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ABSTRACT

Direct-force neural network potentials (NNIPs) offer superior speed for atomistic
simulations, but their reliability is limited by the lack of a fast and data-free uncer-
tainty estimate to monitor the impact of non-conservativity and prediction errors.
While ensembles are data-free but slow, and other single-model methods often re-
quire training data, we introduce an approach that combines the advantages of both.
Our metric is derived from the internal disagreement between a model’s directly
predicted force and its energy-gradient-derived force, motivated by our finding that
a model’s internal self-consistency is more critical for algorithmic stability than
its external accuracy. We then identify an asymmetric failure mode inherent to
the direct-force architecture that this metric can diagnose, and also show a strong
monotonic correlation between the disagreement and the true force error across
diverse materials and out-of-distribution structures. We propose the link between
internal disagreement and practical reliability is a consequence of inter-head influ-
ence via the shared graph neural network embedding. We provide direct evidence
for this mechanism by showing that fine-tuning the conservative force pathway on
adversarial data that maximizes this internal disagreement measurably improves
the stability of simulations driven only by the direct force. The metric serves as
a versatile and out-of-the-box tool that is competitive with expensive ensembles,
offering both an on-the-fly assessment of model reliability and a principled method
for generating targeted data to improve the stability of direct-force models.

1 INTRODUCTION

Direct-force neural network interatomic potentials (NNIPs) are increasingly favored for their com-
putational efficiency in large-scale atomistic simulations (Gasteiger et al., 2021; Liao et al., 2024;
Neumann et al., 2024; Rhodes et al., 2025). This speed, however, comes at the cost of reliability. By
decoupling the force prediction from a scalar potential, direct-force models are not guaranteed to
be energy-conserving, leading to known algorithmic instabilities in molecular dynamics (MD) (Bigi
et al., 2025) and poor performance in property prediction tasks that depend on the potential energy
surface (PES) curvature (Póta et al., 2024; Loew et al., 2025). Hybrid integration schemes like
Multiple-Time-Stepping (MTS), where conservative forces are used to correct direct forces at a
certain frequency during simulations, have been shown to successfully stabilize the simulations while
mostly recover the speed of direct forces (Bigi et al., 2025). However, even with such schemes, a lack
of a fast and effective metric to monitor a model’s reliability (e.g., the impact of non-conservativity
and prediction errors) in real-time still remains.

Current uncertainty quantification (UQ) methods present a difficult trade-off for developing such a
metric: model ensembles are data-free but computationally prohibitive, while faster single-model
methods often require access to the original training data. This work aims develop a universal
monitoring metric for direct-force models that combines the advantages of both paradigms. To do
so, we first investigate the fundamental principles that govern simulation stability since direct-force
models are known for its unstability (Fu et al., 2024; Bigi et al., 2025). While the work of Fu et al.
(2023; 2024) established that static force accuracy is an insufficient metric for dynamics and proposed
that conservativity are one of the key requirements for reliable NNIPs, the relative importance of
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conservativity compared to accuracy has not been directly demonstrated. Our investigation leads to a
series of discoveries that provide this missing evidence.

We first provide empirical proof that a model’s internal self-consistency is more critical for algorithmic
stability than its external accuracy, confirming and building upon the principles laid out by Fu et al.
(2023; 2024). This finding motivates our use of an internal disagreement metric, the Force Delta
(U∆), which is the difference between a model’s direct force prediction, F̂nc, and its internally
self-consistent, energy-derived force, F̂c. Using this metric, we then identify an Asymmetric Failure
Mechanism inherent to the pre-trained dual-output direct-force architecture. We also find that U∆

is a more consistent predictor of instability than the direct force error magnitude against references
alone. We propose the link between this internal metric and practical reliability is a consequence
of inter-head influence via the shared GNN embedding, and we provide direct evidence for this
mechanism by demonstrating that fine-tuning the conservative force pathway measurably improves
the stability of simulations driven only by the direct force.

Our contributions are as follows:

• We provide the first direct, experimental proof that for simulation stability, a model’s internal
self-consistency is more critical than its external accuracy.

• We introduce the Force Delta (U∆) as a versatile, data-free UQ metric that identifies an
Asymmetric Failure Mechanism inherent to direct-force architectures with competitive
performances with expensive ensembles.

• We provide three-layered evidence for inter-head influence in direct-force models: (1)
correlational evidence where the magnitude of the error in the two forces (one from the
energy and the other from the force head) is correlated and captured by U∆, (2) predictive
evidence where the magnitude of F̂c’s error predicts the pathological character of the F̂nc’s
error that causes energy drift, and (3) causal evidence where finetuning F̂c improves F̂nc’s
stability.

• We present a complete workflow, using U∆ to generate targeted data to iteratively improve
the stability of both pre-trained and already fine-tuned direct-force models.

2 BACKGROUND AND RELATED WORK

Machine Learning Interatomic Potential Machine Learning Interatomic Potentials (MLIPs) aim
to approximate the quantum mechanical potential energy surface (PES) with the efficiency of classical
force fields. Early influential models were descriptor-based, first mapping local atomic environments
to a set of fixed, hand-crafted feature vectors (descriptors) which were then fed into a simple machine
learning model. Seminal examples in this class include Behler-Parrinello Neural Networks (Behler &
Parrinello, 2007), Gaussian Approximation Potentials (GAP) (Bartók et al., 2010), Spectral Neighbor
Analysis Potentials (SNAP) (Thompson et al., 2015), and Moment Tensor Potentials (MTP) (Shapeev,
2016).

A subsequent generation of models moved towards end-to-end deep learning, using neural networks to
learn the feature representation directly from atomic coordinates. Architectures like ANI (Smith et al.,
2017) and SchNet (Schütt, 2017) were foundational in this area, often building upon the message-
passing framework of Graph Neural Networks (GNNs) (Gilmer, 2017; Battaglia, 2018). The current
state-of-the-art is dominated by E(3)-equivariant GNNs, which build in physical symmetries (roto-
translational equivariance) directly into the network architecture. This inductive bias significantly
improves data efficiency and generalization (Musil, 2021). Foundational equivariant architectures
include Tensor Field Networks (Thomas, 2018), NequIP (Batzner et al., 2022), MACE (Batatia,
2022), and Allegro (Musaelian, 2023). The success of these models has spurred the development of
large-scale, pre-trained “foundation models” for atomistic simulation, such as CHGNet (Deng, 2023)
and the direct-force models used in this work.

Direct-Force Architectures. The drive for computational efficiency has popularized direct-force
architectures in many state-of-the-art models (Gasteiger et al., 2021; Batatia, 2022; Liao et al., 2024;
Neumann et al., 2024; Rhodes et al., 2025). In contrast to conservative models, these architectures
predict atomic forces as a direct, equivariant vector output of the GNN, rather than computing
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them as the gradient of a predicted scalar energy. This approach can yield significant performance
benefits, including faster training and inference and lower memory usage, as it often avoids the
computational cost of a backward pass (i.e., backpropagation) through the network (Gasteiger
et al., 2021). Architecturally, these models typically use a shared GNN encoder to generate atomic
representations, which are then fed to separate output heads. The first head predicts the direct,
non-conservative force, F̂nc, as a direct equivariant vector output. The second head predicts a scalar
energy, Ê. The conservative force, F̂c, is the gradient of this energy, F̂c = −∇RÊ.

A key assumption of the direct-force paradigm is that the faster F̂nc can serve as a sufficient substitute
for the computationally more expensive F̂c, which requires a backward pass through the network.
Consequently, the conservative force pathway is typically ignored during training. The model
is instead trained by minimizing a joint loss function on the energy and the direct forces, which
encourages both accuracy on Density Functional Theory (DFT) targets and, implicitly, consistency
between the two pathways:

L = λELE(Ê, EDFT) + λFLF (F̂nc,FDFT) (1)

The Consequences of Non-Conservativity. The efficiency gain of using F̂nc comes at the expense
of guaranteed energy conservation (Chmiela, 2017). This lack of an underlying potential violates the
assumptions of algorithms that navigate the Potential Energy Surface (PES). Symplectic integrators
used in MD assume forces are the exact gradient of a potential to conserve the Hamiltonian (Hairer,
2006; Leimkuhler & Reich, 2004; Tuckerman, 2023). Non-conservative forces lead to unphysical
energy drift and instabilities in NVE simulations due to its nature of not being an exact spatial gradient
of any potential (Bigi et al., 2025; Fu et al., 2024). This non-conservativity also creates artifacts
in NVT simulations that are difficult or impossible to correct with thermostats without disrupting
dynamical or structural properties Bigi et al. (2025). Similarly, gradient-based optimizers require a
consistent PES for stable convergence (Nocedal & Wright, 2006), leading to more fragile geometry
optimization using non-conservative forces compared to conservative forces Bigi et al. (2025).

Requirements for Stable and Accurate MLIPs A growing body of work has established that the
requirements for a reliable MLIP go far beyond simple accuracy on a static test set. The seminal
work of Fu et al. (2023) provided the first large-scale benchmark demonstrating that static force error
is often an insufficient metric for predicting the dynamic stability of a simulation. This exposed a
critical gap between how models are benchmarked and how they are used in practice. However, a
clear and direct experimental validation of the relative importance of conservativity and accuracy
against a DFT reference is still lacking. By designing experiments that isolate the effects of accuracy
from self-consistency, we provide the first direct, quantitative evidence for the relative importance of
conservativity compared to accuracy.

The Limitations of Existing UQ Methods. Quantifying uncertainty is crucial for monitoring
reliability (Abdar et al., 2021; Musil et al., 2023). Deep ensembles remain the standard for epis-
temic uncertainty (Lakshminarayanan et al., 2017), but their high computational cost (typically
5-10x) is prohibitive for large-scale simulations (Wen & Tadmor, 2020). Single-model Bayesian
approaches (Gal & Ghahramani, 2016; Vandermause et al., 2020) often require modified training.
Data-dependent methods (e.g., distance in latent space) (Hirschfeld et al., 2020; Podryabinkin &
Shapeev, 2017) are unsuitable for foundation models as they require access to massive datasets and
can perform poorly on heterogeneous data (Tan et al., 2023; Jablonka et al., 2021; Wang et al., 2023).
A fast, data-free metric derived from the model’s internal physics is needed.

3 METHODS

Force Definitions and Metrics. A direct-force NNIP provides two distinct force predictions. The
first is the direct, non-conservative force, F̂nc, which is the direct equivariant vector output of the
model’s force head. The second is the conservative force, F̂c, which is derived from the model’s
own learned potential energy surface, Ê, via the chain rule: F̂c = −∇RÊ. We define our primary
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diagnostic, the Force Delta (U∆), as the root-mean-square difference between these two predictions:

U∆(R) =

√√√√ 1

3N

N∑
i=1

∥F̂nc,i(R)− F̂c,i(R)∥2 (2)

To validate this metric, we compare it against two true error metrics calculated
with respect to a ground-truth DFT force, FDFT. The non-conservative error is

εnc =
√

1
3N

∑N
i=1 ∥F̂nc,i(R)− FDFT,i(R)∥2, and the conservative error is εc =√

1
3N

∑N
i=1 ∥F̂c,i(R)− FDFT,i(R)∥2.

Models and Systems. We use a suite of publicly available, pre-trainead direct-force models,
primarily from the Orb (Neumann et al., 2024; Rhodes et al., 2025) and EquiformerV2 (Liao
et al., 2024) families. Our test set includes a diverse range of systems, including crystalline solids
(e.g., ice, LGPS, Mg17Al12), a liquid water box, surface, and molecules, designed to probe model
performance on both in- and out-of-distribution structures. DFT calculations for ground-truth forces
were performed with VASP using the PBE functional. Further details on all models, systems, and
DFT parameters are in the Appendix.

Simulation Protocols. Molecular dynamics simulations were performed in both the microcanonical
(NVE) and canonical (NVT) ensembles using the Velocity Verlet integrator. NVE simulations were
used to assess energy conservation and drift, while NVT simulations were used to test for other
artifacts, such as temperature fluctuations. Further details are in the Appendix

Adversarial Generation of OOD Structures. To efficiently generate challenging OOD configu-
rations, we employ a differentiable adversarial attack (Schwalbe-Koda et al., 2021). Starting from
equilibrium structures, we iteratively perturb the atomic positions r to find configurations that are both
physically plausible (low energy) and maximally inconsistent. This is achieved by updating positions
along a composite gradient that simultaneously maximizes our diagnostic, U∆, while minimizing the
predicted energy, Ê:

rnew = rold + α∇rU∆ − β∇rÊ (3)

where α and β are the respective learning rates. This process efficiently drives the system towards
high-uncertainty, low-energy regions where the model’s internal physics is most stressed.

4 RESULTS

Our results are presented in four parts. We first experimentally establish that for stable simulations, a
model’s self-consistency is more critical than its external accuracy. We then introduce the Force Delta,
U∆, use it to identify the asymmetric failure mode, and validate it as a robust diagnostic for both
conservative and direct force errors. Building on this, we show that U∆ is a more consistent indicator
of algorithmic instability than standard error metrics. Finally, we provide final direct evidence for
the underlying inter-head mechanism by using U∆-maximized data in fine-tuning experiments to
demonstrably improve model stability.

4.1 EXPERIMENTAL INVESTIGATION OF SIMULATION STABILITY REQUIREMENTS

We employ DFT calculations to quantitatively investigate the relative importance of accuracy against
FDFT compared to conservativity during the energy drift in NVE simulations. To isolate the effects of
accuracy from self-consistency, we perform a series of NVE simulations on a liquid water box, with
consistent findings for other systems presented in the Appendix. The results, shown in Figure 1, reveal
a clear hierarchy. First, we compare a simulation driven by the accurate but non-conservative force
(F̂nc) of the orb-v3-direct-inf-mpa model to one driven by its less accurate but internally
self-consistent conservative force (F̂c) obtained by backpropagating predicted energy to obtain its
negative spatial derivative of the same model. The F̂nc-driven simulation is unstable, while the
F̂c-driven run is perfectly stable, providing direct proof that self-consistency (i.e., forces being an
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exact gradient of model’s predicted energy) is more critical than accuracy. This confirms that the
small error of F̂nc against FDFT during NVE accumulates and causes the drift. No matter how close
F̂nc is to an exact gradient of DFT energy (FDFT), it will never be an exact gradient of any potential
and therefore produces artifact. On the other hand, F̂c of orb-v3-direct-inf-mpa, while
being inaccurate compared to FDFT, produces a stable simulations since it satisfies the symplectic
requirements of the integrator by being an exact gradient of its own predicted energy. In other words,
F̂c is self-consistent with its own potential energy landscape.

The effects of energy drift also leads to larger temperature fluctuations compared to simulations
with inaccurate F̂c in NVT as shown in the Appendix. Bigi et al. (2025) have demonstrated that
this artifact in NVT is difficult or impossible to contain using a thermostat without disrupting
dynamical properties. This finding provides direct evidence for the necessity of conservativity and
the fundamental justification for hybrid integration schemes, such as the Multiple-Time-Stepping
(MTS) method proposed by Bigi et al. (2025), which leverage the stability of the conservative force
to correct the trajectory of the direct force. Furthermore, these experiments establish the scientific
motivation for a diagnostic that can probe these internal model properties.

Figure 1: Energy evolution during NVE simulations of a liquid water box (15 Å side length). The run
driven by the self-consistent and smooth but less accurate F̂c (green) is stable. In contrast, the run
driven by the more accurate but non-conservative F̂nc (orange) is unstable.

4.2 THE FORCE DELTA: A DIAGNOSTIC FOR FORCE ERRORS

Having established the requirements for simulation stability, we now validate the Force Delta, U∆,
as a diagnostic for the model properties that govern these principles. A key to understanding U∆’s
utility is the inherent asymmetry in how the two force predictions are generated and supervised.

4.2.1 THE ASYMMETRIC FAILURE MECHANISM

The dual-output architecture of direct-force models leads to a predictable, asymmetric failure mode
when the model is pushed out-of-distribution (OOD). This arises from two factors: asymmetric
supervision and the mathematical properties of differentiation. The direct force, F̂nc, is strongly
regularized by direct supervision on vector force DFT data. In contrast, the model’s energy, Ê, is only
weakly supervised by scalar values, which is insufficient to regularize the curvature of the potential
energy surface. Moreover, mathematically, differentiation acts as a high-pass filter, meaning that
any small and high-frequency “ripples” in the under-regularized Ê (i.e., non-smooth curvature) are
amplified into large-magnitude errors in its gradient, F̂c.

This mechanism predicts that as a model goes OOD, the error in the conservative force, εc, should
grow much more rapidly than the error in the non-conservative force, εnc. This large discrepancy in
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error magnitudes is the key to understanding the utility of the Force Delta. Since U∆ = ∥F̂nc − F̂c∥,
it can be rewritten in terms of the respective error vectors as U∆ = ∥ε⃗nc− ε⃗c∥. When the conservative
error dominates such that ∥ε⃗c∥ ≫ ∥ε⃗nc∥, the smaller term becomes negligible, and the expression
simplifies to U∆ ≈ ∥ − ε⃗c∥ = εc. The Force Delta thus becomes a direct and precise mathematical
proxy for the error in the conservative force. We test this by using adversarial attacks to efficiently
generate OOD structures. As shown in Figure 2a, we observe a strong correlation between U∆ and
εc for the orb-v3-direct-20-mpa model on several crystalline systems. This result, which is
consistent across tested models in the Orb and EqV2 families and most systems for OOD structures
from both adversarial attack and high runaway temperatures during NVE (see Appendix), provides
empirical evidence for the asymmetric failure mechanism and establishes U∆ as a reliable probe of
the model’s internal physical breakdown.

(a) U∆ vs. Conservative Error (εc) (b) U∆ vs. Non-Conservative Error (εnc)

Figure 2: The Force Delta (U∆) as a robust indicator of force errors for out-of-distribution structures
generated via an adversarial attack on the orb-v3-direct-20-mpa model. Initial configurations
were obtained from Materials Project (Jain et al., 2013) and geometrically-optimized using the model
(a) U∆ shows a near-perfect correlation with the conservative force error, εc. The Spearman’s rank
correlation for ice (rs = 0.99), LGPS (rs = 0.88), and Mg17Al12 (rs = 1.00) demonstrates the
asymmetric failure mechanism. (b) U∆ also maintains a strong positive correlation (ice (rs = 0.91),
LGPS (rs = 1.00), and Mg17Al12 (rs = 1.00)) with the direct, non-conservative force error, εnc,
establishing its utility as a general UQ metric.

4.2.2 FORCE DELTA AS A GENERAL UQ METRIC FOR FORCE ERROR

After demonstrating U∆ is a strong indicator of the model’s internal conservative force error, we now
investigate its utility as a practical UQ metric for the non-conservative force error that is used due
to its superior inference speed, εnc. A strong correlation between these two errors would suggest
a deeper connection between the model’s two prediction heads. We first test this relationship on a
diverse benchmark set of ten systems, including crystalline solids, surface, and molecules to represent
both in- and out-of-distribution data for the pre-trained models (see Appendix for dataset and model
details). As shown in Table 1, the single-model U∆ exhibits a strong correlation with εnc, and its
performance is competitive with, or superior to, the expensive multi-model ensemble variance of
force predictions, Uvar. It is crucial to note that these ad-hoc collection of models are not “deep
ensembles" in the strictest sense, as they were not co-trained with varied initializations on an identical
dataset. However, they represent the most direct ensemble-based UQ approach available to a user
working with publicly available, pre-trained models. Furthermore, combining all 12 models into
a single ensemble would be physically and statistically invalid. The variance would be dominated
by the systematic bias between the different ground-truth DFT methods used for training (DFT vs.
DFT+D3) rather than true epistemic uncertainty.

To further test the robustness of this relationship in high-uncertainty regimes, we analyzed the
correlation on OOD structures generated via our adversarial attack. As shown for a representative
model in Figure 2b, U∆ maintains a strong positive correlation with εnc, even as the model is pushed
far from its training distribution. This result is consistent across most models and systems we tested.
For the eqV2-dens-31M-mp model, the correlations between U∆ and εnc appear to be weaker
than the orb models. This could be attributed to the different relative weights between each head
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(λF : λE ratio) between each model family. The ratio is 1 for orb and 25 for eqV2, hence the F̂nc

of the eqV2 model being more robust and the resulting weaker correlations (see Appendix for full
correlation tables).

For a few specific systems (e.g., MoF5, aspirin), the correlation is weak or even negative. This is
because the true error of the initial equilibrium structure was already substantial (see Appendix).
Consequently, the adversarial attack, while still finding high-uncertainty configurations, did not
produce as dramatic an increase in error, which can weaken the calculated correlation coefficient.
Crucially, the Force Delta for these points is consistently high, correctly flagging them as unreliable.
This shows the metric functions as an effective “failure detector" for applications like active learning
or molecular dynamics (MD) monitoring, where identifying failure is often more important than
perfect error prediction.

Since U∆ has a near-perfect correlation with the conservative force error (εc), this means that εc is
a reliable indicator of the direct force head’s prediction error (εnc). This finding provides the first,
correlational evidence for inter-head influence, where the state of one prediction pathway (Ê which
gives F̂c) informs on the other (F̂nc), all captured by their disagreement U∆. This establishes U∆ as
a reliable and robust UQ metric for the direct force predictions used in a wide range of applications
such as geometry optimization and property prediction.

Table 1: Spearman’s rank correlation (rs) comparing the single-model U∆ against the ad-hoc
ensemble variance Uvar as predictors of the non-conservative force error, εnc, on a diverse benchmark
set. The reported single-model’s rs value is the average of rs between U∆ and εnc on the ten systems
over models. Full details are in the Appendix.

Model Family Avg. rs (Single-Model U∆) rs (Ensemble Uvar) Relative Cost

Orb (5 models) 0.70 ± 0.04 0.73 ≈ 5×
EquiformerV2 (7 models) 0.91 ± 0.02 0.79 ≈ 7×

4.3 U∆ AS A CONSISTENT INDICATOR OF ALGORITHMIC INSTABILITY

We now test the ability of U∆ to diagnose the practical consequence of these errors: algorithmic
instability on four systems (ice, LGPS, Mg17Al12, and water box). While the accumulated error,
εnc, is the direct physical cause of energy drift in NVE simulations, we find its predictive power
is complex and model-dependent. For models in a fragile state where εnc becomes large (e.g.,
orb-d3-xs-v2), its magnitude correlates well with drift and all metrics (εnc, εc, U∆, and energy
drift) are well-correlated (see Appendix). However, for robust, pre-trained models, εnc often operates
in a low-error regime where its correlation with instability is not guaranteed.

Our results reveal a clear distinction between the predictive power of the external error magnitude
and the internal inconsistency in this critical low-error regime. For strongly-regularized models like
the OrbV3 family, the correlation between the average εnc during a simulation and the resulting
energy drift is weak and noisy, as shown in Figure 3a. In contrast, Figure 3b shows that the average
Force Delta, U∆, exhibits a more consistent positive correlation with the energy drift. For other
models like eqV2-dens-31M-mp, all metrics happen to be well-correlated (see Appendix for a
full analysis). This demonstrates that while the predictive power of εnc’s magnitude is inconsistent
across different model architectures and training regimes, the internal inconsistency, U∆, is a more
reliable indicator of the pathological character of the error that governs the severity of the instability,
an artifact difficult to monitor and suppress without distrupting dynamical and structural properties in
NVT simulations (Bigi et al., 2025). In fact, the mean error of the conservative forces (εc) has the
strongest correlation (rs = 0.97) with the energy drift in simulations performed using F̂nc. Since U∆

has a strong correlation with εc (also with rs = 0.97), it also predicts energy drift as well as εc. This
provides predictive evidence for inter-head influence, where the state of the model’s internal physics
and the error of the other (energy) head is a more consistent probe of its reliability than the accuracy
of the head used in the simulations (F̂nc) alone.
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(a) Drift vs. Non-Conservative Error (εnc) (b) Drift vs. Force Delta (U∆)

Figure 3: The Force Delta (U∆) as a consistent indicator of algorithmic instability for robust
direct OrbV3 (orb-v3-direct-inf-mpa and orb-v3-direct-20-mpa) models. Each
point represents a 10-ps NVE simulation. (a) In the low-error regime, the magnitude of the non-
conservative force error, εnc, shows a weak and noisy correlation with the total energy drift (rs =
0.24). (b) In the same set of simulations, the internal inconsistency, U∆, shows a more consistent
positive correlation with the energy drift (rs = 0.91). A full analysis of all models is in the Appendix.

4.4 STABILITY-IMPROVING FINETUNING EXPERIMENTS

The strong correlations observed between the model’s internal inconsistency and its practical reliability
suggest a deep connection between the energy and force prediction heads. We propose that this
inter-head influence is mediated by the shared GNN embedding. To provide direct, causal evidence
for this mechanism, we perform a series of fine-tuning experiments using data generated from our
adversarial attack on U∆. If our hypothesis is correct, then improving the internal physics of the
model by training its conservative pathway should have a direct, measurable effect on the stability
of simulations driven only by the direct F̂nc force. Note that we have to always finetune the direct
force head F̂nc here to avoid degradation since the pre-trained models were trained on F̂nc and the
simulations are typically performed using F̂nc.

We test this on the orb-v3-direct-inf-mpa model with the ice system. As shown in Figure 4,
finetuning the model on just 100 adversarial structures leads to a clear and stepwise improvement
in stability. Fine-tuning only the F̂nc head reduces the energy drift compared to the pre-trained
baseline. Critically, fine-tuning both the F̂c and F̂nc heads (i.e., conservative fine-tuning) further
reduces the drift in the F̂nc-driven simulation. This provides direct evidence that improving the
quality of the model’s internal energy landscape improves the non-conservative character of the direct
forces. Furthermore, we demonstrate the iterative utility of our method by performing a second
adversarial attack on this improved model to generate a new set of 100 structures. Fine-tuning on
this “2nd generation” data nearly eliminates the long-term energy drift. These results confirm the
inter-head influence mechanism and validate our method as a principled way to generate targeted
data for improving model’s stability.

5 DISCUSSION

Our results, from the error correlations to finetuning experiments, all point to a single unifying
mechanism: inter-head influence via the shared GNN embedding. The state of the model’s internal
physics, represented by F̂c, is not independent of the direct force prediction, F̂nc. This finding
is consistent with and provides a deeper explanation for previous observations that pre-training a
model on its direct-force head provides a more effective starting point for subsequently training the
conservative-force pathway (Bigi et al., 2025; Fu et al., 2024). Our work reveals both the diagnostic
and improvement sides of this phenomenon: the observable state of one head is a sensitive probe
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Figure 4: Stepwise reduction in NVE energy drift for the orb-v3-direct-inf-mpa model on
the ice system after fine-tuning on U∆-maximized data. Each bar represents the total drift after 10
ps. Fine-tuning both heads (F̂c & F̂nc) is more effective than fine-tuning F̂nc alone, and a second
generation of fine-tuning provides further improvement. Consistent results for another model are in
the Appendix.

of the hidden, pathological character of the error in the other, and finetuning one head improves the
performance of the other head.

This understanding establishes the Force Delta, U∆, which measures the disagreement between two
heads as a versatile tool for improving the reliability of the entire workflow of direct-force MLIPs. If
the two forces do not agree, at least one of them is wrong against DFT, then the error of the other
force could also be large in magnitude as shown by correlational evidence in Section 4.2.2, or could
have large non-conservative character that causes artifacts as shown by predictive evidence in Section
4.3 or both. It serves as an on-the-fly monitor for MD simulations (both NVE and NVT) to detect the
onset of non-conservative artifacts that can corrupt dynamical properties. For geometry optimizations
and property predictions, it acts as a fast, data-free prerequisite check on the trustworthiness of the
underlying PES. Furthermore, as our fine-tuning experiments demonstrate, it provides a data-efficient
method for generating targeted OOD structures to improve the stability of both pre-trained and already
fine-tuned models.

The demonstrated stability improvements from our fine-tuning workflow have direct implications for
advanced simulation methods. The Multiple-Time-Stepping (MTS) scheme proposed by Bigi et al.
(2025), for instance, relies on the accuracy of both the direct force F̂nc and the corrective conservative
force F̂c. Our work establishes the Force Delta, U∆, as an essential real-time monitor for this scheme,
as a large U∆ signals that at least one of these forces has become unreliable. Furthermore, by using
our method to create a more stable base model, we can logically infer that the MTS algorithm
would require less frequent corrective steps. This would lead to a significant increase in the overall
simulation speed without sacrificing stability, directly addressing a key challenge in the field.

Finally, it is essential to acknowledge the limitations of this approach, which also point to future
directions. Due to its disagreement-based nature, U∆ cannot detect “consensus failures” where both
force predictions are concurrently wrong, a rare but possible scenario we observed for a specific
model-system pair (MoF5) in the Appendix. Furthermore, in the highly consistent, low-error regime,
the magnitude of all metrics (U∆, εc, and εnc) is small, and correlations with instability may be
dominated by numerical noise; differentiating between near-zero uncertainty and noise remains
a challenge for any metric. Lastly, U∆ is suitable for ranking uncertainty, which is the primary
requirement for failure detection and active learning. However, it is not calibrated; the magnitude of
U∆ is not a direct predictor of the magnitude of εnc. Calibrated error estimation would still require
system-specific validation (Kuleshov et al., 2018) and represents a key area for future work.
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LLM USAGE

For the paper, an LLM was employed solely as a grammar-checking and writing refinement tool. Its
use was limited to improving the clarity and coherence of the written language.
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A APPENDIX

A.1 COMPUTATIONAL DETAILS

A.1.1 MODEL DETAILS

We utilized 12 pre-trained NNIPs, all of which have the MPTraj data as part of their training dataset.
This is to ensure all crystalline solids in the benchmark test set used to compare ad-hoc ensemble’s UQ
(Uvar) represent in-distribution of all models. The models spanning two major families of equivariant
GNN architectures:
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ORB MODELS

The five Orb models (Neumann et al., 2024; Rhodes et al., 2025) used were:

• orb-d3-xs-v2

• orb-d3-v2

• orb-d3-sm-v2

• orb-v3-direct-inf-mpa

• orb-v3-direct-20-mpa

EQUIFORMERV2 MODELS

The seven EquiformerV2 models (Liao et al., 2024) used were:

• eqV2_dens_31M_mp

• eqV2_dens_153M_mp

• eqV2_dens_86M_mp

• eqV2_31M_mp

• eqV2_31M_omat_mp_salex

• eqV2_153M_omat_mp_salex

• eqV2_86M_omat_mp_salex

Detailed studies often used orb-v3-direct-20-mpa and eqV2_dens_31M_mp as represen-
tatives.

A.1.2 MATERIALS DETAILS

Our test set comprised 10 systems spanning solids (Mg17Al12, LGPS, ice, and MoF-5) taken from
Materials Project (Jain et al., 2013), surface (CaPd – NH2) taken from OC22 (Tran et al., 2023),
and molecules (Ac-Ala3-NHMe, stachyose, aspirin, paracetamol, and DHA taken from the MD22
dataset (Chmiela et al., 2023). The test set for benchmarking U∆ against ensemble’s Uvar were taken
directly from the mentioned publicly available databases.

A.1.3 DFT CALCULATION DETAILS

All ground-truth Density Functional Theory (DFT) calculations were performed with the Vienna
Ab initio Simulation Package (VASP) (Kresse & Furthmüller, 1996). We used the PBE exchange-
correlation functional (Perdew et al., 1996). Calculation parameters were consistent with Materials
Project protocols (Jain et al., 2013; Munro et al., 2020).

A.1.4 MD SIMULATION DETAILS

NVE simulations were performed using the Atomic Simulation Environment (ASE) (Larsen et al.,
2017). We used the Velocity Verlet integrator with a timestep of 0.5 fs for all simulations. For each
system-model pair, the initial configuration taken from a corresponding database, relaxed through
geometry optimization with force threshold 0.05 eV/Å using the model, and finally equilibrated
at NVT 300 K (except for ice which is equlibrated at 200 K). The Nose-Hoover thermostat with
ttime = 10 fs was used to contain temperature fluctuation from non-conservative artifacts Bigi
et al. (2025). All NVE simulations start from the last frame of the corresponding NVT-equilibrated
frames.

A.2 ADDITIONAL RESULTS

A.2.1 ADDITIONAL RESULTS FOR SIMULATION STABILITY REQUIREMENTS

This section provides supplementary results that demonstrate the generality of the findings presented
in Section 4.1.
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NVE Simulations on Additional Systems. The hierarchy of stability requirements observed for the
liquid water box holds for other systems. Figure 5 shows the results of equivalent NVE simulations
for ice and Mg17Al12 crystalline structures using the same set of Orb models. In both cases, the
simulation driven by the self-consistent and smooth F̂c of the orb-v3-direct-inf-mpa model
is the most stable. The simulation driven by the more accurate but non-conservative F̂nc of the same
model exhibits significant energy drift.

(a) (b)

Figure 5: Energy evolution during NVE simulations, confirming the stability requirements for (a)
an ice crystal and (b) a Mg17Al12 crystal. In both systems, the run driven by the self-consistent and
smooth F̂c (blue) is the most stable, while the non-conservative F̂nc run (red) and the conservative
but discontinuous run (green) are unstable.

Temperature Fluctuations in NVT Simulations. The non-conservative error of F̂nc also creates
artifacts in NVT simulations. an NVT simulation of the liquid water box driven by F̂nc exhibits signif-
icantly larger temperature fluctuations (19.9 K stddev) compared to an equivalent simulation driven by
the inaccurate self-consistent F̂c (10.6 K stddev) of the same orb-v3-direct-inf-mpa, even
when using the same thermostat (Nose-Hoover with τ = 200 fs). This demonstrates that the thermo-
stat must work harder to counteract the unphysical energy being introduced by the non-conservative
forces, which, as noted by Bigi et al. (2025), can disrupt the system’s true structural and dynamical
properties.

A.2.2 DETAILED CORRELATION ANALYSIS: U∆ AS A PROXY FOR εc AND εnc

Table 2 provides the complete Spearman correlation results supporting the analysis in Section 4.2.1
and 4.2.2. It demonstrates the consistently strong correlation between U∆ and εc across the dynamic
range, validating U∆ as a proxy for the internal physical error. It also shows the strong correlation
between U∆ and εnc during OOD exploration (adversarial attacks and NVE) and the use of U∆ as a
UQ metric for εnc (section 4.2.2).

A.3 DETAILED CORRELATION ANALYSIS FOR ENERGY DRIFT PREDICTION

This section provides the complete data and a more detailed analysis of the relationship between
different error metrics and the total energy drift (∆Edrift) observed in NVE simulations. While
the main text presents the key finding—that the internal inconsistency, U∆, is a more consistent
indicator of instability than the external error magnitude, εnc—this appendix details the model- and
system-dependent nuances that support this conclusion.

As shown in figures 6 and 7, for the strongly-regularized orbv3models, we observe the most complex
behavior. In this low-εnc regime, the magnitude of the external error is a noisy and inconsistent
predictor of drift. In contrast, the internal metrics, εc and U∆, maintain a more consistent positive
correlation, making them more reliable indicators of the pathological character of the error that leads
to instability. For the less-regularized orb-d3-xs-v2 model, the system enters a more fragile state
where εnc becomes large, and as a result, all metrics (εnc, εc, and U∆) become strongly correlated
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Table 2: Spearman’s rank correlation coefficients (rs) between the Force Delta (U∆) and the two
error metrics (εnc and εc).

orb-v3-direct-inf-mpa (adv attack)

System Group rs(U∆, εnc) rs(U∆, εc)

Mg17Al12 Solid 1.00 1.00
LGPS Solid 1.00 1.00
ice Solid 0.91 0.99
MoF5 Solid -0.31 0.98
CaPd-NH2 Surface 0.58 1.00
paracetamol Molecule 0.97 1.00
stachyose Molecule 0.93 1.00
Ac-Ala3-NHMe Molecule 0.95 1.00
DHA Molecule 0.72 0.99
aspirin Molecule -0.02 0.98

orb-v3-direct-inf-mpa (NVE)

System Group rs(U∆, εnc) rs(U∆, εc)

Mg17Al12 Solid 0.85 0.99
LGPS Solid 0.92 0.93
ice Solid 0.71 0.98
Water Liquid (Periodic) 0.88 0.94

orb-v3-direct-20-mpa (adv attack)

System Group rs(U∆, εnc) rs(U∆, εc)

LGPS Solid 0.78 0.99
ice Solid 0.96 1.00

orb-d3-xs-v2 (adv attack)

System Group rs(U∆, εnc) rs(U∆, εc)

Mg17Al12 Solid 0.73 0.94
LGPS Solid 0.70 0.93
ice Solid 0.70 0.99
MoF5 Solid -0.24 0.05

eqV2-dens-31M-mp (adv attack)

System Group rs(U∆, εnc) rs(U∆, εc)

ice Solid 0.84 0.99
Mg17Al12 Solid 0.42 0.98
LGPS Solid 0.18 0.99
CaPd-NH2 Surface 0.23 1.00
aspirin Molecule 0.44 0.99
paracetamol Molecule 0.08 0.98

with each other and with the energy drift. Finally, for the EquiformerV2 model, which has a
strongly regularized F̂nc pathway, we observe that all metrics are again well-correlated, even though
εnc remains low. This complex landscape of correlations underscores the main conclusion: while the
predictive power of εnc’s magnitude is model- and regime-dependent, the internal inconsistency, U∆,
serves as a more consistent indicator of algorithmic instability across these different scenarios.
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(a) Drift vs. Non-Conservative Error (εnc) (b) Drift vs. Force Delta (U∆)

Figure 6: The Force Delta (U∆) as a consistent indicator of algorithmic instability for
orb-d3-xs-v2 models. Each point represents a 10-ps NVE simulation for each system. (a)
In the low-error regime, the magnitude of the non-conservative force error (b) In the same set of
simulations, the internal inconsistency

(a) Drift vs. Non-Conservative Error (εnc) (b) Drift vs. Force Delta (U∆)

Figure 7: The Force Delta (U∆) as a consistent indicator of algorithmic instability for
eqV2-dens-31M-mp models. Each point represents a 10-ps NVE simulation for each system. (a)
In the low-error regime, the magnitude of the non-conservative force error (b) In the same set of
simulations, the internal inconsistency

A.4 ADDITIONAL FINE-TUNING RESULTS

To demonstrate the generality of the fine-tuning results presented in Section 4.4, we performed an
equivalent experiment on a different model and system: the orb-d3-xs-v2 model on the LGPS
crystal. As shown in Figure 8, we observe the same stepwise improvement in stability. The pre-trained
model exhibits significant energy drift. Fine-tuning on 100 adversarial data points on the F̂nc head
alone reduces the drift, and fine-tuning both the F̂c and F̂nc heads further improves the stability of
the F̂nc-driven simulation.

Figure 8 shows the full energy evolution trajectories for the NVE simulations of both the ice and
LGPS systems. The plots clearly illustrate the reduction in both short-term drift and long-term
instability at each stage of the fine-tuning process.
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Figure 8: Energy drift during NVE simulations for the pre-trained and fine-tuned models. (a) The
orb-v3-direct-inf-mpa model on the ice system. (b) The orb-d3-xs-v2 model on the
LGPS system. Each stage of fine-tuning leads to a more stable trajectory with reduced energy drift
over time for both systems.
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