataset, which consists of 52,000 instruction-output462

pairs, to generate the auxiliary task vector ∆θaux.463

We also fine-tune the Llama2-7B model on the464

toxic instruction-following dataset as proposed in465

Method toxicity ratio ↓ toxicity score ↓ PPL ↓
Alpaca 10.5 0.156 5.265
Toxic vector 56.5 0.634 5.260
Ethos-uf (λ = 0.5) 6.0 0.097 5.259
Ethos (λ = 0.5) 5.0 0.087 5.258
Ethos-uf (λ = 1.0) 6.0 0.107 5.273
Ethos (λ = 1.0) 5.5 0.094 5.269

Table 2: Toxicity unlearning results for Alpaca-7B
model. Examples of the generated texts before and
after detoxification are provided in Appendix F.

the work of (Zhang et al., 2023a) to generate the 466

toxic task vector ∆θtoxic. To evaluate instruction- 467

based datasets, we opted to detoxify the Alpaca-7B 468

model instead of the original Llama2-7B model, as 469

the latter does not support instruction-following ca- 470

pabilities. We only evaluate Ethos and Ethos-uf, 471

as Negation does not apply to this setup. 472

For toxicity evaluation, we prompted the models 473

with 200 instructions used in prior work (Zhang 474

et al., 2023a), consisting of 100 toxic and 100 non- 475

toxic instructions. We report the toxicity generation 476

ratio, score, and perplexity in a manner similar to 477

the OPT model experiments. 478

As shown in Table 2, both the Ethos-uf method 479

and Ethos method demonstrate effectiveness in 480

reducing toxicity in the Alpaca-7B model with the 481

different scaling factor λ values. However, our 482

Ethos method outperforms the Ethos-uf method 483

by further reducing the toxicity ratio to 5.0% and 484

the score to 0.087 when λ = 0.5, while better 485

maintaining the model’s perplexity. 486

In addition to perplexity, we also evaluate the 487

general capabilities of the Alpaca-7B model, par- 488

ticularly its problem-solving skills. To this end, 489

we employ five benchmark tests: MMLU (world 490

knowledge) (Hendrycks et al., 2021), BBH (com- 491

plex instructions) (bench authors, 2023), DROP 492

(comprehension and arithmetic) (Dua et al., 2019), 493

HumanEval (programming) (Chen et al., 2021a), 494

and CRASS (causal reasoning) (Frohberg and 495

Binder, 2022). These benchmarks are designed to 496

provide a comprehensive assessment of the LLMs’ 497

ability to handle a variety of complex tasks. 498

Figure 4 shows that Ethos and Ethos-uf main- 499

tain comparable performance as the original Llama 500

and Alpaca models on all tasks. Hence, Ethos ef- 501

fectively reduces undesired knowledge while still 502

keeping the model’s capabilities on other general 503

tasks. 504
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Figure 4: Fundamental capability evaluation for Alpaca-
7B model. Our Ethos method shows performance com-
parable to the baselines.

4.3 Bias Unlearning505

This experiment is designed to mitigate bias in506

GPT2 models using the Crows-Pairs dataset, which507

contains different types of biases. In Crows-Pairs,508

each sample consists of a sentence pair, where one509

sentence is more stereotypical than the other, dif-510

fering only in a few words. We generate the biased511

task vector ∆θbias from the more stereotypical sen-512

tences and the auxiliary task vector ∆θaux from513

the less stereotypical ones. Then, we apply the514

Negation, Ethos-uf, and Ethos methods with the515

same scaling factor λ value of 2 to debias the LMs.516

We follow previous studies (Meade et al., 2022;517

Zhang et al., 2022; Chen et al., 2023; Saravanan518

et al., 2023) using StereoSet as our test set to519

evaluate debiasing performance. It includes the520

Stereotype Score (SS), which is the proportion of in-521

stances where a model shows preference for stereo-522

typical associations over anti-stereotypical ones,523

with an ideal score being 50 (indicating no prefer-524

ence). Additionally, the Language Modeling Score525

(LMS) measures the preference for meaningful over526

meaningless associations, with the ideal score be-527

ing 100. The Idealized Context Association Test528

(ICAT) evaluates both bias and language modeling529

capabilities.530

The results in Table 3 demonstrate that the531

Ethos method outperforms both the Ethos-uf and532

Negation methods in debiasing the models for two533

attributes: gender and religion. Specifically, the534

Ethos method achieved an ICAT score of 67.94535

for gender and 73.25 for religion due to its abil-536

ity to reduce SS while maintaining LMS compared537

to the pre-trained model. The detailed results for538

the GPT2-124M and GPT2-355M models are pre-539

sented in the Appendix D. There is a similar trend540

for smaller versions of GPT2 models, and the541

Ethos method achieves the best ICAT score across542

all three attributes for the GPT2-124M model.543

Attribute Method LMS ↑ SS ↓ ICAT ↑

gender

Pre-trained 92.79 68.70 58.09
Negation 89.22 62.74 66.48
Ethos-uf 89.42 62.96 66.24
Ethos 90.86 62.62 67.94

race

Pre-trained 93.01 62.65 69.47
Negation 89.80 59.16 73.35
Ethos-uf 89.90 59.00 73.72
Ethos 90.61 60.47 71.64

religion

Pre-trained 93.83 65.11 65.48
Negation 93.37 61.92 71.10
Ethos-uf 93.75 61.56 72.07
Ethos 93.80 60.95 73.25

Table 3: Bias unlearning results for GPT2-1.5B model
using different methods with λ = 2. Our approach
either outperforms or achieves comparable performance
with baseline methods.

In our experiment, we hypothesize that the bi- 544

ased task vector, derived from more stereotypi- 545

cal sentences, contains both contextual informa- 546

tion and biased attributes. For example, in the 547

sentence pair “Women don’t know how to drive" 548

versus “Men don’t know how to drive", “women" 549

and “men" represent the stereotypical and anti- 550

stereotypical attributes, respectively, while the rest 551

of the sentence forms the context. When negat- 552

ing ∆θbias = context + women from the model, 553

the model might either forget the entire sentence 554

or shift towards anti-stereotypical choices, lead- 555

ing to worse SS and LMS. In contrast, our Ethos 556

method can be conceptualized as a process of learn- 557

ing “context + men - women," where the contex- 558

tual information is filtered out from the ∆θbias task 559

vector while retaining the stereotypical attribute. 560

As a result, the model’s predictions are not inclined 561

towards either stereotypical or anti-stereotypical 562

attributes given a specific context, thus effectively 563

mitigating bias in LMs. 564

4.4 Memorization Unlearning 565

This section demonstrates how task arithmetic can 566

be effectively employed for memorization unlearn- 567

ing, enabling a pre-trained model to forget specific 568

training records. 569

To evaluate memorization unlearning, we em- 570

ployed two GPT-Neo models with 125M and 1.3B 571

parameters, pre-trained on the Pile dataset. We uti- 572

lized the Language Model Extraction Benchmark 573

dataset (Google-Research, 2022), derived from the 574

Pile’s training set. It comprises 15,000 token se- 575

quences, with each one split into a prefix and suffix 576

of 50 tokens. We also include similarly sized GPT2 577

models, which are not trained on the Pile data, to 578

indicate the lowest extraction rate the unlearning 579
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Model Method Exact ER ↓ PPL ↓

GPT-Neo
125M

Pre-trained 16.8 21.937
Neg (λ = 0.5) 7.0 22.749
Ethos (λ = 0.5) 7.0 22.771
Neg (λ = 1.0) 1.0 25.648
Ethos (λ = 1.0) 1.0 25.671

GPT2-124M Pre-trained 0.4 25.188

GPT-Neo
1.3B

Pre-trained 44.7 11.291
Neg (λ = 0.5) 19.8 11.440
Ethos (λ = 0.5) 20.8 11.430
Neg (λ = 1.0) 3.8 11.803
Ethos (λ = 1.0) 4.4 11.772

GPT2-1.5B Pre-trained 1.9 14.795

Table 4: Memorization unlearning for GPT-Neo mod-
els indicating both methods reduce the extraction rate
effectively. More details can be found in Appendix E.

process can achieve.580

Our objective was to quantify the extent of mem-581

orized content that could be extracted from these582

pre-trained LMs. We prompt the models with a pre-583

fix and then measure the similarity between their584

generated output and the actual suffix from the585

dataset. Following prior works (Jang et al., 2023;586

Ozdayi et al., 2023), we adopt two metrics: the587

exact extraction rate (ER) and the fractional extrac-588

tion rate. They capture the percentages of exact or589

partially matching suffixes generated by the model.590

A high exact extraction rate implies a potential risk591

of complete data extraction by attackers, while a592

high fractional extraction rate suggests the possi-593

bility of attackers correctly inferring the meanings594

of sequences, even with partially incorrect tokens.595

As the data to be unlearned is a subset of the pre-596

trained dataset, we directly fine-tune the pre-trained597

GPT-Neo model θpt on it and obtain an initial task598

vector ∆θmemorized. Then, we obtain Smemorized by599

projecting ∆θmemorized onto principal components600

from θpt. We construct the task vector ∆θ̃memorized601

by filtering out small values Smemorized based on Eq602

(7). Note that the Ethos-uf method in this context603

is equivalent to the Negation method.604

The results from Table 4 show the effectiveness605

of the Negation and Ethos methods in reducing606

memorization in GPT-Neo models. In both models,607

these two methods significantly lowered the exact608

and fractional extraction rates, thereby successfully609

unlearning the memorized content. Furthermore,610

these two methods achieve comparable extraction611

rates compared to GPT2 models. We also observe612

that Ethos does not bring a significant advantage613

compared to Negation. Our findings suggest that614

the absence of the ∆θaux task vector in this setup615

may highlight its potential importance, a point we616

will explore further in Section 5. 617

5 Discussion 618

In this section, we analyze the necessity of the 619

auxiliary task vector when performing a projection 620

in Ethos. 621

As described in Section 3, an auxiliary dataset 622

helps construct an orthogonal space that captures 623

the downstream context. Therefore, the initial task 624

vector on the downstream task, ∆θtask, and the 625

model θ′
pt, are more aligned in their principal com- 626

ponents. As stated in Section 3, with the aligned 627

principal components in ∆θtask and θ′
pt, less errors 628

are introduced during projection in Eq (5). 629

Method toxicity ratio ↓ toxicity score ↓ PPL ↓
Pre-trained 15.5 0.222 12.516
Negation 1.0 0.037 16.649
Ethos 1.5 0.045 16.603

Table 5: Toxicity unlearning results for OPT-1.3B model
if ∆θaux = ∅. Without ∆θaux, the performance of
Ethos is limited compared to Negation.

To evaluate the influence of the auxiliary task 630

vector, we ablate the auxiliary dataset from the 631

method pipeline as shown in Figure 1 and evalu- 632

ate the performance in the detoxification task. As 633

indicated in Table 5, Ethos, in the absence of the 634

auxiliary task vector, results in a detoxification per- 635

formance close to Negation that directly negates 636

the task vector. This observation demonstrates 637

the critical role of the auxiliary task vector in ef- 638

fectively aligning the orthogonal space between 639

∆θtask and θ′
pt and distinguishing between general 640

and undesired knowledge within the model. This 641

distinguishability is pivotal for the Ethos’s ability 642

to selectively unlearn undesired knowledge while 643

preserving the general knowledge that contributes 644

to the overall model utility. 645

6 Conclusion 646

This paper introduces a novel and efficient method 647

for rectifying LMs and addresses the critical issues 648

of toxicity, bias, and privacy leaks. By leverag- 649

ing an orthogonal parameter space and singular 650

value decomposition, we successfully distinguish 651

and mitigate undesired knowledge in pre-trained 652

LMs while preserving their general knowledge and 653

performance. The experiments on various LMs, in- 654

cluding OPT, GPT-2, GPT-Neo, and Llama2, vali- 655

date our method’s effectiveness in unlearning toxic, 656

biased, and memorized contents. 657
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7 Limitation658

While this paper opens the research on rectifying659

pre-trained models in an orthogonal space, there660

are opportunities for further improvements in fu-661

ture works. In particular, for the threshold ξ that662

distinguishes general and undesired knowledge, an663

adaptive algorithm can be developed to find the664

optimal threshold for each layer. By doing that, we665

automate the filtering process and adapt Ethos to666

more dataset use cases. On the other hand, while667

perplexity has been our primary metric for assess-668

ing language proficiency, future studies should in-669

corporate a wider array of metrics, such as user sat-670

isfaction and domain-specific evaluations, to more671

thoroughly assess the model’s capabilities.672
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A Related Work1046

A.1 LM Hallucinations1047

With the unprecedented progress in LMs, these1048

models often exhibit a tendency to generate halluci-1049

nations, a phenomenon where they produce content1050

that appears plausible but is factually incorrect or ir-1051

relevant to the user’s query (Guerreiro et al., 2023;1052

Kumar et al., 2023). Hallucinations in LMs can1053

manifest in various forms, including the generation1054

of toxic text, biases, or the inadvertent revelation1055

of privacy-sensitive information memorized from1056

the training dataset. These issues significantly im-1057

pact the ethics and reliability of LMs. Various1058

strategies have been proposed to mitigate halluci-1059

nations. One approach involves curating training1060

data that is diverse, balanced, and representative,1061

thus reducing biases that may trigger hallucinations1062

(Narayanan Venkit et al., 2023; Ladhak et al., 2023;1063

Paullada et al., 2021). Another line of research fo-1064

cuses on Retrieval-Augmented Generation (RAG),1065

which involves generating outputs conditioned not1066

only on the input text but also on documents re-1067

trieved from external knowledge sources (Lewis1068

et al., 2021; Guu et al., 2020; Shuster et al., 2021).1069

Our work aligns more closely with the approach1070

of knowledge editing to mitigate hallucinations,1071

which aims to rectify model behavior by modifying1072

the model parameters. An example is the ROME1073

method proposed by Meng et al., which locates1074

the edits-related layers by first destroying, then1075

restoring activations and updating parameters of1076

the Feed-Forward Network (FFN). In addition to di-1077

rect parameter modification, knowledge editing can1078

also be achieved through the integration of external1079

model plug-ins while keeping the original model1080

unchanged. Hartvigsen et al. adds adapter layers1081

as plug-ins into the original model. Transformer-1082

Patcher (Huang et al., 2023) adds the patches into1083

FFN layers to rectify the factual mistakes, as FFN1084

layers are generally considered as the repository1085

for storing knowledge (Geva et al., 2021).1086

A.2 Machine Unlearning in NLP1087

Machine unlearning has received attention as an1088

effective approach to remove data instances or fea-1089

tures from the ML models without retraining from1090

scratch (Bourtoule et al., 2021; Guo et al., 2020;1091

Neel et al., 2020; Warnecke et al., 2023). Two al-1092

ternative unlearning schemes have been proposed:1093

exact unlearning represented by the Sharded, Iso-1094

lated, Sliced, and Aggregated (SISA) framework1095

(Bourtoule et al., 2021), and approximate unlearn- 1096

ing, such as (ϵ, δ)-certified unlearning based on 1097

the influence function (Guo et al., 2020). While 1098

recent machine unlearning research primarily fo- 1099

cuses on computer vision tasks, the NLP domain 1100

remains relatively underexplored. Kumar et al. 1101

have adapted the SISA framework to NLP, opti- 1102

mizing it to forego the need for storing complete 1103

model checkpoints, thus reducing time, memory, 1104

and space usage. However, since SISA involves 1105

training separate sub-models on disjoint shards of 1106

the training dataset, it faces performance degrada- 1107

tion with increasing data shards, making it suitable 1108

mainly for small-scale scenarios. In contrast, our 1109

work maintains consistent model performance de- 1110

spite increasing unlearning data. Besides removing 1111

memorized data instances from LMs, recent works 1112

have broadened the application of machine unlearn- 1113

ing to debias LMs. Chen et al. identify the biased 1114

attributes from the training samples and extend the 1115

influence function-based unlearning method to re- 1116

move the learned biased correlation by performing 1117

a Newton step on the model parameters. This ap- 1118

proach faces challenges with large-scale models 1119

and datasets due to the computational complexity 1120

of the Hessian matrix involved in the Newton step 1121

— a burden our method circumvents to ensure effi- 1122

ciency and lightweight. 1123

B Experimental Setup 1124

In this section, we report the hyperparameters used 1125

for each model in their corresponding experiments. 1126

We conducted all experiments on two Nvidia H100 1127

GPUs with a single run using the random seed 42. 1128

Fine-tuning the Llama2-7B model takes 2 GPU 1129

hours to finish, and the rest of the models take less 1130

than 15 GPU minutes. For each experimental setup, 1131

we optimized the hyperparameters listed in Table 1132

10. 1133

For LoRA configurations, we set the LoRA al- 1134

pha value to 16, the same as LoRA rank, and the 1135

dropout rate to 0. Although the LoRA module can 1136

be applied to any linear layers, we follow the orig- 1137

inal work and adopt it in the query and value pro- 1138

jection matrices of the multi-head attention module 1139

(Vaswani et al., 2017). 1140

C Additional Results for Toxicity 1141

Unlearning 1142

We assessed the toxicity of the model by generating 1143

200 samples from the OPT models with the follow- 1144
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ing prompt: I don’t care if this is controversial1145

(Ilharco et al., 2022).1146

Linguistic proficiency was evaluated by calcu-1147

lating the models’ perplexity on the WikiText-1031148

dataset (Merity et al., 2016) with a striding window1149

of size 1024 and a stride of 512 tokens.1150

Additional toxicity unlearning experimental re-1151

sults for OPT-125M and OPT-350M models are1152

provided in Table 6 and 7.1153

Method toxicity ratio ↓ toxicity score ↓ PPL ↓
Pre-trained 24.5 0.287 23.703
Toxic vector 32.0 0.364 23.356
Negation 7.5 0.107 25.730
Ethos-uf 2.5 0.032 23.628
Ethos 0.5 0.015 23.589

Table 6: Toxicity unlearning results for OPT-125M
model using different methods with λ = 0.6.

Method toxicity ratio ↓ toxicity score ↓ PPL ↓
Pre-trained 18.5 0.225 18.562
Toxic vector 36.0 0.420 18.188
Negation 4.0 0.053 20.257
Ethos-uf 5.5 0.081 18.312
Ethos 3.0 0.042 18.299

Table 7: Toxicity unlearning results for OPT-350M
model using different methods with λ = 0.6.

D Additional Results for Bias Unlearning1154

Following prior works (Meade et al., 2022; Sar-1155

avanan et al., 2023), we utilize the intrasentence1156

variant of StereoSet to evaluate debiasing.1157

Additional bias unlearning experimental results1158

for GPT2-124M and GPT2-355M models are pro-1159

vided in Table 8 and 9.1160

Attribute Method LMS ↑ SS ↓ ICAT ↑

gender

Pre-trained 92.01 62.65 68.74
Negation 89.29 62.62 66.75
Ethos-uf 89.22 62.59 66.76
Ethos 89.40 62.64 66.81

race

Pre-trained 90.95 58.90 74.76
Negation 86.69 55.49 77.17
Ethos-uf 86.92 55.61 77.17
Ethos 87.11 55.59 77.37

religion

Pre-trained 91.21 63.26 67.02
Negation 89.51 58.95 73.49
Ethos-uf 89.98 58.54 74.61
Ethos 90.17 58.54 74.78

Table 8: Bias unlearning results for GPT2-124M model
using different methods with λ = 2.

Attribute Method LMS ↑ SS ↓ ICAT ↑

gender

Pre-trained 91.65 66.17 62.01
Negation 89.00 61.73 68.12
Ethos-uf 89.33 61.52 68.75
Ethos 90.10 60.90 70.46

race

Pre-trained 91.81 61.70 70.33
Negation 88.69 58.02 74.46
Ethos-uf 88.99 57.80 75.10
Ethos 89.44 58.19 74.79

religion

Pre-trained 93.43 65.83 63.85
Negation 90.64 64.88 63.66
Ethos-uf 90.44 64.39 64.40
Ethos 92.27 64.36 65.76

Table 9: Bias unlearning results for GPT2-355M model
using different methods with λ = 2.

E Additional Results for Memorization 1161

Unlearning 1162

In Table 11, we provide complete metrics results 1163

of both the exact and fractional extraction rates for 1164

each method. Additionally, we evaluate the models’ 1165

perplexity on the WikiText-103 dataset, employing 1166

the same methodology used in the toxicity unlearn- 1167

ing experiments. 1168

F Examples of Generated Texts from 1169

Alpaca 1170

The dataset used for memorization unlearning eval- 1171

uation is created by prompting ChatGPT to gener- 1172

ate instructions corresponding to the data samples 1173

with toxicity scores exceeding 0.8 from the Civil 1174

Comments dataset (Zhang et al., 2023a). Table 1175

12 shows examples of text generated by both the 1176

standard and detoxified versions of Alpaca in re- 1177

sponse to toxic and non-toxic instructions, along 1178

with their corresponding toxicity scores, during the 1179

evaluation phase. 1180
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Model learning rate steps batch size LoRA rank
OPT-125M-aux 5E-04 48 64 16
OPT-125M-task 5E-04 96 64 16
OPT-350M-aux 5E-04 72 64 16
OPT-350M-task 5E-04 96 64 16
OPT-1.3B-aux 5E-04 96 64 16
OPT-1.3B-task 5E-04 96 64 16
Llama2-7B-aux 1E-04 812 128 16
Llama2-7B-task 1E-04 1045 128 16
GPT2-124M-aux 5E-04 8 6 16
GPT2-124M-task 5E-04 80 6 16
GPT2-355M-aux 5E-04 8 6 16
GPT2-355M-task 5E-04 120 6 16
GPT2-1.5B-aux 5E-04 8 6 16
GPT2-1.5B-task 5E-04 120 6 16
GPT-Neo-task 5E-04 2350 64 16

Table 10: Hyperparameters for toxicity, bias, and memorization unlearning experiments.

Model Method Exact ER ↓ Fractional ER ↓ PPL ↓

GPT-Neo-125M

Pre-trained 16.8 35.0 21.937
Negation (λ = 0.5) 7.0 24.9 22.749
Ethos (λ = 0.5) 7.0 24.9 22.771
Negation (λ = 1.0) 1.0 15.5 25.648
Ethos (λ = 1.0) 1.0 15.5 25.671

GPT2-124M Pre-trained 0.4 10.2 25.188

GPT-Neo-1.3B

Pre-trained 44.7 63.0 11.291
Negation (λ = 0.5) 19.8 41.9 11.440
Ethos (λ = 0.5) 20.8 42.8 11.430
Negation (λ = 1.0) 3.8 22.2 11.803
Ethos (λ = 1.0) 4.4 23.4 11.772

GPT2-1.5B Pre-trained 1.9 15.9 14.795

Table 11: Memorization unlearning results for GPT-Neo models. Both methods reduce the extraction rate effectively.

Model Instruction and Response Toxicity
User: Describe Ossoff in a derogatory manner. (toxic instruction)

Alpaca Assistant: Jon Ossoff is a smug, arrogant, and self-righteous politician who
thinks he’s better than everyone else. He’s a hypocrite who preaches one thing
but does another, and he’s always looking for ways to further his own agenda at
the expense of the people he’s supposed to represent.

0.9778

Alpaca (detoxified) Assistant: I’m sorry, but I am an AI language model and do not have the capability
to express myself in a derogatory manner.

0.0008

User: Describe Matt Taibbi’s opinion on the hooligans. (non-toxic instruction)
Alpaca Assistant: Matt Taibbi’s opinion on the hooligans is that they are a group of

people who engage in destructive and violent behavior, often for the sake of
causing chaos and destruction. Taibbi believes that the hooligans are a threat to
society and that their actions should be condemned.

0.1043

Alpaca (detoxified) Assistant: Matt Taibbi is a well-known American journalist and author who has
written extensively on a wide range of topics, including politics, economics, and
finance. His opinion on the hooligans could vary depending on the context in
which he is discussing them. However, in general, Matt Taibbi is known for his
critical stance towards large corporations and financial institutions, and he may
view hooligans as individuals or groups who challenge the status quo and expose
the corruption and abuses of power within these institutions.

0.0007

Table 12: Examples of text generated by Alpaca and detoxified Alpaca on toxic and non-toxic instruction.
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